JP4367197B2 - Water treatment method - Google Patents

Water treatment method Download PDF

Info

Publication number
JP4367197B2
JP4367197B2 JP2004097810A JP2004097810A JP4367197B2 JP 4367197 B2 JP4367197 B2 JP 4367197B2 JP 2004097810 A JP2004097810 A JP 2004097810A JP 2004097810 A JP2004097810 A JP 2004097810A JP 4367197 B2 JP4367197 B2 JP 4367197B2
Authority
JP
Japan
Prior art keywords
water
feed water
temperature
dissolved gas
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004097810A
Other languages
Japanese (ja)
Other versions
JP2005279459A (en
Inventor
剛 米田
敦行 真鍋
隼人 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2004097810A priority Critical patent/JP4367197B2/en
Publication of JP2005279459A publication Critical patent/JP2005279459A/en
Application granted granted Critical
Publication of JP4367197B2 publication Critical patent/JP4367197B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は、ボイラ等の熱機器へ給水する給水ラインに濾過部を備え、その下流側に膜式脱気部を備え、前記給水ラインを流れる給水を濾過部で腐食促進成分を濾過した後、膜式脱気部で溶存気体を脱気して熱機器に給水する水処理方法であって、前記給水ラインを流れる給水に溶存している腐食促進成分の濾過及び気体の脱気を効率良く行う水処理方法に関する。   The present invention comprises a filtration part in a water supply line for supplying water to a thermal device such as a boiler, a membrane type deaeration part on the downstream side, and after filtering the corrosion promoting component in the filtration part of the feed water flowing through the water supply line, A water treatment method in which dissolved gas is degassed by a membrane-type degassing unit and water is supplied to a thermal device, and the corrosion promoting components dissolved in the feedwater flowing through the water supply line are filtered efficiently and the gas is degassed efficiently. The present invention relates to a water treatment method.

蒸気ボイラ、温水ボイラ、クーリングタワー、給湯器等の熱機器では、一般に大量の水が消費される。かかる熱機器にあって、供給された水と接触する部位が給水の影響による腐食のために破損し、熱機器の寿命に致命的な影響を及ぼす場合がある。前記水による熱機器の腐食は、給水中に含まれている塩化物イオンや硫酸イオンといった腐食促進成分や、給水中に溶存している酸素が主な原因となっている。従って、熱機器を長期間安定して運転し使用するためには、熱機器の腐食を効果的に抑制する必要がある。   In heat equipment such as a steam boiler, hot water boiler, cooling tower, and water heater, a large amount of water is generally consumed. In such a thermal device, a portion that comes into contact with the supplied water may be damaged due to corrosion due to the influence of the water supply, and the life of the thermal device may be fatally affected. The corrosion of the thermal equipment by water is mainly caused by corrosion promoting components such as chloride ions and sulfate ions contained in the feed water and oxygen dissolved in the feed water. Therefore, in order to stably operate and use the thermal equipment for a long time, it is necessary to effectively suppress the corrosion of the thermal equipment.

このため、従来は、熱機器の腐食を抑制する手段として、給水中に含まれている腐食促進成分による腐食にあっては、例えば、特許文献1、特許文献2及び特許文献3に記載されているように、給水に薬剤を添加して抑制し、また、給水中の溶存気体による腐食にあっては、熱機器に給水する給水ラインに脱気装置を備えて、給水中の溶存気体を除去するようにして抑制している。
特開平4−232286号公報 特開平4−283299号公報 特開平6−158366号公報
For this reason, conventionally, as a means for suppressing the corrosion of the thermal equipment, the corrosion caused by the corrosion promoting component contained in the water supply is described in, for example, Patent Document 1, Patent Document 2, and Patent Document 3. As shown in the figure, chemicals are added to the water supply to suppress it, and in the case of corrosion due to dissolved gas in the water supply, a degassing device is provided in the water supply line for supplying water to the heat equipment to remove the dissolved gas in the water supply. Suppress it.
JP-A-4-232286 JP-A-4-283299 JP-A-6-158366

しかし、前記給水中に含まれている腐食促進成分による腐食を抑制するために給水に添加された薬剤は、一部が蒸気や湯中に取り込まれる可能性があり、この場合、この蒸気や湯は、例えば、食品の調理や加工の用途において、衛生上の観点から、そのまま利用するのは困難となる。また、給水中に添加された薬剤は給水に含まれることになるが、例えば、ボイラにおいて給水の濃縮水を排出する場合、この濃縮水は、添加された薬剤を含んでいるので、薬剤を除去するための特別な処理を施さない限り、そのまま下水等へ排出すると、環境汚染を引き起こすおそれがある、といった問題があった。   However, there is a possibility that a part of the chemical added to the water supply in order to suppress corrosion due to the corrosion promoting component contained in the water supply will be taken into the steam or hot water. From the viewpoint of hygiene, for example, it is difficult to use as it is in food cooking and processing applications. Moreover, although the chemical | medical agent added to feed water will be contained in feed water, for example, when discharging the concentrated water of feed water in a boiler, since this concentrated water contains the added chemical | medical agent, a chemical | medical agent is removed. Unless special treatment is performed, there is a problem that if it is discharged as it is into sewage, it may cause environmental pollution.

そこで、本願発明者等は、給水中に含まれている腐食促進成分による腐食の抑制を、薬剤を用いずに行うことについて研究を重ねた結果、ナノ濾過膜が塩化物イオンや硫酸イオンといった腐食促進成分を効果的に捕捉し、腐食抑制成分として認められるシリカを透過させることを見出し、給水中に含まれている腐食促進成分による腐食を抑制する手段として、前記の濾過膜を用いることを考えた。更に、給水中の溶存気体を脱気する手段として、気体透過膜を通して真空引きする膜式脱気部によることを考えた。そして、給水ラインの上流側で前記濾過膜により給水中に含まれている腐食促進成分を捕捉して濾過し、下流側で腐食促進成分が濾過された濾過水から溶存気体を膜式脱気部で脱気し、溶存酸素を除去することを考えた。   Therefore, the inventors of the present application have conducted research on the suppression of corrosion by the corrosion promoting component contained in the water supply without using chemicals, and as a result, the nanofiltration membrane has been corroded by chloride ions and sulfate ions. It is found that the accelerating component is effectively captured and the silica recognized as the corrosion inhibiting component is permeated, and the above-mentioned filter membrane is considered as a means for suppressing the corrosion caused by the corrosion accelerating component contained in the water supply. It was. Furthermore, as a means for degassing the dissolved gas in the feed water, it was considered to use a membrane type deaeration part that evacuates through the gas permeable membrane. And the corrosion promoting component contained in the feed water is captured and filtered by the filtration membrane on the upstream side of the water supply line, and the dissolved gas is removed from the filtered water in which the corrosion promoting component is filtered on the downstream side. I thought to remove the dissolved oxygen by deaerating.

しかし、ここで1つの問題があった。それは、給水中に含まれている腐食促進成分を捕捉し濾過する濾過膜と、濾過水から溶存気体を脱気する膜式脱気部に使用される気体透過膜の性質に起因するものである。前記濾過膜におけるイオン除去性能(溶存物質濾過性能)は、有効圧力低下(水量低下)や給水の温度の上昇に伴い低下するといった性質を有している。また、前記気体透過膜における水中の溶存気体の透過率(脱気性能)は、給水の温度の降下や給水の流量の増加に伴い低下するといった性質を有している。このため、給水の流量が少なくなると濾過膜の腐食促進成分の濾過性能が低下して給水中に含まれている腐食促進成分を効果的に濾過することができなくなる場合があり、また、給水の温度が低くなると気体透過膜による溶存気体の脱気性能が低下し、腐食の抑制となる溶存気体濃度とすることができなくなる場合があるということである。   However, there was one problem here. This is due to the properties of the filtration membrane that captures and filters the corrosion promoting components contained in the feed water, and the gas permeable membrane used in the membrane-type degassing part that degass the dissolved gas from the filtered water. . The ion removal performance (dissolved substance filtration performance) of the filtration membrane has a property that it decreases as the effective pressure decreases (water volume decreases) or the temperature of the feed water increases. Further, the permeability (degassing performance) of dissolved gas in water in the gas permeable membrane has a property that it decreases as the temperature of the feed water decreases or the flow rate of the feed water increases. For this reason, when the flow rate of the feed water decreases, the filtration performance of the corrosion promoting component of the filtration membrane may deteriorate, and the corrosion promoting component contained in the feed water may not be effectively filtered. When the temperature is lowered, the degassing performance of the dissolved gas by the gas permeable membrane is lowered, and it may not be possible to obtain a dissolved gas concentration that suppresses corrosion.

本発明の目的は、熱機器へ給水する給水ラインの上流側に濾過部を備え、その下流側に膜式脱気部を備え、前記給水ラインを流れる給水の温度の変化に応じて、腐食促進成分の濾過及び溶存気体の脱気を効率良く行う水処理方法を提供することにある。   The object of the present invention is to provide a filtration part on the upstream side of the water supply line for supplying water to the thermal equipment, a membrane type deaeration part on the downstream side, and promote corrosion according to the change in the temperature of the feed water flowing through the water supply line. An object of the present invention is to provide a water treatment method for efficiently filtering components and degassing dissolved gas.

上記目的を達成するために、請求項1記載の発明に係る水処理方法は、熱機器へ給水する給水ラインの上流側に熱機器の腐食を引き起こす腐食促進成分を捕捉する濾過膜を用いて濾過する濾過部を備え、その下流側に給水中の溶存気体を透過する気体透過膜を用いて脱気する膜式脱気部を備え、前記給水ラインを流れる給水を濾過部で腐食促進成分を濾過した後、膜式脱気部で溶存気体を脱気して熱機器に給水する水処理方法であって、給水の流量と給水の温度と、前記濾過部で腐食促進成分を濾過した後の濾過水中の腐食促進成分残存値及び前記膜式脱気部で溶存気体を脱気した後の透過水中の溶存気体残存値との関係を予め求めておくとともに、腐食促進成分残存許容値と溶存気体残存許容値を定めておき、前記給水ラインを流れる給水の温度を検知して、給水の温度に基づいて前記腐食促進成分残存許容値と溶存気体残存許容値をともに充足するように給水の流量を制御することを特徴とする。   In order to achieve the above object, the water treatment method according to the first aspect of the present invention performs filtration using a filter membrane that captures a corrosion promoting component that causes corrosion of the thermal equipment upstream of the water supply line that feeds the thermal equipment. And a membrane-type deaeration unit that degassed by using a gas permeable membrane that allows the dissolved gas in the feed water to pass through, and the corrosion-promoting component is filtered by the filtration unit of the feed water flowing through the water supply line. Then, a water treatment method for degassing the dissolved gas in the membrane deaeration unit and supplying water to the thermal equipment, the flow after supplying the flow rate of the feed water, the temperature of the water supply, and the corrosion promoting component in the filtration unit The relationship between the corrosion promotion component residual value in water and the dissolved gas residual value in the permeated water after degassing the dissolved gas in the membrane-type deaeration unit is determined in advance, and the corrosion promotion component residual allowable value and dissolved gas residual value are determined. A water supply that flows through the water supply line after setting an allowable value. It detects the temperature, and controlling the feedwater flow rate to both satisfy the dissolved gas remaining allowable value and the corrosion promoting component remaining allowable value based on the water temperature.

このようにすることにより、前記給水ラインを流れる給水の検知された温度により、前記腐食促進成分残存許容値と溶存気体残存許容値をともに充足するように給水の流量が制御されるので、熱機器に供給する給水の水質を、腐食促進成分による腐食を抑制するとともに、溶存気体中の酸素による腐食を抑制する水質に改質することができる。   By doing in this way, since the flow rate of feed water is controlled so that both the said corrosion promotion component residual permissible value and dissolved gas residual permissible value are satisfied by the detected temperature of the feed water flowing through the said water supply line, The quality of the feed water supplied to the water can be improved to a quality that suppresses corrosion due to corrosion promoting components and suppresses corrosion due to oxygen in the dissolved gas.

請求項2記載の発明に係る水処理方法は、請求項1に記載の、前記給水ラインを流れる給水の温度の検知により行う給水ラインを流れる給水の流量の減量は、給水ラインの任意の位置に給水の温度を検知する温度センサを備え、また前記濾過部の上流側に前記給水を前記濾過部に供給するポンプを備えるとともに、前記ポンプに接続され該ポンプの回転数を出力周波数に応じて可変させるインバータと、前記温度センサ及び前記インバータに対するインターフェースを有し前記温度センサからの温度検知信号に基づき前記インバータに指令信号を出力する制御部を備え、温度センサからの給水の温度検知信号に基づき制御部が前記インバータに指令信号を出力し、インバータによりポンプの回転数を可変させて行うようにしたことを特徴とする。   A water treatment method according to a second aspect of the present invention is the water treatment method according to the first aspect, wherein the reduction in the flow rate of the feed water flowing through the feed water line by detecting the temperature of the feed water flowing through the feed water line is at an arbitrary position of the feed water line. A temperature sensor for detecting the temperature of the feed water is provided, and a pump for supplying the feed water to the filtration unit is provided upstream of the filtration unit, and the rotation speed of the pump is variable according to the output frequency. An inverter for controlling the temperature sensor and an interface for the inverter, and a control unit for outputting a command signal to the inverter based on a temperature detection signal from the temperature sensor, and controlling based on a temperature detection signal for water supply from the temperature sensor The unit outputs a command signal to the inverter, and the rotation speed of the pump is varied by the inverter. .

このようにすることにより、水処理を自動的に行うことができ、熱機器に供給する給水の水質を、より確実に改質することができる。   By doing in this way, water treatment can be performed automatically and the quality of the feed water supplied to the thermal equipment can be more reliably improved.

請求項3記載の発明に係る水処理方法は、熱機器へ給水する給水ラインの上流側に熱機器の腐食を引き起こす腐食促進成分を捕捉する濾過膜を用いて濾過する濾過部を備え、その下流側に給水中の溶存気体を透過する気体透過膜を用いて脱気する膜式脱気部を備え、前記給水ラインを流れる給水を濾過部で腐食促進成分を濾過した後、膜式脱気部で溶存気体を脱気した給水を処理水タンクに貯留し、処理水タンクから熱機器に給水する水処理方法であって、給水の流量と給水の温度と、前記濾過部で腐食促進成分を濾過した後の濾過水中の腐食促進成分残存値及び前記膜式脱気部で溶存気体を脱気した後の透過水中の溶存気体残存値との関係を予め求めておくとともに、腐食促進成分残存許容値と溶存気体残存許容値を定めておき、更に、処理水タンクに貯留する必要給水量を定めておき、前記給水ラインを流れる給水の温度を検知して、給水の温度に基づいて前記腐食促進成分残存許容値と溶存気体残存許容値をともに充足するように給水の流量を制御するとともに、前記処理水タンクの水量を検知して、処理水タンクの水量が必要水量を下回ったことを検知したときは、前記給水の温度が溶存気体残存許容値を超える溶存気体残存値を示す温度となっても、膜式脱気部に送り出す給水ラインを流れる給水の流量を制御することを特徴とする。   The water treatment method according to the invention described in claim 3 is provided with a filtration section that filters using a filter membrane that captures corrosion promoting components that cause corrosion of the thermal equipment on the upstream side of the water supply line that feeds the thermal equipment. The membrane type deaeration part is provided with a membrane type deaeration part for deaerating on the side using a gas permeable membrane that allows the dissolved gas in the feed water to pass through. This is a water treatment method in which the feed water from which dissolved gas has been degassed is stored in a treated water tank and fed from the treated water tank to the thermal equipment, and the corrosion promoting components are filtered by the flow rate of the feed water, the temperature of the feed water, and the filtration unit. The relationship between the residual value of the corrosion promoting component in the filtered water and the residual value of the dissolved gas in the permeated water after degassing the dissolved gas in the membrane type deaeration part is determined in advance, and the allowable value of the residual corrosion promoting component is determined. And set the dissolved gas residual tolerance value. The required amount of water to be stored in the water tank is determined, the temperature of the water supply flowing through the water supply line is detected, and the residual corrosion promoting component residual value and the dissolved gas residual allowable value are both satisfied based on the temperature of the water supply. When the flow rate of the feed water is controlled and the amount of water in the treated water tank is detected to detect that the amount of water in the treated water tank is below the required amount of water, the temperature of the feed water exceeds the allowable dissolved gas residual value. Even if it becomes the temperature which shows a dissolved gas residual value, the flow volume of the feed water which flows through the feed water line sent out to a membrane type deaeration part is controlled.

このようにすることにより、前記給水ラインを流れる給水の検知された温度により、前記腐食促進成分残存許容値と溶存気体残存許容値をともに充足するように給水の流量が制御されるので、熱機器に供給する給水の水質を、腐食促進成分による腐食を抑制するとともに、溶存気体中の酸素による腐食を抑制する水質に改質することができる。そして、処理水タンクの水量が必要水量を下回ったことを検知したときは、前記給水の温度が溶存気体残存許容値を超える溶存気体残存値を示す温度となっても、膜式脱気部に送り出す給水ラインを流れる給水の流量を減量しないものとなるので、熱機器の給水不足による不都合な諸事態を回避することができる。   By doing in this way, since the flow rate of feed water is controlled so that both the said corrosion promotion component residual permissible value and dissolved gas residual permissible value are satisfied by the detected temperature of the feed water flowing through the said water supply line, The quality of the feed water supplied to the water can be improved to a quality that suppresses corrosion due to corrosion promoting components and suppresses corrosion due to oxygen in the dissolved gas. And when it is detected that the amount of water in the treated water tank is below the required amount of water, even if the temperature of the water supply becomes a temperature indicating a dissolved gas residual value exceeding the dissolved gas residual allowable value, Since the flow rate of the feed water flowing through the feed water line is not reduced, it is possible to avoid inconvenient situations due to insufficient feed water of the thermal equipment.

請求項4記載の発明に係る水処理方法は、請求項3に記載の、前記給水ラインを流れる給水の温度の検知により行う給水ラインを流れる給水の流量の減量及び給水の流量の減量の回避は、給水ラインの任意の位置に給水の温度を検知する温度センサを備え、処理水タンクの水量を検知する水量センサを備え、また前記濾過部の上流側に前記給水を前記濾過部に供給するポンプを備えるとともに、前記ポンプに接続され該ポンプの回転数を出力周波数に応じて可変させるインバータと、前記温度センサ及び前記インバータに対するインターフェースを有し、前記温度センサからの温度検知信号と水量センサからの給水量検知信号に基づき、前記インバータに指令信号を出力する制御部を備え、温度センサからの給水の温度検知信号に基づき制御部が前記インバータに指令信号を出力し、インバータによりポンプの回転数を可変させ、水量センサからの給水量検知信号に基づき前記温度検知信号に基づくポンプの回転数の可変を解除させて行うようにしたことを特徴とする。   A water treatment method according to a fourth aspect of the present invention is directed to the water treatment method according to the third aspect, wherein the reduction of the flow rate of the feed water flowing through the feed water line and the reduction of the flow rate of the feed water are performed by detecting the temperature of the feed water flowing through the feed water line. A pump having a temperature sensor for detecting the temperature of the feed water at an arbitrary position of the water supply line, a water amount sensor for detecting the amount of water in the treated water tank, and a pump for supplying the feed water to the filtration unit upstream of the filtration unit And an inverter connected to the pump for varying the rotational speed of the pump according to an output frequency, the temperature sensor, and an interface to the inverter, and a temperature detection signal from the temperature sensor and a water amount sensor. A control unit that outputs a command signal to the inverter based on the water supply amount detection signal is provided, and control is performed based on the temperature detection signal of the water supply from the temperature sensor. Outputs a command signal to the inverter, changes the pump rotation speed by the inverter, and releases the variable rotation speed of the pump based on the temperature detection signal based on the water supply amount detection signal from the water amount sensor. It is characterized by that.

このようにすることにより、水処理を自動的に行うことができ、熱機器に供給する給水の水質の改質と、処理水タンクの水量が必要水量を下回ったときに前記給水の流量の減量を回避することにより熱機器の給水不足による不都合な諸事態の回避を、より確実に行うことができる。   By doing in this way, water treatment can be performed automatically, reforming the quality of the feed water supplied to the thermal equipment, and reducing the flow rate of the feed water when the amount of water in the treated water tank falls below the required amount of water By avoiding the above, it is possible to more reliably avoid inconvenient situations due to insufficient water supply of the thermal equipment.

請求項1に記載された発明によれば、給水ラインを流れる給水の検知された温度により、前記腐食促進成分残存許容値と溶存気体残存許容値をともに充足するように給水の流量が制御されるので、熱機器に供給する給水の水質を、腐食促進成分による腐食を抑制するとともに、溶存気体中の酸素による腐食を抑制する水質に改質することができる。また、請求項2に記載された発明によれば、水処理を自動的に行うことができ、熱機器に供給する給水の水質を、より確実に改質することができる。また、請求項3に記載された発明によれば、給水ラインを流れる給水の検知された温度により、前記腐食促進成分残存許容値と溶存気体残存許容値をともに充足するように給水の流量が制御されるので、熱機器に供給する給水の水質を、腐食促進成分による腐食を抑制するとともに、溶存気体中の酸素による腐食を抑制する水質に改質することができる。そして、処理水タンクの水量が必要水量を下回ったことを検知したときは、前記給水の温度が溶存気体残存許容値を超える溶存気体残存値を示す温度となっても、膜式脱気部に送り出す給水ラインを流れる給水の流量を減量しないものとなるので、熱機器の給水不足による不都合な諸事態を回避することができる。また、請求項4に記載された発明によれば、水処理を自動的に行うことができ、熱機器に供給する給水の水質の改質と、熱機器の給水不足による不都合な諸事態の回避を、より確実に行うことができる。   According to the first aspect of the present invention, the flow rate of the feed water is controlled by the detected temperature of the feed water flowing through the feed water line so as to satisfy both the allowable corrosion promoting component residual value and the dissolved gas residual allowable value. Therefore, the quality of the feed water supplied to the thermal equipment can be improved to a quality that suppresses corrosion due to corrosion promoting components and suppresses corrosion due to oxygen in the dissolved gas. Moreover, according to the invention described in claim 2, water treatment can be performed automatically, and the quality of the water supplied to the thermal equipment can be more reliably improved. According to the invention described in claim 3, the flow rate of the feed water is controlled so as to satisfy both the allowable corrosion promoting component residual value and the dissolved gas residual allowable value based on the detected temperature of the feed water flowing through the feed water line. Therefore, the quality of the feed water supplied to the thermal equipment can be improved to a quality that suppresses corrosion due to corrosion promoting components and suppresses corrosion due to oxygen in the dissolved gas. And when it is detected that the amount of water in the treated water tank is below the required amount of water, even if the temperature of the water supply becomes a temperature indicating a dissolved gas residual value exceeding the dissolved gas residual allowable value, Since the flow rate of the feed water flowing through the feed water line is not reduced, it is possible to avoid inconvenient situations due to insufficient feed water of the thermal equipment. Further, according to the invention described in claim 4, water treatment can be performed automatically, reforming the quality of the water supplied to the thermal equipment, and avoiding unfavorable situations due to insufficient water supply of the thermal equipment. Can be performed more reliably.

以下、本発明に係る水処理方法を実施するための最良の形態の一例を図面を参照しながら説明する。図1は本発明を実施する水処理運転システムの概略説明図、図2は水処理運転システムを組み込んだ水処理システムの一例を示すフローである。
図1に示す水処理運転システム1は、図2に示すように、外部の水源(図示省略)から供給される水道水、工業用水、地下水等の給水を、蒸気ボイラ、温水ボイラ、クーリングタワー、給湯器等の熱機器2に供給する水質改質システムにおける給水ライン3上に構築されている。
Hereinafter, an example of the best mode for carrying out the water treatment method according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic explanatory diagram of a water treatment operation system for carrying out the present invention, and FIG. 2 is a flowchart showing an example of a water treatment system incorporating the water treatment operation system.
As shown in FIG. 2, the water treatment operation system 1 shown in FIG. 1 supplies water such as tap water, industrial water, and groundwater supplied from an external water source (not shown) to a steam boiler, hot water boiler, cooling tower, hot water supply. It is constructed on a water supply line 3 in a water quality reforming system that supplies heat equipment 2 such as a water heater.

先ず、図2の水処理システムについて説明すると、前記給水ライン3に、原水側から、給水中に溶存している次亜塩素酸ソーダ等の酸化剤を吸着除去する活性炭濾過部4と、給水中に含まれているカルシウム、マグネシウム等の硬度成分をイオン交換樹脂により除去する軟水処理部5と、給水中に含まれている塩化物イオンや硫酸イオンといった腐食促進成分を捕捉し、腐食抑制成分として認められるシリカを透過させるナノ濾過膜を用いた濾過部6と、給水中に溶存している酸素等の気体を透過する気体透過膜を用いた膜式脱気部7と、膜式脱気部7を通過した給水を貯留する処理水タンク8とが、順番に配置され、さらに、軟水処理部5と濾過部6との間には、濾過部6のナノ濾過膜の目詰まりを防止するためのフィルター9が配置されて構成されている。また、前記水処理システムにあっては、図示していないが、外部から供給される給水の水質に応じて、活性炭濾過部4の上流側に、砂濾過部、除鉄・除マンガン部を配置している。   First, the water treatment system of FIG. 2 will be described. From the raw water side to the water supply line 3, an activated carbon filtration unit 4 that adsorbs and removes an oxidizing agent such as sodium hypochlorite dissolved in the water supply, and water supply water. The soft water treatment part 5 that removes hardness components such as calcium and magnesium contained in the water with an ion exchange resin, and captures corrosion promoting components such as chloride ions and sulfate ions contained in the water supply, as a corrosion inhibiting component A filtration unit 6 using a nanofiltration membrane that allows permeated silica, a membrane type deaeration unit 7 using a gas permeable membrane that transmits a gas such as oxygen dissolved in feed water, and a membrane type deaeration unit In order to prevent clogging of the nanofiltration membrane of the filtration unit 6 between the soft water treatment unit 5 and the filtration unit 6, a treated water tank 8 that stores the feed water that has passed through 7 is disposed in order. The filter 9 is arranged It is configured. In the water treatment system, although not shown, a sand filtration unit and an iron removal / manganese removal unit are disposed upstream of the activated carbon filtration unit 4 in accordance with the quality of water supplied from the outside. is doing.

前記濾過部6で用いるナノ濾過膜について説明すると、ナノ濾過膜は、ポリアミド系、ポリエーテル系等の合成高分子膜である。また、ナノ濾過膜は、2nm程度より小さい粒子や高分子(分子量が最大数百程度のもの)の透過を阻止できる液体分離膜である。また、ナノ濾過膜は、その濾過機能の点において、限外濾過膜(分子量が1,000〜300,000程度のものをろ別可能な膜)と、逆浸透膜(分子量が数十程度のものをろ別可能な膜)との中間に位置する機能を有する液体分離膜である。ちなみに、ナノ濾過膜は、各社から市販されており、容易に入手することができる。   The nanofiltration membrane used in the filtration unit 6 will be described. The nanofiltration membrane is a synthetic polymer membrane such as polyamide or polyether. Further, the nanofiltration membrane is a liquid separation membrane that can prevent permeation of particles or polymers (having a maximum molecular weight of several hundreds) smaller than about 2 nm. In addition, the nanofiltration membrane includes an ultrafiltration membrane (a membrane capable of filtering out one having a molecular weight of about 1,000 to 300,000) and a reverse osmosis membrane (a molecular weight of about several dozens) in terms of its filtration function. It is a liquid separation membrane having a function located in the middle of a membrane that can be filtered off. Incidentally, nanofiltration membranes are commercially available from various companies and can be easily obtained.

また、前記気体透過膜を通して真空引きする膜式脱気部7にあっては、前記気体透過膜に対する脱気の方式として、外側を流れる水から内側に吸引脱気する内部灌流方式と、内側を流れる水から外側に吸引脱気する外部灌流方式があるが、いずれの方式であってもよい。   Further, in the membrane type deaeration unit 7 that evacuates through the gas permeable membrane, as a method of deaeration with respect to the gas permeable membrane, an internal perfusion method that sucks and deaerates from the water flowing outside, and an inner side Although there is an external perfusion method in which suction and deaeration is performed outward from flowing water, any method may be used.

前記水処理運転システム1は、このシステム1の給水ライン3に配置された濾過部6と膜式脱気部7と処理水タンク8上に、次のように構築されている。   The water treatment operation system 1 is constructed on the filtration unit 6, the membrane deaeration unit 7, and the treated water tank 8 arranged in the water supply line 3 of the system 1 as follows.

給水ライン3の任意の位置、本例では濾過部6と膜式脱気部7との間に給水の温度を検知する温度センサ10を備えている。また前記濾過部6の上流側に前記給水を前記濾過部6に対して加圧して供給するポンプ11と、処理水タンク8内の給水量を検知する水量センサ12を備えている。更に、前記ポンプ11に接続され該ポンプ11の回転数を出力周波数に応じて可変させるインバータ13と、前記温度センサ10及び前記インバータ13に対するインターフェースを有し、前記温度センサ10からの温度検知信号と、水量センサ12からの給水量検知信号に基づき、前記インバータ13に指令信号を出力する制御部14を備えている。   A temperature sensor 10 that detects the temperature of the water supply is provided between an arbitrary position of the water supply line 3, in this example, between the filtration unit 6 and the membrane deaeration unit 7. Further, a pump 11 that pressurizes and supplies the water supply to the filtration unit 6 and a water amount sensor 12 that detects the amount of water supply in the treated water tank 8 are provided upstream of the filtration unit 6. Furthermore, an inverter 13 connected to the pump 11 and capable of varying the rotational speed of the pump 11 according to an output frequency, the temperature sensor 10 and an interface to the inverter 13, a temperature detection signal from the temperature sensor 10, and A control unit 14 that outputs a command signal to the inverter 13 based on a water supply amount detection signal from the water amount sensor 12 is provided.

前記制御部14は、給水ライン3を流れる給水の流量と給水の温度と、前記濾過部6で腐食促進成分を濾過した後の濾過水中の腐食促進成分残存値及び前記膜式脱気部7で溶存気体を脱気した後の透過水中の溶存気体残存値と、予め定められた特定の熱機器2で使用される給水に許容される腐食促進成分残存許容値及び溶存気体残存許容値と、処理水タンク8内に貯留する必要給水量を記憶した記憶部(図示せず。)を備えている。   The control unit 14 includes a flow rate of feed water flowing through the feed water line 3, a temperature of the feed water, a residual value of the corrosion promoting component in the filtered water after filtering the corrosion promoting component by the filtering unit 6, and the membrane type deaeration unit 7. Dissolved gas residual value in permeated water after degassing dissolved gas, corrosion promotion component residual allowable value and dissolved gas residual allowable value allowed for water supply used in specific heat equipment 2 determined in advance, treatment A storage unit (not shown) that stores the required water supply amount stored in the water tank 8 is provided.

更に、前記温度センサ10で検知した給水ライン3を流れる給水の温度が腐食促進成分残存許容値或いは溶存気体残存許容値を超える腐食促進成分残存値或いは溶存気体残存値を示す温度となったとき、温度センサ10からの給水の温度検知信号に基づき前記インバータ13に指令信号を出力し、インバータ13によりポンプ11の回転数を、膜式脱気部7に送り出す給水の流量が、腐食促進成分残存許容値及び溶存気体残存許容値を充足できる流量に変更する指令信号を出力する給水減量プログラムと、前記水量センサ12で検知した処理水タンク8内の水量が必要給水量以下となったとき、水量センサ12からの水量検知信号に基づき、給水減量を解除する給水減量解除プログラムを備えている。   Furthermore, when the temperature of the feed water flowing through the feed water line 3 detected by the temperature sensor 10 becomes a temperature indicating the corrosion promoting component residual value or the dissolved gas residual value exceeding the corrosion promoting component residual allowable value or the dissolved gas residual allowable value, A command signal is output to the inverter 13 based on the temperature detection signal of the feed water from the temperature sensor 10, and the flow rate of the feed water sent to the membrane type deaeration unit 7 by the inverter 13 is set to allow the corrosion promoting component to remain. When the amount of water in the treated water tank 8 detected by the water amount sensor 12 is less than or equal to the required amount of water, the water amount sensor outputs a command signal for changing to a flow rate that can satisfy the value and the dissolved gas remaining allowable value. Based on the water amount detection signal from 12, a water supply reduction cancellation program for canceling the water supply reduction is provided.

上記のように構成した水処理運転システム1により、本発明に係る水処理方法を説明する。   The water treatment method according to the present invention will be described using the water treatment operation system 1 configured as described above.

熱機器2へ給水する給水ライン3の上流側に濾過部6を備え、その下流側に膜式脱気部7を備え、前記濾過部6の上流側に備えたポンプ11により給水を前記濾過部6に対して、予め設定されている流量を供給し、前記給水ライン3を流れる給水を濾過部6で腐食促進成分を濾過した後、膜式脱気部7で溶存気体を脱気し、このようにして処理した給水を処理水タンク8に貯留し、熱機器2に給水する水処理運転を行う。   A filtration unit 6 is provided on the upstream side of the water supply line 3 for supplying water to the thermal equipment 2, a membrane type deaeration unit 7 is provided on the downstream side thereof, and water is supplied to the filtration unit by a pump 11 provided on the upstream side of the filtration unit 6. 6, a flow rate set in advance is supplied, and the water supply flowing through the water supply line 3 is filtered through the filter unit 6 to remove corrosion promoting components, and then the dissolved gas is degassed by the membrane type deaeration unit 7. The water supply thus treated is stored in the treated water tank 8 and a water treatment operation for supplying water to the thermal equipment 2 is performed.

このときの流量の流量値は、給水の流量と給水の温度と、前記濾過部6で腐食促進成分を濾過した後の濾過水中の腐食促進成分残存値及び前記膜式脱気部7で溶存気体を脱気した後の透過水中の溶存気体残存値との関係において、給水が設定された水温にある場合に、腐食促進成分を濾過した後の濾過水中の腐食促進成分残存値及び溶存気体を脱気した後の透過水中の溶存気体残存値が腐食促進成分残存許容値及び溶存気体残存許容値を充足できる流量に設定されている。   The flow rate values at this time are the flow rate of the feed water, the temperature of the feed water, the residual value of the corrosion promoting component in the filtered water after filtering the corrosion promoting component by the filtration unit 6, and the dissolved gas in the membrane type deaeration unit 7. In the relationship with the dissolved gas remaining value in the permeated water after degassing, when the water supply is at the set water temperature, the corrosion promoting component remaining value and dissolved gas in the filtered water after filtering the corrosion promoting component are removed. The dissolved gas residual value in the permeated water after the gas is set to a flow rate that can satisfy the corrosion promoting component residual allowable value and the dissolved gas residual allowable value.

そして、前記の水処理運転の過程で、例えば、給水の温度が下がり、温度センサ10により給水が、前記給水の設定流量下で、記憶部に記憶されている溶存気体残存許容値を超える溶存気体残存値を示す温度となったことを検知したとき、温度センサ10からの温度検知信号に基づき制御部14が給水減量プログラムに従い、インバータ13に指令信号を出力し、インバータ13によりポンプ11の回転数を可変させて給水の供給量を、前記濾過部6による腐食促進成分の濾過が腐食促進成分残存許容値を充足している範囲で、溶存気体残存許容値を超えない溶存気体残存値を示す量に減量する。   In the course of the water treatment operation, for example, the temperature of the water supply decreases, and the temperature sensor 10 supplies the dissolved gas that exceeds the dissolved gas remaining allowable value stored in the storage unit at the set flow rate of the water supply. When it is detected that the temperature indicates the remaining value, the control unit 14 outputs a command signal to the inverter 13 according to the water supply reduction program based on the temperature detection signal from the temperature sensor 10, and the inverter 13 rotates the rotation speed of the pump 11. The amount of the feed water supplied is varied, and the dissolved gas remaining value does not exceed the permissible dissolved gas residual value within the range in which the filtration of the corrosion promoting component by the filtering unit 6 satisfies the allowable corrosion residual component allowable value. To lose weight.

このようにすることにより、膜式脱気部7による溶存気体の脱気が向上し、給水の温度が低くなることによる溶存気体の除去性能の低下が相殺されて、濾過部6による腐食促進成分の濾過が腐食促進成分残存許容値を充足した状態で、給水中の溶存気体残存値を溶存気体残存許容値を超えない値に維持することができる。   By doing in this way, the degassing of the dissolved gas by the membrane-type degassing unit 7 is improved, and the decrease in the performance of removing the dissolved gas due to the lower temperature of the feed water is offset, and the corrosion promoting component by the filtering unit 6 In the state where the filtration satisfies the allowable corrosion promoting component residual value, the dissolved gas residual value in the feed water can be maintained at a value not exceeding the dissolved gas residual allowable value.

この後、給水の温度が上昇し、前記給水が設定された流量となっても溶存気体を脱気した後の給水中の溶存気体残存値が溶存気体残存許容値を充足できる温度となったときは、前記温度センサ10がこれを検知し、この温度検知信号に基づき制御部14が給水減量プログラムに従い、インバータ13に指令信号を出力し、インバータ13によりポンプ10の回転数を可変させて給水の供給量を設定した流量に戻す。   After this, when the temperature of the feed water rises and the dissolved water remaining value in the feed water after degassing the dissolved gas reaches a temperature at which the dissolved gas remaining allowable value can be satisfied even if the feed water reaches the set flow rate The temperature sensor 10 detects this, and based on this temperature detection signal, the control unit 14 outputs a command signal to the inverter 13 according to the water supply reduction program, and the inverter 13 varies the number of rotations of the pump 10 to supply water. Return the supply amount to the set flow rate.

また、前記給水の温度低下により、ポンプ11の回転数を可変させて給水の供給量を減量させる運転の途中で、処理水タンク8の水量を検知する水量センサ12が、処理水タンク8の水量が必要水量を下回ったことを検知したとき、水量センサ12からの給水量検知信号に基づき制御部14が給水減量解除プログラムに従い給水減量を解除し、前記温度検知信号に基づくポンプ11の回転数の可変を解除させる。   In addition, a water amount sensor 12 that detects the amount of water in the treated water tank 8 during the operation of changing the rotation speed of the pump 11 to reduce the amount of supplied water due to a decrease in the temperature of the supplied water is a water amount in the treated water tank 8. Is detected to be less than the required amount of water, the control unit 14 cancels the water supply reduction based on the water supply amount detection signal from the water amount sensor 12, and the rotation speed of the pump 11 based on the temperature detection signal is canceled. Release variable.

このようにすることにより、処理水タンク8の水量が必要水量を下回ったときに前記給水の流量の減量を回避することにより熱機器2の給水不足による不都合な諸事態を回避することができる。   By doing in this way, when the amount of water in the treated water tank 8 falls below the required amount of water, it is possible to avoid various disadvantageous situations due to insufficient water supply of the thermal equipment 2 by avoiding a decrease in the flow rate of the water supply.

以上、説明したように、本発明に係る水処理方法によれば、熱機器2へ給水する給水ライン3の上流側に濾過部6を備え、その下流側に膜式脱気部7を備えて、給水の水質を改質する水質改質運転時に、給水ライン3を流れる給水の温度が低くなり、溶存気体残存許容値を超える溶存気体残存値を示す温度となったとき、膜式脱気部7に送り出す給水の流量を、前記濾過部による腐食促進成分の濾過が腐食促進成分残存許容値を充足している範囲で、溶存気体残存許容値を超えない溶存気体残存値を示す量に減量するので、溶存気体の脱気が向上し、給水の温度が低くなることによる溶存気体の脱気性能の低下が相殺されて、給水中の溶存気体残存値は溶存気体残存許容値を超えない値に維持することができ、給水が低温であっても、熱機器2に供給する給水の水質を、腐食促進成分による腐食を抑制するとともに、溶存気体による腐食を抑制する水質に改質することができる。そして、処理水タンク8の水量が必要水量を下回ったことを検知したときは、前記給水の温度が溶存気体残存許容値を超える溶存気体残存値を示す温度となっても、膜式脱気部7に送り出す給水ライン3を流れる給水の流量を減量しないものとなるので、熱機器2の給水不足による不都合な諸事態を回避することができる。   As described above, according to the water treatment method of the present invention, the filtration unit 6 is provided on the upstream side of the water supply line 3 for supplying water to the thermal equipment 2, and the membrane type deaeration unit 7 is provided on the downstream side thereof. At the time of water quality reforming operation for reforming the quality of the feed water, when the temperature of the feed water flowing through the feed water line 3 becomes low and reaches a temperature indicating a dissolved gas residual value exceeding the allowable dissolved gas residual value, a membrane type deaeration unit The flow rate of the feed water sent to 7 is reduced to an amount that shows a dissolved gas residual value that does not exceed the dissolved gas residual allowable value within a range in which the filtration of the corrosion promoting component by the filtration unit satisfies the corrosion promoting component residual allowable value. Therefore, the degassing of the dissolved gas is improved and the decrease in the degassing performance of the dissolved gas due to the lower temperature of the feed water is offset, so that the dissolved gas remaining value in the feed water does not exceed the allowable dissolved gas remaining value. Thermal equipment that can be maintained, even when the water supply is cold Water supply water quality supplied to, suppresses corrosion caused by corrosion promoting component, it can be modified to inhibit water corrosion due to dissolved gas. And when it detects that the amount of water of the treated water tank 8 has fallen below the required amount of water, even if the temperature of the said water supply becomes the temperature which shows the dissolved gas residual value exceeding a dissolved gas residual allowable value, a membrane type deaeration part 7, the flow rate of the feed water flowing through the feed water line 3 that is sent to 7 is not reduced, so that various inconveniences due to a lack of feed water of the thermal device 2 can be avoided.

本発明に係る水処理方法を実施する水処理運転システムの概略説明図。The schematic explanatory drawing of the water treatment operation system which enforces the water treatment method concerning the present invention. 水処理運転システムを組み込んだ水処理システムの一例を示すフロー。The flow which shows an example of the water treatment system incorporating the water treatment operation system.

符号の説明Explanation of symbols

1 水処理運転システム
2 熱機器
3 給水ライン
4 活性炭濾過部
5 軟水処理部
6 濾過部
7 膜式脱気部
8 処理水タンク
9 フィルター
10 温度センサ
11 ポンプ
12 水量センサ
13 インバータ
14 制御部
DESCRIPTION OF SYMBOLS 1 Water treatment operation system 2 Thermal equipment 3 Water supply line 4 Activated carbon filtration part 5 Soft water treatment part 6 Filtration part 7 Membrane type deaeration part 8 Treated water tank 9 Filter 10 Temperature sensor 11 Pump 12 Water quantity sensor 13 Inverter 14 Control part

Claims (4)

熱機器へ給水する給水ラインの上流側に熱機器の腐食を引き起こす腐食促進成分を捕捉する濾過膜を用いて濾過する濾過部を備え、その下流側に給水中の溶存気体を透過する気体透過膜を用いて脱気する膜式脱気部を備え、前記給水ラインを流れる給水を濾過部で腐食促進成分を濾過した後、膜式脱気部で溶存気体を脱気して熱機器に給水する水処理方法であって、
給水の流量と給水の温度と、前記濾過部で腐食促進成分を濾過した後の濾過水中の腐食促進成分残存値及び前記膜式脱気部で溶存気体を脱気した後の透過水中の溶存気体残存値との関係を予め求めておくとともに、腐食促進成分残存許容値と溶存気体残存許容値を定めておき、前記給水ラインを流れる給水の温度を検知して、給水の温度に基づいて前記腐食促進成分残存許容値と溶存気体残存許容値をともに充足するように給水の流量を制御することを特徴とする水処理方法。
A gas permeable membrane that has a filtration part that filters using a filter membrane that captures corrosion-promoting components that cause corrosion of the thermal equipment on the upstream side of the water supply line that supplies water to the thermal equipment, and that permeates dissolved gas in the feed water on the downstream side A membrane-type deaeration unit that degass using the filter, and after the corrosion-promoting component is filtered by the filtration unit of the feed water flowing through the water supply line, the dissolved gas is deaerated at the membrane-type deaeration unit and supplied to the thermal equipment A water treatment method,
The flow rate of feed water, the temperature of the feed water, the residual value of the corrosion promoting component in the filtered water after filtering the corrosion promoting component in the filtration unit, and the dissolved gas in the permeated water after degassing the dissolved gas in the membrane type deaeration unit The relationship with the residual value is determined in advance, the corrosion promoting component residual allowable value and the dissolved gas residual allowable value are determined, the temperature of the feed water flowing through the water supply line is detected, and the corrosion is determined based on the temperature of the feed water. A water treatment method, wherein the flow rate of feed water is controlled so as to satisfy both the acceleration component residual allowable value and the dissolved gas residual allowable value.
前記給水ラインを流れる給水の温度の検知により行う給水ラインを流れる給水の流量の減量は、給水ラインの任意の位置に給水の温度を検知する温度センサを備え、また前記濾過部の上流側に前記給水を前記濾過部に供給するポンプを備えるとともに、前記ポンプに接続され該ポンプの回転数を出力周波数に応じて可変させるインバータと、前記温度センサ及び前記インバータに対するインターフェースを有し前記温度センサからの温度検知信号に基づき前記インバータに指令信号を出力する制御部を備え、温度センサからの給水の温度検知信号に基づき制御部が前記インバータに指令信号を出力し、インバータによりポンプの回転数を可変させて行うようにしたことを特徴とする請求項1に記載の水処理方法。   The reduction of the flow rate of the feed water flowing through the feed water line by detecting the temperature of the feed water flowing through the feed water line includes a temperature sensor for detecting the feed water temperature at an arbitrary position of the feed water line, and the upstream side of the filtration unit A pump for supplying water to the filtration unit; an inverter connected to the pump for changing a rotation speed of the pump according to an output frequency; and an interface for the temperature sensor and the inverter. A control unit that outputs a command signal to the inverter based on a temperature detection signal is provided, and the control unit outputs a command signal to the inverter based on a temperature detection signal of feed water from a temperature sensor, and the inverter rotates the pump speed. The water treatment method according to claim 1, wherein the water treatment method is performed. 熱機器へ給水する給水ラインの上流側に熱機器の腐食を引き起こす腐食促進成分を捕捉する濾過膜を用いて濾過する濾過部を備え、その下流側に給水中の溶存気体を透過する気体透過膜を用いて脱気する膜式脱気部を備え、前記給水ラインを流れる給水を濾過部で腐食促進成分を濾過した後、膜式脱気部で溶存気体を脱気した給水を処理水タンクに貯留し、処理水タンクから熱機器に給水する水処理方法であって、
給水の流量と給水の温度と、前記濾過部で腐食促進成分を濾過した後の濾過水中の腐食促進成分残存値及び前記膜式脱気部で溶存気体を脱気した後の透過水中の溶存気体残存値との関係を予め求めておくとともに、腐食促進成分残存許容値と溶存気体残存許容値を定めておき、更に、処理水タンクに貯留する必要給水量を定めておき、前記給水ラインを流れる給水の温度を検知して、給水の温度に基づいて前記腐食促進成分残存許容値と溶存気体残存許容値をともに充足するように給水の流量を制御するとともに、前記処理水タンクの水量を検知して、処理水タンクの水量が必要水量を下回ったことを検知したときは、前記給水の温度が溶存気体残存許容値を超える溶存気体残存値を示す温度となっても、膜式脱気部に送り出す給水ラインを流れる給水の流量を制御することを特徴とする水処理方法。
A gas permeable membrane that has a filtration part that filters using a filter membrane that captures corrosion-promoting components that cause corrosion of the thermal equipment on the upstream side of the water supply line that supplies water to the thermal equipment, and that permeates dissolved gas in the feed water on the downstream side The membrane type deaeration part is used to deaerate, and after the corrosion promoting component is filtered by the filtration part of the feed water flowing through the water supply line, the feed water from which the dissolved gas is deaerated by the membrane type deaeration part is supplied to the treated water tank A water treatment method for storing and supplying water to a thermal device from a treated water tank,
The flow rate of feed water, the temperature of the feed water, the residual value of the corrosion promoting component in the filtered water after filtering the corrosion promoting component in the filtration unit, and the dissolved gas in the permeated water after degassing the dissolved gas in the membrane type deaeration unit A relationship with the residual value is obtained in advance, a corrosion promoting component residual allowable value and a dissolved gas residual allowable value are determined, and further, a necessary water supply amount stored in the treated water tank is determined and flows through the water supply line. The temperature of the feed water is detected, and the flow rate of the feed water is controlled based on the temperature of the feed water so as to satisfy both the allowable value for remaining corrosion promoting components and the allowable value for residual dissolved gas, and the amount of water in the treated water tank is detected. When the water amount in the treated water tank is detected to be lower than the required water amount, even if the temperature of the feed water reaches a temperature indicating a dissolved gas residual value exceeding the dissolved gas residual allowable value, the membrane deaeration unit The water supply line Water treatment method and controlling the feedwater flow rate of.
前記給水ラインを流れる給水の温度の検知により行う給水ラインを流れる給水の流量の減量及び給水の流量の減量の回避は、給水ラインの任意の位置に給水の温度を検知する温度センサを備え、処理水タンクの水量を検知する水量センサを備え、また前記濾過部の上流側に前記給水を前記濾過部に供給するポンプを備えるとともに、前記ポンプに接続され該ポンプの回転数を出力周波数に応じて可変させるインバータと、前記温度センサ及び前記インバータに対するインターフェースを有し、前記温度センサからの温度検知信号と水量センサからの給水量検知信号に基づき、前記インバータに指令信号を出力する制御部を備え、温度センサからの給水の温度検知信号に基づき制御部が前記インバータに指令信号を出力し、インバータによりポンプの回転数を可変させ、水量センサからの給水量検知信号に基づき前記温度検知信号に基づくポンプの回転数の可変を解除させて行うようにしたことを特徴とする請求項3に記載の水処理方法。   The reduction of the flow rate of the feed water flowing through the water supply line and the avoidance of the reduction of the flow rate of the feed water performed by detecting the temperature of the feed water flowing through the feed water line are provided with a temperature sensor for detecting the temperature of the feed water at an arbitrary position of the feed water line. A water amount sensor for detecting the amount of water in the water tank is provided, and a pump for supplying the water supply to the filtration unit is provided upstream of the filtration unit, and the number of rotations of the pump connected to the pump is determined according to an output frequency. An inverter to be varied, and a controller having an interface to the temperature sensor and the inverter, and outputting a command signal to the inverter based on a temperature detection signal from the temperature sensor and a water supply amount detection signal from the water amount sensor; Based on the temperature detection signal from the temperature sensor, the control unit outputs a command signal to the inverter. 4. The water according to claim 3, wherein the number of rotations of the pump is made variable, and the variable of the number of rotations of the pump based on the temperature detection signal is canceled based on a water supply amount detection signal from a water amount sensor. Processing method.
JP2004097810A 2004-03-30 2004-03-30 Water treatment method Expired - Lifetime JP4367197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097810A JP4367197B2 (en) 2004-03-30 2004-03-30 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097810A JP4367197B2 (en) 2004-03-30 2004-03-30 Water treatment method

Publications (2)

Publication Number Publication Date
JP2005279459A JP2005279459A (en) 2005-10-13
JP4367197B2 true JP4367197B2 (en) 2009-11-18

Family

ID=35178412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097810A Expired - Lifetime JP4367197B2 (en) 2004-03-30 2004-03-30 Water treatment method

Country Status (1)

Country Link
JP (1) JP4367197B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180117217A (en) * 2010-09-08 2018-10-26 웨스팅하우스 일렉트릭 컴퍼니 엘엘씨 Removal of dissolved gases in makeup water of a nuclear reactor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305499A (en) * 2005-04-28 2006-11-09 Miura Co Ltd Operating method of membrane filtration system
JP2006305500A (en) * 2005-04-28 2006-11-09 Miura Co Ltd Water treatment method
JP4544020B2 (en) * 2005-04-28 2010-09-15 三浦工業株式会社 Operation method of membrane filtration system
JP4831480B2 (en) 2006-06-21 2011-12-07 三浦工業株式会社 Membrane filtration system
JP5013062B2 (en) * 2006-12-26 2012-08-29 三浦工業株式会社 Supplying water for boiler feed water
JP5013063B2 (en) * 2006-12-26 2012-08-29 三浦工業株式会社 Supplying water for boiler feed water
JP5013064B2 (en) * 2006-12-26 2012-08-29 三浦工業株式会社 Supplying water for boiler feed water
WO2008078668A1 (en) * 2006-12-26 2008-07-03 Miura Co., Ltd. Method of feeding makeup water for boiler water supply
JP2008157577A (en) * 2006-12-26 2008-07-10 Miura Co Ltd Makeup water supply method for boiler water supply

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180117217A (en) * 2010-09-08 2018-10-26 웨스팅하우스 일렉트릭 컴퍼니 엘엘씨 Removal of dissolved gases in makeup water of a nuclear reactor
KR101990760B1 (en) 2010-09-08 2019-09-30 웨스팅하우스 일렉트릭 컴퍼니 엘엘씨 Removal of dissolved gases in makeup water of a nuclear reactor

Also Published As

Publication number Publication date
JP2005279459A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP4831480B2 (en) Membrane filtration system
JP5470864B2 (en) Water quality reforming system and water quality reforming method
JP2006305499A (en) Operating method of membrane filtration system
JP2010120015A (en) Method of membrane filtration
JP4367197B2 (en) Water treatment method
JP2011016100A (en) Wastewater treatment method
JP6881435B2 (en) Water treatment method and water treatment equipment
JP4941042B2 (en) Water treatment equipment
JP4239876B2 (en) Water treatment method
JP4650740B2 (en) Operation method of water treatment system
JPWO2012144384A1 (en) Method for purifying radioactive halogen-containing water, method for producing permeated water, and device for purifying radioactive halogen-containing water
JP4544020B2 (en) Operation method of membrane filtration system
JP4996812B2 (en) Water supply equipment
JP2007175603A (en) Method for operating membrane filtration system
JP6036808B2 (en) Fresh water generation method
JP2010162500A (en) Water quality modification system
KR20200137017A (en) Membrane cleaning apparatus and membrane cleaning method
JP5130708B2 (en) Boiler system
JP4239877B2 (en) Water treatment method
JP2008132400A (en) Operation method of water treatment system
JP4962366B2 (en) Water treatment supply system
JP2007289899A (en) Membrane washing method for membrane separation means, and water treatment apparatus
JP3116852U (en) Antifreeze volume reduction treatment equipment
JP2008221063A (en) Operation method of water treatment system
JP5044485B2 (en) Water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Ref document number: 4367197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term