JP4368591B2 - 超音波流量計 - Google Patents
超音波流量計 Download PDFInfo
- Publication number
- JP4368591B2 JP4368591B2 JP2003039787A JP2003039787A JP4368591B2 JP 4368591 B2 JP4368591 B2 JP 4368591B2 JP 2003039787 A JP2003039787 A JP 2003039787A JP 2003039787 A JP2003039787 A JP 2003039787A JP 4368591 B2 JP4368591 B2 JP 4368591B2
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- transmission
- flow direction
- flow path
- vibrator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
Description
【発明の属する技術分野】
本発明は、超音波流量計に関する。
【0002】
【従来の技術】
従来、都市ガス、水などの流体の流量を計測する流量計測装置として、超音波を利用して流速を測定する超音波流量計が知られている。例えば、非特許文献1には、流路の一側壁に設けられた超音波送信部を挟んで流体の流れ方向上手側及び下手側の流路の他側壁に、一対の超音波受信部を設けることにより、送信部から同時に発せられた超音波を一対の受信部でほぼ同時に受信して計測時間の短縮を可能にする技術が開示されている。
【0003】
【非特許文献1】
名真英司著,「センサ活用図絵ブック」,株式会社オーム社,平成5年1月,p.98,図3(d)
【0004】
【発明が解決しようとする課題】
しかし、非特許文献1に示すように各受信部が送信部に対向して設けられる超音波センサの配置では、一対の受信部の設置間隔を狭めて超音波流量計のコンパクト化を図ろうとすると発信部から各受信部への伝搬距離(到達時間)が短くなって測定精度が低下するおそれがある。一方、一対の受信部の設置間隔を広げた場合には、単独の超音波振動子(送信側振動子)では一対の受信部に対して広角に超音波発振できなくなり、各受信部に対応させて送信側振動子を設けなければならなくなる。
【0005】
そこで本発明の課題は、測定精度を低下させることなく、単独の送信側振動子を備える超音波送信部と各別に受信側振動子を備える一対の超音波受信部とによって簡素に構成できる超音波流量計を提供することにある。
【0006】
【課題を解決するための手段及び発明の効果】
上記課題を解決するために前提となる超音波流量計として、
流体を通過させるための流路と、
その流路の壁に、流体の流れ方向上手側及び下手側に向けて超音波を発振する送信側振動子が取り付けられた超音波送信部と、
その超音波送信部を挟んで流体の流れ方向上手側及び下手側の前記流路の壁に、前記超音波送信部から発振され当該流路の内壁面で少なくとも1回反射された超音波によって発振される受信側振動子がそれぞれ取り付けられた一対の超音波受信部と、
を備えることができる。
【0007】
このような前提構成を有する超音波流量計によれば、受信側振動子は少なくとも1回反射後の超音波を検出するので、一対の超音波受信部の設置間隔を狭めても超音波発信部から各超音波受信部への伝搬距離(到達時間)が相対的に長くなって測定精度が確保される。また、送信側振動子から流れ方向上手側及び下手側に向けて超音波を広角に発振しなくてもすむため、各超音波受信部に対応させて送信側振動子を設けなくてもよい。したがって、単独の送信側振動子を備える超音波送信部と各別に受信側振動子を備える一対の超音波受信部とによって、超音波流量計の測定部(超音波センサ部)を簡素に構成できる。なお、周囲環境の温度変化に伴って送信側振動子の発振周波数が変化しても、単独の送信側振動子を用いているために温度依存性が解消され、到達時間の複雑な補正等を要しない。
【0008】
そこで、上記課題を解決するために本発明に係る超音波流量計は、
流体の流れ方向軸線と超音波を発振する送信側振動子とを含む流路断面において、その流れ方向軸線が前記送信側振動子の取付位置に対応して、当該送信側振動子の取付側に向って凸となる極点部を形成するように曲がった流路と、
その流路の壁に、前記送信側振動子が流体の流れ方向上手側及び下手側に向けて超音波を発振するように取り付けられた超音波送信部と、
前記流路断面において、前記超音波送信部を挟んでそれぞれ等しい距離離間して対称に設置されるとともに、前記送信側振動子から発振され前記流路の内壁面で奇数回反射された超音波によって発振される受信側振動子が流体の流れ方向上手側及び下手側における前記超音波送信部設置側の壁にそれぞれ取り付けられた一対の超音波受信部と、を備え、
前記送信側振動子は、その上流側測線及び下流側測線が当該送信側振動子を中心として超音波発射角2αをなして流体の流れ方向上手側及び下手側に向けて超音波を発振するとともに、
前記上流側測線及び下流側測線は、前記流路の内壁面でそれぞれ奇数回反射され、かつ前記極点部を形成する流れ方向軸線に対してそれぞれ測線角θで反射回数+1回ずつ交差して各受信側振動子に到達することを特徴とする。
【0009】
このような超音波流量計では、上記した前提構成にさらに流れ方向軸線が送信側振動子の取付位置に対応して極点(極大点又は極小点)部を形成するように曲がった流路を有するため、流れ方向軸線は送信側振動子の取付側に向って凸となる山型状、台地状、湾曲状等を呈する。これにより、流れ方向軸線が直線状である場合に比べて伝搬距離(到達時間)を相対的に長くすることができるので、測定精度をさらに向上させることができる。このとき、伝搬距離(到達時間)は、流路の曲がりにより送信側振動子に対向する内壁面が遠ざかる分長くなるとともに、内壁面での反射波はさらに送信側振動子から(流れ方向上手側又は下手側に)遠ざかることによって長くなる。したがって、必要な測定精度を確保しつつ、相対的に一対の超音波受信部の設置間隔を狭めてさらに超音波流量計のコンパクト化を図ることができる。なお、山型状のように鋭く折れ曲がる場合、湾曲状のようになだらかに曲がる場合等には、極点部は極点を形成する。一方、台地状のように扁平部分を含む場合等には、極点部は極点領域を形成する。
【0010】
その際、これらの超音波流量計において、流路は、軸断面の形状及び断面積のうち少なくとも一方が流れ方向に沿って変化する場合がある。例えば、断面円形状の流路の断面積(直径)が流れ方向上手側から徐々に減少し送信側振動子の取付位置に対応して最小となり(このとき流れ方向軸線が極点(極大点又は極小点)に達し)、その後再び流路の断面積が徐々に増加するように変化する。
また、流路は、軸断面の形状及び断面積が流れ方向において同一となる場合がある。例えば、断面円形状で断面積(直径)一定の流路の流れ方向軸線が送信側振動子の取付側に向って凸となる山型状又は湾曲状を呈し、その流れ方向軸線が送信側振動子の取付位置に対応して極点(極大点又は極小点)に達するように変化する。
【0011】
そして、一対の超音波受信部を、流体の流れ方向軸線と送信側振動子とを含む流路断面において、超音波送信部からそれぞれほぼ等しい距離離間させるとともに、いずれも超音波送信部設置側の壁に取り付けることが望ましい。これによって、超音波送信部(送信側振動子)から流れ方向下手側の超音波受信部(受信側振動子)に到達するまでの時間(以下、順方向到達時間という)Tdと、超音波送信部(送信側振動子)から流れ方向上手側の超音波受信部(受信側振動子)に到達するまでの時間(以下、逆方向到達時間という)Tuとの差ΔT等の算出が迅速に行える。また、超音波送信部及び一対の超音波受信部が流路に対してすべて同じ側の壁に取り付けられるので、流路壁への超音波センサの組み付け及び取り外し・取り替えが流路の一側方側から集中的に行え、作業効率が高くなる。
【0012】
また、流路のうち少なくとも送信側振動子に対向する内壁面を、多重反射抑制のための超音波反射抑制層に形成してもよい。流路のうち送信側振動子に対向する内壁面を超音波反射抑制層に形成することによって、送信側振動子の発振により発生する超音波のうち流れ方向軸線に対して直角に近い角度(例えば、90°±10°〜90°±25°)で交差する成分の流路内壁面での反射を抑制することができる。すなわち、超音波反射抑制層は、本来流量計測に用いることを意図していない不要超音波が流路内壁面で散乱反射を繰り返すことによって雑音成分が形成され、受信側振動子で信号成分とともに感知されるに至る現象(多重反射)の防止と測定精度の向上に役立つ。なお、超音波反射抑制層の形成は、このような不要超音波を減衰させる超音波吸収材(例えば、ガラスウール入りエポキシ樹脂、ガラスウール入りシリコン樹脂等)の流路内壁面への貼り付け等によってなされる。
【0013】
さらに、流路には、送信側振動子により発振された超音波が受信側振動子に到達する前に、超音波のビーム径を絞るためのビーム調整部を設けてもよい。これによって超音波の広がりを抑制し、受信側振動子各部への到達時間のばらつきを排除して、測定精度を向上させることができる。なお、ビーム調整部として、例えば厚み方向に貫通孔が形成された制御板を流れ方向に沿って衝立状に配設すると、送信側振動子により発振された超音波のうち孔径に相当するビーム径部分のみ通過させることになる。この場合、広がり角を約0.5radとする超音波ビーム伝搬路が形成されると、貫通孔を通過する超音波は平面波となって受信側振動子の各部にほぼ同時に到達し、単一の受信信号出力により分解能を高めることができる。
【0014】
【発明の実施の形態】
(実施例1)
次に、本発明の実施の形態を図面を用いて説明する。図1は、一般住宅用ガスメータ等として用いられる超音波流量計の一実施例の基本構成を示す。この超音波流量計100の流量測定用の流路1には、流量測定用ガス(流体)が流れ方向軸線Oに沿って図示の流れ方向に流通(平均流速v)している。流路1の壁10には、超音波送信部2と一対の超音波受信部3u,3dとが取り付けられ、図1に示すように、流れ方向軸線Oと超音波送信部2とを含む流路断面において、超音波受信部3u,3dはいずれも超音波送信部2設置側の壁10に位置している。
【0015】
測定用の流路1は、少なくとも一対の超音波受信部3u,3d間において流れ方向軸線Oが直線状であり、軸断面の形状及び断面積が流れ方向において同一に形成されている。測定対象がガスの場合、測定用流路1の軸断面形状は壁10により閉鎖された空間を形成するものであればよく、例えば、円形状、楕円形状、正方形状、矩形状等のいずれを採用してもよい。なお、測定対象が水等の液体であれば、測定用流路1の軸断面形状として壁10の天頂部が大気中に開放されたオープン形状(例えば半円形状等)を採用できる場合がある。
【0016】
超音波送信部2は、流路1の壁10に固定され、圧電素子、振動板、電極板等から構成される送信側振動子21と、この送信側振動子21を発振させるための駆動電圧回路等から構成される送信手段22とを備えている。送信側振動子21には、単独でガスの流れ方向上手側及び下手側に向けて超音波を発振することができるように、比較的指向性の広い(半減角の大きい)圧電素子等を選択する。図1では、送信側振動子21を中心として上流側測線Muと下流側測線Mdとで形成される超音波発射角2α=70°=±35°に設定してある。
【0017】
上流側超音波受信部3uは、超音波送信部2(送信側振動子21)よりも流れ方向上手側の壁10に固定され、圧電素子、振動板、電極板等から構成される上流受信側振動子31uと、この上流受信側振動子31uの発生電圧を検出するための電圧検出回路等から構成される受信手段32とを備えている。一方、下流側超音波受信部3dは、超音波送信部2(送信側振動子21)よりも流れ方向下手側の壁10に固定され、圧電素子、振動板、電極板等から構成される下流受信側振動子31dと、この下流受信側振動子31dの発生電圧を検出するための電圧検出回路等から構成される受信手段32とを備えている。上流受信側振動子31uと下流受信側振動子31dとはともに、流路1の内壁面で1回反射された超音波(上流側測線Muと下流側測線Mdとで表わされる)を受信して発振するので、比較的指向性の狭い(半減角の小さい)圧電素子等を選択する。上流側超音波受信部3u(上流受信側振動子31u)と下流側超音波受信部3d(下流受信側振動子31d)とは、超音波送信部2(送信側振動子21)を挟んで対称に設置され、送受信部間の離間距離Dが等しく設定されている。なお、上流側超音波受信部3uの受信手段と下流側超音波受信部3dの受信手段とは兼用構成されている。
【0018】
図1において、ガスの平均流速をv、ガス中を伝搬する音速をc、超音波の進行方向(測線Mu,Md)とガスの流れ方向(流れ方向軸線O)とのなす角をθ(以下、測線角という)、超音波の伝搬距離をL(=D/cosθ)とすると、順方向到達時間Td及び逆方向到達時間Tuはそれぞれ次のように表わされる。
Td=L/(c+v・cosθ) (1)
Tu=L/(c−v・cosθ) (2)
(1)、(2)式の逆数をとり、その差をとれば次式が得られる。
1/Td−1/Tu=2v・cosθ/L (3)
したがって、順方向到達時間Tdと逆方向到達時間Tuの測定から、ガスの平均流速vと流量Qが次式により求められる。ただし、Aは流路1の断面積である。
v=(1/Td−1/Tu)L/2cosθ (4)
Q=v・A (5)
このように、ガスの温度・含有成分等に依存する音速cを(4)式から消去することで、測定値(到達時間Td,Tu)と一定値(伝搬距離L,測線角θ)とから流速vが得られる利点を有している。
【0019】
そこで、超音波流量計100には、計測部として、受信側振動子31u,31dにより得られる受信側振動子出力を増幅する増幅手段4と、後述する「ゼロクロス法」により出力波形から超音波到達時点を検出するゼロクロスポイント検出手段5と、超音波到達時間を測定する時間計測手段6とが備えられている(図1参照)。
【0020】
図1に戻り、流路1を構成する壁10が、送信側振動子21に対向する内壁面に超音波反射率が低い超音波反射抑制層11に形成され、両測線Mu,Mdの反射点間の内壁面で不要超音波が反射することを抑制して、多重反射を生じないようにしている。具体的には、超音波発射角2α(図では70°=±35°)の内側領域(例えば±10°〜±25°)の内壁面に、超音波反射抑制層11としてガラスウール入りエポキシ樹脂製の超音波吸収材が埋め込まれているので、超音波をよく吸収・減衰し、多重反射の発生とノイズの混入を防止している。なお、超音波反射抑制層11の内面は壁10の内壁面と面一になるように調整して、ガスの流れを乱さないようにしている。また、送信側振動子21の周囲の内壁面にも別の超音波反射抑制層12が同様に埋め込まれている。
【0021】
さらに、流路1には、流れ方向軸線Oを挟み流れ方向に沿ってその両側に、一対のビーム絞り板13,14(ビーム調整部)が配置されている。各ビーム絞り板13,14には、測線Mu,Mdの伝搬方向に沿って徐々に孔径を大とした絞り孔13a,13b,14a,14b(貫通孔)が各々貫通形成されている。絞り孔の孔径が13a<14a<14b<13bの順(伝搬方向の並び順)に大きく形成されているので、送信側振動子21により発振された超音波のビーム径が伝搬方向下手側ほど広がるにつれて無理なく絞られるため測定分解能が向上する。
【0022】
(実施例2)
次に、図2は図1(実施例1)と同様に用いられる超音波流量計の他の実施例の基本構成を示す。この超音波流量計200の流量測定用の流路101は、少なくとも一対の超音波受信部3u,3d間の流れ方向軸線Oと送信側振動子21とを含む流路断面(壁110の流路間隔H)において、流れ方向軸線Oが送信側振動子21の取付位置に対応して極点部Pを形成するように曲がって形成されている。ただし、流路101の軸断面の形状及び断面積は、図1と同様に流れ方向において同一に形成されている。
【0023】
具体的には、極点部Pは、流れ方向軸線Oが送信側振動子21(超音波送信部2)設置側(外側)に向って扁平部分を含む台地状に突出することにより、極大点(頂点)領域を形成している(図3参照)。流れ方向軸線Oを台地状に突出させるために、送信側振動子21に対向する側の壁110は、送信側振動子21取付位置対応部分(直線部分)と流れ方向上手側及び下手側への延長部分(直線部分)とが、流路101の外側に中心を有する半径Rの円弧(円弧面)で接続されている。
【0024】
この実施例では、超音波反射抑制層111は、流路101を構成する壁110において、超音波発射角2α(図では50°=±25°)の内側領域(例えば±10°〜±20°)の内壁面に接着剤等によって貼り付け固定されている。送信側振動子21の周囲の内壁面にも別の超音波反射抑制層112が同様に貼り付け固定されている。流れ方向軸線Oに沿って、流れ方向上手側のビーム絞り板113(ビーム調整部)と流れ方向下手側のビーム絞り板114(ビーム調整部)とが直列状に配置されている。ビーム絞り板113には、測線Muの伝搬方向に沿って徐々に孔径を大とした絞り孔113a,113b,113c,113d(貫通孔)が各々貫通形成されている。一方、ビーム絞り板114には、測線Mdの伝搬方向に沿って徐々に孔径を大とした絞り孔114a,114,114c,114d(貫通孔)が各々貫通形成されている。このように、図2の実施例では、上流受信側振動子31uと下流受信側振動子31dとはともに、流路101の内壁面で3回反射され、流れ方向軸線Oと測線角θで4回交差した超音波(上流側測線Muと下流側測線Mdとで表わされる)を受信して発振する。なお、図2において図1と共通する機能を有する部分には同一符号を付して説明を省略する。
【0025】
次に、図2の部分拡大図である図3を用いて、実施例2の伝搬距離L2を実施例1の伝搬距離L1と対比して説明する。図3では、実施例1(流れ方向軸線O1が直線状)を示す場合に符号1を付し、実施例2(流れ方向軸線O2が台地状極点部P)を示す場合に符号2を付してある。また、超音波の発射角が2α、流れ方向軸線O1に対する流れ方向軸線O2の傾斜角がβで表わされている。
流路1,101において、送信側振動子21(超音波送信部2)から発振された超音波が流れ方向上手側(又は流れ方向下手側)の対向内壁面で最初に反射するまでの伝搬距離をL1,L2とすると、伝搬距離L1,L2の流れ方向の長さLv1,Lv2は、それぞれ次式で与えられる。
Lv1=Y1・Z1=L1・sinα (6)
Lv2=X・Z2=L2・sin(α+β) (7)
壁10,110の流路間隔をHとすると、伝搬距離L1,L2は、
L1=X・Y1=H/cosα (8)
L2=X・Y2=H/cos(α+β) (9)
流れ方向長さの比をとると、
【0026】
実施例2の流れ方向長さLv2は、実施例1の流れ方向長さLv1に比して式(10)に示す割合で長く形成されるので、実施例2の測線角θ2が実施例1の測線角θ1よりも小さくなり、測線Mu2は測線Mu1よりも送信側振動子21から遠ざかる。例えば、超音波発射角2α=50°、傾斜角β=10°のとき、Lv2:Lv1=1.50となる。
【0027】
(変形例)
図2の変形例を図4に示す。図4(a)は、流れ方向軸線Oが山型状に折れ曲がることにより、極点部Pが極大点(頂点)を形成する場合を表わしている。また、図4(b)は、流れ方向軸線Oが円弧状に滑らかに曲がることにより、極点部Pが極大点(頂点)を形成する場合を表わしている。ただし、図4(a)及び図4(b)において、流路101の軸断面の形状及び断面積は図2と同様に流れ方向において同一に形成されている。
【0028】
さらに、図4(c)〜図4(e)は、流路101の軸断面の形状及び断面積のうち少なくとも一方が流れ方向に沿って変化する形態を例示している。図4(c)は流れ方向軸線Oが台地状に突出する場合、図4(d)は流れ方向軸線Oが山型状に折れ曲がる場合、図4(e)は流れ方向軸線Oが円弧状に曲がる場合をそれぞれ示している。これらにおいて、送信側振動子21設置側の壁110aの傾斜角(β1)及びそれに対向する壁110bの傾斜角(β2)は、流れ方向軸線Oの傾斜角βと一致しなくなる(β1<β<β2)。
【0029】
以上の実施例においては、送信側振動子21で発振された超音波が流路の内壁面で1回又は3回反射して受信側振動子31u,31dに到達する場合についてのみ説明したが、内壁面での反射回数は任意に設定できる。上流側測線Mu及び下流側測線Mdが流れ方向軸線Oと測線角θで交差する回数は、それぞれ反射回数+1回となる。また、一対の超音波受信部3u,3d(受信側振動子31u,31d)は、超音波送信部2(送信側振動子21)からの離間距離Dを異ならせて配置してもよい。この場合、伝搬距離Lも上流側と下流側とで一致しなくなるが、検査工程における検量線作成作業等において考慮すればよい。さらに、図2の天地を逆にしたときには、極点部Pは極小点又は極小点領域を形成することになる。なお、超音波反射抑制層11,12と超音波反射抑制層111,112とは実施例を入れ替えることができ、ビーム絞り板13,14とビーム絞り板113,114とは実施例を入れ替えることができる。また、図1又は図2において、ビーム絞り板13,14,113,114に超音波反射抑制層11,12,111,112を形成してもよい。
【図面の簡単な説明】
【図1】本発明に係る超音波流量計の一実施例の基本構成を示す説明図。
【図2】本発明に係る超音波流量計の他の実施例の基本構成を示す説明図。
【図3】図2の部分拡大図。
【図4】図2の変形例を示す説明図。
【符号の説明】
1,101 流路
10,110 壁
11,111 超音波反射抑制層
13,14,113,114 ビーム絞り板(ビーム調整部)
2 超音波送信部
21 送信側振動子
3u 上流側超音波受信部
31u 上流受信側振動子
3d 下流側超音波受信部
31d 下流受信側振動子
100,200 超音波流量計
Claims (5)
- 流体の流れ方向軸線と超音波を発振する送信側振動子とを含む流路断面において、その流れ方向軸線が前記送信側振動子の取付位置に対応して、当該送信側振動子の取付側に向って凸となる極点部を形成するように曲がった流路と、
その流路の壁に、前記送信側振動子が流体の流れ方向上手側及び下手側に向けて超音波を発振するように取り付けられた超音波送信部と、
前記流路断面において、前記超音波送信部を挟んでそれぞれ等しい距離離間して対称に設置されるとともに、前記送信側振動子から発振され前記流路の内壁面で奇数回反射された超音波によって発振される受信側振動子が流体の流れ方向上手側及び下手側における前記超音波送信部設置側の壁にそれぞれ取り付けられた一対の超音波受信部と、を備え、
前記送信側振動子は、その上流側測線及び下流側測線が当該送信側振動子を中心として超音波発射角2αをなして流体の流れ方向上手側及び下手側に向けて超音波を発振するとともに、
前記上流側測線及び下流側測線は、前記流路の内壁面でそれぞれ奇数回反射され、かつ前記極点部を形成する流れ方向軸線に対してそれぞれ測線角θで反射回数+1回ずつ交差して各受信側振動子に到達することを特徴とする超音波流量計。 - 前記流路は、軸断面の形状及び断面積のうち少なくとも一方が流れ方向に沿って変化する請求項1に記載の超音波流量計。
- 前記流路は、軸断面の形状及び断面積が流れ方向において同一である請求項1に記載の超音波流量計。
- 前記流路のうち少なくとも前記送信側振動子に対向する内壁面が、多重反射を抑制するための超音波反射抑制層に形成されている請求項1ないし3のいずれか1項に記載の超音波流量計。
- 前記流路には、前記送信側振動子により発振された超音波が前記受信側振動子に到達する前に、その超音波のビーム径を絞るためのビーム調整部が設けられている請求項1ないし4のいずれか1項に記載の超音波流量計。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003039787A JP4368591B2 (ja) | 2003-02-18 | 2003-02-18 | 超音波流量計 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003039787A JP4368591B2 (ja) | 2003-02-18 | 2003-02-18 | 超音波流量計 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004251653A JP2004251653A (ja) | 2004-09-09 |
JP4368591B2 true JP4368591B2 (ja) | 2009-11-18 |
Family
ID=33023864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003039787A Expired - Fee Related JP4368591B2 (ja) | 2003-02-18 | 2003-02-18 | 超音波流量計 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4368591B2 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006050569A1 (en) * | 2004-11-12 | 2006-05-18 | Vfs Technologies Limited | Method and apparatus for determining flow |
JP4818713B2 (ja) * | 2005-12-27 | 2011-11-16 | 東京計装株式会社 | 超音波流量計 |
JP2008128727A (ja) * | 2006-11-17 | 2008-06-05 | Ricoh Elemex Corp | 超音波流量計 |
JP2009004916A (ja) * | 2007-06-19 | 2009-01-08 | Ricoh Elemex Corp | 超音波出力装置 |
CN115200657A (zh) * | 2022-07-27 | 2022-10-18 | 杭州思筑智能设备有限公司 | 一种带条状格栅的扁平流道及流量计系统 |
-
2003
- 2003-02-18 JP JP2003039787A patent/JP4368591B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004251653A (ja) | 2004-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4368591B2 (ja) | 超音波流量計 | |
JPH11230799A (ja) | 超音波流量計 | |
JPH09287990A (ja) | 超音波流量計 | |
JP4333098B2 (ja) | 流量計測装置 | |
JP7151311B2 (ja) | 超音波流量計 | |
JPH09287989A (ja) | 超音波流量計 | |
JP2003177042A (ja) | 超音波流量計 | |
JP6149250B2 (ja) | 超音波流量計 | |
JP3583114B2 (ja) | 超音波流速測定装置 | |
JP3013596B2 (ja) | 透過式超音波流量計 | |
KR101476534B1 (ko) | 전파시간 연장을 통한 초음파 유량측정장치 및 측정방법 | |
JP4212374B2 (ja) | 超音波流量計 | |
JP2001349758A (ja) | 超音波流速測定装置 | |
JPH0921665A (ja) | 超音波流量計 | |
JPH10170318A (ja) | 超音波流速測定装置 | |
JPH11237263A (ja) | 超音波流量計 | |
JP3480711B2 (ja) | 超音波式渦流量計 | |
JP2505647Y2 (ja) | 超音波流量計 | |
JP2002139358A (ja) | 超音波流量計 | |
JP6674252B2 (ja) | クランプオン形超音波流量計 | |
JP2006017639A (ja) | 超音波流量計 | |
JP2022188333A (ja) | 超音波流量計 | |
JP2021139738A (ja) | 超音波流量計用トランスデューサおよび超音波流量計の調整法 | |
JP2023110131A (ja) | 超音波流量計 | |
JP2008014833A (ja) | 超音波流量計 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080703 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090312 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090824 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090826 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120904 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |