JP4363480B2 - Rare earth permanent magnet - Google Patents

Rare earth permanent magnet Download PDF

Info

Publication number
JP4363480B2
JP4363480B2 JP2007296593A JP2007296593A JP4363480B2 JP 4363480 B2 JP4363480 B2 JP 4363480B2 JP 2007296593 A JP2007296593 A JP 2007296593A JP 2007296593 A JP2007296593 A JP 2007296593A JP 4363480 B2 JP4363480 B2 JP 4363480B2
Authority
JP
Japan
Prior art keywords
plating film
plating
rare earth
film
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007296593A
Other languages
Japanese (ja)
Other versions
JP2008147642A (en
Inventor
幸光 宮尾
中村  勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007296593A priority Critical patent/JP4363480B2/en
Publication of JP2008147642A publication Critical patent/JP2008147642A/en
Application granted granted Critical
Publication of JP4363480B2 publication Critical patent/JP4363480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、めっき皮膜を有する希土類系永久磁石に関する。特に、接着性を改善した、めっき皮膜を有する希土類系永久磁石に関する。   The present invention relates to a rare earth permanent magnet having a plating film. In particular, the present invention relates to a rare earth permanent magnet having a plating film with improved adhesion.

R−Fe−B系永久磁石(R:Yを含む希土類元素)などの希土類系永久磁石は、資源的に豊富で安価な材料が用いられ、かつ、高い磁気特性を有していることから、今日様々な分野で用いられ、近年その需要が増加している。
しかしながらR−Fe−B系永久磁石は反応性の高い希土類元素:Rを含むため、大気中で酸化、腐食されやすく、何の表面処理をも行わずに使用した場合には、わずかな酸やアルカリや水分などの存在によって表面から腐食が進行して錆が発生し、それにともなって磁石特性の劣化やばらつきを招く。さらに錆が発生した磁石を磁気回路などの装置に組み込んだ場合、錆が飛散して周辺部品を汚染する恐れがある。上記の点に鑑み、希土類系永久磁石の表面処理としてNiめっき皮膜、Cuめっき皮膜あるいはその組み合わせによる防錆処理が特許文献1などに開示され、広く採用されている。
Since rare earth permanent magnets such as R—Fe—B permanent magnets (R: rare earth elements including Y) are made of resource-rich and inexpensive materials and have high magnetic properties, It is used in various fields today, and its demand is increasing in recent years.
However, since the R—Fe—B permanent magnet contains a highly reactive rare earth element: R, it is easily oxidized and corroded in the atmosphere. When used without any surface treatment, a slight amount of acid or Corrosion progresses from the surface due to the presence of alkali, moisture, etc., and rust is generated, which causes deterioration and variation in magnet characteristics. Furthermore, when a magnet with rust is incorporated into an apparatus such as a magnetic circuit, the rust may scatter and contaminate peripheral components. In view of the above points, as a surface treatment of a rare earth-based permanent magnet, a rust prevention treatment using a Ni plating film, a Cu plating film or a combination thereof is disclosed in Patent Document 1 and widely used.

ところで最表面にNiめっきを有する希土類系永久磁石と他部材を接着剤によって接合した接合構造体を各種装置に組み込む際には、Niめっき皮膜と前記他部材とは接着剤を介して強い接着性が要求される。しかしながらNiめっき皮膜は使用状況によりアルミニウム皮膜に比べて接着性が劣る場合があり、接着不良が問題になる事態が発生することがある。   By the way, when a bonded structure in which a rare earth permanent magnet having Ni plating on the outermost surface and another member are bonded with an adhesive is incorporated into various devices, the Ni plating film and the other member are strongly bonded via an adhesive. Is required. However, the Ni plating film may be inferior in adhesiveness to the aluminum film depending on the use situation, and there may be a situation where adhesion failure becomes a problem.

この問題を解決するために、Niめっき表面を有機カルボン酸で酸洗する技術が特許文献2に提案されている。この技術はNiめっき皮膜の接着性を回復させる方法としてすぐれている。
しかし、特許文献2に提案されている方法で接着した接合構造体を耐湿性試験下に放置すると、接着強度が低下してしまう。特に接着剤としてシリコーン系接着剤を用いると、その低下は顕著となる。
特開平1−321610号公報 特開2003−193273号公報
In order to solve this problem, Patent Document 2 proposes a technique of pickling the Ni plating surface with an organic carboxylic acid. This technique is excellent as a method for restoring the adhesion of the Ni plating film.
However, if the bonded structure bonded by the method proposed in Patent Document 2 is left under a moisture resistance test, the bonding strength is lowered. In particular, when a silicone-based adhesive is used as the adhesive, the decrease becomes significant.
JP-A-1-321610 JP 2003-193273 A

近年の電気機器、自動車用電装部品においては、磁石と他部材を接着剤によって接合した接合構造体が多く用いられている。このため、このような接合構造体において、接着強度の長期信頼性を保証することが必要となっている。最近では、磁石と他部材との接着直後における接着強度のみならず、接着後の接合構造体を船便輸送等の比較的高温高湿環境の状態で輸送した後に使用する場合を想定した接着強度等についても保証することが要求されている。例えば、電気機器、電装部品等で用いられる耐湿性試験(80℃×90%RH)に供した後の接着強度について、規格を定めるよう求められる場合が増加しつつある。   In recent electrical equipment and automotive electrical components, a joined structure in which a magnet and another member are joined with an adhesive is often used. For this reason, in such a joined structure, it is necessary to ensure long-term reliability of adhesive strength. Recently, not only the adhesive strength immediately after bonding of the magnet and other members, but also the bonding strength assuming the case where the bonded structure after bonding is used after being transported in a relatively high temperature and high humidity environment such as shipping. It is also required to guarantee For example, the case where it is calculated | required to determine a specification about the adhesive strength after using for the moisture resistance test (80 degreeC x 90% RH) used with an electrical equipment, an electrical component, etc. is increasing.

そこで本発明は、耐食性に優れ、耐湿性試験等の加速試験後においても接着強度の低下しない接着が可能となる皮膜を持った希土類系永久磁石を提供することを目的とする。   Accordingly, an object of the present invention is to provide a rare earth-based permanent magnet having a film that has excellent corrosion resistance and can be bonded without a decrease in adhesive strength even after an accelerated test such as a moisture resistance test.

本発明者は上記の点に鑑み、耐湿性試験等の加速試験を行っても接着強度の低下しない接着が可能な皮膜に関する検討を行ったところ、特定の組成、膜厚のSnCu合金めっき皮膜を積層めっき皮膜の最外層に成膜した希土類系永久磁石は、接着剤にて他部材と接着後、前記耐湿性試験を施しても接着強度が低下せず、さらに、めっき皮膜硬度が高いので量産上の取り扱いが良好であることを知見し、本発明を完成するに至った。具体的には、希土類系永久磁石体表面に設けられた、少なくとも1層以上のCuめっき皮膜を含むめっき皮膜の上に、ごく薄いSnCu合金皮膜を供することによって、耐湿性試験後の、接着強度の低下が少ない接着が可能となる。   In view of the above points, the present inventor conducted a study on a film that can be bonded without deteriorating the adhesive strength even if an accelerated test such as a moisture resistance test is performed. As a result, an SnCu alloy plated film having a specific composition and film thickness was obtained. Rare earth permanent magnets deposited on the outermost layer of the multilayer plating film are mass-produced because the adhesive strength does not decrease even when the moisture resistance test is performed after bonding to other members with an adhesive, and the plating film hardness is high. The present inventors have found that the above handling is good and have completed the present invention. Specifically, by providing a very thin SnCu alloy film on a plating film including at least one layer of Cu plating film provided on the surface of the rare earth-based permanent magnet body, the adhesive strength after the moisture resistance test is obtained. Adhesion can be performed with little decrease in the thickness.

上記の知見に基づいてなされた本発明の希土類系永久磁石は、請求項1記載の通り、積層めっき皮膜を有する希土類系永久磁石であって、めっき皮膜の最表層が膜厚0.1μm以上3μm以下のSnCu合金めっき皮膜であり、前記SnCu合金めっき皮膜の組成は、Snが35mass%以上55mass%以下で残部が実質的にCuであり、前記SnCu合金めっき皮膜の下層に少なくとも1層以上のCuめっき皮膜含む2層以上のめっき皮膜を有することを特徴とする。   The rare earth permanent magnet of the present invention made based on the above knowledge is a rare earth permanent magnet having a multilayer plating film as described in claim 1, wherein the outermost layer of the plating film has a film thickness of 0.1 μm or more and 3 μm. The composition of the SnCu alloy plating film is as follows: Sn is 35 mass% or more and 55 mass% or less, and the balance is substantially Cu, and at least one layer of Cu is formed under the SnCu alloy plating film. It has two or more plating films including a plating film.

また、請求項2記載の希土類系永久磁石は、請求項1に記載の希土類系永久磁石において、前記SnCu合金めっき皮膜の上層にさらに化成処理皮膜を有することを特徴とする。   A rare earth permanent magnet according to claim 2 is the rare earth permanent magnet according to claim 1, further comprising a chemical conversion treatment film on the SnCu alloy plating film.

また、請求項3記載の接合構造体は、請求項1または2に記載の希土類系永久磁石にシリコーン系接着剤を介して他部材を接合した接合構造体である。   A bonded structure according to claim 3 is a bonded structure in which another member is bonded to the rare earth permanent magnet according to claim 1 or 2 via a silicone adhesive.

また、請求項4記載の接合構造体は、請求項3記載の接合構造体において、前記希土類系永久磁石の形状がリング形状であることを特徴とする。   The bonded structure according to claim 4 is the bonded structure according to claim 3, wherein the rare earth permanent magnet has a ring shape.

また、請求項5記載の製造方法は、希土類系永久磁石体表面に少なくとも1層以上のCuめっき皮膜を含む2層以上のめっき皮膜を成膜し、該少なくとも1層以上のCuめっき皮膜を含む2層以上のめっき皮膜上に、膜厚0.1μm以上3μm以下で組成がSnが35mass%以上55mass%以下であり残部が実質的にCuであるSnCu合金めっき皮膜を成膜することを特徴とする、希土類系永久磁石の製造方法である。   Further, the manufacturing method according to claim 5 includes forming two or more plating films including at least one Cu plating film on the surface of the rare earth based permanent magnet body, and including the at least one Cu plating film. An SnCu alloy plating film having a film thickness of 0.1 μm to 3 μm, a composition of Sn of 35 mass% to 55 mass%, and the balance being substantially Cu is formed on two or more plating films. This is a method for producing a rare earth permanent magnet.

また、請求項6記載の製造方法は、請求項5記載の希土類系永久磁石の製造方法において、前記少なくとも1層以上のCuめっき皮膜を含む2層以上のめっき皮膜に対し、SnCuめっき成膜の前の工程で塩酸または硫酸による前処理を行った後、前記SnCu合金めっき皮膜を成膜することを特徴とする。   The manufacturing method according to claim 6 is the method of manufacturing a rare earth permanent magnet according to claim 5, wherein the SnCu plating film is formed on the two or more plating films including the at least one Cu plating film. The SnCu alloy plating film is formed after pretreatment with hydrochloric acid or sulfuric acid in the previous step.

また、請求項7記載の製造方法は、請求項5または6に記載の希土類系永久磁石の製造方法において、前記SnCu合金めっき皮膜上にさらにリン酸またはリン酸塩による化成処理を施すことを特徴とする。   The manufacturing method according to claim 7 is characterized in that, in the manufacturing method of the rare earth permanent magnet according to claim 5 or 6, chemical conversion treatment with phosphoric acid or phosphate is further performed on the SnCu alloy plating film. And

本発明によれば、希土類系永久磁石体の表面に成膜された積層めっき皮膜の最表層にSnCu合金めっき皮膜を有することで、該希土類系永久磁石と他部材を接着剤を用いて接着した接合構造体は、耐湿性試験後も高い接着強度を維持できる。   According to the present invention, the rare earth permanent magnet and another member are bonded using an adhesive by having the SnCu alloy plating film on the outermost layer of the multilayer plating film formed on the surface of the rare earth permanent magnet body. The bonded structure can maintain high adhesive strength even after the moisture resistance test.

本発明の希土類系永久磁石は、2層以上の積層めっき皮膜を有する希土類系永久磁石であって、めっき皮膜の最表層がSnCu合金めっき皮膜であることを特徴とする。   The rare earth permanent magnet of the present invention is a rare earth permanent magnet having a multilayer plating film of two or more layers, and the outermost layer of the plating film is a SnCu alloy plating film.

以下、本発明の詳細について説明する。
めっき膜の組成はSnが35mass%(22.3原子%)以上55mass%(39.5原子%)以下が望ましく、40mass%以上50mass%以下がさらに望ましい。Snが35mass%未満になると、Cu比率の増加により腐食しやすくなる。またSnが55mass%を超えるとSn比率の増加に伴い、めっき膜自体の硬度が急激に低下し、膜に傷がつきやすくなる。
Details of the present invention will be described below.
The composition of the plating film is desirably 35 mass% (22.3 atomic%) or more and 55 mass% (39.5 atomic%) or less, and more desirably 40 mass% or more and 50 mass% or less. When Sn is less than 35 mass%, corrosion tends to occur due to an increase in the Cu ratio. On the other hand, if Sn exceeds 55 mass%, the hardness of the plating film itself rapidly decreases as the Sn ratio increases, and the film is easily damaged.

前記組成のSnCu合金は脆性が大きく、膜厚の増加に伴い、膜内部で剥離したり、膜表面に突起が発生し、この突起が取り扱い時に剥離したりしてしまうという問題が生じやすい。剥離や突起は膜厚3μm超で発生しやすくなる。このためSnCuめっきの膜厚は3μm以下が望ましく、2μm以下で管理するのが更に望ましい。また、SnCu合金は非磁性であることから、希土類系永久磁石本来の磁気特性を発現するためにはめっき皮膜の膜厚は出来る限り薄い方が好ましい。SnCu合金めっき皮膜の接着性改善の効果は0.1μm以上あれば十分得ることができ、0.2μm以上2μm以下がさらに望ましい。
突起の発生を抑えるため、SnCuめっきの下地は平滑であることが望ましい。 下地めっきの平滑性は、表面粗さRmaxが0.5〜15μmであることが望ましく、0.5〜10μmがより望ましく、0.5〜5μmが更に望ましい。
The SnCu alloy having the above composition is highly brittle, and as the film thickness increases, there is a problem that peeling occurs inside the film, or protrusions are generated on the film surface, and the protrusions are peeled off during handling. Peeling and protrusion are likely to occur when the film thickness exceeds 3 μm. For this reason, the film thickness of the SnCu plating is preferably 3 μm or less, and more preferably 2 μm or less. In addition, since the SnCu alloy is non-magnetic, it is preferable that the thickness of the plating film is as thin as possible in order to develop the original magnetic characteristics of the rare earth permanent magnet. The effect of improving the adhesion of the SnCu alloy plating film can be sufficiently obtained if it is 0.1 μm or more, and more preferably 0.2 μm or more and 2 μm or less.
In order to suppress the generation of protrusions, it is desirable that the base of SnCu plating is smooth. As for the smoothness of the base plating, the surface roughness Rmax is desirably 0.5 to 15 μm, more desirably 0.5 to 10 μm, and further desirably 0.5 to 5 μm.

前記SnCu合金めっき皮膜に対し、第三リン酸ソーダ等を用いて化成処理を行っても良い。化成処理条件は、例えば濃度が10g/L以上30g/L以下、液温20℃の第三リン酸ソーダ溶液に浸漬後、洗浄、乾燥すれば良い。このような化成処理を行うことにより、接着性を低下させることなく、SnCu合金めっき皮膜の変色を抑えることができる。   The SnCu alloy plating film may be subjected to chemical conversion treatment using sodium phosphate phosphate or the like. The chemical conversion treatment may be performed by, for example, immersing in a sodium phosphate solution having a concentration of 10 g / L or more and 30 g / L or less and a liquid temperature of 20 ° C., followed by washing and drying. By performing such a chemical conversion treatment, discoloration of the SnCu alloy plating film can be suppressed without lowering the adhesiveness.

希土類系永久磁石はその線膨張係数が、例えばR−Fe−B系永久磁石の場合、C//方向で5×10−6、C⊥方向で−1.5×10−6と非常に小さい為、線膨張係数の大きい鉄系素材(例えば鉄の線膨張係数は12×10−6)などの他部材と、エポキシ系接着剤などの硬度の高い接着剤を用いて接着して接合構造体を作製した場合、加熱硬化の際に線膨張係数の差から発生する応力により、磁石に割れが発生することがある。この現象はR−Fe−B系リング磁石の内径に鉄系素材のヨークを挿入し接着剤を塗布しモーター用ロータとした場合に顕著で、接着剤の加熱硬化時に線膨張係数の大きな鉄系素材が膨張し磁石割れを起こす。この対策として、接着剤として硬度の低いシリコーン系接着剤が広く採用されている。
工業的には比較的短時間で硬化する付加反応形のシリコーン系接着剤が使用される場合が多い。シリコーン系接着剤はこのような応力を吸収し、磁石に割れが発生しにくい。しかしながら、シリコーン系接着剤を用いて作製した接合構造体は、高温高湿環境により急激に接着強度が低下し、特に磁石体の最表層にNiめっき皮膜を有する希土類系永久磁石の場合はその低下が顕著である。本発明のSnCu合金めっき皮膜を最表層に有する希土類系永久磁石を、シリコーン系接着剤を用いて他部材と接着した接合構造体は、この問題を解決し、耐湿性試験後も接着強度の低下が少なく、長期にわたり、安定した接着強度を保証することができる。
又接合構造体として接着する前に、耐湿試験に供した後に接着して、接着強度を測定しても、耐湿試験に供しないものと比較して強度が低下しない。
For example, in the case of an R—Fe—B permanent magnet, the rare earth permanent magnet has a very small linear expansion coefficient of 5 × 10 −6 in the C // direction and −1.5 × 10 −6 in the C⊥ direction. Therefore, the bonded structure is bonded to another member such as an iron-based material having a large linear expansion coefficient (for example, iron has a linear expansion coefficient of 12 × 10 −6 ) and an adhesive having a high hardness such as an epoxy-based adhesive. May cause cracks in the magnet due to stress generated from the difference in coefficient of linear expansion during heat curing. This phenomenon is remarkable when an iron-based yoke is inserted into the inner diameter of an R-Fe-B ring magnet and an adhesive is applied to form a rotor for a motor. The material expands and causes magnet breakage. As a countermeasure, a silicone adhesive having a low hardness is widely used as an adhesive.
Industrially, an addition reaction type silicone adhesive which is cured in a relatively short time is often used. Silicone-based adhesives absorb such stress and are less likely to crack the magnet. However, the bonding structure produced using a silicone-based adhesive has a sharp decrease in adhesive strength due to a high-temperature and high-humidity environment, particularly in the case of a rare-earth permanent magnet having a Ni plating film on the outermost layer of the magnet body. Is remarkable. The bonded structure in which the rare earth permanent magnet having the SnCu alloy plating film of the present invention as the outermost layer is bonded to another member using a silicone adhesive solves this problem, and the adhesive strength decreases even after the moisture resistance test. Therefore, stable adhesive strength can be ensured over a long period of time.
Moreover, even if it adhere | attaches after providing for a moisture-proof test before bonding as a joining structure body and measures adhesive strength, intensity | strength does not fall compared with the thing which does not use for a moisture-proof test.

SnCu合金めっきを行う前に、下地のめっき皮膜に対し酸による活性化処理を行うことで、下地めっき皮膜とSnCuめっきの密着性をさらに向上させ、安定した生産をすることができる。アルカリ処理では脱脂効果はあるが、活性化は十分ではなく、またアルカリ処理は水洗浄で洗浄しにくく、表面に残差として残りやすく、下地のめっきとの間で剥離が発生する場合がある。酸としては塩酸または硫酸が好ましい。塩酸の濃度は10vol%以上50vol%以下が好ましい。10vol%未満では十分な活性化ができず、50vol%を超えるとNiめっきの変色により密着性が低下する恐れがある。
硫酸を使用する場合にも塩酸と同等の濃度範囲で使用すればよい。
また塩酸、硫酸以外の酸としては、有機酸である蓚酸、リン酸等も好適に使用できる。特に、SnCu合金めっきにピロリン酸系のメッキ液を使用する場合には、活性化に用いる酸にリン酸、ポリリン酸等を用いると、酸活性化後に水洗無しでそのままめっき工程に移っても、後工程のSnCuメッキ液への影響が少なく密着性が良好となる。
Before the SnCu alloy plating is performed, an activation treatment with an acid is performed on the underlying plating film, whereby the adhesion between the underlying plating film and the SnCu plating can be further improved and stable production can be achieved. Alkaline treatment has a degreasing effect, but activation is not sufficient, and alkali treatment is difficult to wash with water, tends to remain as a residual on the surface, and peeling may occur between the underlying plating. As the acid, hydrochloric acid or sulfuric acid is preferable. The concentration of hydrochloric acid is preferably 10 vol% or more and 50 vol% or less. If it is less than 10 vol%, sufficient activation cannot be achieved, and if it exceeds 50 vol%, the adhesion may be lowered due to discoloration of Ni plating.
When sulfuric acid is used, it may be used in the same concentration range as hydrochloric acid.
As acids other than hydrochloric acid and sulfuric acid, organic acids such as oxalic acid and phosphoric acid can also be suitably used. In particular, when using a pyrophosphate-based plating solution for SnCu alloy plating, if phosphoric acid, polyphosphoric acid, or the like is used as the acid used for activation, even if the acid activation is performed without washing with water, Adhesion is improved with little influence on the SnCu plating solution in the subsequent process.

SnCu合金めっきのめっき浴は前記組成の膜が形成されるのであれば公知のものを使用することが出来る。たとえば、ピロリン酸浴、シアン浴、酸性浴などである。なお、猛毒のシアンを使用しないCu−Sn合金めっきの技術が特開2004−10907号公報に紹介されており、このような浴を使用するのが好ましい。   As the plating bath for SnCu alloy plating, a known bath can be used as long as a film having the above composition is formed. For example, a pyrophosphate bath, a cyan bath, an acid bath, and the like. Incidentally, a Cu—Sn alloy plating technique that does not use extremely toxic cyan is introduced in Japanese Patent Application Laid-Open No. 2004-10907, and it is preferable to use such a bath.

また、めっきの条件についても、請求項5記載の組成範囲にコントロールできる任意の条件を用いることができる。
めっき方法は、バレルめっき、ラックめっきを適宜使用できるが、めっきを行う希土類永久磁石がリング形状の場合には、リングの外径に電流が集中しにくく、外径部と内径部の膜厚を均一にしやすいことからラックめっきが望ましい。SnCu合金めっきの電流密度はめっき液の種類、バレルめっき、ラックめっき等めっきの方式により適宜選択できるが、0.1A/dm以上10A/dm以下が好ましく、0.5A/dm以上5A/dm以下がさらに好ましい。
Moreover, also about the conditions of plating, the arbitrary conditions which can be controlled to the composition range of Claim 5 can be used.
For the plating method, barrel plating or rack plating can be used as appropriate.However, when the rare earth permanent magnet to be plated has a ring shape, the current is less likely to concentrate on the outer diameter of the ring, and the film thicknesses of the outer diameter portion and inner diameter portion are reduced. Rack plating is desirable because it is easy to make uniform. Current density type plating solution SnCu alloy plating, barrel plating, can be appropriately selected by methods of the rack plating plating, 0.1 A / dm is preferably 2 or more 10A / dm 2 or less, 0.5A / dm 2 or more 5A / Dm 2 or less is more preferable.

接着性の良さを知る指標の一つとして濡れ性の評価が用いられている。この評価方法は、濡れ張力試験液を用いて試験体表面の濡れ性を調べる方法であり、この指数が高いほど一般的に接着性は良くなるといわれている。本発明の希土類系永久磁石は、接着剤にて他部材と接着後、前記耐湿性試験を施しても接着強度が低下しないだけでなく、他部材と接着する前に表面が酸化した場合でも加熱処理により接着性を容易に回復することができる。本発明の希土類永久磁石に他部材を接着しないで長期間保管し、めっき皮膜表面の濡れ性が低下した状態にて、150℃×90分の加熱処理試験を施した場合、例えば、和光純薬製濡れ張力試験液を用い評価すると、その濡れ性を評価する指数は、試験前40mN/mに対して試験後73mN/mに回復することが確認された。量産時には、通常、めっき後の表面酸化を抑えるために、化成処理等や出荷時に真空保存(真空パック等)を行う等の耐酸化処理を行うことが多い。しかし、本発明の希土類系永久磁石においては、接着性保証の観点から前記加熱処理による接着性回復処理を施せば前記耐酸化処理等を必ずしもを行う必要性は無い。   Evaluation of wettability is used as one of the indexes for knowing good adhesiveness. This evaluation method is a method for examining the wettability of the surface of the specimen using a wet tension test solution, and it is said that the higher the index is, the better the adhesion is generally. The rare earth-based permanent magnet of the present invention is not only reduced in adhesive strength even if it is subjected to the moisture resistance test after being bonded to another member with an adhesive, but also heated even if the surface is oxidized before bonding to the other member. The adhesiveness can be easily recovered by the treatment. When the rare earth permanent magnet of the present invention is stored for a long time without adhering other members and the wettability of the plating film surface is lowered, a heat treatment test at 150 ° C. × 90 minutes is performed. When the evaluation was performed using the wet tension test solution, it was confirmed that the index for evaluating the wettability recovered to 73 mN / m after the test with respect to 40 mN / m before the test. In mass production, in order to suppress surface oxidation after plating, oxidation resistance treatment such as chemical conversion treatment or vacuum storage (vacuum pack etc.) is often performed at the time of shipment. However, in the rare earth permanent magnet of the present invention, it is not always necessary to perform the oxidation resistance treatment or the like if the adhesive recovery treatment by the heat treatment is performed from the viewpoint of ensuring the adhesion.

SnCu合金めっき皮膜の下地は、少なくとも1層以上のCuめっき皮膜を含む2層以上めっき皮膜である。耐食性改善の為には、Niめっき皮膜との組み合わせによる2層以上のめっき皮膜が望ましい。   The base of the SnCu alloy plating film is a two or more layers plating film including at least one layer of a Cu plating film. In order to improve corrosion resistance, a plating film having two or more layers in combination with a Ni plating film is desirable.

以下に、SnCuめっきの下地めっきの望ましい形態を示す。
Cuめっきは、ピロリン酸浴、硫酸浴、シアン浴、無電解浴などのめっき浴が選択できる。中でもピロリン酸浴による電界Cuめっきは、電気伝導性及び柔軟性、展延性に優れており、膜の付き周り性が良好である。このため、ピロリン酸浴による電気メッキはリング形状物のめっきに好適に使用できる。ここでいう膜の付き周り性とは、めっきが素材を被覆できる能力、例えば、被めっき物の凹部やリング磁石の内径部などの電流密度が低くなってしまう部分までめっきが付着する能力を示す。
またピロリン酸浴による電気めっきはセル構造がなく平滑性に優れており、この上にめっきするSnCuめっきの平滑性を保つことができる。
Below, the desirable form of the base plating of SnCu plating is shown.
For the Cu plating, a plating bath such as a pyrophosphate bath, a sulfuric acid bath, a cyan bath, and an electroless bath can be selected. Above all, electric field Cu plating using a pyrophosphoric acid bath is excellent in electrical conductivity, flexibility, and spreadability, and has good film throwing power. For this reason, electroplating with a pyrophosphoric acid bath can be used suitably for plating of a ring-shaped object. The film throwing power here refers to the ability of the plating to cover the material, for example, the ability of the plating to adhere to a portion where the current density becomes low, such as the concave portion of the object to be plated and the inner diameter portion of the ring magnet. .
Electroplating using a pyrophosphoric acid bath has no cell structure and is excellent in smoothness, and the smoothness of SnCu plating plated thereon can be maintained.

ピロリン酸Cu浴を用いた電界めっきを行う場合、さらにその下地として導電性保護層を含むことが好ましい。ピロリン酸Cu浴は浴中に遊離Cuイオンを多く含むため、R−Fe−B系磁石をピロリン酸浴に直接浸漬すると、磁石の表面を構成するFeなどの電気的に卑な金属と電気的に貴なCuとの間の置換めっき反応により、磁石の表面に密着性の悪いCu皮膜が形成される恐れがある。このためピロリン酸Cu浴によるめっき膜の下地としては、R−Fe−B系磁石体表面に直接密着性に優れためっき皮膜を形成できる、電界Niめっき膜、シアン浴による電界Cuめっき膜が望ましく、特に取り扱いが簡便で安定性に優れたNiめっき膜が望ましい。   In the case of performing electroplating using a Cu pyrophosphate bath, it is preferable to further include a conductive protective layer as an underlayer. Since the pyrophosphoric acid Cu bath contains a large amount of free Cu ions in the bath, when an R—Fe—B magnet is directly immersed in the pyrophosphoric acid bath, it is electrically connected to an electrically base metal such as Fe constituting the surface of the magnet. In addition, there is a possibility that a Cu film having poor adhesion is formed on the surface of the magnet due to a substitution plating reaction with noble Cu. For this reason, as the base of the plating film using the Cu pyrophosphate bath, an electric field Ni plating film and an electric field Cu plating film using a cyan bath that can form a plating film having excellent adhesion directly on the surface of the R-Fe-B magnet body are desirable. In particular, a Ni plating film that is easy to handle and excellent in stability is desirable.

Cuめっき膜は大気中で酸化しやすいため、Cuめっき膜の上にNiめっきをおこない、さらにSnCuめっきを行うと、耐食性の面で更に好適である。
Niめっきの場合、電気めっきであればワット浴、スルファミン酸浴、中性浴などのめっき浴を用いる。また膜厚均一性の高い無電解めっきを行う事も出来る。
また、ピロリン酸Cuめっきの上に被覆されたNiめっきは、表面の平滑性に優れ、その上に皮膜されたSnCuめっきの平滑性を保つことができるので、取り扱い時のめっき膜の脱落を抑制できる。
Niめっき、Cuめっきのめっき方法はバレルめっき、ラックめっき等、めっきするものの形状、重量、大きさによって選択すればよい。
ただし希土類永久磁石がリング形状の場合には、リングの外径に電流が集中しにくく、外径部と内径部の膜厚を均一にしやすいことからラックめっきが望ましい。
また電気めっきを選択する場合にはその電流密度はめっき液の種類、めっき方法によって決めればよく、0.1A/dm以上10A/dm以下が好ましく、0.5A/dm以上5A/dm以下が更に好ましい。
Since the Cu plating film is easily oxidized in the atmosphere, it is more preferable in terms of corrosion resistance to perform Ni plating on the Cu plating film and further to perform SnCu plating.
In the case of Ni plating, a plating bath such as a watt bath, a sulfamic acid bath, or a neutral bath is used for electroplating. Also, electroless plating with high film thickness uniformity can be performed.
In addition, Ni plating coated on Cu pyrophosphate plating has excellent surface smoothness and can maintain the smoothness of SnCu plating coated on it, thus preventing the plating film from falling off during handling. it can.
The plating method for Ni plating and Cu plating may be selected depending on the shape, weight, and size of the object to be plated, such as barrel plating or rack plating.
However, when the rare earth permanent magnet has a ring shape, rack plating is desirable because current hardly concentrates on the outer diameter of the ring and the film thickness of the outer diameter portion and the inner diameter portion can be made uniform.
The type of current density plating solution when selecting the electroplating, may be determined by the plating method, 0.1 A / dm 2 or more 10A / dm 2 or less is preferable, 0.5A / dm 2 or more 5A / dm 2 or less is more preferable.

なお、SnCuめっきの下地めっきは少なくとも1層以上のCuめっきを含み2層以上であればその構成は任意であり、実施例の構成に限定されない。   In addition, if the base plating of SnCu plating includes at least one layer of Cu plating and has two or more layers, the configuration thereof is arbitrary and is not limited to the configuration of the example.

磁石のめっき前処理としては任意の方法を用いることができ、硝酸と他の酸の混酸、硫酸、塩酸、有機酸等、また電解エッチングも選択できる。   Arbitrary methods can be used as pre-plating treatment of the magnet, and mixed acid of nitric acid and other acids, sulfuric acid, hydrochloric acid, organic acid, etc., and electrolytic etching can also be selected.

本発明はめっきが可能な磁石であれば公知の希土類系永久磁石全てに適用できる。例えば、焼結磁石にも、ボンド磁石にも適用できる。また、その組成はR−Fe−B系永久磁石にこだわらず、R−Co系永久磁石にも、R−Fe−N系永久磁石にも適用できる。   The present invention can be applied to all known rare earth permanent magnets as long as they can be plated. For example, it can be applied to both sintered magnets and bonded magnets. Moreover, the composition is applicable not only to R—Fe—B permanent magnets but also to R—Co permanent magnets and R—Fe—N permanent magnets.

R−Fe−B系永久磁石の粉末冶金法での製造方法について述べる。その組成は、例えば、主要成分のRとFeとBの合計を100mass%として、R:24mass%以上34mass%以下(RはYを含む希土類元素の少なくとも1種であり、Nd,Dy及びPrの少なくとも1種を必ず含む)、B:0.6mass%以上1.8mass%以下、Fe:残部の組成が挙げられる。Feはその一部がCoで置換されていても良く、また、3mass%以下程度のAl、Si、Cu、Ga、Nb、Mo、Wなどの添加元素を含んでいても良い。
R:24mass%未満では、磁気特性の内、残留磁束密度B、保磁力HcJが低下する。また34mass%超では焼結体内部の希土類に富む相の量が多くなり、且つ形態も粗大化して耐食性が低下する。B:0.6mass%未満の場合、主相であるRFe14B相の形成に必要なB量が不足し、軟磁性的な性質を有するRFe14相が生成し保持力が低下する。一方B量が1.8mass%を超えると、非磁性相であるBに富む相が増加して残留磁束密度Brが低下する。
A method for producing an R—Fe—B permanent magnet by powder metallurgy will be described. The composition is, for example, R: 24 mass% or more and 34 mass% or less (R is at least one kind of rare earth elements including Y, and the total of R, Fe, and B as the main components is Nd, Dy, and Pr. At least one kind is necessarily included), B: 0.6 mass% to 1.8 mass%, Fe: the balance. Fe may be partially substituted with Co, and may contain additive elements such as Al, Si, Cu, Ga, Nb, Mo, and W of about 3 mass% or less.
When R is less than 24 mass%, the residual magnetic flux density B r and the coercive force H cJ are reduced among the magnetic characteristics. On the other hand, if it exceeds 34 mass%, the amount of rare earth-rich phase inside the sintered body increases, and the form becomes coarse and the corrosion resistance decreases. B: When less than 0.6 mass%, the amount of B necessary for forming the main phase R 2 Fe 14 B phase is insufficient, and the R 2 Fe 14 phase having soft magnetic properties is generated and the holding power is reduced. To do. On the other hand, when the amount of B exceeds 1.8 mass%, the phase rich in B which is a nonmagnetic phase increases and the residual magnetic flux density Br decreases.

粉砕は粗粉砕と微粉砕に分かれ、粗粉砕はスタンプミル、ジョークラッシャー、ブラウンミル、ディスクミル等または水素吸蔵法で行うのが好ましい。微粉砕はジェットミル、振動ミル、ボールミル等で行うのが好ましい。いずれも酸化を防ぐために、有機溶媒や不活性ガスを用いて非酸化雰囲気中で行うのが好ましい。粉砕粒度は2〜8μm(F.S.S.S.)が好ましい。2μm未満では磁粉の活性度が高いため、容易に酸化しやすい。焼結時の変形が大であり磁気特性も悪化する。8μm超では焼結後に得られる結晶粒径が大きくなり容易に磁化反転が起こり、保磁力の低下を招く。   The pulverization is divided into coarse pulverization and fine pulverization, and the coarse pulverization is preferably performed by a stamp mill, a jaw crusher, a brown mill, a disk mill or the like or a hydrogen storage method. The fine pulverization is preferably performed by a jet mill, a vibration mill, a ball mill or the like. In order to prevent oxidation, it is preferable to carry out in a non-oxidizing atmosphere using an organic solvent or an inert gas. The pulverized particle size is preferably 2 to 8 μm (FSSS). If it is less than 2 μm, the activity of the magnetic powder is high, so that it is easily oxidized. Deformation during sintering is large and magnetic properties are also deteriorated. If it exceeds 8 μm, the crystal grain size obtained after sintering becomes large and magnetization reversal occurs easily, leading to a decrease in coercive force.

成形は磁場中で行う。
磁場強度は159kA/m以上が好ましく、より好ましくは239kA/m以上が好ましい。159kA/m未満では磁粉の配向が不十分であり、必要な磁気特性が得られない。成形圧は0.5〜2ton/cmが望ましい。0.5ton/cm未満では成形体の強度が弱く、こわれやすい。また2ton/cm超では磁粉の配向が乱れ、磁気特性が低下する。焼結は、真空又はアルゴン雰囲気中で1000〜1150℃で行うのが好ましい。1000℃未満では焼結不足により、必要とされる密度が得られず磁気特性が低下する。1150℃超では過焼結により、変形や磁気特性の低下が発生する。
焼結の後、熱処理及び加工を行う。なお加工は熱処理の前に行うこともできる。
Molding is performed in a magnetic field.
The magnetic field strength is preferably 159 kA / m or more, more preferably 239 kA / m or more. If it is less than 159 kA / m, the orientation of the magnetic powder is insufficient, and the necessary magnetic properties cannot be obtained. The molding pressure is preferably 0.5 to 2 ton / cm 2 . If it is less than 0.5 ton / cm 2 , the strength of the compact is weak and easily broken. On the other hand, if it is more than 2 ton / cm 2 , the orientation of the magnetic powder is disturbed and the magnetic properties are deteriorated. Sintering is preferably performed at 1000 to 1150 ° C. in a vacuum or argon atmosphere. If it is less than 1000 ° C., the required density cannot be obtained due to insufficient sintering, and the magnetic properties are deteriorated. Above 1150 ° C, oversintering causes deformation and deterioration of magnetic properties.
After sintering, heat treatment and processing are performed. The processing can also be performed before the heat treatment.

以下、本発明を実施例によってさらに詳細に説明する。なお、本発明はこれに限定して解釈されるものではない。
〈磁石の作製〉
(実施例1)
公知の方法により、(Nd,Dy)2(Fe)14B型金属間化合物を主相とするNd−Dy−Fe−Al−B系焼結磁石体を作製した。この焼結磁石体の室温における磁気特性はB=1.2T(12kG)、HcJ=1989kA/m(25kOe)、(BH)max=280kJ/m3(35MGOe)であった。次に前記焼結磁石体を30mm×15mm×3mmの直方体形状に加工後、バレル研磨を施した。
前記研磨後の焼結磁石体を水溶性防錆剤に浸漬後、約60℃に加温して乾燥した。こうして得られた試料についてめっき前処理として5vol%の硝酸による第1前処理、その後過酸化水素10vol%、酢酸25vol%の混酸による第2前処理を行い、その後以下の順でNi−Cu−Ni3層めっき皮膜を成膜した。
[1層目Niめっき皮膜]
めっき浴:ワット浴(硫酸Ni300g/L、塩化Ni50g/L、ホウ酸50g/L)
浴温:50℃
電流密度:1A/dm2
膜厚:3μm 成膜後水洗。
[2層目Cuめっき皮膜]
めっき浴:ピロリン酸Cu浴(ピロリン酸Cu80g/L、金属Cu30g/L、ピロリン酸カリウム300g/L、アンモニア2ml/L、光沢剤(奥野製薬ピロトップPC)1ml/L)
浴温:55℃
電流密度:1A/dm2
膜厚:7μm 成膜後水洗。
[3層目Niめっき皮膜]
めっき浴:ワット浴(硫酸Ni300g/L、塩化Ni50g/L、ホウ酸50g/L、光沢剤(サッカリン系)10ml/L)
浴温:50℃
電流密度:1A/dm2
膜厚5μm 成膜後水洗。
以上のようにして成膜したNi−Cu−Ni3層めっき皮膜を有する焼結磁石体表面に、以下の条件でSnCu合金めっき皮膜を成膜し、本発明の希土類系永久磁石を得た。
SnCuめっき浴:ピロリン酸第一スズ20g/L、ピロリン酸Cu10g/L、 ピロリン酸カリウム180g/L、光沢剤、カチオン界面活性剤、表面張力調整剤、浴安定剤等添加
浴温:20℃
電流密度:1A/dm2
膜厚1μm 成膜後水洗乾燥。
SnCuの組成はCu:Sn=55:45mass%であった。
Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not construed as being limited to this.
<Production of magnet>
(Example 1)
By a known method, an Nd-Dy-Fe-Al-B based sintered magnet body having (Nd, Dy) 2 (Fe) 14 B type intermetallic compound as a main phase was produced. The magnetic properties of this sintered magnet body at room temperature were B r = 1.2 T (12 kG), H cJ = 1989 kA / m (25 kOe), (BH) max = 280 kJ / m 3 (35 MGOe). Next, the sintered magnet body was processed into a rectangular parallelepiped shape of 30 mm × 15 mm × 3 mm and then subjected to barrel polishing.
The polished sintered magnet body was dipped in a water-soluble rust preventive, heated to about 60 ° C. and dried. The sample thus obtained was subjected to a first pretreatment with 5 vol% nitric acid as a pretreatment for plating, followed by a second pretreatment with a mixed acid of 10 vol% hydrogen peroxide and 25 vol% acetic acid, and then Ni—Cu—Ni3 in the following order. A layer plating film was formed.
[1st layer Ni plating film]
Plating bath: Watt bath (Ni sulfate 300g / L, Ni chloride 50g / L, Boric acid 50g / L)
Bath temperature: 50 ° C
Current density: 1 A / dm 2
Film thickness: 3 μm Washed with water after film formation.
[Second layer Cu plating film]
Plating bath: Cu pyrophosphate (Cu pyrophosphate Cu 80 g / L, metal Cu 30 g / L, potassium pyrophosphate 300 g / L, ammonia 2 ml / L, brightener (Okuno Pharmaceutical Pyrotop PC) 1 ml / L)
Bath temperature: 55 ° C
Current density: 1 A / dm 2
Film thickness: 7 μm Washed with water after film formation.
[3rd layer Ni plating film]
Plating bath: Watt bath (Ni sulfate 300g / L, Ni chloride 50g / L, Boric acid 50g / L, Brightener (saccharin) 10ml / L)
Bath temperature: 50 ° C
Current density: 1A / dm 2
Thickness 5 μm Washed with water after film formation.
An SnCu alloy plating film was formed on the surface of the sintered magnet body having the Ni—Cu—Ni three-layer plating film formed as described above under the following conditions to obtain the rare earth permanent magnet of the present invention.
SnCu plating bath: stannous pyrophosphate 20 g / L, Cu pyrophosphate 10 g / L, potassium pyrophosphate 180 g / L, brightener, cationic surfactant, surface tension modifier, bath stabilizer, etc. Bath temperature: 20 ° C.
Current density: 1 A / dm 2
Thickness 1 μm Washed and dried after film formation.
The composition of SnCu was Cu: Sn = 55: 45 mass%.

(実施例2)
SnCuの膜厚を0.1μmとした以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(Example 2)
A rare earth-based permanent magnet having a multilayer plating film was prepared in the same manner as in Example 1 except that the thickness of SnCu was 0.1 μm.

(実施例3)
SnCuの膜厚を0.2μmとした以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(Example 3)
A rare earth-based permanent magnet having a multilayer plating film was prepared in the same manner as in Example 1 except that the thickness of SnCu was 0.2 μm.

(実施例4)
SnCuの膜厚を2μmとした以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
Example 4
A rare earth-based permanent magnet having a multilayer plating film was prepared in the same manner as in Example 1 except that the thickness of SnCu was 2 μm.

(実施例5)
SnCuの膜厚を3μmとした以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(Example 5)
A rare earth permanent magnet having a multilayer plating film was produced in the same manner as in Example 1 except that the thickness of SnCu was 3 μm.

(実施例6)
実施例1で使用したものと同じ焼結磁石体に対し、実施例1と同じ方法で前処理を施し、実施例1と同じ方法で1層目のNiめっき皮膜を成膜し、その後膜厚を12μmとしたこと以外は実施例1と同じ方法で2層目のCuめっき皮膜を成膜してNi−Cu2層めっき皮膜を有する希土類系永久磁石を作製した。
以上のようにして成膜したNi−Cu2層めっき皮膜を有する焼結磁石体表面に、実施例1と同じ条件でSnCu合金めっき皮膜を成膜し、本発明の希土類系永久磁石を得た。
(Example 6)
The same sintered magnet body as used in Example 1 is pretreated by the same method as in Example 1, and the first Ni plating film is formed by the same method as in Example 1, and then the film thickness is increased. A rare earth-based permanent magnet having a Ni—Cu two-layer plating film was produced by forming a second-layer Cu plating film by the same method as in Example 1 except that the thickness was set to 12 μm.
An SnCu alloy plating film was formed on the surface of the sintered magnet body having the Ni—Cu bilayer plating film formed as described above under the same conditions as in Example 1 to obtain the rare earth permanent magnet of the present invention.

(実施例7)
実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作成した後、第三リン酸ソーダ10g/L溶液に3分間浸漬し、水洗、乾燥した。
(Example 7)
A rare earth permanent magnet having a multilayer plating film was prepared in the same manner as in Example 1, and then immersed in a solution of 10 g / L of sodium tertiary phosphate for 3 minutes, washed with water and dried.

(実施例8)
実施例1と同じ方法で、Ni−Cu−Ni3層めっき皮膜を成膜し、その後、
10vol%塩酸に浸漬、水洗した。
以上のようにして成膜したNi−Cu−Ni3層めっき皮膜を有する焼結磁石体表面に、実施例1と同じ条件でSnCu合金めっき皮膜を成膜し、本発明の希土類系永久磁石を得た。
(Example 8)
In the same manner as in Example 1, a Ni—Cu—Ni three-layer plating film was formed, and then
It was immersed in 10 vol% hydrochloric acid and washed with water.
On the surface of the sintered magnet body having the Ni—Cu—Ni three-layer plating film formed as described above, a SnCu alloy plating film was formed under the same conditions as in Example 1 to obtain the rare earth permanent magnet of the present invention. It was.

(実施例9)
SnCuめっきの液組成を調整し膜組成 Cu:Sn=65:35mass%としたこと以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
Example 9
A rare earth-based permanent magnet having a multilayer plating film was prepared in the same manner as in Example 1 except that the liquid composition of SnCu plating was adjusted to be film composition Cu: Sn = 65: 35 mass%.

(実施例10)
SnCuめっきの液組成を調整し膜組成 Cu:Sn=45:55mass%としたこと以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(Example 10)
A rare earth-based permanent magnet having a multilayer plating film was produced in the same manner as in Example 1 except that the liquid composition of SnCu plating was adjusted so that the film composition was Cu: Sn = 45: 55 mass%.

(実施例11)
実施例1と同じ方法で、Ni−Cu−Ni3層めっき皮膜を成膜し、その後、
10vol%硫酸に浸漬、水洗した。
以上のようにして成膜したNi−Cu−Ni3層めっき皮膜を有する焼結磁石体表面に、実施例1と同じ条件でSnCu合金めっき皮膜を成膜し、本発明の希土類系永久磁石を得た
Example 11
In the same manner as in Example 1, a Ni—Cu—Ni three-layer plating film was formed, and then
It was immersed in 10 vol% sulfuric acid and washed with water.
On the surface of the sintered magnet body having the Ni—Cu—Ni three-layer plating film formed as described above, a SnCu alloy plating film was formed under the same conditions as in Example 1 to obtain the rare earth permanent magnet of the present invention. The

(実施例12)
実施例1と同じ方法で、Ni−Cu−Ni3層めっき皮膜を成膜し、その後、水で希釈し、pHを1.3に調整したポリリン酸に浸漬した。その後水洗しないでSnCuめっきを行った以外は、実施例1と同じ条件でSnCu合金めっき皮膜を成膜し、本発明の希土類系永久磁石を得た。
Example 12
In the same manner as in Example 1, a Ni—Cu—Ni three-layer plating film was formed, then diluted with water and immersed in polyphosphoric acid adjusted to pH 1.3. Thereafter, an SnCu alloy plating film was formed under the same conditions as in Example 1 except that the SnCu plating was performed without washing with water to obtain the rare earth permanent magnet of the present invention.

(比較例1)
SnCuの膜厚を5μmとした以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(Comparative Example 1)
A rare earth permanent magnet having a multilayer plating film was produced in the same manner as in Example 1 except that the thickness of SnCu was 5 μm.

(比較例2)
実施例1と同じ方法でNi−Cu−Ni3層めっき皮膜を有する希土類系永久磁石を作製し、10vol%の硫酸で洗浄、水洗し、さらに10mass%の苛性ソーダで洗浄、水洗、その後乾燥した。
(Comparative Example 2)
A rare earth permanent magnet having a Ni—Cu—Ni three-layer plating film was prepared in the same manner as in Example 1, washed with 10 vol% sulfuric acid, washed with water, further washed with 10 mass% caustic soda, washed with water, and then dried.

(比較例3)
SnCuめっきの液組成を調整し膜組成Cu:Sn=80:20mass%としたこと以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。Cuの比率が高いので変色を防止するため、ベンゾトリアゾールで防錆処理を行った。
(Comparative Example 3)
A rare earth permanent magnet having a multilayer plating film was produced in the same manner as in Example 1 except that the liquid composition of SnCu plating was adjusted to make the film composition Cu: Sn = 80: 20 mass%. Since the ratio of Cu is high, rust prevention treatment was performed with benzotriazole in order to prevent discoloration.

(比較例4)
SnCuめっきの液組成を調整し膜組成Cu:Sn=30:70mass%としたこと以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(Comparative Example 4)
A rare earth-based permanent magnet having a multilayer plating film was produced in the same manner as in Example 1 except that the liquid composition of SnCu plating was adjusted so that the film composition was Cu: Sn = 30: 70 mass%.

(比較例5)
SnCuめっきの液組成を調整し膜組成 Cu:Sn=10:90mass%としたこと以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(Comparative Example 5)
A rare earth-based permanent magnet having a multilayer plating film was produced in the same manner as in Example 1 except that the liquid composition of SnCu plating was adjusted so that the film composition was Cu: Sn = 10: 90 mass%.

(比較例6)
実施例1で使用したものと同じ焼結磁石体に対し、実施例1と同じ方法で前処理を施し、実施例1と同じ方法で1層目のNiめっき皮膜を成膜し、膜厚を12μmとしたこと以外は実施例1と同じ方法で2層目のCuめっき皮膜を成膜して、Ni−Cu2層めっき皮膜を有する希土類系永久磁石を作製した。
その後、10vol%の硫酸で洗浄、水洗後、ベンゾトリアゾールにて防錆処理を行った。
(Comparative Example 6)
The same sintered magnet body as used in Example 1 was pretreated by the same method as in Example 1, and the first Ni plating film was formed in the same manner as in Example 1, and the film thickness was increased. A second-layer Cu plating film was formed in the same manner as in Example 1 except that the thickness was 12 μm, and a rare earth permanent magnet having a Ni—Cu two-layer plating film was produced.
Thereafter, it was washed with 10 vol% sulfuric acid, washed with water, and then subjected to rust prevention treatment with benzotriazole.

(比較例7)
実施例1と同じ方法で、Ni−Cu−Ni3層めっき皮膜を成膜し、その後、3g/Lの蓚酸溶液(20℃)に3分間浸漬し、水洗後乾燥した。
(Comparative Example 7)
A Ni—Cu—Ni three-layer plating film was formed in the same manner as in Example 1, and then immersed in a 3 g / L oxalic acid solution (20 ° C.) for 3 minutes, washed with water and dried.

(比較例8)
SnCuめっきの液組成を調整し膜組成 Cu:Sn=67:33mass%としたこと以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。出来上がった膜は銅の成分が多く、色調が黄銅色であったため、10vol%の硫酸で洗浄、水洗後、ベンゾトリアゾールにて防錆処理を行った。
(Comparative Example 8)
A rare earth-based permanent magnet having a multilayer plating film was produced in the same manner as in Example 1 except that the liquid composition of SnCu plating was adjusted so that the film composition was Cu: Sn = 67: 33 mass%. Since the completed film had many copper components and the color tone was brass, it was washed with 10 vol% sulfuric acid, washed with water, and then subjected to rust prevention treatment with benzotriazole.

(比較例9)
SnCuめっきの液組成を調整し膜組成 Cu:Sn=40:60mass%としたこと以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(Comparative Example 9)
A rare earth-based permanent magnet having a multilayer plating film was produced in the same manner as in Example 1 except that the liquid composition of SnCu plating was adjusted to be film composition Cu: Sn = 40: 60 mass%.

(比較例10)
SnCuの膜厚を3.5μmとした以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(Comparative Example 10)
A rare earth permanent magnet having a multilayer plating film was produced in the same manner as in Example 1 except that the thickness of SnCu was 3.5 μm.

(比較例11)
SnCuの膜厚を4μmとした以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(Comparative Example 11)
A rare earth-based permanent magnet having a multilayer plating film was produced in the same manner as in Example 1 except that the thickness of SnCu was 4 μm.

(比較例12)
SnCuの膜厚を0.05μmとした以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(Comparative Example 12)
A rare earth-based permanent magnet having a multilayer plating film was produced in the same manner as in Example 1 except that the thickness of SnCu was 0.05 μm.

(比較例13)
実施例1と同じ方法で、Ni−Cu−Ni3層めっき皮膜を成膜し、その後、
100g/L苛性ソーダに浸漬、水洗した。
以上のようにして成膜したNi−Cu−Ni3層めっき皮膜を有する焼結磁石体表面に、実施例1と同じ条件でSnCu合金めっき皮膜を成膜し、本発明の希土類系永久磁石を得た
(Comparative Example 13)
In the same manner as in Example 1, a Ni—Cu—Ni three-layer plating film was formed, and then
It was immersed in 100 g / L caustic soda and washed with water.
On the surface of the sintered magnet body having the Ni—Cu—Ni three-layer plating film formed as described above, a SnCu alloy plating film was formed under the same conditions as in Example 1 to obtain the rare earth permanent magnet of the present invention. The

〈接着性試験〉
実施例1〜実施例12、比較例1〜比較例13で作製した磁石を、シリコーン系接着剤(東レ・ダウコーニング製SE1750:付加反応型のシリコーン系接着剤)を用いてSUS304製のヨークに接着して接合構造体を作製した。硬化条件は、150℃×90分(温度は接触型温度計で磁石温度を測定)で、1条件につき各10ケの接合構造体を作製した。そのうち、5ケは接着直後に圧縮せん断強度を測定し、残りの5ケは高温高湿80℃×90%×24時間の耐湿性試験後に圧縮せん断強度を測定(いずれの接合構造体も室温に戻った状態にて圧縮せん断強度を測定)した。圧縮せん断強度はTOYO BALDWIN(TENSILON UTM−I−5000C)を用いて測定した。圧縮速度は1.5mm/minとした。また試験後の剥離面の接着剤の状態、および、試験に伴う取扱傷の発生有無について目視観察した。試験結果を表1に示した。なお、表中の接着強度(圧縮せん断強度)は各5ケの測定値の平均値を示す。
実施例1〜11については接着直後も耐湿性試験後も良好な接着強度を示し、又接着剤の剥離も全面凝集破壊となったことから、本発明の希土類系永久磁石は、接着剤を用いて他部材と接着後に耐湿性試験を行っても、接着強度の低下が少ないことがわかった。
また試験後に、試験に供したほかの部分(接着面以外)に傷は発生していなかった。
比較例1については膜の脆性が高く、接着後も耐湿試験後もSnCu膜が破壊されSnCu膜の部分的剥離が見られた。
比較例2,3は、接着直後の接着強度は高く、剥離モードも凝集破壊となったが、耐湿試験後は強度が急激に低下し、接着剤が磁石表面に残っていない界面剥離となった。比較例4,5、9については接着性については問題が無かったが、接着等のハンドリングによる傷が発生した。このような傷は皮膜の破損や寸法精度の低下を招く等、希土類系永久磁石の製品価値を落とすこととなり、量産上の取扱いを煩雑とする要因となる。比較例6,7、8は接着直後の接着強度は高く、剥離モードも凝集破壊となったが、耐湿性試験後は接着強度が低下し、接着剤が磁石側に残らない、界面剥離となった。
比較例10,11については接着直後および耐湿試験後の接着強度が低く膜の部分的な剥離が見られた。
比較例12については、接着直後の接着強度は高く、剥離も凝集破壊となったが耐湿試験後は磁石側の界面剥離となり接着強度は低下した。SnCuの膜厚が0.05μmでは接着性向上の効果は認められなかった。
比較例13については、接着直後の接着強度試験でに1/5ヶ、SnCuめっきの部分的な剥離が見られた。耐湿試験は2/5ヶにSnCuめっきの部分的な剥離が見られた。
SnCuめっき前の苛性ソーダによる処理の残差が残ったまま、めっきされたため、密着性の悪い皮膜が出来たためと考えられる。
<Adhesion test>
Magnets produced in Examples 1 to 12 and Comparative Examples 1 to 13 were applied to a yoke made of SUS304 using a silicone adhesive (SE1750 manufactured by Toray Dow Corning: an addition reaction type silicone adhesive). A bonded structure was produced by bonding. Curing conditions were 150 ° C. × 90 minutes (the temperature was measured with a contact-type thermometer), and 10 bonded structures were produced for each condition. Of these, 5 were measured for compressive shear strength immediately after bonding, and the remaining 5 were measured for compressive shear strength after a high temperature and high humidity 80 ° C. × 90% × 24 hour humidity resistance test (both bonded structures at room temperature). The compression shear strength was measured in the returned state). The compressive shear strength was measured using TOYO BALDWIN (TENSILON UTM-I-5000C). The compression speed was 1.5 mm / min. Further, the state of the adhesive on the peeled surface after the test and the presence / absence of handling scratches accompanying the test were visually observed. The test results are shown in Table 1. In the table, the adhesive strength (compressive shear strength) is an average value of the measured values of 5 pieces each.
About Examples 1-11, since the adhesive strength showed favorable adhesive strength immediately after adhesion | attachment and after a moisture resistance test, and peeling of an adhesive agent also became the whole surface cohesive failure, the rare earth-type permanent magnet of this invention uses an adhesive agent. Thus, it was found that even when a moisture resistance test was performed after bonding with another member, the decrease in the bonding strength was small.
In addition, after the test, no scratch was generated in other parts (excluding the adhesive surface) subjected to the test.
In Comparative Example 1, the film was highly brittle, and the SnCu film was broken after the adhesion and the moisture resistance test, and partial peeling of the SnCu film was observed.
In Comparative Examples 2 and 3, the adhesive strength immediately after bonding was high, and the peeling mode was also cohesive failure, but after the moisture resistance test, the strength decreased sharply, resulting in interfacial peeling with no adhesive remaining on the magnet surface. . In Comparative Examples 4, 5, and 9, there was no problem with adhesiveness, but scratches due to handling such as adhesion occurred. Such a flaw reduces the product value of the rare earth permanent magnet, for example, causes damage to the film or lowers the dimensional accuracy, and causes a complicated handling in mass production. In Comparative Examples 6, 7, and 8, the adhesive strength immediately after bonding was high, and the peeling mode was also cohesive failure, but the adhesive strength decreased after the moisture resistance test, and no adhesive remained on the magnet side, resulting in interfacial peeling. It was.
In Comparative Examples 10 and 11, the adhesive strength was low immediately after bonding and after the moisture resistance test, and partial peeling of the film was observed.
As for Comparative Example 12, the adhesive strength immediately after bonding was high, and peeling also resulted in cohesive failure. However, after the moisture resistance test, the peeling was due to interface peeling on the magnet side, and the adhesive strength was lowered. When the film thickness of SnCu was 0.05 μm, the effect of improving the adhesiveness was not recognized.
About Comparative Example 13, 1/5 pieces and partial peeling of SnCu plating were observed in the adhesion strength test immediately after bonding. In the moisture resistance test, partial peeling of SnCu plating was observed in 2/5 pieces.
It is thought that a film with poor adhesion was formed because the plating was performed while the residual of the treatment with caustic soda before SnCu plating remained.

Figure 0004363480
Figure 0004363480

(実施例13)
公知の方法で、(Nd,Dy)2(Fe)14B型金属間化合物を主相とするNd−Dy−Fe−Al−B系のラジアル配向を持つリング型焼結磁石体を作成した。この永久磁石体の室温における磁気特性はBr=1.2T(12kG),Hcj=1989kA/m(25kOe),(BH)max=280kJ/m3(35MGOe)であった。
前記リング型焼結磁石体に加工を施し外径40mm×内径33mm×高さ13.5mmの磁石素材を得た。防錆剤に浸漬し乾燥後、実施例1と同じ条件でめっきを施し、Ni−Cu−Ni3層めっき皮膜の上層にSnCu合金めっき皮膜を有するリング型焼結磁石体を得た。SnCu合金めっき皮膜の膜厚については、磁石の内径部分を測定した。
(Example 13)
A ring-type sintered magnet body having a radial orientation of Nd—Dy—Fe—Al—B system having (Nd, Dy) 2 (Fe) 14 B type intermetallic compound as a main phase was prepared by a known method. The magnetic properties of this permanent magnet body at room temperature were Br = 1.2T (12 kG), Hcj = 1989 kA / m (25 kOe), (BH) max = 280 kJ / m 3 (35 MGOe).
The ring-type sintered magnet body was processed to obtain a magnet material having an outer diameter of 40 mm, an inner diameter of 33 mm, and a height of 13.5 mm. After dipping in an antirust agent and drying, plating was performed under the same conditions as in Example 1 to obtain a ring-type sintered magnet body having a SnCu alloy plating film on the Ni-Cu-Ni three-layer plating film. About the film thickness of the SnCu alloy plating film, the inner diameter part of the magnet was measured.

上記リング型焼結磁石体の内径部分に、それぞれ直径32.9mmのSUS304製の接着強度測定用ヨークを接着し、10ヶの本発明の接合構造体を作製した。 この接合構造体はシリコーン系接着剤(東レ・ダウコーニング製 SE1750)を用い150℃×90分加熱硬化した。
接着剤として加熱硬化型のエポキシ系接着剤を用い150℃×90分加熱硬化を行った以外は実施例13と同じ接合構造体を作製し、比較例14とした。
硬化後それぞれの接合構造体を目視確認したところ、実施例13についてはリング型焼結磁石体に割れは発生していなかったが、比較例14については線膨張係数の差から割れが発生していた。目視結果を表2に示した。
実施例13の接合構造体のうち、5ケは接着直後に圧縮せん断強度を測定した。残りの5ケは高温高湿80℃×90%×24時間の耐湿性試験後に圧縮せん断強度を測定した。なお、圧縮せん断強度はTOYO BALDWIN(TENSILON UTM−I−5000C)を用いて測定した。圧縮速度は1.5mm/minとした。また試験後の剥離面の接着剤の状態について観察した。
圧縮せん断強度の測定はリング型焼結磁石体のみを固定する図1に示す接着強度測定治具3に前記リング型焼結磁石体2と接着強度測定用ヨーク1とからなる接合構造体を載置し図2の様に白抜き矢印方向に所定圧力を加えて行った。その結果、上記耐湿性試験後にも接着強度の低下は少なく、剥離面は接着剤の凝集破壊面となっていた。なお、表中の接着強度(圧縮せん断強度)は各5ケの測定値の平均値を示す。
SUS304 adhesive strength measuring yokes made of SUS304 each having a diameter of 32.9 mm were bonded to the inner diameter portion of the ring-shaped sintered magnet body, thereby producing 10 bonded structures of the present invention. This bonded structure was heat-cured at 150 ° C. for 90 minutes using a silicone-based adhesive (SE1750 manufactured by Toray Dow Corning).
The same bonded structure as in Example 13 was produced except that a heat-curable epoxy adhesive was used as the adhesive and heat-cured at 150 ° C. for 90 minutes to obtain Comparative Example 14.
When each bonded structure was visually confirmed after curing, no cracks occurred in the ring-type sintered magnet body in Example 13, but cracks occurred in Comparative Example 14 due to the difference in linear expansion coefficient. It was. The visual results are shown in Table 2.
Of the bonded structures of Example 13, five were measured for compressive shear strength immediately after bonding. The remaining five samples were measured for compressive shear strength after a high temperature and high humidity 80 ° C. × 90% × 24 hour humidity resistance test. In addition, the compressive shear strength was measured using TOYO BALDWIN (TENSILON UTM-I-5000C). The compression speed was 1.5 mm / min. Moreover, it observed about the state of the adhesive agent of the peeling surface after a test.
The compressive shear strength is measured by mounting a bonded structure comprising the ring-type sintered magnet body 2 and the adhesive strength measuring yoke 1 on an adhesive strength measuring jig 3 shown in FIG. 1 for fixing only the ring-type sintered magnet body. As shown in FIG. 2, a predetermined pressure was applied in the direction of the white arrow. As a result, even after the moisture resistance test, the decrease in the adhesive strength was small, and the peeled surface was a cohesive failure surface of the adhesive. In the table, the adhesive strength (compressive shear strength) is an average value of the measured values of 5 pieces each.

Figure 0004363480
Figure 0004363480

(実施例14)
実施例13と同じ接合構造体を更に5ケ作製し、80℃×90%×1000時間の耐湿性試験に供した後、上記と同じ圧縮せん断強度を測定した。
上記耐湿性試験に供した接合構造体の接着強度(5ケの圧縮せん断強度測定値の平均値)は4.3MPaであり、実施例12にて測定した耐湿性試験(80℃×90%×24時間)後の接着強度4.8MPaと比較してもその接着強度の低下は軽微であった。また剥離した面の接着剤の剥離モードを確認したが、全てのサンプルについて、接着剤の凝集破壊であった。
また上記耐湿試験後の希土類系永久磁石は、めっき膜の剥離、めっき膜のふくれ等が観察されず良好な耐食性を示した。
(Example 14)
Five additional bonded structures identical to Example 13 were prepared and subjected to a moisture resistance test of 80 ° C. × 90% × 1000 hours, and then the same compressive shear strength as above was measured.
The joint structure subjected to the moisture resistance test had an adhesive strength (average value of 5 measured values of compression shear strength) of 4.3 MPa, and the moisture resistance test (80 ° C. × 90% ×) measured in Example 12. Compared with the adhesive strength of 4.8 MPa after 24 hours), the decrease in the adhesive strength was slight. Moreover, although the peeling mode of the adhesive on the peeled surface was confirmed, it was cohesive failure of the adhesive for all samples.
In addition, the rare earth permanent magnet after the moisture resistance test showed good corrosion resistance without observing peeling of the plating film or swelling of the plating film.

(実施例15)
公知の方法で、(Nd,Dy)2(Fe)14B型金属間化合物を主相とするNd−Dy−Fe−Al−B系のラジアル配向を持つリング型焼結磁石体を作成した。この永久磁石体の室温における磁気特性はBr=1.2T(12kG),Hcj=1989kA/m(25kOe),(BH)max=280kJ/m3(35MGOe)であった。
前記リング型焼結磁石体に加工を施し外径40mm×内径33mm×高さ13.5mmの磁石素材を得た。防錆剤に浸漬し乾燥後、実施例1と同じ条件でめっきを施し、Ni−Cu−Ni3層めっき皮膜(各層の膜厚は実施例1と同じ)の上層に膜厚1μmのSnCu合金めっき皮膜を有するリング型焼結磁石体を得た。SnCu合金めっき皮膜の膜厚については、磁石の内径部分を測定した。
前記リング型焼結磁石体を30℃×70%×500時間の耐湿性試験に供した後、リング型焼結磁石体の内径部分に、それぞれ直径32.9mmのSUS304製の接着強度測定用ヨークを接着し、10ヶの本発明の接合構造体を作製した。この接合構造体はシリコーン系接着剤(東レ・ダウコーニング製 SE1750)を用い150℃×90分加熱硬化した。
30℃×70%は熊谷市における2004年〜2006年までの6月から8月までの平均気温と平均湿度 25.4℃、70.6%から決定した。
0時間から500時間経過までのSnCuめっきの表面酸化の変化を図3に示した。
接着後について5ヶ、80℃×90%×24時間の耐湿試験後に5ヶそれぞれ圧縮せん断強度を測定した。
せん断強度の測定結果は5ヶの平均とした。
その結果、接着後のせん断強度は4.9Mpaであった。耐湿試験後のせん断強度は4.8Mpaであり、せん断強度の低下はほとんど無かった。目視確認の結果、剥離面は接着後についても、耐湿試験後についても接着剤の全面凝集破壊となった。
前記リング型焼結磁石体について30℃×70%×0時間、24時間、250時間、500時間経過後の表面分析をESCA(島津−850)にて分析した。
分析結果を表3に示した。
0時間から500時間まで、表面酸化が進むことはなかった。 SnCuメッキの安定した耐酸化性により腐食環境に暴露した場合にも、接着強度の低下が少ないと考えられる。
(Example 15)
A ring-type sintered magnet body having a radial orientation of Nd—Dy—Fe—Al—B system having (Nd, Dy) 2 (Fe) 14 B type intermetallic compound as a main phase was prepared by a known method. The magnetic properties of this permanent magnet body at room temperature were Br = 1.2T (12 kG), Hcj = 1989 kA / m (25 kOe), (BH) max = 280 kJ / m 3 (35 MGOe).
The ring-type sintered magnet body was processed to obtain a magnet material having an outer diameter of 40 mm, an inner diameter of 33 mm, and a height of 13.5 mm. After dipping in a rust inhibitor and drying, plating is performed under the same conditions as in Example 1, and a 1 μm thick SnCu alloy plating layer is formed on the Ni—Cu—Ni three-layer plating film (the thickness of each layer is the same as in Example 1). A ring-type sintered magnet body having a film was obtained. About the film thickness of the SnCu alloy plating film, the inner diameter part of the magnet was measured.
The ring-type sintered magnet body was subjected to a moisture resistance test at 30 ° C. × 70% × 500 hours, and then the inner diameter portion of the ring-type sintered magnet body was made of SUS304 having a diameter of 32.9 mm. Were bonded to produce 10 bonded structures of the present invention. This bonded structure was heat-cured at 150 ° C. for 90 minutes using a silicone-based adhesive (SE1750 manufactured by Toray Dow Corning).
30 ° C. × 70% was determined from the average temperature and average humidity of 25.4 ° C. and 70.6% from June to August in Kumagaya City from 2004 to 2006.
The change in the surface oxidation of the SnCu plating from 0 hour to 500 hours is shown in FIG.
After the adhesion, the compression shear strength was measured after 5 pieces and after the moisture resistance test at 80 ° C. × 90% × 24 hours.
The measurement result of the shear strength was an average of 5 pieces.
As a result, the shear strength after bonding was 4.9 Mpa. The shear strength after the moisture resistance test was 4.8 Mpa, and there was almost no decrease in the shear strength. As a result of visual confirmation, the peeled surface was a cohesive failure of the entire surface of the adhesive both after adhesion and after the moisture resistance test.
The ring-type sintered magnet body was analyzed by ESCA (Shimadzu-850) for surface analysis after 30 ° C. × 70% × 0 hour, 24 hours, 250 hours, and 500 hours.
The analysis results are shown in Table 3.
Surface oxidation did not proceed from 0 to 500 hours. Even when exposed to a corrosive environment due to the stable oxidation resistance of SnCu plating, it is considered that there is little decrease in adhesive strength.

Figure 0004363480
Figure 0004363480

(実施例16)
公知の方法で、(Nd,Dy)2(Fe)14B型金属間化合物を主相とするNd−Dy−Fe−Al−B系のラジアル配向を持つリング型焼結磁石体を作成した。この永久磁石体の室温における磁気特性はBr=1.2T(12kG),Hcj=1989kA/m(25kOe),(BH)max=280kJ/m3(35MGOe)であった。
前記リング型焼結磁石体に加工を施し外径40mm×内径33mm×高さ13.5mmの磁石素材を得た。防錆剤に浸漬し乾燥後、実施例1と同じ条件でめっきを施し、Ni−Cu−Ni3層めっき皮膜(各層の膜厚は実施例1と同じ)の上層に膜厚1μmのSnCu合金めっき皮膜を有するリング型焼結磁石体を得た。SnCu合金めっき皮膜の膜厚については、磁石の内径部分を測定した。
前記リング型焼結磁石体を80℃×90%×24時間の耐湿性試験に供した後、リング型焼結磁石体の内径部分に、それぞれ直径32.9mmのSUS304製の接着強度測定用ヨークを接着し、10ヶの本発明の接合構造体を作製した。この接合構造体はシリコーン系接着剤(東レ・ダウコーニング製 SE1750)を用い150℃×90分加熱硬化した。
接着後について5ヶ、80℃×90%×24時間の耐湿試験後に5ヶそれぞれ圧縮せん断強度を測定した。
せん断強度の測定結果は5ヶの平均とした。
その結果、接着後のせん断強度は5.0Mpaであった。耐湿試験後のせん断強度は4.9Mpaであり、せん断強度の低下はほとんど無かった。目視確認の結果、剥離面は接着後についても、耐湿試験後についても接着剤の全面凝集破壊となった。
(Example 16)
A ring-type sintered magnet body having a radial orientation of Nd—Dy—Fe—Al—B system having (Nd, Dy) 2 (Fe) 14 B type intermetallic compound as a main phase was prepared by a known method. The magnetic properties of this permanent magnet body at room temperature were Br = 1.2T (12 kG), Hcj = 1989 kA / m (25 kOe), (BH) max = 280 kJ / m 3 (35 MGOe).
The ring-type sintered magnet body was processed to obtain a magnet material having an outer diameter of 40 mm, an inner diameter of 33 mm, and a height of 13.5 mm. After dipping in a rust inhibitor and drying, plating is performed under the same conditions as in Example 1, and a 1 μm thick SnCu alloy plating layer is formed on the Ni—Cu—Ni three-layer plating film (the thickness of each layer is the same as in Example 1). A ring-type sintered magnet body having a film was obtained. About the film thickness of the SnCu alloy plating film, the inner diameter part of the magnet was measured.
After subjecting the ring-type sintered magnet body to a moisture resistance test at 80 ° C. × 90% × 24 hours, the ring-type sintered magnet body has a 32.9 mm diameter SUS304 adhesive strength measuring yoke. Were bonded to produce 10 bonded structures of the present invention. This bonded structure was heat-cured at 150 ° C. for 90 minutes using a silicone-based adhesive (SE1750 manufactured by Toray Dow Corning).
After the adhesion, the compression shear strength was measured after 5 pieces and after the moisture resistance test at 80 ° C. × 90% × 24 hours.
The measurement result of the shear strength was an average of 5 pieces.
As a result, the shear strength after bonding was 5.0 Mpa. The shear strength after the moisture resistance test was 4.9 Mpa, and there was almost no decrease in the shear strength. As a result of visual confirmation, the peeled surface was a cohesive failure of the entire surface of the adhesive both after adhesion and after the moisture resistance test.

本発明は、接着剤を用いて他部材と接着後、耐湿性試験を行っても、接着強度の低下が少ないめっき皮膜を有する希土類系永久磁石を提供できる点、特に、リング形状の磁石をシリコーン系接着剤を用いて接着した場合においても、接着時の割れも無く、長期に信頼できる接着改善効果を有する接合構造体を提供できる点において産業上の利用可能性が大である。 The present invention provides a rare earth-based permanent magnet having a plating film with little decrease in adhesive strength even when a moisture resistance test is performed after bonding to another member using an adhesive. Even in the case of bonding using a system adhesive, industrial applicability is great in that it can provide a bonded structure having a long-term reliable adhesion improving effect without cracking during bonding.

接着強度測定治具を示す上面図及び側面図Top view and side view showing adhesive strength measurement jig 圧縮せん断強度測定時の様子を示す斜視説明図Perspective explanatory view showing the state during compression shear strength measurement

符号の説明Explanation of symbols

1 接着強度測定用ヨーク
2 リング型焼結磁石体
3 接着強度測定治具
1 Yoke for measuring adhesive strength
2 Ring-type sintered magnet body
3 Adhesive strength measurement jig

Claims (7)

積層めっき皮膜を有する希土類系永久磁石であって、めっき皮膜の最表層が膜厚0.1μm以上3μm以下のSnCu合金めっき皮膜であり、前記SnCu合金めっき皮膜の組成は、Snが35mass%以上55mass%以下で残部が実質的にCuであり、前記SnCu合金めっき皮膜の下層に少なくとも1層以上のCuめっき皮膜を含む2層以上のめっき皮膜を有することを特徴とする、希土類系永久磁石。 A rare earth-based permanent magnet having a multilayer plating film, wherein the outermost layer of the plating film is a SnCu alloy plating film having a film thickness of 0.1 μm or more and 3 μm or less, and the composition of the SnCu alloy plating film is Sn 35 mass% or more and 55 mass %, And the balance is substantially Cu, and has two or more plated films including at least one Cu plated film under the SnCu alloy plated film. 前記SnCu合金めっき皮膜の上層にさらに化成処理皮膜を有することを特徴とする、請求項1に記載の希土類系永久磁石。 The rare earth-based permanent magnet according to claim 1, further comprising a chemical conversion treatment film on an upper layer of the SnCu alloy plating film. 請求項1または2記載の希土類系永久磁石にシリコーン系接着剤を介して他部材を接合した接合構造体。 A joined structure in which another member is joined to the rare earth permanent magnet according to claim 1 or 2 via a silicone adhesive. 前記希土類系永久磁石の形状がリング形状であることを特徴とする、請求項3記載の接合構造体。 The bonded structure according to claim 3, wherein the rare earth-based permanent magnet has a ring shape. 希土類系永久磁石体表面に少なくとも1層以上のCuめっき皮膜含む2層以上のめっき皮膜を成膜し、該1層以上のCuめっき皮膜を含む2層以上のめっき皮膜上に、膜厚0.1μm以上3μm以下で組成がSnが35mass%以上55mass%以下であり残部が実質的にCuであるSnCu合金めっき皮膜を成膜することを特徴とする、希土類系永久磁石の製造方法。 Two or more plating films including at least one Cu plating film are formed on the surface of the rare earth based permanent magnet body, and a film thickness of 0. 2 is formed on the two or more plating films including the one or more Cu plating film. A method for producing a rare earth-based permanent magnet, comprising forming a SnCu alloy plating film having a composition of 1 to 3 μm, Sn of 35 to 55 mass%, and the balance being substantially Cu. 前記1層以上のCuめっき皮膜を含む2層以上のめっき皮膜に対し、SnCuめっき成膜の前の工程で塩酸または硫酸による前処理を行った後、前記SnCu合金めっき皮膜を成膜することを特徴とする、請求項5記載の希土類系永久磁石の製造方法。 The SnCu alloy plating film is formed after a pretreatment with hydrochloric acid or sulfuric acid is performed on the plating film including two or more layers including the Cu plating film of one layer or more in a step before the SnCu plating film formation. The method for producing a rare earth based permanent magnet according to claim 5, wherein the method is characterized in that: 前記SnCu合金めっき皮膜上にさらにリン酸またはリン酸塩による化成処理を施すことを特徴とする、請求項5または6記載の希土類系永久磁石の製造方法。 7. The method for producing a rare earth based permanent magnet according to claim 5, wherein a chemical conversion treatment with phosphoric acid or a phosphate is further performed on the SnCu alloy plating film.
JP2007296593A 2006-11-15 2007-11-15 Rare earth permanent magnet Active JP4363480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007296593A JP4363480B2 (en) 2006-11-15 2007-11-15 Rare earth permanent magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006308959 2006-11-15
JP2007296593A JP4363480B2 (en) 2006-11-15 2007-11-15 Rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JP2008147642A JP2008147642A (en) 2008-06-26
JP4363480B2 true JP4363480B2 (en) 2009-11-11

Family

ID=39607422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007296593A Active JP4363480B2 (en) 2006-11-15 2007-11-15 Rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP4363480B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4241906B1 (en) * 2008-05-14 2009-03-18 日立金属株式会社 Rare earth permanent magnet
DE102009027916A1 (en) * 2009-07-22 2011-01-27 Zf Friedrichshafen Ag Magnetic pole for use at rotor of electrical machine, has magnet segments stuck together by flexible adhesive i.e. silicone adhesive, and distance elements e.g. glass balls, embedded into adhesive between magnet segments
WO2012043472A1 (en) * 2010-09-30 2012-04-05 積水化学工業株式会社 Conductive particles, anisotropic conductive material and connection structure
US9905345B2 (en) 2015-09-21 2018-02-27 Apple Inc. Magnet electroplating
DE102018132924A1 (en) 2018-12-19 2020-06-25 Vacuumschmelze Gmbh & Co. Kg Process for the pretreatment of rare earth magnets before soldering using nanocrystalline solder foils and magnetic component

Also Published As

Publication number Publication date
JP2008147642A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP4241906B1 (en) Rare earth permanent magnet
JP4363480B2 (en) Rare earth permanent magnet
JP2844269B2 (en) Corrosion resistant permanent magnet and method for producing the same
GB2249319A (en) R-TM-B permanent magnet member provided with a plurality of plating layers; chromating nickel plating
WO2006016570A1 (en) Method for producing rare earth element based permanent magnet having copper plating film on surface thereof
JP5516092B2 (en) Corrosion-resistant magnet and manufacturing method thereof
JP2004039917A (en) Permanent magnet and manufacturing method therefor
JP2007273503A (en) Magnet and manufacturing method thereof
JP2908637B2 (en) Surface treatment method for Fe-BR-based sintered magnet
JP3614754B2 (en) Surface treatment method and magnet manufacturing method
JP3935092B2 (en) R-TM-B permanent magnet
JP2617118B2 (en) Rare earth permanent magnet with excellent corrosion resistance and method of manufacturing the same
JPH09270310A (en) Rare earth permanent magnet
JP3142172B2 (en) R-TM-B permanent magnet with improved adhesion and method for producing the same
JPH01268004A (en) R-tm-b permanent magnet with improved corrosion resistance and manufacture thereof
JP2631493B2 (en) Manufacturing method of corrosion resistant permanent magnet
JP5708123B2 (en) Magnet member
JP2008251648A (en) MANUFACTURING METHOD OF R-Fe-B-BASED PERMANENT MAGNET
JP3796567B2 (en) R-Fe-B permanent magnet and manufacturing method thereof
JP2004273582A (en) Rare earth permanent magnet assuring excellent adhesive property
JPH06290935A (en) Rare earth magnet
JP2007273556A (en) Magnet
JPH0950914A (en) Permanent magnet assembly
JP2016082142A (en) Magnet member
JP2606904B2 (en) Permanent magnet having good touch resistance and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090518

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090518

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4363480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350