JP5070074B2 - Scanning electron microscope - Google Patents

Scanning electron microscope Download PDF

Info

Publication number
JP5070074B2
JP5070074B2 JP2008022239A JP2008022239A JP5070074B2 JP 5070074 B2 JP5070074 B2 JP 5070074B2 JP 2008022239 A JP2008022239 A JP 2008022239A JP 2008022239 A JP2008022239 A JP 2008022239A JP 5070074 B2 JP5070074 B2 JP 5070074B2
Authority
JP
Japan
Prior art keywords
sample
detector
electron beam
irradiation position
beam irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008022239A
Other languages
Japanese (ja)
Other versions
JP2009181922A (en
Inventor
直樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008022239A priority Critical patent/JP5070074B2/en
Publication of JP2009181922A publication Critical patent/JP2009181922A/en
Application granted granted Critical
Publication of JP5070074B2 publication Critical patent/JP5070074B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、走査電子顕微鏡に関し、特に三次元形状測定装置を備えた走査電子顕微鏡に関する。   The present invention relates to a scanning electron microscope, and more particularly to a scanning electron microscope equipped with a three-dimensional shape measuring apparatus.

電子顕微鏡の1つに、走査型電子顕微鏡(以下、SEMという)と、このSEMに取り付けられた半導体X線検出器からの信号を処理するエネルギー分散型X線分析装置(以下、EDXという)とを組み合わせたものがある。このEDXは、数μmという微小領域の元素分析を行う装置で、SEMによる像観察と同時に、EDXによって観察している部分の定性分析,定量分析,X線像による元素分布の分析等を行うものである。   One of the electron microscopes is a scanning electron microscope (hereinafter referred to as SEM) and an energy dispersive X-ray analyzer (hereinafter referred to as EDX) that processes a signal from a semiconductor X-ray detector attached to the SEM. There is a combination of. This EDX is a device that performs elemental analysis of a micro area of several μm, and performs qualitative analysis, quantitative analysis, element distribution analysis by X-ray image, etc. at the same time as image observation by SEM It is.

また、SEMは二次元形状の観察および分析のみならず、三次元形状の計測も行うことができる。三次元形状計測の手法の例としては、特許文献1のように、試料に対向し環状に配置した反射電子検出器を放射状に等分割し、それぞれに設けられた検出素子からの指向性を有した検出信号の差分を用いて試料の表面形状を測定する三次元形状測定装置がある。   The SEM can measure not only a two-dimensional shape but also a three-dimensional shape. As an example of a three-dimensional shape measurement method, as in Patent Document 1, a backscattered electron detector arranged in an annular shape facing a sample is equally divided radially, and directivity from detection elements provided in each is obtained. There is a three-dimensional shape measuring apparatus for measuring the surface shape of a sample using a difference between detected signals.

特開平6−236746号公報JP-A-6-236746

近年、SEMは、低真空形SEMの普及や、試料室の大型化や試料微動装置のモータドライブ化などに伴い、観察および分析できる試料の大きさは大型化している。このため、試料の中から観察および分析したい部分のみを切断し小型化したり、試料を樹脂包埋に埋め込み観察面を平坦に仕上げたり、導電性の無い試料の場合は金属皮膜のコーティングなどの前処理などを行わず、試料そのものを試料微動装置に搭載して観察および分析を行うことが主流となりつつある。そのため、試料表面に大きな凹凸がある試料もめずらしくない。   In recent years, the size of a sample that can be observed and analyzed has been increasing with the spread of low vacuum type SEM, the increase in the size of a sample chamber, and the increase in the motor drive of a sample fine movement device. For this reason, only the portion of the sample that is to be observed and analyzed is cut and miniaturized, the sample is embedded in a resin embedding and the observation surface is flattened, or in the case of a non-conductive sample, such as coating with a metal film. It is becoming mainstream to carry out observation and analysis by mounting the sample itself on a sample fine movement apparatus without performing processing. Therefore, it is not uncommon to have a sample with large irregularities on the sample surface.

しかし、SEMにて試料表面に大きな凹凸がある試料の観察および分析を行う場合、例えばEDXを用いた定量分析などでは、試料に対するX線取り出し角および、試料とX線検出器までの軸間距離が分析の度に異なったり、また、分析位置から発生したX線が試料の凹凸により全部もしくは一部が遮断されたりすると、正しい定量分析結果を得ることができないという問題がある。   However, when observing and analyzing a sample with large irregularities on the sample surface by SEM, for example, in quantitative analysis using EDX, the X-ray extraction angle with respect to the sample and the interaxial distance between the sample and the X-ray detector However, if the X-ray generated from the analysis position is completely or partially blocked by the unevenness of the sample, there is a problem that a correct quantitative analysis result cannot be obtained.

そこで、本発明は、前記した問題を解決し、専門的な知識や能力がなくても試料の観察および分析において精度の高い結果を得ることができるSEMを提供するものである。   Therefore, the present invention provides an SEM that solves the above-described problems and can obtain a highly accurate result in observation and analysis of a sample without specialized knowledge and ability.

上記課題を解決するために、本発明によるSEMは、水平方向2軸,回転方向,傾斜方向,垂直方向の合計5軸をモータドライブ等で操作することができ、試料の位置情報を把握できる試料微動装置を有し、三次元形状測定装置を備えていることを特徴とする。これにより、試料の三次元形状を取得し、試料の形状に合わせ試料微動装置を制御することで、目的に応じた最適な観察および分析の環境を提供することができる。   In order to solve the above problems, the SEM according to the present invention can operate a total of five axes in the horizontal direction, the rotational direction, the tilt direction, and the vertical direction with a motor drive or the like, and can grasp the position information of the sample. It has a fine movement device and a three-dimensional shape measuring device. Thus, by acquiring the three-dimensional shape of the sample and controlling the sample fine movement device according to the shape of the sample, it is possible to provide an optimum observation and analysis environment according to the purpose.

本発明によれば、試料の形態による観察および分析の煩雑な操作を軽減し、専門的な知識や能力がなくても試料の観察および分析において精度の高い結果を得ることができるSEMを供給することができるようになる。   According to the present invention, an SEM capable of reducing the complicated operation of observation and analysis depending on the form of the sample and obtaining a highly accurate result in the observation and analysis of the sample without specialized knowledge and ability is provided. Will be able to.

以下、図面を参照して本発明を実施するための最良の形態(以下、実施形態と記述)を詳細に説明する。   The best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described in detail below with reference to the drawings.

<第1の実施形態>
本発明に係る第1の実施形態について、図1を用いて詳細に説明する。
<First Embodiment>
A first embodiment according to the present invention will be described in detail with reference to FIG.

図1は、第1の実施形態のSEMの概略図である。   FIG. 1 is a schematic diagram of an SEM according to the first embodiment.

第1の実施形態のSEM1は、電子源2と当該電子源より放出される電子ビーム3を収束するコンデンサレンズ4と、電子ビーム3を走査する偏向コイル5と、電子ビーム3の焦点を合わせる対物レンズ6を備える電子光学系7と、前記電子光学系の各条件を調整する制御装置と、試料8に対する電子ビーム3の照射によって試料8より放出される電子を検出する2次電子検出器9と前記検出器からの信号を処理する制御装置と、反射電子を検出する反射電子検出器10と前記検出器からの信号を処理し三次元形状測定の処理をする制御装置と、水平方向2軸,回転方向,傾斜方向,垂直方向の合計5軸をモータドライブ等で操作することができ、試料の位置情報を把握できる試料微動装置11を備え、真空を保持するための試料室12と真空配管13を介して試料室12に接続された真空ポンプ14等により構成され、これにEDXのX線検出器15が組み合わされている。   The SEM 1 of the first embodiment includes an electron source 2, a condenser lens 4 that converges the electron beam 3 emitted from the electron source, a deflection coil 5 that scans the electron beam 3, and an object that focuses the electron beam 3. An electron optical system 7 including a lens 6; a control device that adjusts each condition of the electron optical system; and a secondary electron detector 9 that detects electrons emitted from the sample 8 when the sample 8 is irradiated with the electron beam 3. A control device for processing signals from the detector, a reflected electron detector 10 for detecting backscattered electrons, a control device for processing signals from the detector to perform three-dimensional shape measurement processing, two horizontal axes, A total of five axes in the rotation direction, tilt direction, and vertical direction can be operated by a motor drive or the like, and a sample fine movement device 11 that can grasp the position information of the sample is provided. Is constituted by through a pipe 13 vacuum pump 14 is connected to the sample chamber 12, etc., X-rays detector 15 EDX is combined thereto.

EDXを備えるSEM1において、分析とりわけ定量分析をする場合は、図2に示すように、試料8に対するX線取出し角17および、試料8とX線検出器15までの軸間距離18を一定に保たねば正確な分析はできない。一般にEDXのX線検出器15は、予め試料室12に固定されているので、測定者は、分析位置の試料表面の垂直方向の距離がある決められた距離(以下、分析距離と記述)になるように、試料微動装置11の垂直方向を調整する必要があった。   When performing analysis, particularly quantitative analysis, in the SEM 1 equipped with EDX, as shown in FIG. 2, the X-ray extraction angle 17 with respect to the sample 8 and the axial distance 18 between the sample 8 and the X-ray detector 15 are kept constant. If you ask, you can't do an accurate analysis. In general, since the X-ray detector 15 of EDX is fixed in advance in the sample chamber 12, the measurer can set the distance in the vertical direction of the sample surface at the analysis position to a certain distance (hereinafter referred to as analysis distance). Thus, it was necessary to adjust the vertical direction of the sample fine movement device 11.

そこで、分析を行う前にSEM1に備えた三次元形状測定装置を用いて、試料8の三次元形状測定を行う。本実施例では、試料8に対向し環状に配置した反射電子検出器10を放射状に4分割し、電子ビーム3の走査により試料8から発生した反射電子を、それぞれに設けられた検出素子からの指向性を有した検出信号の差分を用いて試料の表面形状を測定する手法にて三次元形状測定を行う。三次元形状測定により得た各画素における高さ情報と、試料の位置情報を把握できる試料微動装置11の垂直方向の位置情報から得た分析位置の試料高さから、分析位置の試料表面の垂直方向の距離を算出し、これが分析距離と一致するように試料微動装置11の垂直方向を自動で調整する。   Therefore, the three-dimensional shape measurement of the sample 8 is performed using the three-dimensional shape measurement apparatus provided in the SEM 1 before performing the analysis. In the present embodiment, the backscattered electron detector 10 that faces the sample 8 and is arranged in an annular shape is radially divided into four, and the backscattered electrons generated from the sample 8 by the scanning of the electron beam 3 are detected from the detection elements provided in each. Three-dimensional shape measurement is performed by a method of measuring the surface shape of a sample using a difference between detection signals having directivity. From the sample height at the analysis position obtained from the height information at each pixel obtained by the three-dimensional shape measurement and the position information in the vertical direction of the sample fine movement device 11 capable of grasping the position information of the sample, the sample surface at the analysis position is vertical. The distance in the direction is calculated, and the vertical direction of the sample fine movement device 11 is automatically adjusted so that it matches the analysis distance.

これにより、測定者は試料表面に大きな凹凸がある試料8の分析において、分析距離の調整を自動化することができ、分析位置によらず一定の分析距離を提供することができ、分析の煩雑な操作を軽減することができる。また、分析距離の未調整による定量分析の失敗を防ぐことができる。   Accordingly, the measurer can automate the adjustment of the analysis distance in the analysis of the sample 8 having a large unevenness on the sample surface, can provide a constant analysis distance regardless of the analysis position, and the analysis is complicated. Operation can be reduced. Further, it is possible to prevent a failure in quantitative analysis due to an unadjusted analysis distance.

また、水平方向2軸,回転方向,傾斜方向,垂直方向の合計5軸をモータドライブ等で操作することができ、試料の位置情報を把握できる試料微動装置11を備えたSEM1は、試料微動装置11の可動範囲の制御パラメータとして、試料8の試料サイズ(種類)および、試料高さを予め入力することで、試料8と対物レンズ6や2次電子検出器9,試料室12内壁等とが接触しないように、試料微動装置11の可動範囲を制御し、測定者の操作を補助している。しかし、測定者が試料8の試料サイズ(種類)および、試料高さを入力し忘れたり、間違った値を入力すると、試料8と対物レンズ6や2次電子検出器9,試料室12内壁等とが接触し、破損するおそれがある。そこで、前述の例では、各画素における高さ情報を分析距離の自動調整に利用しているが、各画素における高さ情報から試料のサイズおよび、試料全体の最大高さを算出し、試料微動装置11の可動範囲の制御パラメータとして自動で入力することで、測定者による入力ミスを無くし、試料8と対物レンズ6や2次電子検出器9,試料室12内壁等との接触のおそれが無く操作できるSEM1を提供することができる。   Further, the SEM 1 equipped with the sample fine movement device 11 that can operate a total of five axes in the horizontal direction, the rotation direction, the inclination direction, and the vertical direction with a motor drive or the like and can grasp the position information of the sample is the sample fine movement device. As a control parameter of the movable range 11, the sample size (type) and the sample height of the sample 8 are input in advance, so that the sample 8, the objective lens 6, the secondary electron detector 9, the inner wall of the sample chamber 12, etc. The movable range of the sample fine movement device 11 is controlled so as not to come into contact, and the operation of the measurer is assisted. However, if the measurer forgets to input the sample size (type) and the sample height of the sample 8 or inputs an incorrect value, the sample 8 and the objective lens 6, the secondary electron detector 9, the inner wall of the sample chamber 12, etc. May come into contact with the product and damage it. Therefore, in the above-described example, the height information at each pixel is used for automatic adjustment of the analysis distance. By automatically inputting as a control parameter of the movable range of the apparatus 11, an input error by the measurer is eliminated, and there is no possibility of contact between the sample 8 and the objective lens 6, the secondary electron detector 9, the inner wall of the sample chamber 12, and the like. An SEM 1 that can be operated can be provided.

<第2の実施形態>
三次元形状測定により得た各画素における高さ情報と、試料の位置情報を把握できる試料微動装置11とを組み合わせた、試料の形態による観察および分析の煩雑な操作の軽減例は、第1の実施形態に限定されるものではない。本発明に係る第2の実施形態について、図2から図4を用いて詳細に説明する。
<Second Embodiment>
An example of reducing the complicated operation of observation and analysis according to the form of the sample by combining the height information in each pixel obtained by the three-dimensional shape measurement and the sample fine movement device 11 capable of grasping the position information of the sample is the first example. It is not limited to the embodiment. A second embodiment according to the present invention will be described in detail with reference to FIGS.

図2はX線の検出範囲についての概略図である。   FIG. 2 is a schematic diagram of the X-ray detection range.

電子ビーム3の照射により試料8から発生したX線16のうち、X線検出器15に取り込まれるX線の範囲は、X線検出器15の検出窓の大きさ(d)と軸間距離18(L)より、X線取出し角17を中心にX線取り込み可能角19(2α)の範囲内となる。   Of the X-rays 16 generated from the sample 8 by the irradiation of the electron beam 3, the range of X-rays taken into the X-ray detector 15 is the size (d) of the detection window of the X-ray detector 15 and the distance 18 between the axes. From (L), the X-ray take-out angle 17 is set as the center and the X-ray take-in angle 19 (2α) is within the range.

試料8の表面が平坦な場合、試料8から発生したX線取り込み可能角19の範囲内にあるX線16は、全てX線検出器15に取り込まれる。   When the surface of the sample 8 is flat, all the X-rays 16 generated within the range of the X-ray capturing angle 19 generated from the sample 8 are captured by the X-ray detector 15.

しかし、試料表面に大きな凹凸がある試料8の場合、図3に示すようにX線取り込み可能角19の範囲内に試料8が重なることがある。このような場合は、試料8から発生したX線16が十分にX線検出器15に取り込まれまいため、分析に時間がかかったり、正しい分析結果が得られなかったりする。   However, in the case of the sample 8 having large irregularities on the sample surface, the sample 8 may overlap within the range of the X-ray capturing angle 19 as shown in FIG. In such a case, the X-ray 16 generated from the sample 8 is not sufficiently taken into the X-ray detector 15, so that it takes time for the analysis or a correct analysis result cannot be obtained.

そこで、正しい分析結果が得られるかを判断する方法の例を、図4のフローチャート図に従い、説明する。   Therefore, an example of a method for determining whether a correct analysis result can be obtained will be described with reference to the flowchart of FIG.

測定者が任意の分析位置を指定する(S41)と、試料微動装置11が試料8を指定した分析位置へ移動させる(S43)。次に、第1の実施形態と同様に、分析を行う前にSEM1に備えた三次元形状測定装置を用いて、試料8の三次元形状測定を行い、三次元形状測定により得た各画素における高さ情報を記憶する(S43)。そして、分析位置からX線検出器15までのΔY位置における試料8の試料高さと、X線取り込み可能角下限の高さΔZを比較する(S44)。なお、ΔY位置における試料8の試料高さと、X線取り込み可能角下限の高さΔZを比較するΔY位置の試料奥行き方向(図2におけるX方向)については、分析位置を中心にX線検出器15の検出窓の大きさ(d)の±1/2の範囲とする。ΔZの計算式を次式に示す。   When the measurer designates an arbitrary analysis position (S41), the sample fine movement device 11 moves the sample 8 to the designated analysis position (S43). Next, as in the first embodiment, the three-dimensional shape measurement apparatus provided in the SEM 1 is used to perform the three-dimensional shape measurement of the sample 8 before the analysis, and each pixel obtained by the three-dimensional shape measurement is measured. The height information is stored (S43). Then, the sample height of the sample 8 at the ΔY position from the analysis position to the X-ray detector 15 is compared with the height ΔZ of the lower limit of the X-ray capturing angle (S44). The sample depth direction (X direction in FIG. 2) of the ΔY position for comparing the sample height of the sample 8 at the ΔY position with the height ΔZ of the lower limit of the X-ray capture angle is an X-ray detector centering on the analysis position. The range is ± 1/2 of the size (d) of 15 detection windows. The formula for calculating ΔZ is shown below.

Figure 0005070074
試料8の試料高さ≦ΔZの場合(S44の“Yes”)、試料8により、X線取り込み可能角19の範囲内にあるX線16が遮断されることはないため、分析可能と判断する(S45)。
Figure 0005070074
When the sample height of the sample 8 ≦ ΔZ (“Yes” in S44), since the sample 8 does not block the X-ray 16 within the range of the X-ray capturing angle 19, it is determined that analysis is possible. (S45).

試料8の試料高さ>ΔZの場合(S44の“No”)、試料8により、X線取り込み可能角19の範囲内にあるX線16が遮断されるため、分析不可能と判断する(S45)。   When the sample height of the sample 8 is greater than ΔZ (“No” in S44), the X-ray 16 within the range of the X-ray capturing angle 19 is blocked by the sample 8, and therefore it is determined that analysis is impossible (S45). ).

また、測定者が選択した試料の分析位置からX線検出部に向かう方向(つまり図2のYmax方向)で、試料の高さが極大値となる位置と、分析位置までのYmax方向距離をΔYnとする。上述の極大となる試料の高さをHnすると、

Figure 0005070074
このとき、θn≦90°−TOA−αであれば、試料8により、X線取り込み可能角19の範囲内にあるX線16が遮断されることはないため、分析可能と判断する。θn>90°−TOA−αであれば、試料8により、X線取り込み可能角19の範囲内にあるX線16が遮断されるため、分析不可能と判断することも可能である。 Further, in the direction from the analysis position of the sample selected by the measurer to the X-ray detection unit (that is, the Ymax direction in FIG. 2), the position where the height of the sample reaches the maximum value and the Ymax direction distance to the analysis position are expressed as ΔY. Let n . When the height of the maximum sample mentioned above is H n ,
Figure 0005070074
At this time, if θ n ≦ 90 ° −TOA−α, the X-ray 16 within the range of the X-ray capturing angle 19 is not blocked by the sample 8, and therefore it is determined that analysis is possible. If θ n > 90 ° −TOA−α, the X-ray 16 within the range of the X-ray capturing angle 19 is blocked by the sample 8, so that it can be determined that analysis is impossible.

これにより、指定した分析位置で正しい分析結果が得られるかを分析操作実施前に判断することができ、試料8から発生したX線16が試料8の凹凸により遮断されることによる定量分析の失敗を防ぐことができる。   As a result, it is possible to determine whether or not a correct analysis result can be obtained at the designated analysis position, and the quantitative analysis failure due to the X-rays 16 generated from the sample 8 being blocked by the unevenness of the sample 8. Can be prevented.

なお、前述の例では、分析可能か分析不可能かだけを判断しているが、分析位置中心に360°の範囲についてΔY位置における試料8の試料高さとX線取り込み可能角下限の高さΔZを比較することで、前述の例にて分析不可能と判断された場合でも、分析位置を中心に360°の範囲に試料8の試料高さ≦ΔZの範囲が存在すれば、試料8の試料高さ≦ΔZの範囲に試料8を回転させることで分析が可能となる。そして、試料の位置情報を把握できる試料微動装置11を用いることで、試料8の回転を自動で行うこともできる。このとき、試料微動装置11の回転方向などの自動調整により観察視野の方向が変化しないよう、電子ビーム3の走査方向を回転させて表示画像の方向を回転させる機能を併用してもよい。この方法は、上述の角度θnでの判断も可能である。 In the above-described example, it is determined only whether the analysis is possible or not. However, the sample height of the sample 8 at the ΔY position and the height ΔZ that is the lower limit of the X-ray capturing angle in the range of 360 ° around the analysis position. Even if it is determined that the analysis is impossible in the above example, if the sample height of the sample 8 ≦ ΔZ exists in the range of 360 ° around the analysis position, the sample of the sample 8 Analysis can be performed by rotating the sample 8 in a range of height ≦ ΔZ. The sample 8 can be automatically rotated by using the sample fine movement device 11 that can grasp the position information of the sample. At this time, a function of rotating the scanning direction of the electron beam 3 and rotating the direction of the display image may be used in combination so that the direction of the observation field of view is not changed by automatic adjustment of the rotation direction of the sample fine movement device 11 or the like. This method can also be determined at the angle θ n described above.

<第3の実施形態>
第1,2の実施形態では、三次元形状測定により得た各画素における高さ情報から試料の試料高さを得ているが、SEMの自動焦点補正機能(以下、オートフォーカスと記述)を用いることでも試料の試料高さを得ることができる。
<Third Embodiment>
In the first and second embodiments, the sample height of the sample is obtained from the height information at each pixel obtained by the three-dimensional shape measurement, but the SEM automatic focus correction function (hereinafter referred to as autofocus) is used. In this way, the sample height of the sample can be obtained.

オートフォーカスを用いた各画素における高さ情報の取得方法の例を、図5のフローチャート図に従い、説明する。   An example of a method for acquiring height information in each pixel using autofocus will be described with reference to the flowchart of FIG.

試料8を試料微動装置11にセットし、試料8および試料微動装置11が試料室12や対物レンズ6、2次電子検出器9等に接触しない位置で、試料微動装置11を試料室12へセットする(S51)。試料室12を真空排気後、電子線を照射し(S52)、電子ビーム3を走査し試料全体をスキャンし(S53)、オートフォーカスを用いて、各画素の高さ方向の情報を取得し、試料8の位置と高さをSEM制御装置に記憶する(S56)。このとき、電子ビーム3の走査だけで試料全体をスキャンできない場合(S53の“No”)は、試料微動装置11にて試料8を移動し全体をスキャンし(S54)、複数のスキャンをつなぎ合わせることで試料全体の情報を記憶する(S55)。   The sample 8 is set in the sample fine movement device 11, and the sample fine movement device 11 is set in the sample chamber 12 at a position where the sample 8 and the sample fine movement device 11 do not contact the sample chamber 12, the objective lens 6, the secondary electron detector 9 and the like. (S51). After evacuating the sample chamber 12, the electron beam is irradiated (S52), the electron beam 3 is scanned to scan the entire sample (S53), and information on the height direction of each pixel is acquired using autofocus. The position and height of the sample 8 are stored in the SEM control device (S56). At this time, when the entire sample cannot be scanned only by scanning with the electron beam 3 (“No” in S53), the sample 8 is moved by the sample fine movement device 11 to scan the whole (S54), and a plurality of scans are connected. Thus, information on the entire sample is stored (S55).

オートフォーカスを用いた各画素における高さ情報の取得は、SEM像を観察するときに用いる電子ビーム3を利用するため、既存のSEM1の構成を変更することがなく、本実施形態のSEMの提供が可能である。   The acquisition of the height information at each pixel using autofocus uses the electron beam 3 used when observing the SEM image, so the configuration of the existing SEM 1 is not changed, and the SEM of the present embodiment is provided. Is possible.

なお、本発明は、SEMやEDXを備えるSEMだけでなく、波長分散型X線分析装置を備えるSEM、またその類似装置においても同様に適用できることは言うまでもない。   Needless to say, the present invention can be applied not only to SEMs including SEMs and EDXs, but also to SEMs including wavelength dispersive X-ray analyzers and similar devices.

第1の実施形態のSEMの概略図である。It is the schematic of SEM of 1st Embodiment. X線の検出範囲についての概略図である。It is the schematic about the detection range of a X-ray. X線の検出範囲に試料が重なっている場合についての概略図である。It is the schematic about the case where the sample has overlapped on the detection range of X-rays. 第2の実施形態における正しい分析結果が得られるかを判断する方法の手順を例示したフローチャートである。It is the flowchart which illustrated the procedure of the method of determining whether the correct analysis result in 2nd Embodiment is obtained. 第3の実施形態におけるオートフォーカスを用いた各画素における高さ情報の取得方法の手順を例示したフローチャートである。10 is a flowchart illustrating a procedure of a method for acquiring height information in each pixel using autofocus according to the third embodiment.

符号の説明Explanation of symbols

1 走査電子顕微鏡(SEM)
2 電子源
3 電子ビーム
4 コンデンサレンズ
5 偏向コイル
6 対物レンズ
7 電子光学系
8 試料
9 2次電子検出器
10 反射電子検出器
11 試料微動装置
12 試料室
13 真空配管
14 真空ポンプ
15 X線検出器(検出窓の大きさ:d)
16 試料から発生したX線
17 X線取出し角(TOA)
18 軸間距離(L)
19 X線取り込み可能角(2α)
1 Scanning electron microscope (SEM)
2 Electron source 3 Electron beam 4 Condenser lens 5 Deflection coil 6 Objective lens 7 Electron optical system 8 Sample 9 Secondary electron detector 10 Reflected electron detector 11 Sample fine movement device 12 Sample chamber 13 Vacuum pipe 14 Vacuum pump 15 X-ray detector (Detection window size: d)
16 X-rays generated from the sample 17 X-ray extraction angle (TOA)
18 Distance between axes (L)
19 X-ray capture angle (2α)

Claims (6)

電子源と、
試料を搭載するステージと、
当該電子源より放出される電子線を試料に収束する対物レンズと、
前記試料の電子線照射位置から放出される電子を検出する第1の検出器と、
前記試料の電子線照射位置から放出される電子以外の信号を検出する第2の検出器と、
前記第1の検出器で検出された信号を処理して前記試料の三次元形状を求める演算部と、
前記三次元形状を用いて、前記第2の検出器と前記試料の電子線照射位置までの距離を保つように、前記試料の電子線照射位置に応じて試料ステージを移動させる制御装置を備え
前記演算部は、前記試料の三次元形状に基づく試料の高さ情報に基づいて、前記試料の電子線照射位置から前記第2の検出器に向かう経路上に前記試料が存在するか否かを判断することを特徴とする走査電子顕微鏡。
An electron source,
A stage on which the sample is mounted;
An objective lens for focusing the electron beam emitted from the electron source on the sample;
A first detector for detecting electrons emitted from the electron beam irradiation position of the sample;
A second detector for detecting a signal other than electrons emitted from the electron beam irradiation position of the sample;
A calculation unit for processing a signal detected by the first detector to obtain a three-dimensional shape of the sample;
A control device that moves the sample stage according to the electron beam irradiation position of the sample so as to maintain the distance between the second detector and the electron beam irradiation position of the sample using the three-dimensional shape ,
The calculation unit determines whether the sample exists on a path from the electron beam irradiation position of the sample to the second detector based on the height information of the sample based on the three-dimensional shape of the sample. A scanning electron microscope characterized by judging .
請求項1の走査電子顕微鏡において、前記第1の検出器は試料の電子線照射位置から放出される反射電子を検出する反射電子検出器であり、当該反射電子検出器は、分割された検出面を有することを特徴とする走査電子顕微鏡。   2. The scanning electron microscope according to claim 1, wherein the first detector is a reflected electron detector that detects reflected electrons emitted from an electron beam irradiation position of the sample, and the reflected electron detector has a divided detection surface. A scanning electron microscope characterized by comprising: 請求項1又は2の走査電子顕微鏡において、前記第2の検出器は前記試料の電子線照射位置から発生するX線を検出するX線検出器であることを特徴とする走査電子顕微鏡。   3. The scanning electron microscope according to claim 1, wherein the second detector is an X-ray detector that detects X-rays generated from an electron beam irradiation position of the sample. 請求項の走査電子顕微鏡において、
前記経路上に前記試料が存在する場合には、前記経路上から試料が存在しないように前記ステージを移動させることを特徴とする走査電子顕微鏡。
The scanning electron microscope of claim 1 ,
When the sample exists on the path, the stage is moved so that the sample does not exist on the path.
請求項1乃至4のいずれか1つの走査電子顕微鏡において、
高さ情報から、試料のサイズおよび、最大高さを算出し、前記ステージの可動範囲を設定することができることを特徴とする請求項1に記載の走査電子顕微鏡。
The scanning electron microscope according to any one of claims 1 to 4,
The scanning electron microscope according to claim 1, wherein the movable range of the stage can be set by calculating the size and maximum height of the sample from the height information.
電子源と、
試料を搭載するステージと、
当該電子源より放出される電子線を試料に収束する対物レンズと、
前記試料の電子線照射位置から放出される電子を検出する第1の検出器と、
前記試料の電子線照射位置から放出される電子以外の信号を検出する第2の検出器と、
自動焦点補正機能により前記試料の電子線照射位置毎の前記試料の高さを求める演算部と、
前記試料の高さを用いて、前記第2の検出器と前記試料の電子線照射位置までの距離を保つように、前記試料の電子線照射位置に応じて試料ステージを移動させる制御装置を備え
前記演算部は、前記試料の高さ情報に基づいて、前記試料の電子線照射位置から前記第2の検出器に向かう経路上に前記試料が存在するか否かを判断することを特徴とする走査電子顕微鏡。
An electron source,
A stage on which the sample is mounted;
An objective lens for focusing the electron beam emitted from the electron source on the sample;
A first detector for detecting electrons emitted from the electron beam irradiation position of the sample;
A second detector for detecting a signal other than electrons emitted from the electron beam irradiation position of the sample;
A calculation unit for obtaining the height of the sample for each electron beam irradiation position of the sample by an automatic focus correction function;
A control device is provided that moves the sample stage according to the electron beam irradiation position of the sample so as to maintain the distance between the second detector and the electron beam irradiation position of the sample using the height of the sample. ,
The calculation unit determines whether the sample is present on a path from the electron beam irradiation position of the sample to the second detector based on the height information of the sample. Scanning electron microscope.
JP2008022239A 2008-02-01 2008-02-01 Scanning electron microscope Expired - Fee Related JP5070074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008022239A JP5070074B2 (en) 2008-02-01 2008-02-01 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008022239A JP5070074B2 (en) 2008-02-01 2008-02-01 Scanning electron microscope

Publications (2)

Publication Number Publication Date
JP2009181922A JP2009181922A (en) 2009-08-13
JP5070074B2 true JP5070074B2 (en) 2012-11-07

Family

ID=41035706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008022239A Expired - Fee Related JP5070074B2 (en) 2008-02-01 2008-02-01 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JP5070074B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10133854B2 (en) 2016-05-12 2018-11-20 International Business Machines Corporation Compositional three-dimensional surface plots

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9153417B2 (en) 2011-11-25 2015-10-06 Totoltd. Back scattered electron detector
JP5865676B2 (en) 2011-11-25 2016-02-17 株式会社日立ハイテクノロジーズ Charged particle beam equipment
JP6071751B2 (en) * 2013-05-24 2017-02-01 Toto株式会社 Backscattered electron detector
DE112016006965B4 (en) 2016-07-28 2022-05-25 Hitachi High-Tech Corporation charged particle beam device
KR101950346B1 (en) * 2017-11-16 2019-02-20 한국과학기술연구원 System and method for controling safety of scanning electron microscope

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4320802B2 (en) * 1998-08-27 2009-08-26 株式会社ニコン Microscope with electric stage
JP3379637B2 (en) * 1998-11-10 2003-02-24 株式会社島津製作所 Electronic probe micro analyzer
JP2000311645A (en) * 1999-04-28 2000-11-07 Hitachi Ltd Electron microscope
JP4372339B2 (en) * 2000-12-28 2009-11-25 株式会社島津製作所 Irregular image forming apparatus and electron beam analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10133854B2 (en) 2016-05-12 2018-11-20 International Business Machines Corporation Compositional three-dimensional surface plots

Also Published As

Publication number Publication date
JP2009181922A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP4069545B2 (en) Electron microscope method, electron microscope array biological sample inspection method and biological inspection apparatus using the same
US10720307B2 (en) Electron microscope device and inclined hole measurement method using same
US6838667B2 (en) Method and apparatus for charged particle beam microscopy
JP5070074B2 (en) Scanning electron microscope
US20050285034A1 (en) Method and apparatus for measuring three-dimensional shape of specimen by using SEM
JP2006332296A (en) Focus correction method in electronic beam applied circuit pattern inspection
US8766183B2 (en) Charged particle beam device
JP5865676B2 (en) Charged particle beam equipment
JP5378185B2 (en) Focused ion beam apparatus and focused ion beam processing method
US20160379795A1 (en) Charged Particle Beam Apparatus
US20090218509A1 (en) Charged particle beam apparatus
JP5810181B2 (en) Sample inspection, measurement method, and charged particle beam apparatus
US20220076917A1 (en) Method and system for automatic zone axis alignment
JP4548432B2 (en) Electron microscope method, electron microscope array biological sample inspection method and biological inspection apparatus using the same
US10665420B2 (en) Charged particle beam apparatus
US8294118B2 (en) Method for adjusting optical axis of charged particle radiation and charged particle radiation device
JP4372339B2 (en) Irregular image forming apparatus and electron beam analyzer
JP5308766B2 (en) PATTERN SEARCH CONDITION DETERMINING METHOD AND PATTERN SEARCH CONDITION SETTING DEVICE
TWI809319B (en) Image adjustment method and charged particle beam system
JP2008226508A (en) Imaging magnification adjusting method, and charged particle beam device
JP4069785B2 (en) Electron microscope method, electron microscope array biological sample inspection method and biological inspection apparatus using the same
JP4431624B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP2001210689A (en) Method and apparatus for electron beam inspection
JP2012169636A (en) Circuit pattern inspection apparatus and method
JP2007194060A (en) Method and device for adjusting automatic axis of electron lens of scanning electron microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees