JP4372339B2 - Irregular image forming apparatus and electron beam analyzer - Google Patents

Irregular image forming apparatus and electron beam analyzer Download PDF

Info

Publication number
JP4372339B2
JP4372339B2 JP2000401224A JP2000401224A JP4372339B2 JP 4372339 B2 JP4372339 B2 JP 4372339B2 JP 2000401224 A JP2000401224 A JP 2000401224A JP 2000401224 A JP2000401224 A JP 2000401224A JP 4372339 B2 JP4372339 B2 JP 4372339B2
Authority
JP
Japan
Prior art keywords
electron beam
sample surface
height
sample
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000401224A
Other languages
Japanese (ja)
Other versions
JP2002203507A (en
Inventor
直昌 丹羽
利裕 青島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Toto Ltd
Original Assignee
Shimadzu Corp
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Toto Ltd filed Critical Shimadzu Corp
Priority to JP2000401224A priority Critical patent/JP4372339B2/en
Publication of JP2002203507A publication Critical patent/JP2002203507A/en
Application granted granted Critical
Publication of JP4372339B2 publication Critical patent/JP4372339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、微小領域の定量的な凹凸像の作成、及び線分析やマッピング分析を行う電子線分析装置に関する。
【0002】
【従来の技術】
EDX(エネルギー分散X線分光)やWDX(波長分散X線分光)を用いた電子マイクロアナライザー(EPMA)や走査型電子顕微鏡(SEM)などの電子線分析装置は、試料上に電子線を照射し、これによって放出される二次電子線、反射電子線、X線等を検出することによって試料の表面分析を行う。このような電子線分析装置では、試料上に照射する電子線を走査することによって、二次電子線像、反射電子線像、X線像の線分析像やマッピング像によって形状や組成分布を得ることができる。
【0003】
電子線分析装置で線分析やマッピング分析を行う場合、凹凸のある試料面において、点分析、線分析、マッピング分析を精度良く行うために、各分析位置において試料面の高さ制御を行う必要がある。例えばWDXでは、試料面の高さを分光器の集光条件を満足するように常に試料ステージの高さを補正する自動高さ補正を適用するものが知られている。
【0004】
従来、高さ検出器によってあらかじめ試料表面の高さを求めておき、この高さ情報によって試料表面を近似し、近似データに基づいて試料ステージの高さ位置を調整する方法や、さらに、光学像から分析点の高さを求め、これによって試料ステージの高さを補正することが行われている。走査型電子顕微鏡(SEM)では、試料面の立体的な像を得る装置として、測定用の二次電子検出器を兼用したものが知られている。
【0005】
【発明が解決しようとする課題】
走査型電子顕微鏡が備える二次電子検出器を用いた装置は、本来、試料表面の定量的な高さを求めることを目的とするものでないため、測定用の二次電子検出器を兼用して構成している。この二次電子信号を用いて試料の高さを求める装置では、二次電子信号の指向性が低いため、試料表面の面方向を定量的な演算には不向きであるという問題がある。また、二次電子信号にはエッジ効果が大量に含まれ、該エッジ効果の量は試料の組成に大きく依存しているため、正確な高さ情報が得にくいという問題がある。
【0006】
また、従来知られている高さ検出器では、複雑な凹凸面を正確にかつ容易に求めることが困難であるという問題がある。
また、光学像を用いて高さ制御を補正する方法では、試料面の明るさが低い場合には高精度で焦点位置を求めることが困難であるいため、良好な補正を行うことができないという問題がある。
したがって、従来の装置で得られる凹凸像は定性的なものであって、良好な高さ情報が得がたいという問題があり、このような定性的凹凸像を用いて高さ調整では正確な高さ補正が得にくいという問題がある。
【0007】
そこで、本発明は前記した従来の問題点を解決し、定量的な凹凸像を求める凹凸像作成装置を提供することを目的とし、定量的な凹凸像によって正確な高さ補正を行う電子線分析装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、指向性の高い反射電子を用いて試料表面上で局所的な法線ベクトルを求め、この法線ベクトルと基準位置の高さデータを基にして試料表面の定量的な凹凸像を作成し、求めた定量的凹凸像を用いて正確な高さ補正を行うものである。指向性の高い反射電子を用いることによって、高精度の定量的凹凸像を得ることができる。
【0009】
図1は本発明による凹凸像作成を説明するための図である。図1(a)において、試料S上の点Pに電子ビームeを照射すると、点Pで反射した電子は反射電子線として検出される。反射電子線ベクトルβは反射電子の進行方向を示しており、法線ベクトルαを対称位置軸として電子ビームeと対称の方向に反射する。法線ベクトルαは試料表面の傾斜を表しているので、電子ビームeに入射方向が既知であれば、反射電子線ベクトルβから法線ベクトルαを求め、該法線ベクトルαから点Pでの試料表面の傾斜を求めることができる。
【0010】
図1(b)で示すように、試料表面上の各点で法線ベクトルαを求めることによって、試料Sの表面の凹凸状態を求めることができる。また、試料表面上の基準点の3次元座標を求めることによって、試料全体の傾きを補正するとともに基準位置からの高さ求めて、試料表面の凹凸像を求めることができる。
【0011】
本発明の反射電子線を用いた凹凸像装置として、複数の反射電子検出器と、反射電子検出器から得られる反射電子信号の強度分布から試料表面上の法線ベクトルを求める手段と、試料表面上の基準点における高さを求める手段と、試料表面の定量的な凹凸像を求める手段とを備えた構成とする。
【0012】
本発明の凹凸像作成装置は、図2のフローチャートに従って試料表面の凹凸像を作成する。複数の反射電子検出器によって反射電子線を検出し、該反射電子線の強度分布から試料表面上の各点の法線ベクトルを求めるとともに(ステップS1)、光学顕微鏡等のフォーカス機能を備える光学的焦点位置検出装置によって試料表面上の基準点における高さを求める(ステップS2)。
【0013】
ある点での法線ベクトルから得られるその点における傾斜情報を用いて近傍点の高さを求める。求めた近傍点での高さとその近傍点での法線ベクトルを用いてさらに他の近傍点の高さを求める。この操作を順次繰り返すことによって試料表面の凹凸形状を求める(ステップS3)。試料表面上の基準点における高さから、試料表面の基準位置からの高さ及び試料全体の傾きを求め、ステップS3で求めた凹凸形状と組み合わせて試料表面の定量的な凹凸像を求める(ステップS4)。
【0014】
また、本発明の電子線分析装置は、本発明の凹凸像作成装置で求めた定量的凹凸像から試料表面の高さデータを求め、該高さデータを用いて試料ステージの高さ方向を制御して試料面を分析位置に位置合わせすることによって、正確な高さ補正を行う。本発明の電子線分析装置によれば、表面が凹凸形状の試料について、WDX(波長分散型X線分光器)等において試料ステージを制御して、分布位置を自動補正しながらマッピング分布を行うことができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を、図を参照しながら詳細に説明する。
図3は本発明の凹凸像作成装置を説明するための図である。なお、図3は電子線分析装置においてX線を検出する場合について示している。
電子線分析装置1において、フィラメント等の電子銃8から発生された電子ビームeは、コンデンサレンズや対物レンズ(図示していない)及び反射電子検出器2aを通って、試料ステージ9上に配置された試料に照射される。試料表面で反射した反射電子は反射電子検出器2aで検出され、試料から放出されるX線はX線分光器7で検出される。反射電子は試料表面の凹凸形状を求めるために用い、X線は試料分析に用いる。なお、試料分析はX線に限らず他の信号を検出して行う構成とすることもできる。
【0016】
試料ステージ9は、試料ステージ駆動制御手段6によってZ軸方向、及びX,Y軸方向の駆動を行う。試料ステージ駆動制御手段6は、図示しないコンピュータからの制御コマンドによって、Z軸方向の高さ調整やX,Y軸方向の位置決めを行うことができる。
電子線分析装置1は凹凸像を作成する構成として、法線ベクトル形成手段2、基準高さ形成手段3、凹凸像形成手段4を備える。
【0017】
法線ベクトル形成手段2は、複数の検出面を有した反射電子検出器2aと法線ベクトル算出手段2bとを備える。反射電子検出器2aは反射電子の強度分布を求め、法線ベクトル算出手段2bは反射電子の強度分布から反射電子の進行方向を示す反射電子線ベクトルβを算出し、この反射電子線ベクトルβから法線ベクトルαを算出する。
基準高さ形成手段3は、試料表面の基準点における高さを求めるものであり、CCDカメラ等の撮像装置を備えた光学顕微鏡等の光学観察手段3aで試料表面を撮像し、高さ算出手段3bで試料表面の高さを求める。高さ算出手段3bは、オートフォーカス機能によって光学的焦点位置を検出する合焦信号検出形成機能、及びZ軸フィードバック制御信号形成機能を備える。合焦信号検出形成機能は、光学観察手段3aで撮像した光学像信号から焦点合わせに用いる合焦信号を形成し、Z軸フィードバック制御信号形成機能は、合焦信号を用いてZ軸フィードバック制御信号を形成して試料ステージ駆動制御手段6にフィードバックし、試料ステージ9のZ軸方向の制御を行って像の焦点を合わせるとともに、試料の高さデータを取得する。
【0018】
通常、光学的焦点位置検出機能を備える高さ算出手段3bは試料上の焦点位置と、X線分光器の試料上における集光条件を満足する分析位置とが一致するよう設定し、光学像の焦点合わせを行うことによってX線分光器の集光条件を合わせる。
Z軸フィードバック制御信号形成機能によって取得した高さデータはZ軸座標に変換され、X軸座標値及びY軸座標値とともに基準位置データ記憶手段3cに記憶される。
【0019】
凹凸像形成手段4は、凹凸形状算出手段4aと凹凸像作成手段4bとを備える。凹凸形状算出手段4aは、法線ベクトル算出手段2bで求めた法線ベクトルαに基づいて試料表面の凹凸形状を算出する。該凹凸形状の算出は、ある点において、その法線ベクトルからその点における傾斜情報を求め、該傾斜を用いて近傍点の高さを求める。求めた近傍点での高さと近傍点での法線ベクトルを用いてさらに他の近傍点の高さを求める。この操作を順次繰り返すことによって試料表面の凹凸形状を求める。
【0020】
凹凸像作成手段4bは、凹凸形状算出手段4aで算出した凹凸形状と基準位置データ記憶手段3cに格納された基準位置データとから凹凸像を作成する。凹凸像作成手段4bは、基準位置データから試料表面の基準位置からの高さ及び試料全体の傾きを求め、凹凸形状と組み合わせて試料表面の定量的な凹凸像を求める。
形成された凹凸像は試料ステージ駆動制御手段6にフィードバックされ、試料ステージの高さ制御の補正に用いられる。また、凹凸像は画像データ保存・表示手段5に送られ、凹凸像の保存あるいは任意の表示手段で表示される。
【0021】
図4は本発明による凹凸像の作成手順を説明するためのフローチャートであり、図5は反射電子の検出を説明するための概略図である。
はじめに、試料ステージ駆動制御手段6によって試料をx,y方向に移動し、試料表面上で電子ビームeが照射する位置を定める。図5(a)中の点Pは電子ビームeの照射位置を示している(ステップS11)。照射された電子ビームeは点Pで反射し、該点Pの面傾斜に応じた反射電子線ベクトルβの方向に進む。この反射電子線ベクトルβは、点Pにおける電子ビームeの入射方向及び法線ベクトルαで定まる。一般に、反射電子は強い指向特性を備える。図5(a)中の斜線領域は反射電子の指向特性を示し、反射電子線ベクトルβは該指向特性を包括して概括的に示している。
【0022】
反射電子検出器2aは複数の検出面を備える。図5(b)は反射電子検出器2aの一構成例であり、4つの検出面A1〜A4を備えた例を示している。検出面A1〜A4はそれぞれx軸あるいはy軸方向に配置され、中心に形成した開口部を通って電子ビームeを通過させ、試料表面で反射した反射電子を受光し、受光面積に対応した検出強度を出力する(ステップS12)。
【0023】
反射電子検出器2aで検出した検出強度から反射電子線ベクトルβを求める。図6は反射電子検出器による反射電子の検出状態を説明する図である。図6(a)は、反射電子検出器2aの検出面上におけるの反射電子の受光分布Rを示している。図6(b)の斜視図及び図6(c)の平面図に示すように、反射電子の受光分布Rの検出面上での位置は反射電子線ベクトルβに対応しており、反射電子の受光分布Rの中心位置から反射電子線ベクトルβのx成分及びy成分を求めることができる。この反射電子の受光分布Rの中心位置は、各検出器A1〜A4上に照射される反射電子の面積から求めることができ、この反射電子の照射面積は、分割した各検出器A1〜A4の検出強度から算出することができる。図5(b)に示す検出面の構成では、照射面積と検出強度はほぼ比例関係にあるとすることができる。
【0024】
したがって、検出器A1〜A4の検出強度から反射電子線ベクトルβのx成分Ix及びy成分Iyを求めることができる。なお、反射電子線ベクトルβを単位ベクトルとすると、z成分Izばx成分Ix及びy成分Iyから求めることができる。
【0025】
反射電子検出器は図5(b)に示す構成に限らず他の構成とすることができる。図7は反射電子検出器の他の構成例である。図7(a)に示す第2の構成例は図5(b)に示す第1の構成例と同様に放射状に4分割する構成例であるが、配置位置を異ならせて検出面B1〜B4をそれぞれ第1象限〜第4象限に配置したものである。図7(b),(c)に示す第2,3の構成例は放射状に3分割した検出面C1〜C3の例、及び放射状に8分割した検出面D1〜D8の例である。また、図7(d)に示す第4の構成例は放射状及び同心円状に分割した検出面E1〜E12の例である。
なお、各反射電子検出器を用いた場合の反射電子線ベクトルβの算出は、各検出面の構成に対応して行う(ステップS13)。
【0026】
試料表面上において電子ビームeの照射位置をずらしながら、試料の測定領域内の全測定点について上記ステップS11〜ステップS12を繰り返して、全測定点の反射電子線ベクトルβを求める(ステップS14)。
求めた反射電子線ベクトルβから、試料表面上の各測定点における法線ベクトルαを求める。反射電子線ベクトルβは、法線ベクトルαに対して電子ビームeの入射方向と幾何学的に対称であるため、法線ベクトルαは反射電子線ベクトルβと電子ビームeの入射方向(通常試料ステージ上の座標系に対して垂直な方向となる)とから幾何学的に算出することができる(ステップS15)。
【0027】
次に、法線ベクトルαを用いて試料表面の凹凸形状を求める。凹凸形状の算出は、以下に示す算出例のように、ある点の法線ベクトルαから近傍の点の高さを算出する演算を点をずらしながら繰り返すことによって行うことができる。図8は凹凸形状及び凹凸像の算出を説明するための図である。
【0028】
図8(a)において、ある点P1における法線ベクトルをα1とし、近傍の点P2における法線ベクトルをα2とし、点P1と点P2との横方向の距離をΔLとする。このとき、点P1における傾斜面(図8(a)の断面中の破線)と法線ベクトルα1とは垂直関係にあることから、点P1と近傍点P2との高さの差Δhは法線ベクトルα及び距離ΔLを用いて算出することができる。図8(b)は試料表面の一ライン(図中の破線で示す)上の法線ベクトルαを用いた場合であり、上記算出によってライン上の高さを求めることができ、試料表面に一断面の凹凸形状を求めることができる。同様の算出を試料表面上で二次元的に繰り返すことによって試料表面の3次元の凹凸形状を求めることができる(ステップS16)。
【0029】
ステップS16で求めた凹凸形状は、任意の点の高さをz軸方向の基準としており、試料ステージ上の座標系との関係が定められていない。また、試料全体が試料ステージに対して傾斜している場合がある。そのため、試料表面の凹凸像を求めるには、試料ステージ上の座標系と関係付けを行う必要がある。
そこで、基準高さ検出手段3によって、試料表面上の基準点における高さを求め(ステップS17)、この高さデータから試料全体の傾斜を求めるとともに、基準点における高さを定めることによって、凹凸形状に高さデータを付加して定量的な凹凸像を求めることができる。図8(c)は図8(b)における一断面について求めた凹凸像の例であり、両端における基準点の高さWD1及びWD2を用いて、傾斜を求めるともに各点に高さデータを付加して凹凸像を求める(ステップS18)。
【0030】
本発明の実施態様によれば、定量的な凹凸像を得ることができるため、試料ステージの高さを連続的に制御することができ、凹凸が存在する試料についてWDX分析を自動で行うことができる。
【0031】
【発明の効果】
以上説明したように、本発明の凹凸像作成装置によれば定量的な凹凸像を求めることができ、本発明の凹凸像作成装置を備えた電子線分析装置によれば定量的な凹凸像によって正確な高さ補正を行うことができる。
【図面の簡単な説明】
【図1】本発明による凹凸像作成を説明するための図である。
【図2】試料表面の凹凸像を作成する手順を説明するためのフローチャートである。
【図3】本発明の凹凸像作成装置を説明するための図である。
【図4】本発明による凹凸像の作成手順を説明するためのフローチャートである。
【図5】反射電子の検出を説明するための概略図である。
【図6】反射電子検出器による反射電子の検出状態を説明する図である。
【図7】反射電子検出器の他の構成例である。
【図8】凹凸形状及び凹凸像の算出を説明するための図である。
【符号の説明】
1…電子線分析装置、2…法線ベクトル形成手段、2a…反射電子検出器、2b…法線ベクトル算出手段、3…基準高さ検出手段、3a…光学観察系、3b…高さ算出手段、3c…基準位置データ記憶手段、4…凹凸像形成手段、4a…凹凸形状算出手段、4b…凹凸像作成手段、5…分析データ保存手段、6…試料ステージ駆動制御手段、7…X線分光器、8…電子銃、α…法線ベクトル、β…反射電子線ベクトル、e…電子ビーム。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electron beam analyzer that creates a quantitative concavo-convex image of a minute region, and performs line analysis and mapping analysis.
[0002]
[Prior art]
Electron beam analyzers such as electron microanalyzer (EPMA) and scanning electron microscope (SEM) using EDX (energy dispersive X-ray spectroscopy) and WDX (wavelength dispersive X-ray spectroscopy) irradiate a sample with an electron beam. Then, the surface analysis of the sample is performed by detecting the secondary electron beam, the reflected electron beam, the X-ray and the like emitted thereby. In such an electron beam analyzer, the shape and composition distribution are obtained by scanning the electron beam with which the sample is irradiated to obtain a secondary electron beam image, reflected electron beam image, X-ray image line analysis image and mapping image. be able to.
[0003]
When performing line analysis or mapping analysis with an electron beam analyzer, it is necessary to control the height of the sample surface at each analysis position in order to accurately perform point analysis, line analysis, and mapping analysis on an uneven sample surface. is there. For example, WDX is known that applies automatic height correction that always corrects the height of the sample stage so that the height of the sample surface satisfies the light collection conditions of the spectrometer.
[0004]
Conventionally, the height of the sample surface is obtained in advance using a height detector, the sample surface is approximated based on this height information, and the height position of the sample stage is adjusted based on the approximated data. From this, the height of the analysis point is obtained, and thereby the height of the sample stage is corrected. In a scanning electron microscope (SEM), a device that also serves as a secondary electron detector for measurement is known as a device for obtaining a three-dimensional image of a sample surface.
[0005]
[Problems to be solved by the invention]
Since the device using the secondary electron detector provided in the scanning electron microscope is not originally intended to determine the quantitative height of the sample surface, it also serves as a secondary electron detector for measurement. It is composed. The apparatus for obtaining the height of the sample using the secondary electron signal has a problem that the directivity of the secondary electron signal is low, so that the surface direction of the sample surface is not suitable for quantitative calculation. In addition, the secondary electron signal includes a large amount of edge effect, and the amount of the edge effect greatly depends on the composition of the sample, so that there is a problem that accurate height information is difficult to obtain.
[0006]
Further, the conventionally known height detector has a problem that it is difficult to accurately and easily obtain a complicated uneven surface.
Further, in the method of correcting the height control using an optical image, it is difficult to obtain a focal position with high accuracy when the brightness of the sample surface is low, and thus it is not possible to perform a good correction. There is.
Therefore, the concavo-convex image obtained with the conventional apparatus is qualitative, and there is a problem that it is difficult to obtain good height information. Such height adjustment using such a qualitative concavo-convex image makes accurate height correction. There is a problem that it is difficult to obtain.
[0007]
Therefore, the present invention aims to solve the above-described conventional problems and to provide a concavo-convex image creating apparatus for obtaining a quantitative concavo-convex image, and to perform accurate height correction by a quantitative concavo-convex image. An object is to provide an apparatus.
[0008]
[Means for Solving the Problems]
The present invention obtains a local normal vector on the sample surface by using highly directional reflected electrons, and generates a quantitative uneven image on the sample surface based on the normal vector and the height data of the reference position. The height correction is performed accurately using the quantitative uneven image created and obtained. By using reflected electrons with high directivity, a highly accurate quantitative uneven image can be obtained.
[0009]
FIG. 1 is a diagram for explaining the creation of a concavo-convex image according to the present invention. In FIG. 1A, when a point P on the sample S is irradiated with an electron beam e, electrons reflected at the point P are detected as a reflected electron beam. The reflected electron beam vector β indicates the traveling direction of the reflected electrons, and the reflected electron beam β is reflected in a direction symmetric with the electron beam e with the normal vector α as the symmetry position axis. Since the normal vector α represents the inclination of the sample surface, if the incident direction is known to the electron beam e, the normal vector α is obtained from the reflected electron beam vector β, and the normal vector α at the point P is obtained. The inclination of the sample surface can be obtained.
[0010]
As shown in FIG. 1B, the surface roughness of the sample S can be obtained by obtaining the normal vector α at each point on the sample surface. In addition, by obtaining the three-dimensional coordinates of the reference point on the sample surface, the inclination of the entire sample can be corrected and the height from the reference position can be obtained to obtain an uneven image on the sample surface.
[0011]
As a concavo-convex image apparatus using the reflected electron beam of the present invention, a plurality of reflected electron detectors, means for obtaining a normal vector on the sample surface from the intensity distribution of the reflected electron signal obtained from the reflected electron detector, and the sample surface The apparatus includes a means for obtaining the height at the upper reference point and a means for obtaining a quantitative uneven image on the sample surface.
[0012]
The concavo-convex image creating apparatus of the present invention creates a concavo-convex image of the sample surface according to the flowchart of FIG. A reflected electron beam is detected by a plurality of reflected electron detectors, a normal vector of each point on the sample surface is obtained from the intensity distribution of the reflected electron beam (step S1), and an optical function having a focusing function such as an optical microscope is provided. The height at the reference point on the sample surface is obtained by the focal position detection device (step S2).
[0013]
The height of the neighboring point is obtained by using the inclination information at the point obtained from the normal vector at the point. The heights of other neighboring points are obtained using the heights at the obtained neighboring points and the normal vectors at the neighboring points. By repeating this operation sequentially, the uneven shape of the sample surface is obtained (step S3). From the height at the reference point on the sample surface, the height from the reference position on the sample surface and the inclination of the entire sample are obtained, and a quantitative uneven image on the sample surface is obtained in combination with the uneven shape obtained in step S3 (step S4).
[0014]
In addition, the electron beam analyzer of the present invention obtains the height data of the sample surface from the quantitative uneven image obtained by the uneven image creating apparatus of the present invention, and controls the height direction of the sample stage using the height data. Then, accurate height correction is performed by aligning the sample surface with the analysis position. According to the electron beam analyzer of the present invention, for a sample having an uneven surface, mapping distribution is performed while controlling the sample stage in a WDX (wavelength dispersive X-ray spectrometer) or the like and automatically correcting the distribution position. Can do.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 3 is a diagram for explaining the concavo-convex image creating apparatus of the present invention. FIG. 3 shows a case where X-rays are detected in the electron beam analyzer.
In the electron beam analyzer 1, an electron beam e generated from an electron gun 8 such as a filament passes through a condenser lens, an objective lens (not shown) and a backscattered electron detector 2 a and is disposed on the sample stage 9. The sample is irradiated. The reflected electrons reflected from the sample surface are detected by the reflected electron detector 2a, and the X-rays emitted from the sample are detected by the X-ray spectrometer 7. The backscattered electrons are used to determine the uneven shape of the sample surface, and the X-rays are used for sample analysis. Note that the sample analysis is not limited to X-rays, and other signals may be detected and performed.
[0016]
The sample stage 9 is driven in the Z-axis direction and the X and Y-axis directions by the sample stage drive control means 6. The sample stage drive control means 6 can perform height adjustment in the Z axis direction and positioning in the X and Y axis directions by a control command from a computer (not shown).
The electron beam analyzer 1 includes a normal vector forming unit 2, a reference height forming unit 3, and a concavo-convex image forming unit 4 as a configuration for creating the concavo-convex image.
[0017]
The normal vector forming unit 2 includes a backscattered electron detector 2a having a plurality of detection surfaces and a normal vector calculating unit 2b. The reflected electron detector 2a calculates the intensity distribution of the reflected electrons, and the normal vector calculation means 2b calculates a reflected electron beam vector β indicating the traveling direction of the reflected electrons from the intensity distribution of the reflected electrons, and from the reflected electron beam vector β. A normal vector α is calculated.
The reference height forming means 3 obtains the height at the reference point of the sample surface, images the sample surface with an optical observation means 3a such as an optical microscope equipped with an imaging device such as a CCD camera, and calculates the height. In 3b, the height of the sample surface is obtained. The height calculation means 3b has a focusing signal detection forming function for detecting an optical focus position by an autofocus function, and a Z-axis feedback control signal forming function. The focus signal detection forming function forms a focus signal used for focusing from the optical image signal picked up by the optical observation means 3a, and the Z-axis feedback control signal forming function uses the focus signal to generate a Z-axis feedback control signal. Is fed back to the sample stage drive control means 6, and the sample stage 9 is controlled in the Z-axis direction to focus the image and acquire the height data of the sample.
[0018]
Usually, the height calculation means 3b having an optical focus position detection function sets the focus position on the sample and the analysis position satisfying the light collection condition on the sample of the X-ray spectrometer to match the optical image. The focusing condition of the X-ray spectrometer is adjusted by focusing.
The height data acquired by the Z-axis feedback control signal forming function is converted into Z-axis coordinates and stored in the reference position data storage unit 3c together with the X-axis coordinate values and the Y-axis coordinate values.
[0019]
The uneven image forming means 4 includes an uneven shape calculating means 4a and an uneven image creating means 4b. The concavo-convex shape calculating means 4a calculates the concavo-convex shape of the sample surface based on the normal vector α obtained by the normal vector calculating means 2b. In the calculation of the concavo-convex shape, at a certain point, inclination information at the point is obtained from the normal vector, and the height of the neighboring point is obtained using the inclination. Further heights of other neighboring points are obtained using the obtained heights of neighboring points and normal vectors at the neighboring points. By repeating this operation sequentially, the uneven shape of the sample surface is obtained.
[0020]
The concavo-convex image creating unit 4b creates a concavo-convex image from the concavo-convex shape calculated by the concavo-convex shape calculating unit 4a and the reference position data stored in the reference position data storage unit 3c. The concavo-convex image creating means 4b obtains the height of the sample surface from the reference position and the inclination of the entire sample from the reference position data, and obtains a quantitative concavo-convex image of the sample surface in combination with the concavo-convex shape.
The formed concavo-convex image is fed back to the sample stage drive control means 6 and used for correction of the height control of the sample stage. Further, the concavo-convex image is sent to the image data storage / display means 5 and stored in the concavo-convex image or displayed by an arbitrary display means.
[0021]
FIG. 4 is a flowchart for explaining a procedure for creating a concavo-convex image according to the present invention, and FIG. 5 is a schematic diagram for explaining detection of reflected electrons.
First, the sample stage is moved in the x and y directions by the sample stage drive control means 6 to determine the position where the electron beam e is irradiated on the sample surface. A point P in FIG. 5A indicates an irradiation position of the electron beam e (step S11). The irradiated electron beam e is reflected at the point P, and proceeds in the direction of the reflected electron beam vector β according to the surface inclination of the point P. The reflected electron beam vector β is determined by the incident direction of the electron beam e at the point P and the normal vector α. In general, reflected electrons have strong directivity. The shaded area in FIG. 5A shows the directivity characteristic of the reflected electrons, and the reflected electron beam vector β comprehensively shows the directivity characteristics.
[0022]
The backscattered electron detector 2a includes a plurality of detection surfaces. FIG. 5B is a configuration example of the backscattered electron detector 2a, and shows an example provided with four detection surfaces A1 to A4. The detection surfaces A1 to A4 are respectively arranged in the x-axis or y-axis direction, pass the electron beam e through the opening formed in the center, receive the reflected electrons reflected from the sample surface, and detect corresponding to the light receiving area. The intensity is output (step S12).
[0023]
A reflected electron beam vector β is obtained from the detected intensity detected by the reflected electron detector 2a. FIG. 6 is a diagram for explaining a detection state of reflected electrons by the reflected electron detector. FIG. 6A shows the received light distribution R of the reflected electrons on the detection surface of the reflected electron detector 2a. As shown in the perspective view of FIG. 6B and the plan view of FIG. 6C, the position of the received light distribution R of the reflected electrons on the detection surface corresponds to the reflected electron beam vector β. The x component and y component of the reflected electron beam vector β can be obtained from the center position of the light reception distribution R. The center position of the received light distribution R of the reflected electrons can be obtained from the area of the reflected electrons irradiated on the detectors A1 to A4. The irradiation area of the reflected electrons is determined by the divided detectors A1 to A4. It can be calculated from the detected intensity. In the configuration of the detection surface shown in FIG. 5B, it can be assumed that the irradiation area and the detection intensity are in a substantially proportional relationship.
[0024]
Therefore, the x component Ix and the y component Iy of the reflected electron beam vector β can be obtained from the detection intensities of the detectors A1 to A4. If the reflected electron beam vector β is a unit vector, the z component Iz can be obtained from the x component Ix and the y component Iy.
[0025]
The backscattered electron detector is not limited to the configuration shown in FIG. FIG. 7 shows another configuration example of the backscattered electron detector. The second configuration example shown in FIG. 7A is a configuration example in which the second configuration example is radially divided into four similarly to the first configuration example shown in FIG. 5B, but the detection positions B1 to B4 are made different in arrangement position. Are arranged in the first quadrant to the fourth quadrant, respectively. The second and third configuration examples shown in FIGS. 7B and 7C are examples of detection surfaces C1 to C3 radially divided into three and examples of detection surfaces D1 to D8 radially divided into eight. Moreover, the 4th structural example shown in FIG.7 (d) is an example of the detection surfaces E1-E12 divided | segmented radially and concentrically.
The calculation of the reflected electron beam vector β when using each reflected electron detector is performed corresponding to the configuration of each detection surface (step S13).
[0026]
While shifting the irradiation position of the electron beam e on the sample surface, Steps S11 to S12 are repeated for all the measurement points in the measurement region of the sample to obtain the reflected electron beam vector β at all the measurement points (Step S14).
A normal vector α at each measurement point on the sample surface is obtained from the obtained reflected electron beam vector β. Since the reflected electron beam vector β is geometrically symmetric with the incident direction of the electron beam e with respect to the normal vector α, the normal vector α is the incident direction of the reflected electron beam vector β and the electron beam e (usually a sample). (The direction is perpendicular to the coordinate system on the stage) and can be calculated geometrically (step S15).
[0027]
Next, the concavo-convex shape of the sample surface is obtained using the normal vector α. The calculation of the concavo-convex shape can be performed by repeating an operation for calculating the height of a nearby point from the normal vector α of a certain point while shifting the point as in the following calculation example. FIG. 8 is a diagram for explaining the calculation of the concavo-convex shape and the concavo-convex image.
[0028]
In FIG. 8A, a normal vector at a certain point P1 is α1, a normal vector at a nearby point P2 is α2, and a lateral distance between the points P1 and P2 is ΔL. At this time, since the inclined surface at the point P1 (broken line in the cross section of FIG. 8A) and the normal vector α1 are perpendicular to each other, the height difference Δh between the point P1 and the neighboring point P2 is the normal line. It can be calculated using the vector α and the distance ΔL. FIG. 8B shows a case where a normal vector α on one line (indicated by a broken line in the figure) of the sample surface is used, and the height on the line can be obtained by the above calculation. The uneven shape of the cross section can be obtained. By repeating the same calculation two-dimensionally on the sample surface, a three-dimensional uneven shape on the sample surface can be obtained (step S16).
[0029]
The concavo-convex shape obtained in step S16 uses the height of an arbitrary point as a reference in the z-axis direction, and the relationship with the coordinate system on the sample stage is not defined. Further, the entire sample may be inclined with respect to the sample stage. For this reason, in order to obtain a concavo-convex image on the sample surface, it is necessary to relate it to the coordinate system on the sample stage.
Accordingly, the height at the reference point on the sample surface is obtained by the reference height detection means 3 (step S17), the inclination of the entire sample is obtained from the height data, and the height at the reference point is determined, thereby providing the unevenness. A quantitative uneven image can be obtained by adding height data to the shape. FIG. 8C is an example of the concavo-convex image obtained for one cross section in FIG. 8B. Using the heights WD1 and WD2 of the reference points at both ends, the inclination is obtained and height data is added to each point. Thus, an uneven image is obtained (step S18).
[0030]
According to the embodiment of the present invention, since a quantitative unevenness image can be obtained, the height of the sample stage can be continuously controlled, and WDX analysis can be automatically performed on a sample with unevenness. it can.
[0031]
【The invention's effect】
As described above, according to the concavo-convex image creating apparatus of the present invention, a quantitative concavo-convex image can be obtained, and according to the electron beam analyzer equipped with the concavo-convex image creating apparatus of the present invention, a quantitative concavo-convex image is obtained. Accurate height correction can be performed.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram for explaining creation of a concavo-convex image according to the present invention.
FIG. 2 is a flowchart for explaining a procedure for creating an uneven image on a sample surface.
FIG. 3 is a diagram for explaining a concavo-convex image creating apparatus according to the present invention.
FIG. 4 is a flowchart for explaining a procedure for creating a concavo-convex image according to the present invention.
FIG. 5 is a schematic view for explaining detection of reflected electrons.
FIG. 6 is a diagram illustrating a detection state of reflected electrons by a reflected electron detector.
FIG. 7 is another configuration example of the backscattered electron detector.
FIG. 8 is a diagram for explaining calculation of an uneven shape and an uneven image.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electron beam analyzer, 2 ... Normal vector formation means, 2a ... Backscattered electron detector, 2b ... Normal vector calculation means, 3 ... Reference height detection means, 3a ... Optical observation system, 3b ... Height calculation means 3c, reference position data storage means, 4 ... concavo-convex image formation means, 4a ... concavo-convex shape calculation means, 4b ... concavo-convex image creation means, 5 ... analysis data storage means, 6 ... sample stage drive control means, 7 ... X-ray spectroscopy 8: electron gun, α: normal vector, β: reflected electron vector, e: electron beam.

Claims (2)

複数に分割した検出面を備えた一つの反射電子検出器と、
前記複数の検出面から得られる反射電子信号の検出強度から試料表面上の法線ベクトルを求める手段と、
試料表面上の任意に定めた点を基準点とし、当該基準点における高さを求める手段と、
試料表面の定量的な凹凸像を求める手段とを備え、
前記法線ベクトルを求める手段は、各検出面の検出強度から反射電子線が各検出面を照射する照射面積を求め、当該各検出面の照射面積から反射電子検出器が受光する反射電子の受光分布の中心位置を求め、当該中心位置から反射電子線ベクトルを求め、当該反射電子線ベクトルと電子ビームの入射方向から試料表面上の法線ベクトルを求め、
前記定量的凹凸像を求める手段は、試料表面上の各点における法線ベクトルによって順次求めた試料表面の凹凸形状と、基準点における高さとに基づいて試料表面の定量的な凹凸像を求めることを特徴とする、凹凸像形成装置。
One backscattered electron detector with a detection surface divided into a plurality ;
Means for obtaining a normal vector on the sample surface from the detection intensity of the reflected electron signal obtained from the plurality of detection surfaces ;
A means for determining a height at the reference point , using a point determined arbitrarily on the sample surface as a reference point ;
A means for obtaining a quantitative uneven image of the sample surface,
The means for obtaining the normal vector obtains the irradiation area where the reflected electron beam irradiates each detection surface from the detection intensity of each detection surface, and receives the reflected electrons received by the reflected electron detector from the irradiation area of each detection surface. Obtain the center position of the distribution, obtain the reflected electron beam vector from the center position, obtain the normal vector on the sample surface from the reflected electron beam vector and the incident direction of the electron beam,
The means for obtaining the quantitative unevenness image is to obtain a quantitative unevenness image of the sample surface based on the unevenness shape of the sample surface sequentially obtained by the normal vector at each point on the sample surface and the height at the reference point. A concavo-convex image forming apparatus.
前記凹凸像形成装置で求めた定量的な凹凸像から試料表面の高さデータを求め、該高さデータを用いて試料ステージの高さ方向を制御して試料面を分析位置に位置合わせすることを特徴とする、請求項1記載の電子線分析装置。Obtaining the height data of the sample surface from the quantitative uneven image obtained by the uneven image forming apparatus, and controlling the height direction of the sample stage using the height data to align the sample surface with the analysis position. The electron beam analyzer according to claim 1, wherein:
JP2000401224A 2000-12-28 2000-12-28 Irregular image forming apparatus and electron beam analyzer Expired - Fee Related JP4372339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000401224A JP4372339B2 (en) 2000-12-28 2000-12-28 Irregular image forming apparatus and electron beam analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000401224A JP4372339B2 (en) 2000-12-28 2000-12-28 Irregular image forming apparatus and electron beam analyzer

Publications (2)

Publication Number Publication Date
JP2002203507A JP2002203507A (en) 2002-07-19
JP4372339B2 true JP4372339B2 (en) 2009-11-25

Family

ID=18865696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000401224A Expired - Fee Related JP4372339B2 (en) 2000-12-28 2000-12-28 Irregular image forming apparatus and electron beam analyzer

Country Status (1)

Country Link
JP (1) JP4372339B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5271491B2 (en) * 2006-10-26 2013-08-21 株式会社日立ハイテクノロジーズ Electron beam application apparatus and sample inspection method
JP2008286735A (en) * 2007-05-21 2008-11-27 Jeol Ltd Eds head protection method and protection mechanism for fluorescence x-ray spectrometer
JP4887237B2 (en) * 2007-08-10 2012-02-29 シャープ株式会社 Obliquely emitted electron probe micro X-ray analysis method, program used therefor, and obliquely emitted electron probe micro X-ray analyzer
JP5070074B2 (en) * 2008-02-01 2012-11-07 株式会社日立ハイテクノロジーズ Scanning electron microscope
JP5259688B2 (en) * 2010-12-09 2013-08-07 本田技研工業株式会社 Scanning electron microscope
JP5904799B2 (en) * 2012-01-13 2016-04-20 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and sample observation method for observing internal structure of sample
EP3203494B1 (en) * 2014-09-24 2019-12-18 National Institute for Materials Science Energy-discrimination electron detector and scanning electron microscope in which same is used
JP6573736B1 (en) * 2019-02-28 2019-09-11 株式会社堀場製作所 3D image generation apparatus and coefficient calculation method for 3D image generation apparatus
JP7323574B2 (en) * 2021-06-03 2023-08-08 日本電子株式会社 Charged particle beam device and image acquisition method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2786207B2 (en) * 1988-08-26 1998-08-13 株式会社日立製作所 Surface shape calculation method for scanning microscope
JP2000100367A (en) * 1998-09-25 2000-04-07 Hitachi Ltd Scanning electron microscope
JP4081700B2 (en) * 1999-06-09 2008-04-30 株式会社島津製作所 Electron beam analyzer

Also Published As

Publication number Publication date
JP2002203507A (en) 2002-07-19

Similar Documents

Publication Publication Date Title
EP1276134B1 (en) A method for determining depression/protrusion of sample and charged particle beam apparatus therefor
US6570156B1 (en) Autoadjusting electron microscope
US7361896B2 (en) Scanning electron microscope and a method for adjusting a focal point of an electron beam of said scanning electron microscope
US7420167B2 (en) Apparatus and method for electron beam inspection with projection electron microscopy
US20020056808A1 (en) Method and apparatus for charged particle beam microscopy
US20050285034A1 (en) Method and apparatus for measuring three-dimensional shape of specimen by using SEM
US20040069956A1 (en) Charged particle beam apparatus
JP4383950B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
US20110233400A1 (en) Pattern measurement apparatus and pattern measurement method
JP2007187538A (en) Charged particle beam device and image acquisition technique using the same
JP4372339B2 (en) Irregular image forming apparatus and electron beam analyzer
JP4538421B2 (en) Charged particle beam equipment
KR20210086500A (en) Method and system for automatic zone axis alignment
CA1153131A (en) Automatic beam correction in a scanning transmission electron microscope
JP2002270126A (en) Electron beam device, data processing device for electron beam device, and method of producing stereo scopic data of electron beam device
JP2002270127A (en) Data processing device for electron beam device and method of stereoscopic measurement of electron beam device
JP2022155554A (en) Method and system for acquiring three dimensional electron diffraction data
KR20200109246A (en) Method and system for zone axis alignment
JP4081700B2 (en) Electron beam analyzer
JP4431624B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
EP3379557A1 (en) Scanning transmission electron microscope and method for high throughput acquisition of electron scattering angle distribution images
JP2009110969A (en) Method and device for measuring pattern dimension
JP2003317654A (en) Electron microprobe method and electron microscope using the same as well as bio-sample inspection method and biopsy system
JP2006190693A (en) Charged particle beam device
JP4246311B2 (en) Beam processing method and focused ion beam apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees