JP4375939B2 - Method for manufacturing solid-state imaging device - Google Patents

Method for manufacturing solid-state imaging device Download PDF

Info

Publication number
JP4375939B2
JP4375939B2 JP2002107992A JP2002107992A JP4375939B2 JP 4375939 B2 JP4375939 B2 JP 4375939B2 JP 2002107992 A JP2002107992 A JP 2002107992A JP 2002107992 A JP2002107992 A JP 2002107992A JP 4375939 B2 JP4375939 B2 JP 4375939B2
Authority
JP
Japan
Prior art keywords
fpc
solid
state imaging
alignment
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002107992A
Other languages
Japanese (ja)
Other versions
JP2003303944A (en
JP2003303944A5 (en
Inventor
巧治 篠宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2002107992A priority Critical patent/JP4375939B2/en
Priority to KR10-2002-0048081A priority patent/KR100510625B1/en
Publication of JP2003303944A publication Critical patent/JP2003303944A/en
Publication of JP2003303944A5 publication Critical patent/JP2003303944A5/ja
Application granted granted Critical
Publication of JP4375939B2 publication Critical patent/JP4375939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、フレキシブル配線板に固体撮像素子および筐体に保持された光学レンズを備えた固体撮像装置の製造方法に関し、さらに詳しくは、高精度な組み立てを可能にし、かつ、小型化を実現する固体撮像装置の製造方法に関する。
【0002】
【従来の技術】
従来の技術の一例として、固体撮像素子と光学レンズとを備え、フレキシブル配線板(以下FPCと略す)に前記固体撮像素子とIC部品をそれぞれフリップチップ接続して構成した固体撮像装置の外観図を図18に示す。図18において、101はフレキシブル配線板(FPC)、101aはFPCリード部、103はFPCの外部接続端子、104は固定台座、104aは固定台座位置合わせ部、5は固定キャップ、8は絞り部、13は筐体、である。ここで、固定台座位置合わせ部104aはFPC101と固定台座104とを精度良く固定するためのものである。
【0003】
また、図18の固体撮像装置の断面図を図17に示す。図17において、104は固定台座で光学フィルタ7を保持しつつ、FPC101に接着固定されている。また5は固定キャップで光学レンズ6を保持しつつ、固定台座104とピント調整のため可動状態で設置されている。ここで固定台座104と固定キャップ5とで光学レンズ6および光学フィルタ7を保持する筐体13を構成している。さらに9は固体撮像素子で11のフリップチップ電極接続部を介してFPC101の配線に接続され、10はIC部品で11のフリップチップ電極接続部を介してFPC101の配線に接続されている。さらに12はチップ部品でFPC101の配線に接続されている。114はFPC101の開口部である。なおここで、15は接着剤で固体撮像素子9とIC部品10を接着すると共に、FPC101の折り曲げした状態を固定している。
【0004】
さらに図11、図12、図13、図14、図15、図16、を用いて従来の技術の一例を詳しく説明する。
図11は従来の固体撮像装置を構成するFPC101の展開図を示している。ここで、101aはFPCリード部、101bはFPC折り曲げ位置、114はFPCの開口部、121はFPCの位置合わせ穴を示している。ここで、FPCの位置合わせ穴121はFPCの開口部114に隣接して設けられることになる。
【0005】
図12は従来の固体撮像装置を構成するFPC101に固体撮像素子9、IC部品10、チップ部品12を実装した展開図を示している。ここで、FPCの位置合わせ穴121が固体撮像素子9、チップ部品12、に隣接して設けられることになる。
【0006】
図13は前記図12に示した実装済のFPC101の表裏をひっくり返した裏面展開図を示している。これの上に図14に示した光学系ユニットである固定台座104を乗せて、121のFPCの位置合わせ穴を用いて据え付けする。図14は固定台座104の形状を示す図である。ここで、104aは固定台座位置合わせ部、104bは固定台座位置合わせ突起部、5は固定キャップ、8は絞り部、である。ここで、前記図13の121の穴に前記図14の104bの突起部を落とし込んで、104の固定台座を乗せて据え付ける。
【0007】
図15は実装済みのFPC101に固定台座104を乗せて据え付けた図で、図には示していないが接触部には接着剤を用いて固定している。
図16は、前記図15の101bの折り曲げ位置でFPCを折り曲げて、接着剤で固定した様子を示した従来の固体撮像装置の図面である。
【0008】
次に従来の技術の一例として、図17と図18を用いて、従来の動作について説明する。絞り部8を通った光は光学レンズ6を通り、ついで光学フィルタ7を通って固体撮像素子9の撮像エリアに照射され結像する。結像された撮像情報は電気信号に変換され固体撮像素子9のフリップチップ電極接続部11を介してFPC101に電気的に接続され、FPC101の配線を介して、IC部品10のフリップチップ電極接続部11を介してIC部品10に撮像信号が送り込まれ、信号処理された電気信号は再びフリップチップ電極接続部11を介してFPC101に電気的に接続され、FPCリード部101aを通してFPCの外部接続端子103から撮像電気信号を取り出すように構成されている。
【0009】
【発明が解決しようとする課題】
従来の固体撮像装置は以上のように構成されており、図12と図17に示すように固体撮像素子9に隣接して位置合わせ穴121があるため、固体撮像素子9のフリップチップ接続部11からFPC101上の外部接続端子103に接続される配線の引き回しにおいて、前記位置合わせ穴121を回避して配線を通さなければならなくなり、前記FPC101上の配線スペースを広く取る必要があった。従って、前記FPC101が大きな面積が必要となり、固体撮像装置の小形化を図る上で問題があった。
【0010】
また同様に、固体撮像素子9のフリップチップ接続部11の近くにチップ部品12を配置して配線を接続する必要があり、このチップ部品12の取り付け位置が、前記位置合わせ穴121の近くになり、チップ部品12を配置する際、前記位置合わせ穴121を回避して配置し、配線しなければならないため、FPC101上のチップ部品12の配置スペースとチップ部品12の配線スペースを広く取る必要があった。
ここで、固体撮像素子9の近くにチップ部品12を配置して配線を接続する必要がある理由は、チップ部品12にバイパスコンデンサの機能を持たせるため、できるだけ固体撮像素子9のフリップチップ接続部11に最短で配線接続すればする程、バイパス特性が良くなり、結果としてより美しい撮像画像が得られことによる。
【0011】
さらには、固体撮像装置の小形化を進めて行くと、前記位置合わせ穴121の二つの穴の距離が短くなり、光学系ユニット104の据え付け精度が低下してしまう問題があった。従って、固定対座104の据え付け精度を高めようとすると、前記位置合わせ穴121の二つの穴の距離を大きく設定した方が良いが、前記FPC101が大きな面積となり、固体撮像装置の小形化に反し問題であった。
【0012】
この発明は上記のような問題点を解消するためになされたもので、高性能の撮像機能を維持しながら、前記FPC101の面積を小さく押えて、固体撮像装置の小形化(小容積化)を図ることを目的とする。
【0013】
【課題を解決するための手段】
この発明に係る固体撮像装置の製造方法は、以下の工程を有する。
固体撮像素子が搭載された配線板が用意される。光学レンズを収容可能な筐体が用意される。光学レンズと固体撮像素子とが互いに向かい合うように、筐体が配線板に固定される。筐体は、配線板と位置合わせするための第1位置合わせ部分と、第1位置合わせ部分に比して光学レンズが収容される位置の近くに設けられた、配線板と固定するための第1固定部分とを有する。配線板は、筐体が配線板に固定される際に第1位置合わせ部分および第1固定部分のそれぞれと重ね合わされる第2位置合わせ部分および第2固定部分を有する。筐体が配線板に固定された後、筐体の第1位置合わせ部分と配線板の第2位置合わせ部分とが筐体および配線板からそれぞれ切り離される。
【0014】
好ましくは、配線板は、ポリイミドを使ったフレキシブル配線板である。
【0015】
また、筐体とフレキシブル配線板とは、接着剤により固定される。
【0016】
また、筐体の第1位置合わせ部分は位置合わせ突起部を有する。また配線板の第2位置合わせ部分は位置合わせ穴を有する。また筐体が配線板に固定される工程は、位置合わせ突起部が位置合わせ穴に挿入された状態で施される
【0017】
また、位置合わせ部は、位置合わせ用の穴部および位置合わせ用の突起部により構成されるものである。
【0018】
また、この発明に係る固体撮像装置の製造方法は、位置合わせ穴を有する配線板を準備する工程と、撮像画素エリアを有する固体撮像素子を準備する工程と、前記配線板上に前記固体撮像素子を接続する工程と、光学レンズを保持し、位置合わせ突起部を有する筐体を準備する工程と、前記配線基板上に接続された固体撮像素子の撮像画素エリア上に、前記光学レンズが位置するように、前記筐体の位置合わせ突起部を、前記配線板の位置合わせ穴に挿入し、前記筐体を前記配線板上に接着剤で固定する工程と、前記筐体を固定する工程の後に、前記筐体の光学レンズを保持する部分から、前記位置合わせ突起部が形成された部分を切り落とし、かつ、前記配線板の固体撮像素子が接続された部分から、前記位置合わせ穴が形成された部分を切り落とす工程とを有するものである。
【0019】
また、配線板は、ポリイミドを使った配線板であるようにしたものである。
【0020】
また、筐体は、台座と、前記台座から突出する位置合わせ部とを有し、前記位置合わせ突起物は、前記位置合わせ部の下部に突出しているようにしたものである。
【0021】
また、配線板は、フレキシブル配線板であり、前記フレキシブル配線板を折り曲げる工程を有するようにしたものである。
【0022】
また、切り落とす工程において、前記筐体の切断面と、前記配線板の切断面が面一になっているようにしたものである。
【0023】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図によって説明する。
図1はこの発明における固体撮像装置のフレキシブル配線板(FPC)の展開図を示す。ここで1はポリイミド等のフィルム材料を使ったFPCで、ここでは平面に展開した状態を示しており、このFPC1にはプリント配線(図では省略)が施されている。また、1aはFPC1の一部に設けたFPCリード部、1bはFPC1の一部に設けたFPC折り曲げ位置、3はFPC1の一端に設けた外部接続端子、14はFPC1の一部に設けた前記固体撮像装置の撮像用の光が通過するためにFPC1に長方形の穴をあけた開口部、21はFPC1の一部に設けた前記固体撮像装置の筐体(光学系ユニット)を据え付ける時に位置合わせに使用するFPC1に穴をあけた位置合わせ穴である。
【0024】
次に図2は、図1のFPC1に電子部品を実装し平面に展開した図を示しており、FPC1に施されたプリント配線(図では省略)で前記電子部品が電気的に接続された状態を示している。ここで、図2のFPC1には、被写体を撮像する固体撮像素子9が、図1の開口部14に覆いかぶさるように撮像画素エリアを下にしてフリップチップ実装された状態を示している。さらにFPC1にはIC部品(半導体チップ)10がフリップチップ実装され、チップ部品(チップコンデンサ等)12、の3個が実装された状態を示している。
【0025】
次に図3は、図2の実装済FPC1を裏面から見た状態を示している。ここでは片面プリント配線の場合なので、図3で示した面側にはプリント配線は無い。
図4はこの発明による筐体(光学系ユニット)13の外形図である。ここで、4は固定台座で、中には光学フィルタ(赤外線カットフィルタ)を内蔵しており、4aは固定台座位置合わせ部、4bは固定台座位置合わせ突起部、であり、4aの部分が長くなっている。この長い4aの部分で、4bに近い部分が「位置合わせする部分」となり、この4aの4に近い部分が「固定する部分」になる。
【0026】
次に図5は、図3の実装済FPC1の裏面に、図4の筐体(光学系ユニット)13を乗せて、FPC1の位置合わせ穴21に固定台座位置合わせ突起部4bを落としこんで、接着剤で固定し、FPC1に筐体(光学系ユニット)13を据え付けた状態の展開図を示している。
【0027】
次に図6は、図5の実装済FPC1に筐体(光学系ユニット)13を据え付けた状態で、FPC1と固定台座位置合わせ部4aの部分をFPC1の外形ラインに沿って切断して、固定台座位置合わせ突起部4bと位置合わせ穴21の部分を切り落とした状態の展開図を示している。ここで、22の太線の部分はFPC1と固定台4の切断部分を強調して示しており、FPC/固定台座切断部22である。
【0028】
次に図7は、図6に示されたFPC1のFPC折り曲げ位置1bで折り曲げた状態を示している。この時の折り曲げる前の断面図が図8に、折り曲げた後の断面図が図9に、それぞれ示されている。図6、図7、図8、図9、において、8は絞り部、6は光学レンズ、5は固定キャップであり、これらは4の固定台座に搭載され、この固定台座4は接着剤でFPC1に固定される。なお、固体撮像素子9はフリップチップ接続部11を介して電気的にFPC1に接続され、同様に、IC部品10もフリップチップ接続部11を介して電気的にFPC1に接続され、さらに前記フリップチップ接続部11の周辺はアンダーフィルが流し込まれ、FPC1と固体撮像素子9の隙間、FPC1とIC部品10の隙間、これらの隙間にもアンダーフィルが流し込まれ加熱処理で硬化させ固定されている。ここで、チップ部品12はFPC1に電気的に半田接続されており、固体撮像素子9の裏面とIC部品10の裏面は、接着剤15で接着固定されてFPC1は折り曲げ状態で固定され、その外観図を図10に示す。
【0029】
図10は、この発明による外観図で、4aの側面部分と1の断面部分が一致して、面一になっているところを注視する必要がある。ここで4aは固定台座位置合わせ部、1はFPCで、図6の太線22で切断して製造されたので、切断面は面一になる。
【0030】
また図9は、形態1による固体撮像装置の断面図で、5は固定キャップで光学レンズ6を保持しつつ、固定台座4と焦点調整のため可動状態で設置されている。ここで固定台座4と固定キャップ5とで光学レンズ6および光学フィルタ7を保持する筐体13を構成している。この固定台座4と固定キャップ5は絞り部8から入ってくる光が光学フィルタ7を通して固体撮像素子9上に焦点をむすぶように調整するために、可動状態にされているが、もちろん固定焦点の場合にはその必要はない。また、その可動の方法も単に嵌め合いによるスライド機構でもよく、ネジ式でもよい。一般にはピント調整が施された後、前記焦点調整の可動部分は半固定接着剤で固定され、焦点調整固定の固体撮像装置になることが多い。
【0031】
【発明の効果】
以上のように本発明によれば、筐体をフレキシブル配線板に固定する工程で、筐体とフレキシブル配線板との位置合わせ部と固定部を分離して設け、筐体固定後に位置合わせ部を固体撮像装置から切り離すことにより、FPC1の配線領域を有効に使うことができ、高性能な撮像機能を維持しながら、固体撮像装置の小形化(小容積化)を図ることができる。
【0032】
また、筐体をフレキシブル配線板に固定する工程で、筐体が固定される面に対して裏面側のフレキシブル配線板面にさらに補強板を固定したので、良好な機械的強度が得られる。
【0033】
また、筐体とフレキシブル配線板との間に補強板を設けて、筐体を補強板に固定する工程で、筐体が固定される面が補強板となり、それに固定したので、良好な機械的強度が得られる。
【0034】
また、補強板は、フレキシブル配線板との位置合わせ部と固定部を分離して設け、固定後に位置合わせ部を固体撮像装置から切り離すことにより、固体撮像装置の小形化(小容積化)を図ることができるとともに、固体撮像素子のフリップチップ実装が容易に精度良くできる。
【0035】
また、位置合わせ部は、位置合わせ用の穴部および位置合わせ用の突起部により構成されるので、容易に位置合わせをすることができる。
【0036】
位置合わせ穴を有する配線板を準備する工程と、撮像画素エリアを有する固体撮像素子を準備する工程と、前記配線板上に前記固体撮像素子を接続する工程と、光学レンズを保持し、位置合わせ突起部を有する筐体を準備する工程と、前記配線基板上に接続された固体撮像素子の撮像画素エリア上に、前記光学レンズが位置するように、前記筐体の位置合わせ突起部を、前記配線板の位置合わせ穴に挿入し、前記筐体を前記配線板上に接着剤で固定する工程と、前記筐体を固定する工程の後に、前記筐体の光学レンズを保持する部分から、前記位置合わせ突起部が形成された部分を切り落とし、かつ、前記配線板の固体撮像素子が接続された部分から、前記位置合わせ穴が形成された部分を切り落とす工程とを有するようにしたので、FPCの配線領域を有効に使うことができ、高性能な撮像機能を維持しながら、固体撮像装置の小形化(小容積化)を図ることができる。
【0037】
また、配線板は、ポリイミドを使った配線板であるようにしたので、良好な機械的強度が得られる。
【0038】
また、筐体は、台座と、前記台座から突出する位置合わせ部とを有し、前記位置合わせ突起物は、前記位置合わせ部の下部に突出するようにしたので、容易に位置合わせをすることができる。
【0039】
また、配線板は、フレキシブル配線板であり、前記フレキシブル配線板を折り曲げる工程を有するようにしたので、固体撮像装置の小形化を図ることができる。
【0040】
また、切り落とす工程において、前記筐体の切断面と、前記配線板の切断面が面一になっているようにしたので、固体撮像装置の小形化を図ることができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1によるFPCの展開図である。
【図2】 この発明の実施の形態1による実装済FPCの展開図である。
【図3】 この発明の実施の形態1による実装済FPCの裏面展開図である。
【図4】 この発明の実施の形態1による筐体(光学系ユニット)の外形図である。
【図5】 この発明の実施の形態1によるFPCに筐体(光学系ユニット)を取り付けた展開図である。
【図6】 この発明の実施の形態1による切断部分を示すFPCの展開図である。
【図7】 この発明の実施の形態1による固体撮像装置の外観図である。
【図8】 この発明の実施の形態1による固体撮像装置の展開断面図である。
【図9】 この発明の実施の形態1による固体撮像装置の断面図である。
【図10】 この発明の実施の形態1による固体撮像装置の外観図である。
【図11】 従来のFPCの展開図である。
【図12】 従来の実装済FPCの展開図である。
【図13】 従来の実装済FPCの裏面展開図である。
【図14】 従来の筐体(光学系ユニット)の外形図である。
【図15】 従来のFPCに従来の筐体(光学系ユニット)を据え付けた展開図である。
【図16】 従来の固体撮像装置の図面である。
【図17】 従来の固体撮像装置の断面図である。
【図18】 従来の固体撮像装置の外観図である。
【符号の説明】
1 フレキシブル配線板(FPC)、1a FPCリード部、1b FPC折り曲げ位置、3 外部接続端子、4 固定台座、4a 固定台座位置合わせ部、4b 固定台座位置合わせ突起部、5 固定キャップ、6 光学レンズ、7 光学フィルタ、8 絞り部、9 固体撮像素子、10 IC部品、11 フリップチップ接続部、12 チップ部品、13 筐体(光学系ユニット)、14 開口部、15 接着剤、21 位置合わせ穴、22 FPC/固定台座切断部、101 従来のFPC、101a 従来のFPCリード部、101b 従来のFPC折り曲げ位置、103 従来FPCの外部接続端子、104 従来の固定台座、104a 従来の固定台座位置合わせ部、104b 従来の固定台座位置合わせ突起部、114 従来FPCの開口部、121 従来FPCの位置合わせ穴。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a solid-state imaging device including a solid-state imaging device and an optical lens held in a casing on a flexible wiring board. More specifically, the present invention enables high-precision assembly and realizes downsizing. The present invention relates to a method for manufacturing a solid-state imaging device.
[0002]
[Prior art]
As an example of the prior art, an external view of a solid-state imaging device that includes a solid-state imaging device and an optical lens and is configured by flip-chip connecting the solid-state imaging device and an IC component to a flexible wiring board (hereinafter abbreviated as FPC). As shown in FIG. In FIG. 18, 101 is a flexible printed circuit board (FPC), 101a is an FPC lead part, 103 is an external connection terminal of the FPC, 104 is a fixed base, 104a is a fixed base alignment part, 5 is a fixed cap, 8 is an aperture part, Reference numeral 13 denotes a housing. Here, the fixed pedestal positioning unit 104a is for fixing the FPC 101 and the fixed pedestal 104 with high accuracy.
[0003]
FIG. 17 shows a cross-sectional view of the solid-state imaging device of FIG. In FIG. 17, reference numeral 104 denotes a fixed base, which is bonded and fixed to the FPC 101 while holding the optical filter 7. A fixed cap 5 holds the optical lens 6 and is installed in a movable state for adjusting the focus with the fixed base 104. Here, the fixed base 104 and the fixed cap 5 constitute a housing 13 that holds the optical lens 6 and the optical filter 7. Further, 9 is a solid-state imaging device connected to the wiring of the FPC 101 through 11 flip chip electrode connection portions, and 10 is an IC component connected to the wiring of the FPC 101 through 11 flip chip electrode connection portions. Further, 12 is a chip component connected to the wiring of the FPC 101. Reference numeral 114 denotes an opening of the FPC 101. Here, reference numeral 15 denotes an adhesive that bonds the solid-state imaging device 9 and the IC component 10 and fixes the folded state of the FPC 101.
[0004]
Further, an example of the conventional technique will be described in detail with reference to FIGS. 11, 12, 13, 14, 15, and 16.
FIG. 11 is a development view of the FPC 101 constituting the conventional solid-state imaging device. Here, 101a denotes an FPC lead portion, 101b denotes an FPC bending position, 114 denotes an FPC opening, and 121 denotes an FPC alignment hole. Here, the FPC alignment hole 121 is provided adjacent to the opening 114 of the FPC.
[0005]
FIG. 12 is a development view in which the solid-state imaging device 9, the IC component 10, and the chip component 12 are mounted on the FPC 101 constituting the conventional solid-state imaging device. Here, the FPC alignment hole 121 is provided adjacent to the solid-state imaging device 9 and the chip component 12.
[0006]
FIG. 13 is a developed rear view in which the front and back of the mounted FPC 101 shown in FIG. 12 are turned over. The fixed base 104 which is the optical system unit shown in FIG. 14 is placed on this and is installed using the 121 FPC alignment holes. FIG. 14 is a diagram showing the shape of the fixed base 104. Here, 104a is a fixed pedestal alignment unit, 104b is a fixed pedestal alignment projection, 5 is a fixed cap, and 8 is a throttle unit. Here, the protrusion 104b of FIG. 14 is dropped into the hole 121 of FIG. 13, and the fixed pedestal 104 is placed and installed.
[0007]
FIG. 15 is a view in which the fixed base 104 is mounted on the mounted FPC 101, and although not shown in the drawing, the contact portion is fixed using an adhesive.
FIG. 16 is a drawing of a conventional solid-state imaging device showing a state in which the FPC is bent at the bending position 101b of FIG. 15 and fixed with an adhesive.
[0008]
Next, as an example of the conventional technique, a conventional operation will be described with reference to FIGS. 17 and 18. The light passing through the diaphragm 8 passes through the optical lens 6, then passes through the optical filter 7 and is irradiated onto the imaging area of the solid-state imaging device 9 to form an image. The imaged imaging information is converted into an electrical signal, and is electrically connected to the FPC 101 via the flip chip electrode connecting portion 11 of the solid-state imaging device 9. The flip chip electrode connecting portion of the IC component 10 is connected via the wiring of the FPC 101. An imaging signal is sent to the IC component 10 through the signal 11, and the processed electric signal is again electrically connected to the FPC 101 through the flip chip electrode connection unit 11, and the FPC external connection terminal 103 through the FPC lead unit 101a. The imaging electric signal is extracted from the camera.
[0009]
[Problems to be solved by the invention]
The conventional solid-state imaging device is configured as described above. Since the alignment hole 121 is adjacent to the solid-state imaging device 9 as shown in FIGS. 12 and 17, the flip chip connecting portion 11 of the solid-state imaging device 9. When routing the wiring connected to the external connection terminal 103 on the FPC 101, it is necessary to pass the wiring while avoiding the alignment hole 121, and it is necessary to make a wiring space on the FPC 101 wide. Therefore, the FPC 101 needs a large area, and there is a problem in miniaturizing the solid-state imaging device.
[0010]
Similarly, it is necessary to place the chip component 12 near the flip chip connecting portion 11 of the solid-state image pickup device 9 and connect the wiring. The mounting position of the chip component 12 is close to the alignment hole 121. When the chip component 12 is arranged, it must be arranged and wired while avoiding the alignment hole 121. Therefore, it is necessary to take a wide space for arranging the chip component 12 and the wiring space of the chip component 12 on the FPC 101. It was.
Here, the reason why it is necessary to arrange the chip component 12 near the solid-state image pickup device 9 and connect the wiring is to provide the chip component 12 with a function of a bypass capacitor. This is because as the wiring is connected to 11 as short as possible, the bypass characteristic is improved, and as a result, a more beautiful captured image is obtained.
[0011]
Furthermore, when the solid-state imaging device is further miniaturized, there is a problem that the distance between the two holes of the alignment hole 121 is shortened and the installation accuracy of the optical system unit 104 is lowered. Therefore, in order to increase the installation accuracy of the fixed seat 104, it is better to set the distance between the two holes of the alignment hole 121 larger, but the FPC 101 has a large area, which is a problem against downsizing of the solid-state imaging device. Met.
[0012]
The present invention has been made to solve the above problems, and while maintaining a high-performance imaging function, the area of the FPC 101 can be kept small to reduce the size (volume reduction) of the solid-state imaging device. The purpose is to plan.
[0013]
[Means for Solving the Problems]
The manufacturing method of the solid-state imaging device according to the present invention includes the following steps.
A wiring board on which a solid-state image sensor is mounted is prepared. A housing capable of accommodating an optical lens is prepared. The housing is fixed to the wiring board so that the optical lens and the solid-state imaging element face each other. The housing is provided with a first alignment portion for alignment with the wiring board, and a first alignment portion for fixing to the wiring board, which is provided closer to the position where the optical lens is accommodated than the first alignment portion. 1 fixed part. The wiring board has a second alignment portion and a second fixing portion that are overlapped with each of the first alignment portion and the first fixing portion when the housing is fixed to the wiring board. After the housing is fixed to the wiring board, the first alignment portion of the housing and the second alignment portion of the wiring board are separated from the housing and the wiring board, respectively.
[0014]
Preferably, the wiring board is a flexible wiring board using polyimide.
[0015]
Further, the housing and the flexible wiring board are fixed with an adhesive.
[0016]
The first alignment portion of the housing has an alignment protrusion. The second alignment portion of the wiring board has an alignment hole. The process of fixing the housing to the wiring board is performed in a state where the alignment protrusion is inserted into the alignment hole .
[0017]
In addition, the alignment unit is configured by an alignment hole and an alignment projection.
[0018]
The method for manufacturing a solid-state imaging device according to the present invention includes a step of preparing a wiring board having an alignment hole, a step of preparing a solid-state imaging element having an imaging pixel area, and the solid-state imaging element on the wiring board. The optical lens is positioned on the imaging pixel area of the solid-state imaging device connected to the wiring substrate, the step of preparing a housing having an alignment projection, and holding the optical lens. After the step of inserting the alignment protrusion of the casing into the alignment hole of the wiring board and fixing the casing on the wiring board with an adhesive, and the step of fixing the casing The portion where the alignment protrusion is formed is cut off from the portion of the housing that holds the optical lens, and the alignment hole is formed from the portion of the wiring board to which the solid-state image sensor is connected. Part And a step of dropping Ri.
[0019]
The wiring board is a wiring board using polyimide.
[0020]
Further, the housing has a pedestal and an alignment portion protruding from the pedestal, and the alignment protrusion protrudes below the alignment portion.
[0021]
The wiring board is a flexible wiring board and includes a step of bending the flexible wiring board.
[0022]
In the cutting process, the cut surface of the housing and the cut surface of the wiring board are flush with each other.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings.
FIG. 1 is a development view of a flexible wiring board (FPC) of a solid-state imaging device according to the present invention. Here, reference numeral 1 denotes an FPC using a film material such as polyimide. Here, the FPC 1 is shown in a flat state, and this FPC 1 is provided with a printed wiring (not shown). Further, 1a is an FPC lead portion provided in a part of the FPC 1, 1b is an FPC bending position provided in a part of the FPC 1, 3 is an external connection terminal provided at one end of the FPC 1, and 14 is the part provided in a part of the FPC 1. An opening in which a rectangular hole is formed in the FPC 1 so that imaging light of the solid-state imaging device passes, and 21 is a position when the casing (optical system unit) of the solid-state imaging device provided in a part of the FPC 1 is installed. This is an alignment hole in which a hole is formed in the FPC 1 used in the above.
[0024]
Next, FIG. 2 shows a view in which electronic components are mounted on the FPC 1 of FIG. 1 and developed in a plane, and the electronic components are electrically connected by printed wiring (not shown) applied to the FPC 1. Is shown. Here, the FPC 1 in FIG. 2 shows a state in which the solid-state imaging device 9 for imaging a subject is flip-chip mounted with the imaging pixel area facing down so as to cover the opening 14 in FIG. Furthermore, the IC component (semiconductor chip) 10 is flip-chip mounted on the FPC 1 and three chip components (chip capacitors and the like) 12 are mounted.
[0025]
Next, FIG. 3 shows a state where the mounted FPC 1 of FIG. 2 is viewed from the back side. Here, since it is a case of single-sided printed wiring, there is no printed wiring on the surface side shown in FIG.
FIG. 4 is an external view of a housing (optical system unit) 13 according to the present invention. Here, 4 is a fixed base, and an optical filter (infrared cut filter) is built in, 4a is a fixed base alignment portion, 4b is a fixed base alignment protrusion, and 4a is long. It has become. In this long 4a portion, a portion close to 4b becomes a “positioning portion”, and a portion close to 4 in 4a becomes a “fixing portion”.
[0026]
Next, FIG. 5 places the housing (optical system unit) 13 of FIG. 4 on the back surface of the mounted FPC 1 of FIG. 3, and drops the fixed base alignment protrusion 4b into the alignment hole 21 of the FPC 1, FIG. 2 is a development view in a state where the casing (optical system unit) 13 is fixed to the FPC 1 with an adhesive.
[0027]
Next, FIG. 6 shows a state in which the housing (optical system unit) 13 is installed on the mounted FPC 1 in FIG. 5, and the FPC 1 and the fixed base alignment portion 4 a are cut along the outline line of the FPC 1 and fixed. The development view of the state which cut off the part of the base alignment protrusion part 4b and the alignment hole 21 is shown. Here, the bold line portion 22 shows the FPC 1 and the fixed base 4 in a highlighted manner, and is the FPC / fixed base cutting portion 22.
[0028]
Next, FIG. 7 shows a state in which the FPC 1 shown in FIG. 6 is bent at the FPC bending position 1b. FIG. 8 shows a cross-sectional view before bending at this time, and FIG. 9 shows a cross-sectional view after bending. 6, 7, 8, and 9, 8 is an aperture portion, 6 is an optical lens, and 5 is a fixed cap. These are mounted on a fixed base 4, and this fixed base 4 is made of FPC 1 with an adhesive. Fixed to. Note that the solid-state imaging device 9 is electrically connected to the FPC 1 via the flip chip connection portion 11, and similarly, the IC component 10 is also electrically connected to the FPC 1 via the flip chip connection portion 11. Underfill is poured into the periphery of the connecting portion 11, and the underfill is poured into the gap between the FPC 1 and the solid-state imaging device 9, the gap between the FPC 1 and the IC component 10, and these gaps, and is cured and fixed by heat treatment. Here, the chip component 12 is electrically connected to the FPC 1 by soldering, the back surface of the solid-state imaging device 9 and the back surface of the IC component 10 are bonded and fixed with an adhesive 15, and the FPC 1 is fixed in a bent state. The figure is shown in FIG.
[0029]
FIG. 10 is an external view according to the present invention, and it is necessary to pay attention to the place where the side surface portion 4a and the cross-sectional portion 1 coincide and are flush with each other. Here, 4a is a fixed pedestal aligning portion, and 1 is an FPC, which is manufactured by cutting along the thick line 22 in FIG.
[0030]
FIG. 9 is a cross-sectional view of the solid-state imaging device according to the first embodiment. Reference numeral 5 denotes a fixed base 4 which is placed in a movable state for focus adjustment while holding the optical lens 6 with a fixed cap. Here, the fixed base 4 and the fixed cap 5 constitute a housing 13 that holds the optical lens 6 and the optical filter 7. The fixed base 4 and the fixed cap 5 are in a movable state in order to adjust the light entering from the diaphragm unit 8 to be focused on the solid-state image pickup device 9 through the optical filter 7. This is not necessary in some cases. Further, the movable method may be a sliding mechanism simply by fitting, or may be a screw type. In general, after focus adjustment is performed, the movable part of the focus adjustment is fixed with a semi-fixed adhesive, and the focus adjustment fixed solid-state imaging device is often obtained.
[0031]
【The invention's effect】
As described above, according to the present invention, in the step of fixing the housing to the flexible wiring board, the alignment portion and the fixing portion of the housing and the flexible wiring board are provided separately, and the alignment portion is provided after the housing is fixed. By separating from the solid-state imaging device, the wiring area of the FPC 1 can be used effectively, and the solid-state imaging device can be miniaturized (small volume) while maintaining a high-performance imaging function.
[0032]
Further, in the step of fixing the housing to the flexible wiring board, the reinforcing plate is further fixed to the back surface of the flexible wiring board with respect to the surface on which the housing is fixed, so that good mechanical strength can be obtained.
[0033]
In addition, in the process of providing a reinforcing plate between the housing and the flexible wiring board and fixing the housing to the reinforcing plate, the surface on which the housing is fixed becomes the reinforcing plate, and it is fixed to it. Strength is obtained.
[0034]
In addition, the reinforcing plate is provided by separating the alignment portion with the flexible wiring board and the fixing portion, and after fixing, the alignment portion is separated from the solid-state imaging device, thereby reducing the size (smaller volume) of the solid-state imaging device. In addition, the solid-state imaging device can be flip-chip mounted easily and accurately.
[0035]
Moreover, since the alignment part is comprised by the hole part for alignment, and the protrusion part for alignment, it can align easily.
[0036]
Preparing a wiring board having an alignment hole; preparing a solid-state imaging device having an imaging pixel area; connecting the solid-state imaging device on the wiring board; holding an optical lens; A step of preparing a housing having a protrusion, and the alignment protrusion of the housing so that the optical lens is positioned on an imaging pixel area of a solid-state imaging device connected on the wiring board. After inserting into the alignment hole of the wiring board and fixing the casing on the wiring board with an adhesive, and after fixing the casing, from the portion holding the optical lens of the casing, And a step of cutting off the portion where the alignment protrusion is formed and cutting off the portion where the alignment hole is formed from the portion where the solid-state imaging device of the wiring board is connected. Can be effectively used wiring area, while maintaining a high-performance imaging function, it is possible to achieve miniaturization of the solid-state imaging device (small volume of).
[0037]
Moreover, since the wiring board is a wiring board using polyimide, good mechanical strength can be obtained.
[0038]
In addition, since the housing has a pedestal and an alignment portion that protrudes from the pedestal, and the alignment protrusion protrudes below the alignment portion, the alignment can be easily performed. Can do.
[0039]
In addition, the wiring board is a flexible wiring board and has a step of bending the flexible wiring board, so that the solid-state imaging device can be miniaturized.
[0040]
Further, since the cut surface of the housing and the cut surface of the wiring board are flush with each other in the cutting process, the solid-state imaging device can be miniaturized.
[Brief description of the drawings]
FIG. 1 is a development view of an FPC according to a first embodiment of the present invention.
FIG. 2 is a development view of a mounted FPC according to the first embodiment of the present invention.
FIG. 3 is a developed rear view of a mounted FPC according to Embodiment 1 of the present invention;
FIG. 4 is an external view of a casing (optical system unit) according to Embodiment 1 of the present invention.
FIG. 5 is a development view in which a housing (optical system unit) is attached to the FPC according to Embodiment 1 of the present invention;
FIG. 6 is a development view of the FPC showing a cut portion according to the first embodiment of the present invention.
FIG. 7 is an external view of a solid-state imaging device according to Embodiment 1 of the present invention.
FIG. 8 is a developed cross-sectional view of the solid-state imaging device according to Embodiment 1 of the present invention.
FIG. 9 is a cross-sectional view of the solid-state imaging device according to Embodiment 1 of the present invention.
FIG. 10 is an external view of a solid-state imaging device according to Embodiment 1 of the present invention.
FIG. 11 is a development view of a conventional FPC.
FIG. 12 is a development view of a conventional mounted FPC.
FIG. 13 is a developed rear view of a conventional mounted FPC.
FIG. 14 is an external view of a conventional casing (optical system unit).
FIG. 15 is a development view in which a conventional casing (optical system unit) is installed on a conventional FPC.
FIG. 16 is a diagram of a conventional solid-state imaging device.
FIG. 17 is a cross-sectional view of a conventional solid-state imaging device.
FIG. 18 is an external view of a conventional solid-state imaging device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flexible wiring board (FPC), 1a FPC lead part, 1b FPC bending position, 3 External connection terminal, 4 Fixed base, 4a Fixed base alignment part, 4b Fixed base alignment protrusion part, 5 Fixed cap, 6 Optical lens, 7 optical filter, 8 aperture, 9 solid-state imaging device, 10 IC component, 11 flip chip connection, 12 chip component, 13 housing (optical system unit), 14 opening, 15 adhesive, 21 alignment hole, 22 FPC / fixed base cutting part, 101 conventional FPC, 101a conventional FPC lead part, 101b conventional FPC bending position, 103 conventional FPC external connection terminal, 104 conventional fixed base, 104a conventional fixed base alignment part, 104b Conventional fixed base alignment protrusion, 114 Conventional FPC opening, 121 Conventional FPC position Align hole.

Claims (4)

(a)固体撮像素子が搭載された配線板を用意する工程と、(A) preparing a wiring board on which a solid-state imaging device is mounted;
(b)光学レンズを収容可能な筐体を用意する工程と、(B) preparing a housing capable of accommodating an optical lens;
(c)前記光学レンズと前記固体撮像素子とが互いに向かい合うように、前記筐体を前記配線板に固定する工程とを有し、(C) fixing the casing to the wiring board so that the optical lens and the solid-state imaging element face each other;
前記筐体は、前記配線板と位置合わせするための第1位置合わせ部分と、前記第1位置合わせ部分に比して前記光学レンズが収容される位置の近くに設けられた、前記配線板と固定するための第1固定部分とを有し、The housing includes a first alignment portion for alignment with the wiring board, and the wiring board provided near a position where the optical lens is accommodated as compared to the first alignment portion. A first fixing portion for fixing,
前記配線板は、前記工程(c)において前記第1位置合わせ部分および前記第1固定部分のそれぞれと重ね合わされる第2位置合わせ部分および第2固定部分を有し、The wiring board has a second alignment portion and a second fixing portion that are overlapped with each of the first alignment portion and the first fixing portion in the step (c),
(d)前記(c)工程の後、前記筐体の前記第1位置合わせ部分と前記配線板の前記第2位置合わせ部分とを前記筐体および前記配線板からそれぞれ切り離す工程とをさらに有することを特徴とする、固体撮像装置の製造方法。(D) After the step (c), the method further includes a step of separating the first alignment portion of the casing and the second alignment portion of the wiring board from the casing and the wiring board, respectively. A method for manufacturing a solid-state imaging device.
前記配線板は、ポリイミドを使ったフレキシブル配線板であることを特徴とする、請求項1に記載の固体撮像装置の製造方法。The method for manufacturing a solid-state imaging device according to claim 1, wherein the wiring board is a flexible wiring board using polyimide. 前記筐体と前記フレキシブル配線板とは、接着剤により固定されることを特徴とする、請求項2に記載の固体撮像装置の製造方法。The method of manufacturing a solid-state imaging device according to claim 2, wherein the casing and the flexible wiring board are fixed by an adhesive. 前記筐体の前記第1位置合わせ部分は位置合わせ突起部を有し、前記配線板の前記第2位置合わせ部分は位置合わせ穴を有し、The first alignment portion of the housing has an alignment protrusion, and the second alignment portion of the wiring board has an alignment hole;
前記(c)工程は、前記位置合わせ突起部を前記位置合わせ穴に挿入した状態で施されることを特徴とする、請求項1に記載の固体撮像装置の製造方法。The method of manufacturing a solid-state imaging device according to claim 1, wherein the step (c) is performed in a state where the alignment protrusion is inserted into the alignment hole.
JP2002107992A 2002-04-10 2002-04-10 Method for manufacturing solid-state imaging device Expired - Fee Related JP4375939B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002107992A JP4375939B2 (en) 2002-04-10 2002-04-10 Method for manufacturing solid-state imaging device
KR10-2002-0048081A KR100510625B1 (en) 2002-04-10 2002-08-14 Method for making a solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002107992A JP4375939B2 (en) 2002-04-10 2002-04-10 Method for manufacturing solid-state imaging device

Publications (3)

Publication Number Publication Date
JP2003303944A JP2003303944A (en) 2003-10-24
JP2003303944A5 JP2003303944A5 (en) 2005-09-22
JP4375939B2 true JP4375939B2 (en) 2009-12-02

Family

ID=29391876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002107992A Expired - Fee Related JP4375939B2 (en) 2002-04-10 2002-04-10 Method for manufacturing solid-state imaging device

Country Status (2)

Country Link
JP (1) JP4375939B2 (en)
KR (1) KR100510625B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100823686B1 (en) 2006-08-23 2008-04-18 삼성전기주식회사 Camera module pakage and assembly method thereof
WO2008082008A1 (en) 2007-01-05 2008-07-10 Ricoh Company, Ltd. Imaging apparatus and electronic device
JP2009188720A (en) * 2008-02-06 2009-08-20 Panasonic Corp Solid-state imaging device and method of manufacturing the same
JP4839392B2 (en) * 2009-05-07 2011-12-21 ルネサスエレクトロニクス株式会社 Solid-state imaging device
JP5711178B2 (en) * 2012-04-06 2015-04-30 オリンパスメディカルシステムズ株式会社 Imaging device and endoscope using the imaging device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314459A (en) * 1986-07-04 1988-01-21 Matsushita Electric Ind Co Ltd Integrated circuit device
US6762796B1 (en) * 1998-08-10 2004-07-13 Olympus Optical Co., Ltd. Image pickup module having integrated lens and semiconductor chip
JP4405062B2 (en) * 2000-06-16 2010-01-27 株式会社ルネサステクノロジ Solid-state imaging device
JP3600147B2 (en) * 2000-10-12 2004-12-08 三洋電機株式会社 Mounting method of solid-state image sensor

Also Published As

Publication number Publication date
JP2003303944A (en) 2003-10-24
KR20030080967A (en) 2003-10-17
KR100510625B1 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
EP1796376B1 (en) Camera-module manufacturing method
JP4405062B2 (en) Solid-state imaging device
US7515817B2 (en) Camera module
CN110265368B (en) Shooting unit and shooting device
CA2571345C (en) System and method for mounting an image capture device on a flexible substrate
US7539412B2 (en) Camera module with first and second image sensor chips, holders and lens
TW527727B (en) Small image pickup module
JP4668036B2 (en) Mounting structure for FPC of image sensor
JP5277105B2 (en) The camera module
JP2008263550A (en) Solid-state imaging device and manufacturing method therefor
JP2004242166A (en) Optical module, its manufacturing method, and electronic equipment
JP4375939B2 (en) Method for manufacturing solid-state imaging device
US20060082673A1 (en) Camera module and method of fabricating the same
JP2003179217A (en) Solid-state imaging device and method of manufacturing the same
JP2005051535A (en) Imaging apparatus and manufacturing method therefor
KR100613419B1 (en) Image Sensor Module and the product method thereof
JP2005533388A (en) Camera module, holder used in camera module, camera system, and method of manufacturing camera module
KR100803275B1 (en) Carmer device and method for manufacturing thereof
JP2008263551A (en) Solid-state imaging device and manufacturing method therefor
JP2009071476A (en) Imaging apparatus and mobile terminal
JP2005268967A (en) Imaging module
JP2010251605A (en) Solid-state imaging apparatus
JPH104510A (en) Camera
JP2004320169A (en) Solid-state imaging apparatus and manufacturing method thereof, and manufacturing tool
JP4226962B2 (en) Solid-state imaging device and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050407

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050407

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071022

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090908

R150 Certificate of patent or registration of utility model

Ref document number: 4375939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees