JP4369632B2 - Pretreatment method of hot metal with low slag generation using converter type vessel - Google Patents

Pretreatment method of hot metal with low slag generation using converter type vessel Download PDF

Info

Publication number
JP4369632B2
JP4369632B2 JP2001058001A JP2001058001A JP4369632B2 JP 4369632 B2 JP4369632 B2 JP 4369632B2 JP 2001058001 A JP2001058001 A JP 2001058001A JP 2001058001 A JP2001058001 A JP 2001058001A JP 4369632 B2 JP4369632 B2 JP 4369632B2
Authority
JP
Japan
Prior art keywords
slag
hot metal
treatment
mass
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001058001A
Other languages
Japanese (ja)
Other versions
JP2002256325A (en
Inventor
健一郎 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001058001A priority Critical patent/JP4369632B2/en
Publication of JP2002256325A publication Critical patent/JP2002256325A/en
Application granted granted Critical
Publication of JP4369632B2 publication Critical patent/JP4369632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、転炉等の精錬炉を用いて、前回の溶銑の脱Si(珪素)処理及び脱P(燐)処理を行った際に発生したスラグの一部を利用して、新しい溶銑の脱Si処理、脱P処理を行う転炉型容器を用いたスラグ発生量の少ない溶銑の予備処理方法に関する。
【0002】
【従来の技術】
従来、製鋼の主原料である溶銑は、Si(珪素)やS(硫黄)、P(燐)等の不純物を含んでおり、予めこれ等の不純物を除去する脱Si、脱S、脱P等のいわゆる溶銑の予備処理が行われている。
特に、脱Si処理及び脱P処理を同時に行う場合は、溶銑に生石灰、ソーダ灰等の脱燐用のフラックスとPを酸化する気体酸素、あるいは酸化鉄や集塵ダスト、スラジ等の固体酸化剤を添加するか、又はフラックスや固体酸化剤の吹き込み(インゼクション)を行うことにより、溶銑中のSiを優先的にSiO2にして除去し、同時に、Pを酸化物(P25)にし、生成したスラグ中のCaOに捕捉させて溶銑中から除去する。
しかし、これ等溶銑の予備処理では、Siは容易にSiO2として除去できるが、脱Pの反応効率が悪く、到達P濃度を十分に低下することが困難である。
この対策として、特開昭62−109910号公報に記載されているように、CaOを主成分とした滓化促進剤を配合したフラックスを溶銑の表面に載置し、ランスから酸素を上吹きしながら、鉄鉱石やスケール等の固体酸素剤の粉末を溶銑内にインゼクションする方法が行われている。
更に、特開平6−287616号公報に記載されているように、酸化鉄60〜80質量%を含んだCaO−Fe23−CaF2系のフラックスに、Na23を3〜10質量%を配合したものを、溶銑内にインゼクションし、上方からランスを用いて溶銑の表面に酸素を吹き付けて脱Si処理及び脱P処理を同時に行う方法が提案されており、脱P効率の向上と到達P濃度の低減を図っている。
【0003】
【発明が解決しようとする課題】
しかしながら、特開昭62−109910号公報に記載された方法では、初期の溶銑の脱Si、脱P効率を高めることができるが、脱P処理の初期から末期の間を同一の処理条件で行っており、スラグ等への燐の平衡論的な物質移動を考慮していないため、脱P処理の中期から末期である脱P後期における脱P効率が低下して到達P濃度が高くなる。
この到達P濃度を低くするには、脱Si処理及び脱P処理に使用する生石灰や酸化鉄、ミルスケール、酸素等の使用量が増加して処理コストが上昇する。
更に、常に、新しい生石灰、酸化鉄等を使用したり、吹き込むフラックスの使用量が多くなることにより、脱Si、脱P処理の際に生成するスラグ量が増加し、このスラグの処理に多大の費用を要する。
また、特開平6−287616号公報に記載された方法では、常に、新しい生石灰、酸化鉄等を使用し、CaF2やNa23等の高価な原料を使用する必要があり、生成スラグ量が増加する。しかも、生成したスラグには、強アルカリ成分やフッ素等が含まれるため、生成したスラグは、廃棄する際に環境上での制約を受ける。
更に、特開昭62−109910号公報に記載された方法と同様に、脱P処理の初期から末期の間を同一の処理条件で行い、スラグ等への燐の平衡論的な物質移動を考慮していないため、脱P処理の脱P後期における脱P効率が低下し、脱Si、脱Pの予備処理に用いるフラックスの使用量が増加し、生成するスラグ量が増加し、このスラグの処理に多大の費用を要する等の問題がある。
【0004】
本発明はかかる事情に鑑みてなされたもので、転炉型容器を用い、脱Si、脱Pの予備処理に用いるフラックスの使用量や発生スラグ量を減少させ、脱Si、脱P反応の反応効率を高めて到達Si、到達P濃度を低減することができる転炉型容器を用いたスラグ発生量の少ない溶銑の予備処理方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的に沿う本発明に係る転炉型容器を用いたスラグ発生量の少ない溶銑の予備処理方法は、転炉型容器を用いて、脱Si処理及び脱P処理を行うスラグ発生量の少ない溶銑の予備処理方法において、前回の溶銑の予備処理で発生したスラグの40〜60質量%を前記転炉型容器内に残留させておき、該転炉型容器内にSi濃度が0.1〜0.6質量%である新しい溶銑を装入し、そして吹酸し該溶銑の脱Si処理及び脱P処理を行い、この脱Si処理及び脱P処理の途中であって前記吹酸の全経過時間の50〜70%にあたる時期に、該溶銑にCaOを添加して、更に、前記脱Si処理及び脱P処理を継続して行う。
この方法により、酸素供給律則の領域である溶銑のSi及びP濃度が高い領域で、前回の溶銑の予備処理で発生したスラグの一部を、新しく装入した溶銑の予備処理に用い、更に吹酸することによって、この新しい溶銑中のSi及びPを酸化してスラグ中に吸収させることができ、しかも、後で添加するCaOの滓化を促進させることができる。
更に、転炉型容器内に装入した新しい溶銑中のSi及びP濃度が低くなる時点で、CaOを添加して、早期にCaOを滓化して生成させたスラグのSiO2やP25の吸収能を高め、脱Si反応は勿論、特に、脱P反応を促進することができ、到達P濃度を低減することができる。
前回の溶銑の予備処理で発生したスラグ量の40質量%未満を残留させた場合、スラグ量が少なくなり過ぎて、SiO2やP25のスラグの吸収能が低下し、後に添加するCaOが増加して予備処理コストが高くなる。一方、60質量%を超えて残留させると、ある程度SiO2やP25を吸収したスラグ量が増加するため、新しいCaOが、SiO2やP25を吸収したスラグに希釈され、全体としての脱Si及び脱P効率が低下する。更に、到達P濃度を低くするためには、CaOの使用量を増す必要があり、発生するスラグ量が増加し、スラグの処理コストが上昇する。
【0006】
また、前記転炉型容器内に装入する前記新しい溶銑のSi濃度0.1〜0.6質量%とすることにより、新しい溶銑中のSiを酸化させてSiO2を生成させ、スラグ中に吸収させ、しかも、スラグ塩基度の低下を抑制して脱P反応を促進することができる。なお、新しい溶銑のSi濃度が0.1質量%未満になると、生成したスラグの塩基度が高くなって生成したスラグの滓化が悪くなり、脱P反応が低下する。一方、Si濃度が0.6質量%を超えると、生成したスラグの塩基度が低くなり過ぎて後期でのP25の吸収が悪くなり、到達P濃度が高くなる。
【0007】
更に、前記CaOの添加、前記吹酸の全経過時間の50〜70%にあたる時期に行うことにより、添加したCaOの滓化を良好にし、しかも、スラグ中のFeO濃度の低下を抑制し、生成したスラグのSiO2やP25の吸収能を安定して高めることができるため、脱Si及び脱P反応を促進させることができる。
CaOを添加する時期が吹酸の全経過時間の50%未満では、吹酸の初期(CaOの添加時)に発生するスラグの量が増大し、スラグ中のFeO濃度が低下するため、脱Si及び脱P効率が低下する。一方、CaOの添加時期が吹酸の全経過時間の70%を超えると、CaOの予備処理の内でのCaOの滓化が悪くなり、脱P効率が低下して到達P濃度が高くなる。
【0008】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1は本発明の一実施の形態に係る転炉型容器を用いたスラグ発生量の少ない溶銑の予備処理方法に適用される上底吹き転炉の全体図である。
図1に示すように、本発明の一実施の形態に係る転炉型容器を用いたスラグ発生量の少ない溶銑の予備処理方法に用いられる転炉型容器の一例である上底吹き転炉10は、炉体11の底部に底吹きノズル12を設け、上方から炉体11内に挿入される上吹きランス13を有し、脱Si(脱珪)、脱P(脱燐)用のフラックスの一例である生石灰(CaO)15を貯留する貯蔵ホッパ14と、これ等貯蔵ホッパ14から切り出された生石灰15を炉体11内の溶銑16の上部に形成されたスラグ17に添加するシュート18と、炉体11の側部に設けた出鋼口19を備えている。
【0009】
次に、本発明の一実施の形態に係る転炉型容器を用いたスラグ発生量の少ない溶銑の予備処理方法について前記した上底吹き転炉10を用いて説明する。
まず、上底吹き転炉10に、Si(珪素)濃度が0.1〜0.6質量%、P(燐)濃度が0.090〜0.130質量%の脱Si及び脱P処理を行っていない溶銑を170トン装入し、生石灰15を貯蔵ホッパ14から切り出しシュート18を介して炉体11内に添加し、上吹きランス13を下降させて、炉体11内に挿入して吹酸を行って、SiやPを酸化させ、生成させたSiO2やP25をスラグ中に吸収させて、溶銑の予備処理である脱Si及び脱P処理を行い、溶銑中のSi濃度を0.01質量%、到達P濃度を0.010質量%にすることで、予備処理後に5トンのスラグを生成させた。
予備処理が終了した溶銑は、出鋼口19から図示しない別の容器に出銑され、この予備処理で発生したスラグの40〜60質量%を上底吹き転炉10の炉体11内に残留させた。
【0010】
本実施の形態では、前述した溶銑、すなわち前回の溶銑(前チャージの溶銑)の予備処理で生成したスラグの40〜60質量%を炉体11内に残留させた状態で、上底吹き転炉10の炉体11内に、Si(珪素)濃度が0.1〜0.6質量%、P(燐)濃度が0.090〜0.130質量%の新しい(脱Si及び脱P処理を行っていない)溶銑16を170トン装入する。
そして、上吹きランス13を下降させ、その先端が炉体11内の溶銑16の表面から1800mm上方の位置になるように挿入して、吹酸(気体酸素の吹き付け)を行った。
更に、底吹きノズル12から溶銑の攪拌用のアルゴンガス、窒素ガス等の攪拌ガスを吹き込みながら新しい溶銑16の脱Si及び脱P処理の予備処理を行った。脱Si処理、脱P前半の処理では、吹酸によって、溶銑16中のSiの殆どが酸化され、SiO2になってスラグ17中に吸収され、脱Si反応が完了する。
このとき、脱Si反応が進行するにつれて、吹酸されたOによって溶銑16中のPも酸化されてP25になり、スラグ17中に吸収され、脱P反応が行われる。
しかし、予備処理時の吹酸の全経過時間(吹酸の開始から吹酸の終了までの吹酸を行う時間)の50%近傍になると、スラグ17中のP25の吸収能が低下し、脱P反応は、スラグ17にPが吸収されにくい、即ちPの供給律則の領域に入るため、脱P効率が低下し始める。
従って、脱Si処理及び脱P処理の途中、即ち吹酸の全経過時間の50〜70%にあたる時期、つまりその時間内に、生石灰15を貯蔵ホッパ14から切り出し、シュート18を介して炉体11内の溶銑16に添加して、更に、脱Si処理及び脱P処理を継続して行う。
【0011】
この生石灰15は、脱Si及び脱P処理の初期に一括添加すると、スラグ中のFeO濃度が上がらず、脱P処理の中間で多量に添加すると、添加直後にFeO濃度が低下したり、スラグの滓化不良を招くため、均等に分割して添加するか、あるいは少量ずつ連続して添加を行う必要がある。
添加した生石灰15は、溶融したスラグ17に容易に混合され、固体である生石灰15と溶融体であるスラグ17の接触によって速やかに溶解し、スラグ17のP25の吸収能を高めることができる。
その結果、脱P反応の進行し難いPの供給律則の領域であっても、Pの酸化とこの酸化により生成したP25のスラグ17への吸収による脱P反応を促進することができ、この脱P反応を、到達P濃度が0.02〜0.03質量%の範囲になるまで行う。
また、この脱Si、脱P処理は、前チャージの溶銑の予備処理を行った際に生成したスラグの40〜60質量%を再利用しているので、溶銑の予備処理で発生する廃棄スラグの量を減少させることができ、生石灰の使用量や廃棄スラグの処理コスト等を低減することができる。しかも、スラグ17中にNaやフッ素等の強アルカリ成分や特定の成分を含まないので、廃棄する際の環境上の制約を無くすことができる。
このように、前回の溶銑の予備処理を行った後のスラグの40〜60質量%を、常に上底吹き転炉10の炉体11内に残留させ、新しい溶銑16を炉体11内に装入して、吹酸による脱Si、脱P処理を行い、しかも、脱Si処理及び脱P処理の途中でCaOを添加する予備処理を繰返し行う。
脱Si処理及び脱P処理が行われた溶銑16は、出鋼口19から出銑され、脱炭精錬炉である上吹き転炉、上底吹き転炉、電気炉等に装入されて、吹酸による脱炭精錬が行われ、これにより、溶鋼が製造される。
【0012】
【実施例】
次に、本発明に係る転炉型容器を用いたスラグ発生量の少ない溶銑の予備処理方法の実施例について説明する。
初めに、珪素(Si)濃度が0.3質量%、燐濃度が0.100質量%の前チャージの溶銑150トンを上底吹き転炉10に装入し、CaOの添加と吹酸を行って脱Si処理及び脱P処理を行い、炉体11内に前チャージの予備処理で生成したスラグの一部を残留させ、そのスラグの残留量、燐濃度が0.100質量%の新しい溶銑、即ち次チャージの溶銑の珪素(Si)濃度、吹酸の途中でのCaOの投入タイミングを変化させて、脱Si及び脱Pの予備処理を行った。
なお、炉体11内には、新しい次チャージの溶銑150トンを装入した。
そして、次チャージの溶銑の予備処理後の到達P濃度(到達P質量%)と、生石灰と酸化鉄を添加して行う従来の予備処理のスラグ発生量を指数1とした場合の発生スラグ量指数、及び総合評価をそれぞれ調査した。その結果を表1に示す。
【0013】
実施例1及び実施例2は、前チャージの残留スラグの50質量%、43質量%をそれぞれ使用し、溶銑の装入時のSi濃度を0.35質量%、0.42質量%、追加CaOの投入タイミングを吹酸の全経過時間の55%、63%にした場合であり、それぞれ到達P濃度を0.013質量%、0.011質量%、発生スラグ量指数を0.45、0.51にでき、総合評価として良い(○)結果が得られた。
実施例3は、前チャージの残留スラグの下限である40質量%、実施例4は、前チャージの残留スラグの上限である60質量%をそれぞれ使用した場合であり、それぞれ到達P濃度を0.012質量%、0.015質量%、発生スラグ量指数を0.54、0.41にでき、総合評価として良い(○)結果が得られた。
実施例5は、次チャージのSi濃度を0.10質量%、実施例6は、Si濃度を0.60質量%とした場合であり、それぞれ到達P濃度を0.012質量%、0.014質量%、発生スラグ量指数を0.47、0.48にでき、総合評価として良い(○)結果が得られた。
実施例7は、追加CaO投入タイミングを下限である50%、実施例8は、追加CaO投入タイミングを上限である70%にした場合であり、それぞれ到達P濃度を0.011質量%、0.014質量%、発生スラグ量指数を0.51、0.46にでき、総合評価として良い(○)結果が得られた。
【0014】
【表1】

Figure 0004369632
【0015】
これに対し、比較例1は、前チャージの残留スラグの使用量を33質量%と低くした場合であり、十分な脱Pを行うために必要なスラグ量が不足し、予備処理終了時の到達P濃度が0.034質量%と高くなって、脱炭精錬工程での負荷が増加し、総合評価として悪い(×)結果になった。
比較例2は、前チャージの残留スラグスラグの使用量を67質量%と多くした場合であり、脱Pは十分に行なえるが、発生スラグ量指数が0.82と高くなり、廃棄処理コスト等の増加を招くため、総合評価としてやや悪い(△)結果になった。
比較例3は、次チャージのSi濃度を0.05質量%と低くした場合であり、予備処理時のスラグの塩基度が高くなり、スラグの滓化が悪く、脱P効率が低下し、到達P濃度が0.037と高くなって、脱炭精錬工程での負荷が増加し、総合評価として悪い(×)結果になった。
比較例4は、次チャージのSi濃度を0.67質量%と高くした場合であり、SiO2の生成に起因してスラグの発生量が増加し、発生スラグ量指数が0.85とやや悪く、更に、スラグの塩基度の低下によって脱P効率が低下し、到達P濃度が0.032質量%と高くなり、総合評価として悪い(×)結果になった。
比較例5は、追加CaOの投入タイミングを36%としたため、投入時期が早過ぎた場合であり、予備処理の開始の初期のスラグ量が増加し、このスラグ量の増加にともなってスラグ中のFeO濃度が低下し、予備処理の全体を通した脱P効率が低下して到達P濃度が0.035質量%と高くなり、総合評価として悪い(×)結果になった。
比較例6は、追加CaOの投入タイミングが78%となり、投入時期が遅過ぎた場合であり、予備処理の末期のスラグの滓化不良を招き、予備処理の全体を通した脱P効率が低下して到達P濃度が0.039質量%と高くなり、総合評価として悪い(×)結果になった。
なお、従来法は、炉内に装入した溶銑に、常に、新しい生石灰と酸化鉄を添加して吹酸を行う溶銑の脱Si及び脱P処理を行った場合であり、予備処理の全体を通して生石灰及び酸化鉄の添加量が増加し、発生スラグ量指数が1.0と高くなり、廃棄処理コスト等の増加を招くため、総合評価として悪い(×)結果になった。
【0016】
以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、溶銑中のSi、Pの酸化を行う場合、吹酸による方法の他に、スラジ、集塵ダスト、鉄鉱石、スケール等の固体酸素剤を吹酸と併用することができる。
【0017】
【発明の効果】
請求項1記載の転炉型容器を用いたスラグ発生量の少ない溶銑の予備処理方法においては、前回の溶銑の予備処理で発生したスラグの40〜60質量%を転炉型容器内に残留させておき、転炉型容器内に新しい溶銑を装入し、そして吹酸し溶銑の脱Si処理及び脱P処理を行い、この脱Si処理及び脱P処理の途中で、溶銑にCaOを添加して、更に、脱Si処理及び脱P処理を継続して行うので、脱Si、脱P予備処理に用いるCaOを節減することができ、脱Si及び脱Pの効率を高めて、到達Si、到達P濃度を低減することができ、廃棄スラグの処理コストを低減することができる。
【0018】
また、転炉型容器内に装入する新しい溶銑のSi濃度を0.1〜0.6質量%にしているので、スラグ量の過剰な増加やスラグの塩基度の低下を抑制して脱Si、脱P効率を安定して高め、到達Si、到達P濃度をより低くすることができ、後工程の脱炭精錬の負荷を軽減することができる。
【0019】
更に、CaOの添加、吹酸の全経過時間の50〜70%にあたる時期に行うので、スラグの滓化を良好にして少ないスラグ量で脱Si、脱P効率を安定して高めることができ、発生したスラグのアルカリ成分等の有害成分を抑制して再利用を行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る転炉型容器を用いたスラグ発生量の少ない溶銑の予備処理方法に適用される上底吹き転炉の全体図である。
【符号の説明】
10:上底吹き転炉(転炉型容器)、11:炉体、12:底吹きノズル、13:上吹きランス、14:貯蔵ホッパ、15:生石灰(フラックス)、16:溶銑、17:スラグ、18:シュート、19:出鋼口[0001]
BACKGROUND OF THE INVENTION
The present invention uses a part of the slag generated when the previous hot metal de-Si (silicon) treatment and de-P (phosphorus) treatment were performed using a refining furnace such as a converter, The present invention relates to a hot metal pretreatment method using a converter type vessel that performs de-Si treatment and de-P treatment with a small amount of slag generation.
[0002]
[Prior art]
Conventionally, hot metal, which is the main raw material for steelmaking, contains impurities such as Si (silicon), S (sulfur), and P (phosphorus), and removes such impurities in advance, such as Si removal, S removal, and P removal. The so-called hot metal pretreatment is performed.
In particular, when performing the Si removal treatment and the P removal treatment at the same time, a flux for dephosphorization such as quick lime and soda ash in the molten iron and gaseous oxygen that oxidizes P, or a solid oxidizer such as iron oxide, dust collection dust, sludge, etc. Or by blowing a flux or a solid oxidant (injection) to remove Si in the molten iron preferentially as SiO 2 , and simultaneously convert P into an oxide (P 2 O 5 ), It is captured by CaO in the generated slag and removed from the hot metal.
However, in these hot metal pretreatments, Si can be easily removed as SiO 2 , but the reaction efficiency of de-P is poor and it is difficult to sufficiently reduce the ultimate P concentration.
As a countermeasure, as described in JP-A-62-109910, a flux containing a hatching accelerator mainly composed of CaO is placed on the surface of the hot metal, and oxygen is blown up from the lance. However, a method of injecting a powder of solid oxygen agent such as iron ore or scale into hot metal has been performed.
Further, as described in JP-A-6-287616, 3 to 10 mass of Na 2 O 3 is added to a CaO—Fe 2 O 3 —CaF 2 -based flux containing 60 to 80 mass% of iron oxide. A method of simultaneously performing de-Si treatment and de-P treatment by injecting into the hot metal with oxygen and spraying oxygen onto the hot metal surface from above using a lance has been proposed. The ultimate P concentration is reduced.
[0003]
[Problems to be solved by the invention]
However, in the method described in Japanese Patent Laid-Open No. 62-109910, it is possible to increase the initial Si removal and P removal efficiency of the hot metal, but the initial and final stages of the deP treatment are performed under the same treatment conditions. Since the equilibrium mass transfer of phosphorus to slag or the like is not taken into consideration, the de-P efficiency from the middle stage to the late stage of the de-P treatment is lowered and the ultimate P concentration is increased.
In order to lower this ultimate P concentration, the amount of quick lime, iron oxide, mill scale, oxygen, etc. used for the de-Si treatment and the de-P treatment is increased and the treatment cost is increased.
Furthermore, always using new quicklime, iron oxide, etc., or increasing the amount of flux to be blown in, the amount of slag generated during de-Si and de-P treatment increases, and this slag is treated with a great deal. It costs money.
Further, in the method described in JP-A-6-287616, it is necessary to always use new quicklime, iron oxide, etc., and to use expensive raw materials such as CaF 2 and Na 2 O 3, and the amount of generated slag Will increase. In addition, since the generated slag contains a strong alkali component, fluorine, and the like, the generated slag is subject to environmental restrictions when discarded.
Further, similarly to the method described in Japanese Patent Application Laid-Open No. 62-109910, the initial P to P end of the de-P treatment is performed under the same treatment conditions, and the mass transfer of phosphorus to slag and the like is considered. As a result, the de-P efficiency in the late phase of de-P treatment is reduced, the amount of flux used for the pre-treatment of de-Si and de-P is increased, the amount of slag produced is increased, and this slag treatment However, there is a problem that a large amount of money is required.
[0004]
The present invention has been made in view of such circumstances, using a converter-type vessel, reducing the amount of flux used and the amount of generated slag used for pretreatment of de-Si and de-P, and the reaction of de-Si and de-P reaction. It is an object of the present invention to provide a hot metal pretreatment method using a converter type vessel that can increase the efficiency and reduce the reached Si and the reached P concentration with a small amount of slag generation.
[0005]
[Means for Solving the Problems]
The hot metal pretreatment method with a small amount of slag generation using the converter type container according to the present invention in accordance with the above object is a hot metal with a small amount of slag generation using the converter type container to perform de-Si treatment and de-P treatment. In the pretreatment method, 40-60 mass% of the slag generated in the previous hot metal pretreatment is left in the converter type vessel, and the Si concentration is 0.1-0 in the converter type vessel. The hot metal of 6 mass% was charged and blown, and the hot metal was subjected to de-Si treatment and de-P treatment, and during the de-Si treatment and de-P treatment, the total elapsed time of the blown acid Then , CaO is added to the molten iron at a time corresponding to 50 to 70% of the above, and the de-Si treatment and the de-P treatment are continued.
By this method, a part of the slag generated in the previous hot metal pretreatment in the hot metal Si and P concentration region, which is the oxygen supply rule region, is used for the pretreatment of the newly charged hot metal, and By blowing acid, Si and P in the new hot metal can be oxidized and absorbed in the slag, and further, the hatching of CaO added later can be promoted.
Furthermore, when the Si and P concentrations in the new hot metal charged in the converter-type vessel are lowered, CaO is added, and the slag SiO 2 and P 2 O 5 produced by the early hatching of CaO are generated. In addition to the de-Si reaction, in particular, the de-P reaction can be promoted and the ultimate P concentration can be reduced.
If allowed to remain less than 40% by weight of the amount of slag generated in pre-processing of the previous hot metal, CaO amount slag becomes too small, the absorption capacity of the slag of SiO 2 and P 2 O 5 is reduced, added after Increases the pretreatment cost. On the other hand, if the amount exceeds 60 % by mass , the amount of slag that has absorbed SiO 2 and P 2 O 5 increases to some extent, so new CaO is diluted into slag that has absorbed SiO 2 and P 2 O 5 , As a result, the Si removal and P removal efficiency decreases. Furthermore, in order to lower the reached P concentration, it is necessary to increase the amount of CaO used, the amount of slag generated increases, and the slag processing cost increases.
[0006]
Further, by the Si concentration of the new hot metal charged and 0.1-0.6 mass% before Kiten furnace type vessel, to oxidize the Si in new hot metal by generating a SiO 2, slag In addition, the de-P reaction can be promoted by suppressing the decrease in slag basicity. In addition, when the Si concentration of new hot metal becomes less than 0.1 mass% , the basicity of the produced | generated slag will become high, and the hatching of produced | generated slag will worsen, and de-P reaction will fall. On the other hand, when the Si concentration exceeds 0.6 % by mass, the basicity of the generated slag becomes too low, and the absorption of P 2 O 5 in the later stage is deteriorated, and the ultimate P concentration is increased.
[0007]
Furthermore, the addition of the CaO, the row Ukoto the time corresponding to 50% to 70% of the total elapsed time of the吹酸, the good slag formation of added CaO, moreover, to suppress a reduction in FeO concentration in slag Since the generated slag can stably enhance the absorption capacity of SiO 2 and P 2 O 5 , the de-Si and de-P reactions can be promoted.
When the CaO addition time is less than 50% of the total elapsed time of the blowing acid, the amount of slag generated at the initial stage of the blowing acid (at the time of addition of CaO ) increases, and the FeO concentration in the slag decreases. And de-P efficiency decreases. On the other hand, when the addition timing of CaO exceeds 70% of the total elapsed time吹酸, slag formation of CaO in the among the pretreatment CaO is deteriorated, reaching P concentration increases de P efficiency is lowered.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
FIG. 1 is an overall view of an upper-bottom blown converter applied to a hot metal pretreatment method using a converter-type vessel according to an embodiment of the present invention and having a small amount of slag generation.
As shown in FIG. 1, an upper bottom blown converter 10, which is an example of a converter type vessel used in a hot metal pretreatment method using a converter type vessel according to an embodiment of the present invention, with a small amount of slag generation. Is provided with a bottom blowing nozzle 12 at the bottom of the furnace body 11 and has an upper blowing lance 13 inserted into the furnace body 11 from above, and a flux for de-Si (desiliconization) and de-P (dephosphorization) fluxes. A storage hopper 14 for storing quick lime (CaO) 15 as an example, a chute 18 for adding quick lime 15 cut out from these storage hoppers 14 to a slag 17 formed on the hot metal 16 in the furnace body 11, and A steel outlet 19 is provided on the side of the furnace body 11.
[0009]
Next, a hot metal pretreatment method with a small amount of slag generation using the converter type container according to the embodiment of the present invention will be described using the above-described top-bottom blowing converter 10.
First, the top bottom blowing converter 10 is subjected to Si removal and P removal treatment with a Si (silicon) concentration of 0.1 to 0.6 mass% and a P (phosphorus) concentration of 0.090 to 0.130 mass%. 170 tons of hot metal is charged, quick lime 15 is cut out from the storage hopper 14 and added to the furnace body 11 via the chute 18, and the upper blowing lance 13 is lowered and inserted into the furnace body 11 for blowing acid. To oxidize Si and P, absorb the generated SiO 2 and P 2 O 5 in the slag, perform de-Si and de-P treatment as the hot metal pretreatment, and reduce the Si concentration in the hot metal By setting the reached P concentration to 0.01 % by mass and 0.010 % by mass , 5 tons of slag was generated after the preliminary treatment.
The hot metal that has been subjected to the preliminary treatment is discharged from the steel outlet 19 to another container (not shown), and 40 to 60 mass% of the slag generated in the preliminary treatment remains in the furnace body 11 of the top-bottom blowing converter 10. I let you.
[0010]
In the present embodiment, the above-mentioned hot metal, that is, 40 to 60 % by mass of the slag generated in the preliminary treatment of the previous hot metal (pre-charged hot metal) is left in the furnace body 11, and the top-bottom blowing converter 10 new furnace bodies 11 with Si (silicon) concentration of 0.1-0.6 mass% and P (phosphorus) concentration of 0.090-0.130 mass% (de-Si and de-P treatment were performed. Not charged) Charge hot metal 16 to 170 tons.
And the upper blowing lance 13 was lowered | hung, and it inserted so that the front-end | tip might be a position 1800 mm above from the surface of the hot metal 16 in the furnace body 11, and blowing acid (gas oxygen blowing) was performed.
Further, preliminary treatment for removing Si and removing P from the hot metal 16 was performed while blowing stirring gas such as argon gas and nitrogen gas for stirring the hot metal from the bottom blowing nozzle 12. In the de-Si treatment and the first half of the de-P treatment, most of the Si in the molten iron 16 is oxidized by blown acid, becomes SiO 2 and is absorbed in the slag 17, and the de-Si reaction is completed.
At this time, as the de-Si reaction proceeds, P in the molten iron 16 is also oxidized by the blown acid O to become P 2 O 5 and absorbed in the slag 17 to perform the de-P reaction.
However, the absorption capacity of P 2 O 5 in the slag 17 decreases when the total elapsed time of the blowing acid during the pretreatment (the time for performing blowing acid from the start of blowing acid to the end of blowing acid) is close to 50%. In the de-P reaction, however, P is not easily absorbed by the slag 17, that is, it enters the region of P supply regulation, and therefore the de-P efficiency starts to decrease.
Accordingly, quick lime 15 is cut out from the storage hopper 14 during the de-Si treatment and the de-P treatment, that is, at a time corresponding to 50 to 70% of the total elapsed time of the blowing acid, that is, within that time, and the furnace body 11 through the chute 18. It is added to the inner hot metal 16 and further, the Si removal treatment and the P removal treatment are continued.
[0011]
If this quicklime 15 is added all at once in the initial stage of de-Si and de-P treatment, the FeO concentration in the slag will not increase, and if added in a large amount in the middle of the de-P treatment, the FeO concentration will decrease immediately after the addition, In order to cause a hatching defect, it is necessary to add in equal portions or to add continuously in small portions.
The added quicklime 15 is easily mixed with the molten slag 17 and quickly dissolved by the contact between the quicklime 15 that is a solid and the slag 17 that is a melt, thereby increasing the ability of the slag 17 to absorb P 2 O 5. it can.
As a result, it is possible to promote the de-P reaction due to the oxidation of P and the absorption of P 2 O 5 produced by this oxidation into the slag 17 even in the region of P supply regulation where the de-P reaction is difficult to proceed. This de-P reaction is carried out until the ultimate P concentration is in the range of 0.02 to 0.03 % by mass .
In addition, since the de-Si and P removal treatments reuse 40-60 mass% of the slag generated when the pre-charge hot metal pre-treatment is performed, the waste slag generated in the hot-metal pre-treatment The amount can be reduced, and the amount of quicklime used, the processing cost of waste slag, and the like can be reduced. In addition, since the slag 17 does not contain a strong alkali component such as Na or fluorine or a specific component, it is possible to eliminate environmental restrictions at the time of disposal.
In this way, 40-60 mass% of the slag after the previous hot metal preliminary treatment is always left in the furnace body 11 of the top-bottom blowing converter 10, and new hot metal 16 is loaded in the furnace body 11. Then, de-Si and de-P treatments with blowing acid are performed, and a preliminary treatment of adding CaO is repeated during de-Si and de-P treatments.
The hot metal 16 that has been subjected to the de-Si treatment and the de-P treatment is fed from the steel outlet 19 and charged into a decarburizing and refining furnace such as an upper blowing converter, an upper bottom blowing converter, an electric furnace, Decarburization refining with blown acid is performed, thereby producing molten steel.
[0012]
【Example】
Next, an embodiment of a hot metal pretreatment method using the converter type container according to the present invention with a small amount of slag generation will be described.
First, 150 tons of pre-charged hot metal having a silicon (Si) concentration of 0.3 % by mass and a phosphorus concentration of 0.100 % by mass was charged into the top-bottom blowing converter 10, and CaO was added and blown acid was added. Then, Si removal treatment and P removal treatment are performed to leave a part of the slag generated in the pre-charging pretreatment in the furnace body 11, and the residual amount of the slag, new hot metal having a phosphorus concentration of 0.100 % by mass , That is, preliminary treatment for Si removal and P removal was performed by changing the silicon (Si) concentration in the hot metal of the next charge and the timing of introducing CaO in the middle of the blowing acid.
The furnace body 11 was charged with 150 tons of new next charge hot metal.
And the reached P concentration after the pretreatment of the hot metal of the next charge (reached P mass% ) and the generated slag amount index when the slag generation amount of the conventional pretreatment performed by adding quick lime and iron oxide is taken as the index 1 , And comprehensive evaluation were investigated respectively. The results are shown in Table 1.
[0013]
In Examples 1 and 2, 50 % by mass and 43 % by mass of the residual slag of the precharge were used, respectively, and the Si concentration at the time of charging the hot metal was 0.35 % by mass , 0.42 % by mass , additional CaO Is set to 55% and 63% of the total elapsed time of the blowing acid, the reached P concentration is 0.013 % by mass , 0.011 % by mass , and the generated slag amount index is 0.45, 0.00 % , respectively. 51, and a good (◯) result was obtained as a comprehensive evaluation.
Example 3 is a case where 40 % by mass , which is the lower limit of the residual slag of the previous charge, and Example 4 is a case where 60 % by mass, which is the upper limit of the residual slag of the previous charge, is used. 012 mass% , 0.015 mass% , the generated slag amount index could be 0.54, 0.41, and good (◯) results were obtained for comprehensive evaluation.
Example 5 is a case where the Si concentration of the next charge is 0.10 % by mass , and Example 6 is a case where the Si concentration is 0.60 % by mass. The ultimate P concentration is 0.012 % by mass and 0.014 % , respectively. The mass% and generated slag amount index could be 0.47 and 0.48, and good (◯) results were obtained for comprehensive evaluation.
Example 7 is a case where the additional CaO charging timing is 50% which is the lower limit, and Example 8 is a case where the additional CaO charging timing is 70% which is the upper limit, and the reached P concentration is 0.011 % by mass , 0.00 % , respectively. 014 % by mass , the generated slag amount index could be 0.51 and 0.46, and good (◯) results were obtained for comprehensive evaluation.
[0014]
[Table 1]
Figure 0004369632
[0015]
On the other hand, Comparative Example 1 is a case where the amount of residual slag of the precharge is reduced to 33 % by mass , and the amount of slag necessary to perform sufficient de-P is insufficient, reaching the end of the preliminary process. The P concentration became as high as 0.034 % by mass, and the load in the decarburization refining process increased, resulting in a bad (×) result as a comprehensive evaluation.
Comparative Example 2 is a case where the amount of residual slag slag used for pre-charging is increased to 67 % by mass , and de-P can be performed sufficiently, but the generated slag amount index is as high as 0.82, and the disposal processing cost, etc. Since the increase was caused, the overall evaluation was slightly bad (△).
Comparative Example 3 is a case where the Si concentration of the next charge is lowered to 0.05 % by mass , the basicity of the slag at the time of the preliminary treatment is increased, the hatching of the slag is poor, the de-P efficiency is lowered and reached The P concentration became as high as 0.037, the load in the decarburization refining process increased, and the result was poor (×) as a comprehensive evaluation.
Comparative Example 4 is a case where the Si concentration of the next charge was increased to 0.67 % by mass , and the amount of slag generated increased due to the generation of SiO 2 , and the generated slag amount index was slightly poor at 0.85. Furthermore, the de-P efficiency decreased due to a decrease in the basicity of the slag, and the reached P concentration became as high as 0.032 % by mass, which was a bad (×) result as a comprehensive evaluation.
In Comparative Example 5, the charging timing of the additional CaO was set to 36%, so that the charging timing was too early. The initial slag amount at the start of the preliminary process increased, and the slag amount increased as the slag amount increased. The FeO concentration decreased, the de-P efficiency through the entire pretreatment decreased, and the reached P concentration increased to 0.035 % by mass, which was a bad (×) result as a comprehensive evaluation.
The comparative example 6 is a case where the charging timing of the additional CaO is 78% and the charging timing is too late, resulting in poor hatching of the slag at the end of the preliminary processing, and the de-P efficiency throughout the preliminary processing is reduced. As a result, the reached P concentration was as high as 0.039 % by mass , and the overall evaluation was bad (×).
Incidentally, the conventional method, the molten iron was charged into the furnace, always, the case of performing the de-Si and de P treatment of molten pig iron for performing吹酸by adding new quicklime iron oxide, throughout the pre-treatment Since the addition amount of quicklime and iron oxide increased, the generated slag amount index was as high as 1.0, leading to an increase in disposal costs and the like, the result was poor (×) as a comprehensive evaluation.
[0016]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.
For example, when performing Si in molten iron, the oxidation of P, in addition to the method according吹酸, sludge, collected dust, iron ore, solid oxygen scavenger such as scale can be used in combination with吹酸.
[0017]
【The invention's effect】
In the molten iron pretreatment process of less generation of slag with converter type container according to claim 1 Symbol placement, remaining 40 to 60 weight percent of the slag generated in pre-processing of the previous hot metal in the converter type vessel In addition, new hot metal is charged into the converter-type vessel, blown acid is applied to perform de-Si treatment and de-P treatment of the hot metal, and CaO is added to the hot metal during the de-Si treatment and de-P treatment. In addition, since the Si removal process and the P removal process are continuously performed, CaO used for the Si removal and P removal pretreatment can be reduced, and the efficiency of the Si removal and the P removal can be increased. The reached P concentration can be reduced, and the disposal cost of waste slag can be reduced.
[0018]
Moreover , since the Si concentration of the new hot metal charged in the converter type vessel is 0.1 to 0.6 % by mass , an excessive increase in the amount of slag and a decrease in the basicity of the slag are suppressed to remove Si. In addition, the de-P efficiency can be stably increased, the ultimate Si concentration and the ultimate P concentration can be lowered, and the load of decarburization and refining in the subsequent process can be reduced.
[0019]
Furthermore , since CaO is added at a time corresponding to 50 to 70% of the total elapsed time of the blowing acid, the slag hatching can be improved and the Si removal and P removal efficiency can be stably increased with a small amount of slag. In addition, it can be reused by suppressing harmful components such as alkali components of the generated slag.
[Brief description of the drawings]
FIG. 1 is an overall view of an upper bottom blown converter applied to a hot metal pretreatment method using a converter type vessel according to an embodiment of the present invention and having a small amount of slag generation.
[Explanation of symbols]
10: Top bottom blowing converter (converter type vessel), 11: Furnace body, 12: Bottom blowing nozzle, 13: Top blowing lance, 14: Storage hopper, 15: Quick lime (flux), 16: Hot metal, 17: Slag , 18: Chute, 19: Deguchi

Claims (1)

転炉型容器を用いて、脱Si処理及び脱P処理を行うスラグ発生量の少ない溶銑の予備処理方法において、
前回の溶銑の予備処理で発生したスラグの40〜60質量%を前記転炉型容器内に残留させておき、該転炉型容器内にSi濃度が0.1〜0.6質量%である新しい溶銑を装入し、そして吹酸し該溶銑の脱Si処理及び脱P処理を行い、この脱Si処理及び脱P処理の途中であって前記吹酸の全経過時間の50〜70%にあたる時期に、該溶銑にCaOを添加して、更に、前記脱Si処理及び脱P処理を継続して行うことを特徴とする転炉型容器を用いたスラグ発生量の少ない溶銑の予備処理方法。
In the pretreatment method of hot metal with a small amount of slag generation to perform de-Si treatment and de-P treatment using a converter type vessel,
40 to 60 % by mass of the slag generated in the previous hot metal preliminary treatment is left in the converter type vessel, and the Si concentration in the converter type vessel is 0.1 to 0.6% by mass. The hot metal is charged and blown, and the hot metal is subjected to de-Si treatment and de-P treatment, which are in the middle of the de-Si treatment and de-P treatment and correspond to 50 to 70% of the total elapsed time of the blown acid. A pretreatment method for hot metal with a small amount of slag generation using a converter-type vessel, characterized in that CaO is added to the hot metal at a time and the de-Si treatment and the de-P treatment are continued.
JP2001058001A 2001-03-02 2001-03-02 Pretreatment method of hot metal with low slag generation using converter type vessel Expired - Fee Related JP4369632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001058001A JP4369632B2 (en) 2001-03-02 2001-03-02 Pretreatment method of hot metal with low slag generation using converter type vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001058001A JP4369632B2 (en) 2001-03-02 2001-03-02 Pretreatment method of hot metal with low slag generation using converter type vessel

Publications (2)

Publication Number Publication Date
JP2002256325A JP2002256325A (en) 2002-09-11
JP4369632B2 true JP4369632B2 (en) 2009-11-25

Family

ID=18917795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001058001A Expired - Fee Related JP4369632B2 (en) 2001-03-02 2001-03-02 Pretreatment method of hot metal with low slag generation using converter type vessel

Country Status (1)

Country Link
JP (1) JP4369632B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286892B2 (en) * 2008-04-03 2013-09-11 新日鐵住金株式会社 Dephosphorization method of hot metal
JP5332769B2 (en) * 2009-03-17 2013-11-06 新日鐵住金株式会社 How to use electric furnace slag
WO2013012039A1 (en) * 2011-07-19 2013-01-24 Jfeスチール株式会社 Method for smelting molten pig iron
JP5408369B2 (en) 2012-01-19 2014-02-05 Jfeスチール株式会社 Hot metal pretreatment method
WO2014112432A1 (en) 2013-01-18 2014-07-24 Jfeスチール株式会社 Converter steelmaking process

Also Published As

Publication number Publication date
JP2002256325A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
KR101699272B1 (en) Steelmaking method in converter
WO1995001458A1 (en) Steel manufacturing method using converter
JP4369632B2 (en) Pretreatment method of hot metal with low slag generation using converter type vessel
JP5983492B2 (en) Hot metal pretreatment method
JP4977870B2 (en) Steel making method
JP2006265623A (en) Method for pre-treating molten iron
JP2008184648A (en) Method for desiliconizing and dephosphorizing molten pig iron
JP4609010B2 (en) Steel manufacturing method
JP2833736B2 (en) Hot metal pretreatment method
JP2900011B2 (en) Converter refining method
JPH05156338A (en) Method for reusing low phosphorus converter slag
JP4904858B2 (en) Hot metal dephosphorization method
JP2958842B2 (en) Converter refining method
JP5979017B2 (en) Hot metal refining method
JP6848780B2 (en) How to operate the converter
JP4772454B2 (en) Hot metal refining method
JPH0660341B2 (en) Method of dephosphorization and desulfurization of hot metal
JP3697960B2 (en) Hot metal pretreatment method
JP3684953B2 (en) Pre-silicidation / phosphorization method of hot metal
JP2002069518A (en) Method for dephosphorizing molten iron developing little slag quantity
JPH083612A (en) Method for refining clean steel
JP3793390B2 (en) Hot metal desiliconization and desulfurization methods
RU2355776C2 (en) Production method of manganous steel
JP2002294321A (en) Method for desiliconizing and dephosphorizing molten iron using converter type vessel
JP2004307944A (en) Pre-treatment operational method for molten iron in converter-type vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees