JP4941042B2 - Water treatment equipment - Google Patents
Water treatment equipment Download PDFInfo
- Publication number
- JP4941042B2 JP4941042B2 JP2007078639A JP2007078639A JP4941042B2 JP 4941042 B2 JP4941042 B2 JP 4941042B2 JP 2007078639 A JP2007078639 A JP 2007078639A JP 2007078639 A JP2007078639 A JP 2007078639A JP 4941042 B2 JP4941042 B2 JP 4941042B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- flow rate
- water treatment
- membrane
- control state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Degasification And Air Bubble Elimination (AREA)
- Physical Water Treatments (AREA)
Description
本発明は、ボイラ等の熱機器へ供給する水を処理する水処理装置に関する。 The present invention relates to a water treatment apparatus for treating water supplied to a thermal apparatus such as a boiler.
この種の水処理装置において、給水ポンプと、熱機器の腐食を引き起こす腐食促進成分を捕捉する濾過膜を用いて濾過する濾過膜部と、給水中の溶存気体を透過する気体透過膜を用いて脱気する膜式脱気部とを直列に接続したもの(水処理単位という。)は、特許文献1などにて知られている。この水処理装置においては、濾過膜部は、通水量の減少や水温が上昇すると、濾過性能が低下する。一方、前記膜式脱気部は、通水量の増加や水温の下降により、脱気性能が低下するというように濾過膜部と相反する特性を有している。このため水温の変化に応じて通水量を制御することにより、濾過および脱気を効率よく行うように構成されている。 In this type of water treatment device, a feed water pump, a filtration membrane section that filters using a filtration membrane that captures corrosion promoting components that cause corrosion of thermal equipment, and a gas permeable membrane that permeates dissolved gas in the feed water are used. A device in which a membrane type deaeration unit for deaeration is connected in series (referred to as a water treatment unit) is known from Patent Document 1 and the like. In this water treatment device, the filtration performance of the filtration membrane portion decreases when the water flow rate decreases or the water temperature rises. On the other hand, the membrane-type deaeration unit has a characteristic that contradicts the filtration membrane unit, such that the deaeration performance is reduced due to an increase in water flow rate or a decrease in water temperature. For this reason, it is comprised so that filtration and deaeration can be performed efficiently by controlling the amount of water flow according to the change of water temperature.
近年、複数の前記水処理単位を互いに並列接続した水処理装置が使用されるようになってきたが、このタイプの水処理装置では、濾過および脱気を効率よく行うための制御が行われていなかった。 In recent years, a water treatment apparatus in which a plurality of water treatment units are connected in parallel to each other has been used. In this type of water treatment apparatus, control for efficiently performing filtration and deaeration is performed. There wasn't.
この発明が解決しようとする課題は、給水ポンプと、熱機器の腐食を引き起こす腐食促進成分を捕捉する濾過膜を用いて濾過する濾過膜部と、給水中の溶存気体を透過する気体透過膜を用いて脱気する膜式脱気部とを直列に接続した水処理単位を複数互いに並列に接続した水処理装置において、濾過および脱気を効率よく行うことにある。 Problems to be solved by the present invention include a feed water pump, a filtration membrane section that filters using a filtration membrane that captures corrosion promoting components that cause corrosion of thermal equipment, and a gas permeable membrane that permeates dissolved gas in the feed water. It is to efficiently perform filtration and deaeration in a water treatment apparatus in which a plurality of water treatment units connected in series with a membrane type deaeration unit that is used for deaeration are connected in parallel.
この発明は、前記課題を解決するために成されたものであって、請求項1記載の発明は、停止,低流量運転および高流量運転が選択可能な流量調整手段と、熱機器の腐食を引き起こす腐食促進成分としての塩化物イオンおよび硫酸イオンを捕捉し、腐食抑制成分としてのシリカを透過させるナノ濾過膜からなる濾過膜を用いて濾過する濾過膜部と、給水中の溶存気体を透過する気体透過膜を用いて脱気する膜式脱気部とを直列に接続した水処理単位を複数互いに並列に接続した水処理装置であって、前記各水処理単位の流量調整手段を停止,低流量運転,高流量運転とすることで、前記各水処理単位を停止,半負荷運転,全負荷運転とする制御手段と、前記給水または前記処理水の温度を検出する水温センサとを備え、前記制御手段は、複数の前記水処理単位の流量調整手段を低流量運転とする第一制御状態と、複数の前記流量調整手段を低流量運転とする代わりに一方を高流量運転とし
他方を停止する第二制御状態とを選択可能とし、前記水温センサの検出水温が設定値未満のとき、前記第一制御状態とし、前記水温センサの検出水温が設定値以上のとき、前記第二制御状態とすることを特徴としている。
The present invention has been made to solve the above-mentioned problems. The invention according to claim 1 is directed to a flow rate adjusting means capable of selecting stop, low flow rate operation and high flow rate operation, and corrosion of thermal equipment. Filters the membrane using a nanofiltration membrane that captures chloride ions and sulfate ions as corrosion-promoting components , and allows silica as a corrosion-inhibiting component to pass through, and permeates dissolved gas in the feed water A water treatment apparatus in which a plurality of water treatment units connected in series with a membrane type deaeration unit for deaeration using a gas permeable membrane are connected in parallel to each other, and the flow rate adjusting means of each water treatment unit is stopped and reduced. Control means for stopping each water treatment unit, half-load operation, full-load operation, and a water temperature sensor for detecting the temperature of the water supply or the treated water by setting the flow rate operation and the high flow rate operation, Multiple control means A first control state in which the flow rate adjusting means of the water treatment unit is operated at a low flow rate, and a second control state in which one of the flow rate adjusting means is set to a high flow rate operation and the other is stopped instead of the low flow rate operation. The first control state is set when the detected water temperature of the water temperature sensor is lower than a set value, and the second control state is set when the detected water temperature of the water temperature sensor is equal to or higher than a set value . .
請求項2に記載の発明は、請求項1において、前記流量調整手段が給水ポンプであることを特徴としている。 The invention according to claim 2 is characterized in that, in claim 1, the flow rate adjusting means is a water supply pump.
この発明によれば、水温が低いときは、前記第一制御状態として、前記各膜濾過部および前記各膜式脱気部の通水量を低くし、濾過性能をさほど低下させることなく、脱気性能を向上させ、水温が高いときは、前記第二制御状態として、前記濾過膜部の通水量を多くし、脱気性能をさほど低下させることなく濾過性能を向上させることができる。 According to this invention, when the water temperature is low, as the first control state, the amount of water passing through each of the membrane filtration units and each of the membrane type deaeration units is reduced, and the deaeration is performed without significantly reducing the filtration performance. When the performance is improved and the water temperature is high, as the second control state, the amount of water passing through the filtration membrane can be increased, and the filtration performance can be improved without significantly reducing the deaeration performance .
この発明の実施の形態は、停止,低流量運転および高流量運転が選択可能な流量調整手段と、熱機器の腐食を引き起こす腐食促進成分を捕捉する濾過膜を用いて濾過する濾過膜部と、給水中の溶存気体を透過する気体透過膜を用いて脱気する膜式脱気部とを直列に接続した水処理単位を複数互いに並列に接続した水処理装置であって、前記各水処理単位の流量調整手段を停止,低流量運転,高流量運転とすることで、前記各水処理単位を停止,半負荷運転,全負荷運転とする制御手段を備え、前記制御手段は、複数の前記水処理単位の流量調整手段を低流量運転とする第一制御状態と、複数の前記流量調整手段を低流量運転とする代わりに一方を高流量運転とし他方を停止する第二制御状態とを選択可能としたことを特徴とする。 The embodiment of the present invention includes a flow rate adjusting means capable of selecting stop, low flow rate operation and high flow rate operation, a filtration membrane part that filters using a filtration membrane that captures corrosion promoting components that cause corrosion of thermal equipment, A water treatment device in which a plurality of water treatment units connected in series with a membrane-type deaeration unit that deaerates using a gas permeable membrane that permeates the dissolved gas in the feed water are connected in parallel to each other, each of the water treatment units The flow control means is stopped, low flow operation, and high flow operation so that each water treatment unit is stopped, half load operation, full load operation, and the control means includes a plurality of the water treatment units. A first control state in which the flow rate adjusting means in the processing unit is operated at a low flow rate, and a second control state in which one of the flow rate adjusting means is operated at a high flow rate and the other is stopped instead of the low flow rate operation. It is characterized by that.
この実施の形態においては、水温が低いときなど、脱気性能を向上させる必要があるときには、前記制御手段は、前記第一制御状態とする。すると、複数の前記水処理単位の流量調整手段が低流量運転されて、脱気性能の高い運転が行われ、溶存酸素濃度の低い処理水を供給する。また、水温が高いときなど、濾過性能を向上させる必要があるときには、前記制御手段は、前記第二制御状態とする。すると、複数の前記水処理単位の低流量運転に代えて一方の前記水処理単位の流量調整手段が高流量運転され、他方の前記水処理単位の流量調整手段が停止されて、濾過性能の高い運転が行われ、腐食促進成分濃度の低い処理水を供給する。 In this embodiment, when it is necessary to improve the deaeration performance such as when the water temperature is low, the control means is set to the first control state. Then, the flow rate adjusting means of the plurality of water treatment units is operated at a low flow rate, an operation with high deaeration performance is performed, and treated water with a low dissolved oxygen concentration is supplied. Further, when it is necessary to improve the filtration performance such as when the water temperature is high, the control means is set to the second control state. Then, instead of the low flow operation of the plurality of water treatment units, the flow adjustment means of one of the water treatment units is operated at a high flow rate, the flow adjustment means of the other water treatment unit is stopped, and the filtration performance is high. Operation is performed and treated water with a low concentration of corrosion promoting components is supplied.
ここで、この実施の形態の構成要素について説明する。前記濾過膜部は、腐食促進成分を捕捉する濾過膜を用いて濾過する機能を有する。この濾過膜としては、好ましくは、給水中に含まれている塩化物イオンや硫酸イオンといった腐食促進成分を捕捉し、腐食抑制成分として認められるシリカを透過させるナノ濾過膜が用いられる。この濾過膜部は、被処理水流量が低下するか、水温が上昇するなどによって有効圧力が低下すると濾過性能が低下する特性を有している。 Here, the components of this embodiment will be described. The filtration membrane part has a function of filtering using a filtration membrane that captures corrosion promoting components. As this filtration membrane, preferably, a nanofiltration membrane that captures corrosion promoting components such as chloride ions and sulfate ions contained in the feed water and permeates silica recognized as a corrosion inhibiting component is used. This filtration membrane part has the characteristic that filtration performance will fall, if an effective pressure falls, such as to-be-processed water flow volume falls or water temperature rises.
前記ナノ濾過膜は、ポリアミド系、ポリエーテル系等の合成高分子膜である。また、ナノ濾過膜は、2nm程度より小さい粒子や高分子(分子量が最大数百程度のもの)の透過を阻止できる液体分離膜である。また、ナノ濾過膜は、その濾過機能の点において、限外濾過膜(分子量が1,000〜300,000程度のものを濾別可能な膜)と、逆浸透膜(分子量が数十程度のものをろ別可能な膜)との中間に位置する機能を有する液体分離膜である。ちなみに、ナノ濾過膜は、市販されており、容易に入手することができる。 The nanofiltration membrane is a polyamide or polyether synthetic polymer membrane. Further, the nanofiltration membrane is a liquid separation membrane that can prevent permeation of particles and polymers (having a maximum molecular weight of about several hundreds) smaller than about 2 nm. In addition, the nanofiltration membrane has an ultrafiltration membrane (a membrane capable of filtering out one having a molecular weight of about 1,000 to 300,000) and a reverse osmosis membrane (a molecular weight of about several dozen) in terms of its filtration function. It is a liquid separation membrane having a function located in the middle of a membrane that can be filtered off. Incidentally, the nanofiltration membrane is commercially available and can be easily obtained.
前記流量調整手段は、好ましくは、インバータ制御などの回転数制御により、停止と低流量運転と高流量運転とが選択可能な給水ポンプとするが、給水ポンプと流量調整バルブ
とを直列接続するなどして組み合わせることにより、停止と低流量運転と高流量運転が選択可能に構成することができる。低流量運転は、好ましくは、高流量運転の50%とするが、これに限定されるものではなく、60%〜70%の間で設定することができる。
The flow rate adjusting means is preferably a feed water pump that can be selected from stop, low flow rate operation, and high flow rate operation by rotation speed control such as inverter control, etc., but the feed water pump and the flow rate adjustment valve are connected in series, etc. By combining them, it is possible to configure such that stop, low flow operation and high flow operation can be selected. The low flow rate operation is preferably 50% of the high flow rate operation, but is not limited to this and can be set between 60% and 70%.
前記膜式脱気部は、給水中の溶存気体を透過する気体透過膜を用いて脱気するものである。この膜式脱気部は、気体透過膜を、管状,中空糸状,プリーツ状,スパイラル形状(のり巻き形状)等の形状に成形し、この状態で適宜の容器に収容して1個の構成部品とした,いわゆる膜モジュールとして使用する。この脱気装置は、被処理水量が増加するか、水温が低下すると脱気性能が低下する特性を有している。 The membrane-type deaeration unit degass using a gas permeable membrane that allows the dissolved gas in the feed water to pass through. This membrane-type deaeration part is formed by forming a gas permeable membrane into a tubular, hollow fiber-like, pleated, spiral-like (spirally wound) shape, etc., and in this state accommodated in a suitable container, one component It is used as a so-called membrane module. This deaeration device has a characteristic that the deaeration performance decreases when the amount of water to be treated increases or the water temperature decreases.
前記膜モジュールの内部は、液相側と気相側とに区画されており、液相側には、脱気処理を行う被処理水(原水と称することもでき、井戸水,水道水,各種工業用水,その他液状製品等を含む)を供給する給水ポンプを備えた被処理水供給ラインと、脱気処理後の処理水を貯留する処理水タンクへ供給する処理水供給ラインとが接続されている。 The inside of the membrane module is divided into a liquid phase side and a gas phase side, and on the liquid phase side, water to be treated (also referred to as raw water, well water, tap water, various industries) A treated water supply line having a feed water pump for supplying water (including water, other liquid products, etc.) and a treated water supply line for supplying a treated water tank for storing treated water after deaeration treatment are connected .
また、気相側には、この区画内を真空吸引するための減圧手段に真空吸引ラインが接続されている。そして、前記膜モジュール内における被処理水の流通過程において、気体透過膜を介して真空吸引することにより、被処理水中の溶存気体を吸引除去し、脱気された処理水を処理水供給ラインから処理水タンクへ供給するように構成されている。前記減圧手段は、好ましくは、水封式真空ポンプとする。 On the gas phase side, a vacuum suction line is connected to a decompression means for vacuum suction in the compartment. Then, in the process of circulating the water to be treated in the membrane module, by vacuum suction through the gas permeable membrane, the dissolved gas in the water to be treated is sucked and removed, and the degassed treated water is removed from the treated water supply line. It is configured to supply to the treated water tank. The decompression means is preferably a water ring vacuum pump.
前記水処理単位の数は、2に限定されるものではなく、3以上とすることができる。また、各流量調整手段を、停止,低流量,高流量の3段階制御とするだけでなく、4段階以上に制御するように構成することができる。 The number of water treatment units is not limited to 2 and can be 3 or more. In addition, each flow rate adjusting means can be configured to control not only three steps of stop, low flow rate, and high flow rate but also four or more steps.
前記制御手段は、予め記憶された水処理プログラムにより、前記処理水タンクの水位に応じて、前記各流量調整手段の流量を停止,低流量運転,高流量運転とすることで、前記各水処理単位を停止,半負荷運転,全負荷運転に選択的に制御するとともに、複数の前記水処理単位の流量調整手段を低流量運転とする第一制御状態と、複数の前記流量調整手段を低流量運転とする代わりに一方を高流量運転とし他方を停止する第二制御状態とを選択するように構成されている。前記第一制御状態と前記第二制御状態とは、好ましくは、水温に応じて選択されるが、これに限定されない。水温に応じて制御する場合は、水温が設定値未満のとき前記第一制御状態とされ、水温が設定値以上のとき前記第二制御状態とされる。 The control unit is configured to stop the flow rate of each flow rate adjusting unit according to the water level of the treated water tank, to perform a low flow rate operation, and a high flow rate operation according to a water treatment program stored in advance. A unit is selectively controlled to stop, half load operation, and full load operation, and a plurality of the water treatment unit flow control means are in a low flow operation, and a plurality of the flow control means are low flow rates. Instead of the operation, one is configured to select a second control state in which one is operated at a high flow rate and the other is stopped. The first control state and the second control state are preferably selected according to the water temperature, but are not limited thereto. When controlling according to the water temperature, the first control state is set when the water temperature is lower than the set value, and the second control state is set when the water temperature is equal to or higher than the set value.
以下、この発明に係る水処理装置の実施例1を図1〜図4に基づき説明する。図1は、同実施例1の概略説明図であり、図2および3は、互いに異なる運転パターンを説明する図であり、図4は、同実施例1の水処理プログラムの説明図である。 Hereinafter, Example 1 of the water treatment equipment concerning this invention is described based on Drawings 1-4. FIG. 1 is a schematic explanatory diagram of the first embodiment, FIGS. 2 and 3 are diagrams for explaining different operation patterns, and FIG. 4 is an explanatory diagram of a water treatment program of the first embodiment.
本実施例1の水処理装置は、外部の水源(図示省略)から供給される水道水、工業用水、地下水等の給水を、蒸気ボイラ、温水ボイラ、クーリングタワー、給湯器等の熱機器に供給する給水ライン1上に構築されている。 The water treatment apparatus according to the first embodiment supplies water such as tap water, industrial water, and groundwater supplied from an external water source (not shown) to thermal equipment such as a steam boiler, a hot water boiler, a cooling tower, and a water heater. It is constructed on the water supply line 1.
前記給水ライン1から分岐した第一給水ライン1aには、流量調整手段としての第一給水ポンプ2aと熱機器の腐食を引き起こす腐食促進成分を捕捉する濾過膜を用いて濾過する第一濾過膜部3aと前記第一膜式脱気部4aとが互いに直列に接続されて、第一水処理ユニット5aを形成している。また、前記給水ライン1から分岐した第二給水ライン1bには、流量調整手段としての第二給水ポンプ2bと第二濾過膜部3bと前記第二膜式脱気部4bとが互いに直列に接続されて、第二水処理ユニット5bを形成している。各水処理
ユニット5a,5bは、互いに並列に接続されて、処理水ライン6を介して処理水ランク7に接続されている。
In the first water supply line 1 a branched from the water supply line 1, a first filtration membrane portion that performs filtration using a first water supply pump 2 a as a flow rate adjusting means and a filtration membrane that captures a corrosion promoting component that causes corrosion of the thermal equipment. 3a and the first membrane type deaeration unit 4a are connected in series to form a first water treatment unit 5a. The second water supply line 1b branched from the water supply line 1 is connected in series with a second water supply pump 2b as a flow rate adjusting means, a second filtration membrane portion 3b, and a second membrane deaeration portion 4b. Thus, the second water treatment unit 5b is formed. The water treatment units 5 a and 5 b are connected in parallel to each other and connected to the treated water rank 7 via the treated water line 6.
前記濾過膜部2の濾過膜としては、前記ナノ濾過膜が用いられる。また、前記各給水ポンプ2a,2bは、インバータ制御により、低流量運転と高流量運転と停止が選択可能に構成されている。前記各水処理ユニット5a,5bは、前記各給水ポンプ2a,2bの低流量運転と高流量運転に応じて半負荷運転,全負荷運転とされる。前記各ポンプ2a,2bの前記高流量は、水温が設定値以上のとき前記各濾過膜部3a,3bの濾過膜の有効圧力に要求される一定の水量を供給するようにインバータ制御される。また、前記各ポンプ2a,2bの前記低流量は、水温が設定値以下のとき、給水中の溶存気体の脱気後の溶存気体濃度が、予め定めておいた溶存気体残存許容値を超えない程度の脱気が行えるようにインバータ制御される。 The nanofiltration membrane is used as the filtration membrane of the filtration membrane portion 2. Each of the feed water pumps 2a and 2b is configured to be able to select a low flow operation, a high flow operation, and a stop by inverter control. The water treatment units 5a and 5b are set to a half load operation and a full load operation according to the low flow operation and the high flow operation of the water supply pumps 2a and 2b. The high flow rates of the pumps 2a and 2b are controlled by an inverter so as to supply a constant amount of water required for the effective pressure of the filtration membranes of the filtration membrane portions 3a and 3b when the water temperature is equal to or higher than a set value. The low flow rates of the pumps 2a and 2b are such that when the water temperature is equal to or lower than a set value, the dissolved gas concentration after deaeration of the dissolved gas in the feed water does not exceed a predetermined dissolved gas residual allowable value. The inverter is controlled so that a certain degree of deaeration can be performed.
また、給水ライン1の任意の位置、本実施例1では前記各水処理単位4a,4bの上流側の給水ライン1に、給水の温度を測定する水温センサ8を備えている。 Moreover, the water temperature sensor 8 which measures the temperature of water supply is provided in the water supply line 1 of the arbitrary positions of the water supply line 1, and the upstream water supply line 1 of each said water treatment unit 4a, 4b in the present Example 1. FIG.
また、本実施例1では前記各ポンプ2a,2bの上流側の給水ライン1上に、原水側から、給水中に溶存している次亜塩素酸ソーダ等の酸化剤を吸着除去する活性炭濾過部9と、給水中に含まれているカルシウム、マグネシウム等の硬度成分をイオン交換樹脂により除去する軟水処理部10と、ゴミ等による各濾過膜部2a,2bの濾過膜の目詰まりを防止するためのフィルター11が配置されている。また、前記各濾過膜部3a,3bには、濾過により生成した濃縮水を排水する第一,第二濃縮水排水ライン12a,12bが接続されている。 In the first embodiment, an activated carbon filtration unit that adsorbs and removes an oxidizing agent such as sodium hypochlorite dissolved in the feed water from the raw water side on the feed water line 1 upstream of the pumps 2a and 2b. 9 to prevent clogging of the filtration membranes of the filtration membrane portions 2a and 2b due to dust and the like, and the soft water treatment portion 10 that removes hardness components such as calcium and magnesium contained in the water supply with ion exchange resin The filter 11 is arranged. Moreover, the 1st, 2nd concentrated water drainage lines 12a and 12b which drain the concentrated water produced | generated by filtration are connected to each said filtration membrane part 3a, 3b.
前記各給水ポンプ2a,2bは、前記水温センサ8および前記処理水タンク7の水位を検出する水位センサ13の検出信号を入力する制御器14により、予め記憶した水処理プログラムに基づき制御される。前記水処理プログラムは、図4に示すように、前記水温センサ8の信号に応じて、水温が設定値未満のとき、前記各水処理単位5a,5bの給水ポンプ2a,2bを低流量運転とする第一制御状態を含む第一制御パターンと、水温が設定値以上のとき、前記各給水ポンプ2a,2bを低流量運転とする代わりに一方を高流量運転とし他方を停止する第二制御状態を含む第二制御パターンとを選択可能に構成している。前記第一制御パターンは、図2に、前記第二制御パターンは、図3にそれぞれ示す。 Each of the water supply pumps 2a and 2b is controlled based on a water treatment program stored in advance by a controller 14 that receives detection signals of the water temperature sensor 8 and the water level sensor 13 for detecting the water level of the treated water tank 7. As shown in FIG. 4, when the water temperature is lower than a set value, the water treatment program causes the water supply pumps 2 a and 2 b of the water treatment units 5 a and 5 b to operate at a low flow rate when the water temperature is lower than a set value. A first control pattern including a first control state to be performed, and a second control state in which, when the water temperature is equal to or higher than a set value, one of the water supply pumps 2a and 2b is operated at a high flow rate instead of a low flow rate operation, and the other is stopped. The second control pattern including can be selected. The first control pattern is shown in FIG. 2, and the second control pattern is shown in FIG.
上記のように構成された本実施例1の水処理装置の動作を説明する。図4を参照して、S1にて、前記水温センサ8の検出値が設定値未満かどうかを判定する。ここで、YESが判定されると、S2へ移行して、前記制御器14は、図2に示す第一制御パターンを実行する。すなわち、前記処理水タンク7の水位が第一設定水位L1以下のとき、前記第一水処理単位5aおよび前記第二水処理単位5bの各給水ポンプ2a,2bを高流量運転に制御し、両者を全負荷運転とする(トータル全負荷運転)。そして、前記水位が第一設定水位L1を超えると、前記第二水処理単位5bの給水ポンプ2bを低流量運転として、半負荷運転とする(トータル3/4負荷運転)。 Operation | movement of the water treatment apparatus of the present Example 1 comprised as mentioned above is demonstrated. Referring to FIG. 4, in S1, it is determined whether the detected value of the water temperature sensor 8 is less than a set value. If YES is determined here, the process proceeds to S2, and the controller 14 executes the first control pattern shown in FIG. That is, when the water level of the treated water tank 7 is equal to or lower than the first set water level L1, the feed water pumps 2a, 2b of the first water treatment unit 5a and the second water treatment unit 5b are controlled to high flow operation, To full load operation (total full load operation). When the water level exceeds the first set water level L1, the feed water pump 2b of the second water treatment unit 5b is set to a low flow operation and a half load operation (total 3/4 load operation).
さらに、前記水位が第二設定水位L2を超えると、前記第一水処理単位5aおよび前記第二水処理単位5bの各給水ポンプ2a,2bを共に低流量運転に制御し、両者を半負荷運転とする(トータル半負荷運転)。このトータル半負荷運転は、前記第一制御状態であり、前記各膜式脱気部4a,4bに対しては、流量を半減させることで、脱気性能を向上させることができる。この第一制御状態の運転は、脱気性能優先運転である。そして、前記水位が第三設定水位Hを越えると、前記各給水ポンプ2a,2bを停止する(トータル停止運転)。 Further, when the water level exceeds the second set water level L2, both the feed water pumps 2a and 2b of the first water treatment unit 5a and the second water treatment unit 5b are controlled to low flow operation, and both are operated at half load. (Total half-load operation). This total half-load operation is in the first control state, and the deaeration performance can be improved by halving the flow rate for each of the membrane deaeration units 4a and 4b. The operation in the first control state is a deaeration performance priority operation. When the water level exceeds the third set water level H, the water supply pumps 2a and 2b are stopped (total stop operation).
S1にて、前記水温が高く、NOが判定されると、S3へ移行して、前記制御器14は、図3に示す第二制御パターンを実行する。この第二制御パターンは、前記第一制御パターンと前記水位が第二水位L2〜前記第三水位Hの間のみ異なる。すなわち、この第二制御パターンでは、前記水位が第二水位L2を超えると、前記第一水処理単位5aを全負荷運転するとともに、前記第二水処理単位5bを停止する第二制御状態で運転する(トータル半負荷運転)。このトータル半負荷運転は、前記第二制御状態であり、前記膜濾過部3aに対しては、流量を高流量とすることで、濾過性能を向上させることができる。この第二制御状態の運転は、濾過性能優先運転である。 When the water temperature is high and NO is determined in S1, the process proceeds to S3, and the controller 14 executes the second control pattern shown in FIG. The second control pattern differs from the first control pattern only in the water level between the second water level L2 and the third water level H. That is, in the second control pattern, when the water level exceeds the second water level L2, the first water treatment unit 5a is operated at full load and the second water treatment unit 5b is stopped in the second control state. (Total half-load operation). This total half-load operation is in the second control state, and the filtration performance can be improved by setting the flow rate to a high flow rate for the membrane filtration unit 3a. The operation in the second control state is a filtration performance priority operation.
この実施例1によれば、水温が低いとき、前記第一制御状態で運転を行うことにより、脱気性能優先の制御を行い、水温が高いとき、前記第二制御状態で運転を行うことにより、濾過性能優先の制御を行うことができるので、水温変化に対応して、適切な水処理を行うことができる。 According to the first embodiment, when the water temperature is low, the operation is performed in the first control state, thereby giving priority to the deaeration performance. When the water temperature is high, the operation is performed in the second control state. Since the filtering performance can be controlled with priority, appropriate water treatment can be performed in response to changes in the water temperature.
また、この実施例1では、複数の水処理単位5a,5bを同じ負荷状態とするのではなく、全負荷運転のものと半負荷運転のものとを組み合わせた運転状態を含ませることにより、よりきめ細かい水処理を実現できる。 Moreover, in this Example 1, by making the several water treatment unit 5a, 5b into the same load state, by including the operation state which combined the thing of a full load operation and the thing of a half load operation, it is more Fine water treatment can be realized.
1 給水ライン
1a 第一給水ライン
1b 第二給水ライン
2a 第一給水ポンプ(流量調整手段)
2b 第二給水ポンプ(流量調整手段)
3a 第一膜濾過部
3b 第二膜濾過部
4a 第一膜式暖脱気部
4b 第二膜式脱気部
5a 第一水処理単位
5b 第二水処理単位
14 制御器
DESCRIPTION OF SYMBOLS 1 Water supply line 1a 1st water supply line 1b 2nd water supply line 2a 1st water supply pump (flow rate adjustment means)
2b Second water supply pump (flow rate adjusting means)
3a First membrane filtration unit 3b Second membrane filtration unit 4a First membrane warm deaeration unit 4b Second membrane deaeration unit 5a First water treatment unit 5b Second water treatment unit 14 Controller
Claims (2)
前記各水処理単位の流量調整手段を停止,低流量運転,高流量運転とすることで、前記各水処理単位を停止,半負荷運転,全負荷運転とする制御手段と、
前記給水または前記処理水の温度を検出する水温センサとを備え、
前記制御手段は、複数の前記水処理単位の流量調整手段を低流量運転とする第一制御状態と、複数の前記流量調整手段を低流量運転とする代わりに一方を高流量運転とし他方を停止する第二制御状態とを選択可能とし、前記水温センサの検出水温が設定値未満のとき、前記第一制御状態とし、前記水温センサの検出水温が設定値以上のとき、前記第二制御状態とすることを特徴とする水処理装置。 Flow control means that can be selected between stop, low flow operation and high flow operation, and nanofiltration that captures chloride and sulfate ions as corrosion-promoting components that cause corrosion of thermal equipment and permeates silica as a corrosion-inhibiting component A plurality of water treatment units in which a filtration membrane part that filters using a membrane membrane and a membrane type deaeration part that degass using a gas permeable membrane that permeates dissolved gas in the feed water are connected in series. A water treatment device connected to
Control means for stopping the water treatment units, half-load operation, full-load operation by stopping the flow rate adjusting means of each water treatment unit, low-flow operation, high-flow operation ,
A water temperature sensor for detecting the temperature of the water supply or the treated water ,
The control means is a first control state in which the plurality of water treatment unit flow rate adjusting means are operated at a low flow rate, and one of the flow rate adjusting means is set to a high flow rate operation instead of the low flow rate operation, and the other is stopped. The second control state is selectable, and when the detected water temperature of the water temperature sensor is lower than a set value, the first control state is set.When the detected water temperature of the water temperature sensor is equal to or higher than the set value, the second control state is set. A water treatment apparatus characterized by that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007078639A JP4941042B2 (en) | 2007-03-26 | 2007-03-26 | Water treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007078639A JP4941042B2 (en) | 2007-03-26 | 2007-03-26 | Water treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008237979A JP2008237979A (en) | 2008-10-09 |
JP4941042B2 true JP4941042B2 (en) | 2012-05-30 |
Family
ID=39909956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007078639A Expired - Fee Related JP4941042B2 (en) | 2007-03-26 | 2007-03-26 | Water treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4941042B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5470888B2 (en) * | 2008-10-27 | 2014-04-16 | 三浦工業株式会社 | Water quality reforming system |
JP5470887B2 (en) * | 2008-10-27 | 2014-04-16 | 三浦工業株式会社 | Water quality reforming system |
JP5470864B2 (en) * | 2009-01-16 | 2014-04-16 | 三浦工業株式会社 | Water quality reforming system and water quality reforming method |
JP5811551B2 (en) * | 2011-03-08 | 2015-11-11 | 株式会社ジェイ・エム・エス | Pure water production equipment |
JP5834687B2 (en) * | 2011-09-22 | 2015-12-24 | 三浦工業株式会社 | Water treatment system |
JP5768626B2 (en) * | 2011-09-27 | 2015-08-26 | 三浦工業株式会社 | Water treatment system |
JP6104560B2 (en) * | 2012-10-23 | 2017-03-29 | 株式会社ミマキエンジニアリング | Printing apparatus, ink supply apparatus, and printing method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63264199A (en) * | 1987-04-22 | 1988-11-01 | Hitachi Ltd | Device for producing high-purity water |
JP2002143849A (en) * | 2000-08-31 | 2002-05-21 | Toray Ind Inc | Method for producing water |
JP4034668B2 (en) * | 2003-03-04 | 2008-01-16 | オルガノ株式会社 | Ultrapure water production system and operation method thereof |
JP4239876B2 (en) * | 2004-03-30 | 2009-03-18 | 三浦工業株式会社 | Water treatment method |
JP2005319426A (en) * | 2004-05-11 | 2005-11-17 | Miura Co Ltd | System for modifying water quality |
JP2006272282A (en) * | 2005-03-30 | 2006-10-12 | Miura Co Ltd | Water quality improving apparatus |
-
2007
- 2007-03-26 JP JP2007078639A patent/JP4941042B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008237979A (en) | 2008-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4941042B2 (en) | Water treatment equipment | |
Singh et al. | Introduction to membrane processes for water treatment | |
JP4831480B2 (en) | Membrane filtration system | |
JP4903113B2 (en) | Water treatment system and operation method thereof | |
KR101383014B1 (en) | Method and apparatus for controlling pressure by forward osmosis | |
JP6441808B2 (en) | Desalination apparatus and desalination method | |
JP2010162501A (en) | System and method for water quality modification | |
JP2007181822A (en) | Water treatment system for producing drinking water and its operation method | |
JP2013126636A (en) | Reverse osmosis treatment apparatus | |
JP2010082610A (en) | Method and system for producing pure water | |
JP6182342B2 (en) | Steam plant and operating method thereof | |
JP4650740B2 (en) | Operation method of water treatment system | |
JP4239876B2 (en) | Water treatment method | |
US20180104652A1 (en) | Reverse osmosis membrane cleaning method and reverse osmosis membrane cleaning apparatus | |
JP5953726B2 (en) | Ultrapure water production method and apparatus | |
JP4544020B2 (en) | Operation method of membrane filtration system | |
JP5168923B2 (en) | Operation method of membrane filtration system | |
JP4367197B2 (en) | Water treatment method | |
KR101516080B1 (en) | Reverse osmosis membrane train-specific pressure controlled osmotic backwash system and its method | |
US20140144840A1 (en) | Sequencing batch type or batch type water-filtering apparatus and method of operating the same | |
JP6036808B2 (en) | Fresh water generation method | |
JP2007175603A (en) | Method for operating membrane filtration system | |
JP2008132400A (en) | Operation method of water treatment system | |
CN115297950B (en) | Washing failure determination method for water generator and washing failure determination program | |
JP5130708B2 (en) | Boiler system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091224 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20091224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110422 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110606 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120131 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4941042 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150309 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |