JP4361591B1 - DIE MOUNTING APPARATUS AND DIE MOUNTING METHOD - Google Patents

DIE MOUNTING APPARATUS AND DIE MOUNTING METHOD Download PDF

Info

Publication number
JP4361591B1
JP4361591B1 JP2008176203A JP2008176203A JP4361591B1 JP 4361591 B1 JP4361591 B1 JP 4361591B1 JP 2008176203 A JP2008176203 A JP 2008176203A JP 2008176203 A JP2008176203 A JP 2008176203A JP 4361591 B1 JP4361591 B1 JP 4361591B1
Authority
JP
Japan
Prior art keywords
distance
semiconductor die
collet
bump
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008176203A
Other languages
Japanese (ja)
Other versions
JP2010016262A (en
Inventor
前田  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinkawa Ltd
Original Assignee
Shinkawa Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinkawa Ltd filed Critical Shinkawa Ltd
Priority to JP2008176203A priority Critical patent/JP4361591B1/en
Priority to PCT/JP2008/073008 priority patent/WO2010001501A1/en
Application granted granted Critical
Publication of JP4361591B1 publication Critical patent/JP4361591B1/en
Publication of JP2010016262A publication Critical patent/JP2010016262A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • B23K3/0607Solder feeding devices
    • B23K3/0623Solder feeding devices for shaped solder piece feeding, e.g. preforms, bumps, balls, pellets, droplets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/742Apparatus for manufacturing bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11332Manufacturing methods by local deposition of the material of the bump connector in solid form using a powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29317Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29324Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29364Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29369Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75743Suction holding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/758Means for moving parts
    • H01L2224/75801Lower part of the bonding apparatus, e.g. XY table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0367Metallic bump or raised conductor not used as solder bump
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components

Abstract

【課題】金属ナノインクを用いて形成したバンプ同士を重ね合わせる際のバンプの潰れを抑制する。
【解決手段】コレット13に吸着されている半導体ダイ21のバンプ23が形成された側の面24と基板31のバンプ33が形成された側の面34とのコレット13の降下方向に沿った距離を取得する距離取得手段と、距離取得手段によって取得した距離に応じてコレット13に吸着されている半導体ダイ21のバンプ23先端が基板31のバンプ33先端の直上に来るまでコレット13を基板31に向かって降下させた後、コレット13の半導体ダイ21の吸着を開放して半導体ダイ21のバンプ23を基板31のバンプ33に重ね合わせる。
【選択図】図9
Bump collapse is suppressed when bumps formed using metal nano ink are overlapped.
A distance along a descending direction of a collet 13 between a surface 24 of a semiconductor die 21 adsorbed by a collet 13 on a side on which a bump 23 is formed and a surface 34 on a side of a substrate 31 on which a bump 33 is formed. And the collet 13 on the substrate 31 until the tip of the bump 23 of the semiconductor die 21 adsorbed to the collet 13 is directly above the tip of the bump 33 of the substrate 31 according to the distance acquired by the distance acquisition unit. After being lowered, the suction of the semiconductor die 21 of the collet 13 is released, and the bumps 23 of the semiconductor die 21 are superposed on the bumps 33 of the substrate 31.
[Selection] Figure 9

Description

本発明は、金属ナノインクを用いてバンプが形成された半導体ダイを基板または他の半導体ダイに重ね合わせるダイマウント装置およびダイマウント方法に関する。 The present invention relates to a die mounting apparatus and die mount method bumps semiconductor die group Saitama other formed is superimposed on another semiconductor die using a metal nano ink.

半導体ダイなどの電子部品の電極と回路基板上の回路パターンの電極との接合には、半導体ダイなどの電子部品の電極面上に金バンプを形成し、半導体ダイを反転させて半導体ダイの金バンプを回路基板の電極に形成された金バンプに向けて押し付けて接合するフリップチップボンディング方法が用いられている。   To bond the electrode of an electronic component such as a semiconductor die and the electrode of a circuit pattern on a circuit board, a gold bump is formed on the electrode surface of the electronic component such as a semiconductor die, and the semiconductor die is inverted to A flip chip bonding method is used in which bumps are pressed and bonded to gold bumps formed on electrodes of a circuit board.

フリップチップボンディングでは、半導体ダイに設けられている複数の電極と基板の複数の電極それぞれに金バンプを形成し、この複数の金バンプ同士を同時に押し付けて接合するので、各金バンプの高さがある一定範囲に入っていることが必要となってくる。金バンプの高さにばらつきがあると、高さの高い金バンプの部分は先に潰れて接合されるが、低い金バンプの部分は更に半導体ダイに押圧荷重を掛けて、既に接合されている金バンプを潰しながら接合することが必要で、全ての金バンプを適正に接合しようとすると半導体ダイに大きな押圧力をかけることが必要となってくる。しかし、近年の半導体ダイの薄型化によって、フリップチップボンディングの際の押圧力によって半導体ダイが損傷を受ける場合がある。また、接合しようとする半導体ダイが大きくなると、同時に接合するバンプの数が多くなることから、バンプの高さのみでなく半導体ダイと基板とを平行に保つことが必要となってくる。   In flip-chip bonding, gold bumps are formed on each of a plurality of electrodes provided on a semiconductor die and a plurality of electrodes on a substrate, and the plurality of gold bumps are pressed together to be bonded together. It must be within a certain range. If there are variations in the height of the gold bumps, the gold bump portion with the high height is crushed and bonded first, but the low gold bump portion is already bonded by applying a pressing load to the semiconductor die. It is necessary to bond the gold bumps while crushing them, and it is necessary to apply a large pressing force to the semiconductor die in order to properly bond all the gold bumps. However, due to the recent thinning of the semiconductor die, the semiconductor die may be damaged by the pressing force during flip chip bonding. Further, when the semiconductor die to be bonded becomes large, the number of bumps to be bonded simultaneously increases, so it is necessary to keep not only the height of the bump but also the semiconductor die and the substrate in parallel.

特許文献1には半導体ダイを基板に実装する際に、半導体ダイと基板との間に距離センサを進出させて距離を3箇所以上で測定し、この測定結果に基づいて半導体ダイと基板との平行度を調整した後、半導体ダイを基板に実装する方法が提案されている。   In Patent Document 1, when a semiconductor die is mounted on a substrate, a distance sensor is advanced between the semiconductor die and the substrate and the distance is measured at three or more locations. Based on the measurement result, the distance between the semiconductor die and the substrate is measured. A method of mounting a semiconductor die on a substrate after adjusting the parallelism has been proposed.

また、電極上に形成した金バンプ同士を押し付けて接合する方法は、半導体ダイに掛かる荷重が大きくなることから、金バンプを用いずに各電極を接合する方法として金属の超微粒子を含む金属ペーストを用いる色々な方法が提案されている。   Also, the method of pressing and bonding the gold bumps formed on the electrodes increases the load applied to the semiconductor die, so that a metal paste containing ultrafine metal particles is used as a method of bonding the electrodes without using gold bumps. Various methods have been proposed using.

特許文献2には、回路基板の端子電極上に銀の超微粉末を溶剤に分散させて調製した銀微粒子ペーストのボールを形成し、半導体素子の電極を回路基板の端子電極上に形成したボール上にフェースダウン法で接合した後に、銀微粒子ペースト中のトルエン等の溶剤を蒸発させた後、100から250℃の温度で焼成して半導体素子と回路基板とを電気的に接合する方法が提案されている。この方法の場合、焼成温度を200から250℃とした際には熱風炉にて30分間の焼成を行うことによって電気的接合を行うことが提案されている。   In Patent Document 2, a ball of a silver fine particle paste prepared by dispersing ultrafine silver powder in a solvent is formed on a terminal electrode of a circuit board, and an electrode of a semiconductor element is formed on the terminal electrode of the circuit board A method is proposed in which a semiconductor element and a circuit board are electrically joined by bonding them by a face-down method, evaporating a solvent such as toluene in a silver fine particle paste, and then baking at a temperature of 100 to 250 ° C. Has been. In the case of this method, it has been proposed that when the firing temperature is 200 to 250 ° C., electrical joining is performed by firing for 30 minutes in a hot air furnace.

特許文献3には、半導体ダイの電極の上に金バンプを形成し、この金バンプの先端に導電性ペーストを転写して、導電性ペーストを介して金バンプと基板とを接続する方法が提案されている。この場合、金バンプの先端に一様に導電性ペーストを塗布するために、半導体チップの高さ方向位置と、受け皿に収容されている導電性ペーストの液面とを変位計によって計測し、半導体ダイのバンプに導電性ペーストを転写するのに必要な量だけ半導体ダイを降下させて半導体ダイのバンプを導電性接合材に浸漬される方法が提案されている。   Patent Document 3 proposes a method in which a gold bump is formed on an electrode of a semiconductor die, a conductive paste is transferred to the tip of the gold bump, and the gold bump and the substrate are connected via the conductive paste. Has been. In this case, in order to uniformly apply the conductive paste to the tip of the gold bump, the height direction position of the semiconductor chip and the liquid level of the conductive paste contained in the tray are measured by a displacement meter, and the semiconductor There has been proposed a method in which the semiconductor die is lowered by an amount necessary to transfer the conductive paste to the bumps of the die and the bumps of the semiconductor die are immersed in the conductive bonding material.

特開平5−326633号公報JP-A-5-326633 特開平9−326416号公報Japanese Patent Laid-Open No. 9-326416 特開平10−150075号公報Japanese Patent Laid-Open No. 10-150075

ところで、金属微粒子を混合させた金属ナノペーストまたは金属ナノインクを用いて半導体ダイまたは基板の電極の上にバンプを形成し、半導体ダイを反転させて基板の電極に形成したバンプの上に半導体ダイの電極の上に形成したバンプを重ね合わせた後、焼結して各電極間を接続する方法がある。このような場合、電極の上に形成された金属ナノインクを用いたバンプは固相ではなく、液相状態の場合が多い。このような液相状態のバンプ同士を重ね合わせる場合に、半導体ダイを基板に対して押し付けてしまうと液相状態のバンプが潰れてしまい、焼結後に適切な接合金属高さが形成できなかったり、つぶれた金属ナノインクが横に流出して隣接する電極間を接続してしまったりすることによる接合不良が発生するという問題があった。   By the way, bumps are formed on the electrodes of the semiconductor die or the substrate using metal nano paste or metal nano ink mixed with metal fine particles, and the semiconductor die is inverted on the bumps formed on the electrodes of the substrate by inverting the semiconductor die. There is a method in which bumps formed on electrodes are superposed and then sintered to connect each electrode. In such a case, the bump using the metal nano ink formed on the electrode is often not in a solid phase but in a liquid phase. When these bumps in the liquid phase are overlaid, if the semiconductor die is pressed against the substrate, the bumps in the liquid phase will be crushed and an appropriate joint metal height may not be formed after sintering. However, there is a problem that a defective bonding occurs due to the crushed metal nano ink flowing laterally and connecting adjacent electrodes.

本発明は、金属ナノインクを用いて形成したバンプ同士を重ね合わせる際のバンプの潰れを抑制することを目的とする。   An object of the present invention is to suppress the collapse of bumps when the bumps formed using the metal nano ink are overlapped with each other.

本発明のダイマウント装置は、金属ナノ粒子を有機溶剤中に混合させた金属ナノインクを用いて電極上にバンプが形成された半導体ダイを、金属ナノインクを用いて電極上にバンプが形成された基板または金属ナノインクを用いて電極上にバンプが形成された他の半導体ダイの上にフェースダウンして半導体ダイを基板または他の半導体ダイに重ね合わせるダイマウント装置であって、基板または他の半導体ダイのバンプ側に配置された第1の距離センサと、コレットに吸着された半導体ダイのバンプ側に配置された第2の距離センサと、第1の距離センサと第2の距離センサとの間に配置され、基板表面または他の半導体ダイの表面に沿った方向に伸びるリファレンス部材と、半導体ダイを吸着して基板または他の半導体ダイに向かって降下するコレットと、コレットの降下を制御する制御部とを含み、制御部は、リファレンス部材の第1の距離センサ側の面と第1の距離センサとの間のコレット降下方向に沿った第1の距離と、基板のバンプ側表面または他の半導体ダイのバンプ側表面と第1の距離センサとの間のコレット降下方向に沿った第2の距離とを第1の距離センサによって取得し、第1の距離と第2の距離の差として第1の距離差を検出し、リファレンス部材の第2の距離センサ側の面と第2の距離センサとの間のコレット降下方向に沿った第3の距離と、コレットに吸着された半導体ダイのバンプ側の表面と第2の距離センサとの間のコレット降下方向に沿った第4の距離とを第2の距離センサによって取得し、第3の距離と第4の距離との差として第2の距離差を検出し、第1の距離差と第2の距離差の和からリファレンス部材のコレット降下方向に沿った厚さを差し引いてコレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面とのコレットの降下方向に沿った距離を取得する距離取得手段と、距離取得手段によって取得した距離に応じてコレットに吸着されている半導体ダイのバンプ先端が基板または他の半導体ダイのバンプ先端の直上に来るまでコレットを基板または他の半導体ダイに向かって降下させた後、コレットの半導体ダイの吸着を開放して半導体ダイのバンプを基板または他の半導体ダイのバンプに重ね合わせる重ね合わせ手段と、を有することを特徴とする。 The die mount apparatus of the present invention is a semiconductor die in which bumps are formed on electrodes using metal nano ink in which metal nanoparticles are mixed in an organic solvent, and a substrate in which bumps are formed on electrodes using metal nano ink. Saitama other is a die mount device bumps group Saitama other semiconductor die by face-down on top of other semiconductor dies formed is superimposed on another semiconductor die on an electrode by using a metal nano ink, groups Saitama other a first distance sensors disposed in the bump side of the other semiconductor die, and a second distance sensor which is arranged on the bump side of the semiconductor die adsorbed by the collet, the first distance sensor is disposed between the second distance sensor, the substrate table Menma other and the reference member extending in a direction along the surface of another semiconductor die, based Saitama other adsorbs semiconductor die to other semiconductor die Descending And a control unit that controls the collet descent. The control unit includes a first collimating direction between the first distance sensor side surface of the reference member and the first distance sensor. and distance bump side table Menma other substrate acquires a second distance along the collet descent direction between the bump side surface of another semiconductor die first distance sensor by a first distance sensor The first distance difference is detected as the difference between the first distance and the second distance, and the first distance along the collet lowering direction between the second distance sensor side surface of the reference member and the second distance sensor is detected. 3 and a fourth distance along the collet descending direction between the second distance sensor and the bump-side surface of the semiconductor die adsorbed on the collet are acquired by the second distance sensor. The second distance difference as the difference between the distance and the fourth distance Detecting a first distance difference and the surface and the substrate table Menma other semiconductor die are adsorbed from the sum of the second distance difference collet by subtracting the thickness along the collet descent direction of the reference member of the other a distance obtaining means for obtaining a distance along the descent direction of the collet to the semiconductor die surface, the distance the top end of the bump of the semiconductor die that is adsorbed to the collet based Saitama other according to the distance obtained by the obtaining means other the collet the group Saitama other until immediately above of the semiconductor die bump tip after descends toward the other semiconductor die, based Saitama other bumps of the semiconductor die by opening the suction of the semiconductor die collet And a superimposing means for superimposing on a bump of another semiconductor die.

本発明のダイマウント装置において、重ね合わせ手段は、距離取得手段によって取得したコレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面との距離からコレットに吸着されている半導体ダイの表面からのバンプ高さと基板または他の半導体ダイの表面からのバンプの高さとを差し引いた距離だけコレットを降下させること、としても好適であるし、距離取得手段は、コレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面とのコレットの降下方向に沿った距離を複数取得し、重ね合わせ手段は、距離取得手段によって取得したコレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面との複数の距離の内の最も小さい距離からコレットに吸着されている半導体ダイの表面からのバンプ高さと基板または他の半導体ダイの表面からのバンプの高さとを差し引いた距離だけコレットを降下させること、としても好適である。 A die mounting device of the present invention, superimposing means, the surface and the substrate table Menma another semiconductor die adsorbed on the acquired collet by the distance obtaining means is adsorbed from the distance between the other semiconductor die surface collet and the bump height and groups Saitama another from the surface of the semiconductor die are lowering the distance collet obtained by subtracting the height of the bump from the surface of another semiconductor die, also to be suitable as a distance obtaining means , surface and the substrate table Menma another semiconductor die being adsorbed on collet plurality acquires distance along the descent direction of the collet with the other semiconductor die surface, superimposing means were obtained by the distance obtaining means surface and the substrate table Menma another semiconductor die adsorbed on the collet have been adsorbed from the smallest distance among the plurality of distances between the other semiconductor die surface collet Bump height and groups from the surface of the semiconductor die Saitama others lowering the distance collet obtained by subtracting the height of the bump from the surface of another semiconductor die, it is also preferable.

本発明のダイマウント装置において、制御部は、コレットに吸着されている半導体ダイの表面の距離測定を行う位置と基板表面または他の半導体ダイの表面の距離測定を行う位置とを検出する距離測定位置検出手段を備え、距離取得手段は、コレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面とのコレットの降下方向に沿った距離をそれぞれ少なくとも3つ取得し、重ね合わせ手段は、検出した距離測定位置と、コレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面とのコレットの降下方向に沿った各距離測定位置での距離と、によってコレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面との間の最小面間距離を算出し、最小面間距離からコレットに吸着されている半導体ダイの表面からのバンプ高さと基板または他の半導体ダイの表面からのバンプの高さとを差し引いた距離だけコレットを降下させること、としても好適である。 A die mounting device of the present invention, the control unit, the position and the substrate table Menma other to perform distance measurement of the surface of the semiconductor die that is adsorbed on collet detect the position for the distance measurement of the surface of another semiconductor die comprising a distance measuring position detecting means for the distance acquisition means, the surface and the substrate table Menma another semiconductor die being adsorbed by the collet at least the distance along the descent direction of the collet with the other semiconductor die surface, respectively three acquired, the superimposing unit, a distance measuring position detected, the surface and the substrate table Menma another semiconductor die being adsorbed by the collet along the descent direction of the collet with the other semiconductor die surface each the distance by the distance measuring position, the surface and the substrate table Menma another semiconductor die adsorbed on the collet by calculating the minimum surface distance between the other semiconductor die surface, which from a minimum level distance Bump height and groups Saitama another from the surface of the semiconductor die that is adsorbed to the TMG be lowered distance collet obtained by subtracting the height of the bump from the surface of another semiconductor die, it is also preferable.

本発明のダイマウント方法は、金属ナノ粒子を有機溶剤中に混合させた金属ナノインクを用いて電極上にバンプが形成された半導体ダイを、金属ナノインクを用いて電極上にバンプが形成された基板または金属ナノインクを用いて電極上にバンプが形成された他の半導体ダイの上にフェースダウンして半導体ダイを基板または他の半導体ダイに重ね合わせるダイマウント方法であって、基板または他の半導体ダイのバンプ側に配置された第1の距離センサとコレットに吸着された半導体ダイのバンプ側に配置された第2の距離センサとの間に配置され、基板表面または各半導体ダイの表面に沿った方向に伸びるリファレンス部材の第1の距離センサ側の面と第1の距離センサとの間のコレット降下方向に沿った第1の距離と、基板のバンプ側表面または他の半導体ダイのバンプ側表面と第1の距離センサとの間のコレット降下方向に沿った第2の距離とを第1の距離センサによって取得し、第1の距離と第2の距離の差として第1の距離差を検出し、リファレンス部材の第2の距離センサ側の面と第2の距離センサとの間のコレット降下方向に沿った第3の距離と、コレットに吸着された半導体ダイのバンプ側の表面と第2の距離センサとの間のコレット降下方向に沿った第4の距離とを第2の距離センサによって取得し、第3の距離と第4の距離との差として第2の距離差を検出し、第1の距離差と第2の距離差の和からリファレンス部材のコレット降下方向に沿った厚さを差し引いて基板または他の半導体ダイに向かって降下するコレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面とのコレットの降下方向に沿った距離を取得する距離取得工程と、距離取得工程によって取得した距離に応じてコレットに吸着されている半導体ダイのバンプ先端が基板または他の半導体ダイのバンプ先端の直上に来るまでコレットを基板または他の半導体ダイに向かって降下させた後、コレットの半導体ダイの吸着を開放して半導体ダイのバンプを基板または他の半導体ダイのバンプに重ね合わせる重ね合わせ工程と、を有することを特徴とする。 In the die mounting method of the present invention, a semiconductor die in which bumps are formed on electrodes using metal nanoinks in which metal nanoparticles are mixed in an organic solvent is used as a base on which bumps are formed on electrodes using metal nanoinks. Saitama other is a die mounting method of superimposing the other semiconductor die based Saitama another semiconductor die by face-down on top of the other semiconductor die bumps are formed on the electrode by using a metal nano ink, groups Saitama other is disposed between the second distance sensor which is arranged on the bump side of the semiconductor die adsorbed to the first distance sensor and the collet arranged on the bump side of the other semiconductor die, the substrate table Menma other a first distance along the collet descent direction between the first distance sensor side surface and a first distance sensor reference member extending in a direction along the surface of the semiconductor die, the substrate Bump side Menma other acquires a second distance along the collet descent direction between the bump side surface of another semiconductor die first distance sensor by a first distance sensor, the first distance and the second The first distance difference is detected as the difference in distance between the second distance sensor and the third distance along the collet lowering direction between the second distance sensor side surface of the reference member and the collet. A fourth distance along the collet descending direction between the bump-side surface of the formed semiconductor die and the second distance sensor is obtained by the second distance sensor, and the third distance and the fourth distance are obtained. and a difference detecting a second distance difference, a first distance difference and thickness obtained by subtracting by groups Saitama other along the sum of the second distance difference collet descent direction of the reference member to the other semiconductor die The surface of the semiconductor die adsorbed by the collet descending Bumps of the semiconductor die plate table Menma other adsorbed by the collet according to the distance obtained and the distance obtaining step of obtaining a distance along the descent direction of the collet with the other semiconductor die surface, the distance obtaining step after tip which groups Saitama others collet the group Saitama other until immediately above the top end of the bump of another semiconductor die is lowered toward the other semiconductor die, the semiconductor die to release the adsorption of the semiconductor die collet the bump groups Saitama other and having a superposition process of superimposing the bump of another semiconductor die, the.

本発明のダイマウント方法において、重ね合わせ工程は、距離取得工程によって取得したコレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面との距離からコレットに吸着されている半導体ダイのバンプ高さと基板または他の半導体ダイのバンプの高さとを差し引いた距離だけコレットを降下させること、としても好適であるし、距離取得工程は、コレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面とのコレットの降下方向に沿った距離を複数取得し、重ね合わせ工程は、距離取得工程によって取得したコレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面との複数の距離の内の最も小さい距離からコレットに吸着されている半導体ダイの表面からのバンプ高さと基板または各半導体ダイの表面からのバンプの高さとを差し引いた距離だけコレットを降下させること、としても好適である。 A die mounting method of the present invention, superimposing step, the surface and the substrate table Menma another semiconductor die adsorbed on the acquired collet by the distance obtaining step is adsorbed from the distance between the other semiconductor die surface collet and the bump height and groups Saitama another semiconductor die are lowering the collet distance obtained by subtracting the height of the bump of another semiconductor die, also to be suitable as the distance acquisition step, adsorbed on the collet surface and the substrate table Menma other semiconductor die are the plurality acquires distance along the descent direction of the collet with the other semiconductor die surface, superimposing step is adsorbed in the acquired collet by distance obtaining step or the surface of the semiconductor die surface and the substrate table Menma another semiconductor die being adsorbed from the smallest distance among the plurality of distances between the other semiconductor die surface collet Bump height and groups Saitama other is that lowering distance collet obtained by subtracting the height of the bump from the surface of the semiconductor die, is also suitable as.

本発明のダイマウント方法において、コレットに吸着されている半導体ダイの表面の距離測定を行う位置と基板表面または他の半導体ダイの表面の距離測定を行う位置とを検出する距離測定位置検出工程を有し、距離取得工程は、コレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面とのコレットの降下方向に沿った距離をそれぞれ少なくとも3つ取得し、重ね合わせ工程は、検出した距離測定位置と、コレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面とのコレットの降下方向に沿った各距離測定位置での距離と、によってコレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面との間の最小面間距離を算出し、最小面間距離からコレットに吸着されている半導体ダイの表面からのバンプ高さと基板または他の半導体ダイの表面からのバンプの高さとを差し引いた距離だけコレットを降下させること、としても好適である。
A die mounting method of the present invention, the distance measuring position location and the substrate table Menma other to perform distance measurement of the surface of the semiconductor die that is adsorbed on a collet to detect the position for the distance measurement of the surface of another semiconductor die has a detecting step, distance obtaining step, the surface and the substrate table Menma other semiconductor die are adsorbed by the collet at least three respective distances along the descent direction of the collet with the other semiconductor die surface acquisition and, superimposing step includes a distance measuring position detected, the surface and the substrate table Menma another semiconductor die adsorbed on the collet each distance measuring position along the descent direction of the collet with the other semiconductor die surface the surface and the substrate table Menma another semiconductor die being adsorbed by the collet to calculate the minimum surface distance between the other semiconductor die surface distance and by at adsorption from the minimum surface distance between the collet Bump height and groups Saitama another from the surface of the semiconductor die being able to lower the distance collet obtained by subtracting the height of the bump from the surface of another semiconductor die, it is also preferable.

本発明は、金属ナノインクを用いて形成したバンプ同士を重ね合わせる際のバンプの潰れを抑制することができるという効果を奏する。   The present invention has an effect that it is possible to suppress the collapse of the bumps when the bumps formed using the metal nano ink are overlapped with each other.

以下、本発明の好適な実施形態について図面を参照しながら説明する。図1に示すように、本実施形態のダイマウント装置10は、X方向に水平に伸びるヘッドガイド11と、ヘッドガイド11に滑動自在に取り付けられたマウンティングヘッド12と、マウンティングヘッド12に取り付けられ、半導体ダイ21を吸着するコレット13と、ヘッドガイド11と直交するY方向に向かって水平に伸びたトレイガイド15と、トレイガイド15に滑動自在に取り付けられ、半導体ダイ21を保持するトレイ16と、トレイ16の側面に取り付けられ、X方向に水平に伸びたリファレンス部材17と、ヘッドガイド11と直交するY方向に向かって水平に伸びるガイドレール18と、ガイドレール18の間に設けられ、そのマウンティングヘッド12側の面に基板31を吸着固定するマウンティングステージ19と、マウンティングヘッド12に取り付けられた第1の距離センサである上部距離センサ14と、上部距離センサ14とリファレンス部材17を挟んで反対側に取り付けられた第2の距離センサである下部距離センサ20と、コレット13の降下を制御する制御部70とを備えている。下部距離センサ20はダイマウント装置10の図示しないベースに取り付けられている。図1において、上下方向はZ方向である。   Preferred embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the die mount apparatus 10 of the present embodiment includes a head guide 11 that extends horizontally in the X direction, a mounting head 12 that is slidably attached to the head guide 11, and a mounting head 12. A collet 13 for adsorbing the semiconductor die 21, a tray guide 15 extending horizontally in the Y direction orthogonal to the head guide 11, a tray 16 slidably attached to the tray guide 15 and holding the semiconductor die 21, A reference member 17 that is attached to the side surface of the tray 16 and extends horizontally in the X direction, a guide rail 18 that extends horizontally in the Y direction perpendicular to the head guide 11, and a guide rail 18, and the mounting thereof A mounting stage 19 for adsorbing and fixing the substrate 31 to the surface on the head 12 side; An upper distance sensor 14 which is a first distance sensor attached to the mounting head 12, and a lower distance sensor 20 which is a second distance sensor attached on the opposite side across the upper distance sensor 14 and the reference member 17, And a control unit 70 that controls the lowering of the collet 13. The lower distance sensor 20 is attached to a base (not shown) of the die mount apparatus 10. In FIG. 1, the vertical direction is the Z direction.

マウンティングヘッド12は、ヘッドガイド11にガイドされ、コレット13がトレイ16に保持された半導体ダイ21を吸着してピックアップするピックアップ位置と、ピックアップした半導体ダイ21を基板31に重ね合わせる重ね合わせ位置との間を移動することができるよう構成されている。コレット13は、マウンティングヘッド12の内部に取り付けられた駆動機構によってマウンティングステージ19の表面に吸着された基板31に対して接離する方向であるZ方向に降下できるよう構成されている。マウンティングステージ19に吸着された基板31と、リファレンス部材17とは同一の方向である水平方向、或いはXY方向に伸びている。トレイガイド15はトレイ16をトレイガイド15に沿った方向に搬送する搬送機構を備えている。上部、下部の各距離センサ14,20は光学式の距離センサである。また、リファレンス部材17は厚さが一定の平板である。   The mounting head 12 is guided by the head guide 11, and a pickup position where the collet 13 picks up and picks up the semiconductor die 21 held on the tray 16 and an overlapping position where the picked-up semiconductor die 21 is superimposed on the substrate 31. It is configured to be able to move between. The collet 13 is configured so that it can be lowered in the Z direction, which is a direction in which it contacts and separates from the substrate 31 adsorbed on the surface of the mounting stage 19 by a drive mechanism attached to the inside of the mounting head 12. The substrate 31 adsorbed by the mounting stage 19 and the reference member 17 extend in the same direction, the horizontal direction or the XY direction. The tray guide 15 includes a transport mechanism that transports the tray 16 in a direction along the tray guide 15. The upper and lower distance sensors 14 and 20 are optical distance sensors. The reference member 17 is a flat plate having a constant thickness.

マウンティングヘッド12と、上部距離センサ14と、下部距離センサ20と、トレイガイド15と、マウンティングステージ19とは制御部70に接続され、制御部70の指令によって駆動されるよう構成されている。制御部70は、内部のCPUとメモリを備えるコンピュータである。   The mounting head 12, the upper distance sensor 14, the lower distance sensor 20, the tray guide 15, and the mounting stage 19 are connected to the control unit 70 and are configured to be driven by commands from the control unit 70. The control unit 70 is a computer including an internal CPU and a memory.

以上のように構成されたダイマウント装置10によって半導体ダイ21を基板31の上に重ね合わせる動作について説明する。ダイマウント装置10の動作について説明する前に、半導体ダイ21、基板31の電極上への金属ナノインクによるバンプの形成について説明する。   An operation of superposing the semiconductor die 21 on the substrate 31 by the die mount apparatus 10 configured as described above will be described. Before describing the operation of the die mount apparatus 10, the formation of bumps with metal nano-ink on the electrodes of the semiconductor die 21 and the substrate 31 will be described.

図2(a)に示すように、半導体ダイ21の電極22上へのバンプ23の形成は、ダイマウント装置10とは別途に設けられたバンプ形成機構において、金属ナノインクの微液滴41を射出へッド40から電極22に向かって射出することによって行う。金属ナノインクは、その表面に金属ナノ粒子が分散状態を保持することができる分散剤をコーティングした被覆金属ナノ粒子を有機溶剤の中に分散させたものである。金属ナノ粒子を構成する微細化した導電性金属としては、金、銀、銅、白金、パラジウム、ニッケル、アルミニウムなどを用いることができる。   As shown in FIG. 2A, the bumps 23 are formed on the electrodes 22 of the semiconductor die 21 by ejecting fine droplets 41 of the metal nano ink by a bump forming mechanism provided separately from the die mount apparatus 10. This is performed by ejecting from the head 40 toward the electrode 22. The metal nano ink is obtained by dispersing coated metal nanoparticles coated with a dispersing agent capable of maintaining a dispersed state of metal nanoparticles on the surface thereof in an organic solvent. Gold, silver, copper, platinum, palladium, nickel, aluminum, or the like can be used as the finely conductive metal constituting the metal nanoparticles.

図2(b)に示すように射出へッド40から最初に電極22に射出された金属ナノインクの微液滴41は、電極22の上に薄い膜状に広がる。次の金属ナノインクの微液滴41は、電極22の上に広がった金属ナノインクの膜の上に付着するので、電極22の表面に直接付着する最初の微液滴よりもその広がりが少なく、電極22の表面に若干盛り上がりを形成する。その次の金属ナノインクの微液滴41は先の2つの微液滴41よりも更に広がりが少なくなり、次第に盛り上がりが大きくなってくる。このように、金属ナノインクの微液滴41を電極22の上に順次射出していくと、次第に盛り上がりが大きくなり、何回かの射出によって、図2(b)に示すように、上に行くほど傾斜の大きく先細りの円錐形のバンプ23が形成される。バンプ23の電極22表面からの高さはH1である。図2(b)に示すように、基板31の電極32の上にバンプ33を形成する場合も同様である。 As shown in FIG. 2B, the metal nano-ink fine droplets 41 first ejected from the ejection head 40 to the electrode 22 spread on the electrode 22 in a thin film shape. The next metal nano-ink droplet 41 adheres to the metal nano-ink film spread on the electrode 22, and therefore has less spread than the first droplet directly deposited on the surface of the electrode 22. A slight bulge is formed on the surface of 22. The next micro droplet 41 of the metal nano ink is further less spread than the previous two micro droplets 41, and the swell gradually increases. In this way, when the metal nano-ink fine droplets 41 are sequentially ejected onto the electrode 22, the swell gradually increases, and as shown in FIG. Thus, the tapered cone bump 23 having a large slope is formed. The height of the bump 23 from the surface of the electrode 22 is H 1 . The same applies when the bumps 33 are formed on the electrodes 32 of the substrate 31 as shown in FIG.

図3(a)に示すように、バンプ23の形成された半導体ダイ21は、バンプ23が形成された側の面24が下側となるように反転されてトレイ16の保持部16aに置かれる。保持部16aは、半導体ダイ21のバンプ23が接触しないようトレイ16の底面に開けられた孔で、孔の周縁にバンプ23が形成された側の面24の周囲を支持する段部が設けられ、コレット13側はコレット13が半導体ダイ21の吸着側面25を吸着しやすいよう上に向かってテーパー状に広がっている。半導体ダイ21が保持部16aに保持されたトレイ16はダイマウント装置10にセットされる。また、バンプ33の形成が終了した基板31もダイマウント装置10にセットされる。   As shown in FIG. 3A, the semiconductor die 21 on which the bumps 23 are formed is inverted and placed on the holding portion 16a of the tray 16 so that the surface 24 on the side on which the bumps 23 are formed is on the lower side. . The holding portion 16a is a hole formed in the bottom surface of the tray 16 so that the bumps 23 of the semiconductor die 21 do not come into contact with each other, and a step portion is provided around the hole to support the periphery of the surface 24 on which the bumps 23 are formed. The collet 13 is tapered upward so that the collet 13 can easily attract the suction side surface 25 of the semiconductor die 21. The tray 16 in which the semiconductor die 21 is held by the holding unit 16 a is set in the die mount apparatus 10. Further, the substrate 31 on which the bump 33 has been formed is also set in the die mount apparatus 10.

トレイ16と基板31とがそれぞれ所定の位置にセットされたら、制御部70はダイマウント装置10を始動する。ダイマウント装置10の制御部70は、トレイガイド15によってトレイ16を所定の位置まで搬送する指令を出力する。図1に示すように、この指令によってトレイガイド15は搬送機構を始動させ、トレイ16に設けられたリファレンス部材17が下部距離センサ20の上に位置する所定の位置までトレイ16を搬送する。また、制御部70は基板31を送り出す指令を図示しない基板31の送り装置に出力する。この指令によって送り出し装置は基板31をマウンティングステージ19の上まで送り出す。そして、基板31がマウンティングステージ19の上まで搬送されたら制御部70はマウンティングステージ19の内部を真空にする指令を出力する。図3(b)に示すようにこの指令によってマウンティングステージ19の内部が真空にされ、基板31はバンプ33が上向きとなるようにマウンティングステージ19の表面に吸着される。   When the tray 16 and the substrate 31 are set at predetermined positions, the control unit 70 starts the die mount apparatus 10. The control unit 70 of the die mount apparatus 10 outputs a command for transporting the tray 16 to a predetermined position by the tray guide 15. As shown in FIG. 1, the tray guide 15 starts the transport mechanism in response to this command, and transports the tray 16 to a predetermined position where the reference member 17 provided on the tray 16 is positioned above the lower distance sensor 20. Further, the control unit 70 outputs a command for feeding the substrate 31 to a feeding device for the substrate 31 (not shown). In response to this command, the sending device sends the substrate 31 to the top of the mounting stage 19. Then, when the substrate 31 is transferred onto the mounting stage 19, the control unit 70 outputs a command for evacuating the inside of the mounting stage 19. As shown in FIG. 3B, the inside of the mounting stage 19 is evacuated by this command, and the substrate 31 is attracted to the surface of the mounting stage 19 with the bumps 33 facing upward.

図4に示すように、制御部70は、コレット13に半導体ダイ21を吸着する指令を出力する。この指令によって、マウンティングヘッド12の駆動機構が始動し、コレット13を半導体ダイ21に向かって降下させる。そして、コレット13が半導体ダイ21に接したら、コレット13の表面に設けられた吸着孔を真空としてコレット13に半導体ダイ21が吸着される。   As shown in FIG. 4, the control unit 70 outputs a command for attracting the semiconductor die 21 to the collet 13. By this command, the driving mechanism of the mounting head 12 is started, and the collet 13 is lowered toward the semiconductor die 21. When the collet 13 comes into contact with the semiconductor die 21, the semiconductor die 21 is adsorbed to the collet 13 with the suction holes provided on the surface of the collet 13 being evacuated.

図5に示すように、コレット13が半導体ダイ21を吸着したら、制御部70は、マウンティングヘッド12をリファレンス部材17の上に上部距離センサ14が来る第1ポジションに移動させる指令を出力する。この指令によってマウンティングヘッド12の駆動機構が始動し、マウンティングヘッド12をヘッドガイド11に沿ってX方向に移動させ、マウンティングヘッド12が第1ポジションまで移動したら、マウンティングヘッド12のX方向の移動を停止する。そして、制御部70は、上部距離センサ14とリファレンス部材17の上部距離センサ14側の上面17aとの間のZ方向の距離L1を上部距離センサ14から取得し、メモリに格納する。また、制御部70は、下部距離センサ20とリファレンス部材17の下部距離センサ20側の下面17bとの間のZ方向の距離L3を下部距離センサ20から取得し、メモリに格納する。 As shown in FIG. 5, when the collet 13 attracts the semiconductor die 21, the control unit 70 outputs a command to move the mounting head 12 to the first position where the upper distance sensor 14 comes on the reference member 17. By this command, the drive mechanism of the mounting head 12 is started, the mounting head 12 is moved in the X direction along the head guide 11, and when the mounting head 12 moves to the first position, the movement of the mounting head 12 in the X direction is stopped. To do. Then, the control unit 70 obtains the Z-direction distance L 1 between the upper distance sensor 14 and the upper distance sensor 14 side of the upper surface 17a of the reference member 17 from the upper distance sensor 14 and stored in the memory. Further, the control unit 70 acquires the distance L 3 in the Z direction between the lower distance sensor 20 and the lower surface 17b of the reference member 17 on the lower distance sensor 20 side from the lower distance sensor 20, and stores it in the memory.

図6に示すように、制御部70は、マウンティングヘッド12をコレット13が吸着している半導体ダイ21のバンプ23が形成された側の面24が下部距離センサ20の上に来る第2ポジションに移動させる指令を出力する。この指令によってマウンティングヘッド12の駆動機構が始動し、マウンティングヘッド12をヘッドガイド11に沿ってX方向に移動させ、マウンティングヘッド12が第2ポジションまで移動したら、マウンティングヘッド12のX方向の移動を停止する。また、制御部70は、トレイ16に取り付けられているリファレンス部材17が下部距離センサ20の上面から外れる退避位置までトレイ16を移動させる指令を出力する。この指令によってトレイガイド15の搬送機構が始動し、トレイ16を退避位置まで移動させる。退避位置ではトレイ16に取り付けられているリファレンス部材17は下部距離センサ20の距離測定経路に無いので、下部距離センサ20はリファレンス部材17の上面17a側にある半導体ダイ21のバンプ23が形成された側の面24とのZ方向の距離を測定することができるようになる。マウンティングヘッド12が第2ポジションに移動し、トレイ16が退避位置に移動すると、制御部70は、下部距離センサ20とコレット13に吸着された半導体ダイ21のバンプ23が形成された側の面24との間のZ方向の距離L4を下部距離センサ20から取得し、メモリに格納する。 As shown in FIG. 6, the control unit 70 moves the mounting head 12 to the second position where the surface 24 on the side where the bump 23 of the semiconductor die 21 on which the collet 13 is attracted is located above the lower distance sensor 20. A command to move is output. By this command, the drive mechanism of the mounting head 12 is started, the mounting head 12 is moved in the X direction along the head guide 11, and when the mounting head 12 moves to the second position, the movement of the mounting head 12 in the X direction is stopped. To do. In addition, the control unit 70 outputs a command to move the tray 16 to a retreat position where the reference member 17 attached to the tray 16 is disengaged from the upper surface of the lower distance sensor 20. By this command, the transport mechanism of the tray guide 15 is started, and the tray 16 is moved to the retracted position. Since the reference member 17 attached to the tray 16 is not in the distance measurement path of the lower distance sensor 20 at the retracted position, the lower distance sensor 20 has the bumps 23 of the semiconductor die 21 on the upper surface 17a side of the reference member 17 formed. The distance in the Z direction with respect to the side surface 24 can be measured. When the mounting head 12 is moved to the second position and the tray 16 is moved to the retracted position, the control unit 70 has the surface 24 on the side on which the bumps 23 of the semiconductor die 21 adsorbed by the lower distance sensor 20 and the collet 13 are formed. the Z-direction distance L 4 between the acquired from the lower distance sensor 20 and stored in the memory.

図7に示すように、制御部70は、マウンティングヘッド12を基板31の上に上部距離センサ14が来る第3ポジションに移動させる指令を出力する。この指令によってマウンティングヘッド12の駆動機構が始動し、マウンティングヘッド12をヘッドガイド11に沿ってX方向に移動させ、マウンティングヘッド12が第3ポジションまで移動したら、マウンティングヘッド12のX方向の移動を停止する。そして、制御部70は、上部距離センサ14と基板31のバンプ33が形成された側の面34との間のZ方向の距離L2を上部距離センサ14から取得し、メモリに格納する。 As shown in FIG. 7, the control unit 70 outputs a command to move the mounting head 12 to the third position where the upper distance sensor 14 comes on the substrate 31. By this command, the drive mechanism of the mounting head 12 is started, the mounting head 12 is moved in the X direction along the head guide 11, and when the mounting head 12 moves to the third position, the movement of the mounting head 12 in the X direction is stopped. To do. Then, the control unit 70 obtains the Z-direction distance L 2 between the upper distance sensor 14 and the side surface 34 on which the bumps 33 are formed in the substrate 31 from the upper distance sensor 14 and stored in the memory.

図8に示すように、制御部70は、メモリに格納したZ方向の距離L1から距離L4を読み出し、Z方向の距離L2からL1を差し引いてZ方向の第1の距離差ΔL1を計算する。また、制御部70は、取得したZ方向の距離L4からL3を差し引いてZ方向の第2の距離差ΔL2を計算する。図8に示すように、第2の距離差ΔL2は、コレット13に吸着された半導体ダイ21のバンプ23が形成された側の面24とリファレンス部材17の下面17bとのZ方向の距離となる。そして、制御部70は、第1の距離差ΔL1と、第2の距離差ΔL2とを加え、その合計からリファレンス部材17の厚さtを差し引くことによって、コレット13に吸着された半導体ダイ21のバンプ23が形成された側の面24と基板31のバンプ33が形成された側の面34との間のZ方向の距離L5を取得し、メモリに格納する。 As shown in FIG. 8, the control unit 70 reads the distance L 4 from the distance L 1 in the Z direction stored in the memory, and subtracts L 1 from the distance L 2 in the Z direction to obtain the first distance difference ΔL in the Z direction. Calculate 1 In addition, the control unit 70 calculates the second distance difference ΔL 2 in the Z direction by subtracting L 3 from the acquired distance L 4 in the Z direction. As shown in FIG. 8, the second distance difference ΔL 2 is the distance in the Z direction between the surface 24 on which the bump 23 of the semiconductor die 21 adsorbed to the collet 13 is formed and the lower surface 17 b of the reference member 17. Become. Then, the control unit 70 adds the first distance difference ΔL 1 and the second distance difference ΔL 2, and subtracts the thickness t of the reference member 17 from the total, thereby obtaining the semiconductor die adsorbed on the collet 13. The distance L 5 in the Z direction between the surface 24 on the side where the bumps 23 are formed and the surface 34 on the side where the bumps 33 of the substrate 31 are formed is acquired and stored in the memory.

図9(a)に示すように、制御部70は、上下二視野カメラ42を基板31とコレット13に吸着された半導体ダイ21との間に進出させ、半導体ダイ21と基板31の各電極22,32のXY方向の位置を合わせる。そして、制御部70は、コレット13を基板に向かってZ方向に降下させる降下高さDを計算する。   As shown in FIG. 9A, the control unit 70 advances the two-field camera 42 between the substrate 31 and the semiconductor die 21 adsorbed on the collet 13, and each electrode 22 on the semiconductor die 21 and the substrate 31. , 32 are aligned in the XY direction. Then, the control unit 70 calculates a lowering height D that lowers the collet 13 toward the substrate in the Z direction.

図9(b)に示すように、降下高さDは、半導体ダイ21のバンプ23が形成された側の面24と基板31のバンプ33が形成された側の面34とのZ方向の距離L5から半導体ダイ21のバンプ23が形成された側の面24からのバンプ高さH2と基板31のバンプ33が形成された側の面34からのバンプ高さH3との合計高さを差し引いたものである。各バンプ23,33の各バンプ高さH2,H3に形成の際の製造誤差などによるバラツキがある場合には、最大の各バンプ高さH2,H3の合計を差し引く。そして、制御部70は、コレット13を降下高さDだけ降下させる指令を出力する。この指令によってマウンティングヘッド12の駆動機構が始動し、コレット13を降下高さDだけ基板31に向かってZ方向に降下させ、降下高さDだけコレット13が降下するとコレット13の降下を停止させる。 As shown in FIG. 9B, the descending height D is the distance in the Z direction between the surface 24 of the semiconductor die 21 on which the bumps 23 are formed and the surface 34 of the substrate 31 on which the bumps 33 are formed. The total height of the bump height H 2 from the surface 24 on which the bump 23 of the semiconductor die 21 is formed from L 5 and the bump height H 3 from the surface 34 on the side of the substrate 31 on which the bump 33 is formed. Is subtracted. If the bump heights H 2 and H 3 of the bumps 23 and 33 vary due to manufacturing errors during the formation, the total of the maximum bump heights H 2 and H 3 is subtracted. Then, the control unit 70 outputs a command to lower the collet 13 by the lowering height D. By this command, the driving mechanism of the mounting head 12 is started, the collet 13 is lowered in the Z direction toward the substrate 31 by the lowering height D, and when the collet 13 is lowered by the lowering height D, the lowering of the collet 13 is stopped.

図9(b)に示すように、コレット13が降下高さDだけ降下すると、半導体ダイ21のバンプ23の先端は基板31のバンプ33の先端の直上となっている。各バンプ23,33のバンプ高さH2,H3にバラツキがある場合には、各バンプ23,33の間にはバラツキに基づく微小な隙間δができる。ほとんどの場合、各バンプ23,33のバンプ高さH2,H3にはバラツキがあり、半導体ダイ21の一番高いバンプ23と基板31の一番高いバンプ33とが対向することはないので、各バンプ23,33の先端はほとんど接触せず、隙間δはゼロより大きくなっている。また、コレット13が降下した後の半導体ダイ21のバンプ23が形成された側の面24と基板31のバンプ33が形成された側の面34との高さはH0となっている。 As shown in FIG. 9B, when the collet 13 descends by the descending height D, the tips of the bumps 23 of the semiconductor die 21 are directly above the tips of the bumps 33 of the substrate 31. When the bump heights H 2 and H 3 of the bumps 23 and 33 are varied, a minute gap δ is formed between the bumps 23 and 33 based on the variation. In most cases, the bump heights H 2 and H 3 of the bumps 23 and 33 vary, and the highest bump 23 of the semiconductor die 21 and the highest bump 33 of the substrate 31 do not face each other. The tips of the bumps 23 and 33 are hardly in contact with each other, and the gap δ is larger than zero. Further, the height of the surface 24 of the semiconductor die 21 on which the bumps 23 are formed after the collet 13 is lowered and the surface 34 of the substrate 31 on which the bumps 33 are formed is H 0 .

図9(c)に示すように、制御部70は、コレット13の吸着孔の真空を開放する指令を出力する。この指令によってコレット13の吸着孔の真空が開放され、コレット13に吸着されていた半導体ダイ21は自重によって基板31の上に降下する。すると、半導体ダイ21のバンプ23と基板31のバンプ33とが接触し、液相の各バンプ23,33とは一体となって接合バンプ26を形成する。接合バンプ26は半導体ダイ21の自重を支持している。   As shown in FIG. 9C, the control unit 70 outputs a command for opening the vacuum of the suction holes of the collet 13. By this command, the vacuum of the suction holes of the collet 13 is released, and the semiconductor die 21 adsorbed on the collet 13 falls onto the substrate 31 by its own weight. Then, the bumps 23 of the semiconductor die 21 and the bumps 33 of the substrate 31 come into contact with each other, and the bumps 23 and 33 in the liquid phase are integrated to form the bonding bumps 26. The bonding bumps 26 support the weight of the semiconductor die 21.

以上説明したように、本実施形態のダイマウント装置10は、コレット13に吸着した半導体ダイ21を基板31の上にマウントする前に、半導体ダイ21のバンプ23が形成された側の面24と基板31のバンプ33が形成された側の面34とのZ方向の距離L5を計測しておき、半導体ダイ21のバンプ23先端が基板31のバンプ33の先端の直上に来るまで半導体ダイ21を基板31に接近させてから、半導体ダイ21を基板31の上に重ね合わせるので、各バンプ23,33にほとんど押圧力を掛けずに半導体ダイ21を基板31の上に重ね合わせることができ、重ね合わせの際に各バンプ23,33が潰れることを抑制することができるという効果を奏する。また、本実施形態では、ダイマウント装置10のベースに固定された下部距離センサ20とマウンティングヘッド12に固定された上部距離センサ14とを用いてコレット13に吸着された半導体ダイ21のバンプ23が形成された側の面24と基板31のバンプ33が形成された側の面34とのZ方向の距離L5を測定しているので、コレット13に吸着された半導体ダイ21と基板と31との間に可動式の距離センサを進出させてZ方向の距離L5を測定するよりも精度良くZ方向の距離L5を測定することができる。このため、コレット13をより精度よく降下させることができ、コレット13を降下させた後の各バンプ23,33の隙間δをより小さくすることができ、半導体ダイ21を基板31に重ねる際によりゆっくりと半導体ダイ21を基板31に降下させることができ、重ね合わせの際に各バンプ23,33が潰れることを抑制することができるという効果を奏する。 As described above, the die mounting apparatus 10 according to the present embodiment has the surface 24 on the side on which the bumps 23 of the semiconductor die 21 are formed before mounting the semiconductor die 21 adsorbed on the collet 13 on the substrate 31. A distance L 5 in the Z direction from the surface 34 on which the bumps 33 of the substrate 31 are formed is measured, and the semiconductor die 21 is kept until the tip of the bump 23 of the semiconductor die 21 is directly above the tip of the bump 33 of the substrate 31. Since the semiconductor die 21 is superposed on the substrate 31 after being brought close to the substrate 31, the semiconductor die 21 can be superposed on the substrate 31 with almost no pressing force applied to the bumps 23 and 33. There is an effect that the bumps 23 and 33 can be prevented from being crushed during superposition. In the present embodiment, the bumps 23 of the semiconductor die 21 adsorbed on the collet 13 using the lower distance sensor 20 fixed to the base of the die mount apparatus 10 and the upper distance sensor 14 fixed to the mounting head 12 are formed. Since the distance L 5 in the Z direction between the formed surface 24 and the surface 34 of the substrate 31 on which the bumps 33 are formed is measured, the semiconductor die 21 adsorbed on the collet 13, the substrate 31 and It is possible to measure the distance L 5 in the Z direction with higher accuracy than measuring the distance L 5 in the Z direction by moving a movable distance sensor between them. For this reason, the collet 13 can be lowered more accurately, the gap δ between the bumps 23 and 33 after the collet 13 is lowered can be made smaller, and more slowly when the semiconductor die 21 is stacked on the substrate 31. As a result, the semiconductor die 21 can be lowered to the substrate 31 and the bumps 23 and 33 can be prevented from being crushed during the superposition.

図10から図12を参照しながら他の実施形態について説明する。図1から図9を参照して説明した実施形態と同様の部分には同様の符号を付して説明を省略する。   Another embodiment will be described with reference to FIGS. 10 to 12. Parts similar to those of the embodiment described with reference to FIGS. 1 to 9 are denoted by the same reference numerals, and description thereof is omitted.

図10(a)、図10(b)に示すように、制御部70は、マウンティングヘッド12をコレット13が吸着している半導体ダイ21のバンプ23が形成された側の面24の中心よりも少しずれた位置が下部距離センサ20の上に来る第2aポジションに移動させる指令を出力する。この指令によってマウンティングヘッド12の駆動機構が始動し、マウンティングヘッド12をヘッドガイド11に沿ってX方向に移動させ、マウンティングヘッド12が第2aポジションまで移動したら、マウンティングヘッド12のX方向の移動を停止する。また、制御部70は、トレイ16を退避位置まで移動させる。そして、制御部70は、下部距離センサ20とコレット13に吸着された半導体ダイ21のバンプ23が形成された側の面24にある距離測定位置27aとの間のZ方向の距離L4aを下部距離センサ20から取得し、メモリに格納する。Z方向の距離L4aの取得が終了したら、制御部70は、下部距離センサ20が距離測定位置27aよりもX方向に少しずれた位置にある距離測定位置27bの距離を測定することができる第2bポジションまでマウンティングヘッド12をX方向に移動させる。そして、制御部70は、下部距離センサ20とコレット13に吸着された半導体ダイ21のバンプ23が形成された側の面24にある距離測定位置27bとの間のZ方向の距離L4bを下部距離センサ20から取得し、メモリに格納する。 As shown in FIG. 10A and FIG. 10B, the control unit 70 controls the mounting head 12 from the center of the surface 24 on the side where the bumps 23 of the semiconductor die 21 on which the collet 13 is adsorbed are formed. A command to move to the 2a position where the slightly shifted position is above the lower distance sensor 20 is output. By this command, the drive mechanism of the mounting head 12 is started, the mounting head 12 is moved in the X direction along the head guide 11, and when the mounting head 12 moves to the 2a position, the movement of the mounting head 12 in the X direction is stopped. To do. Further, the control unit 70 moves the tray 16 to the retracted position. Then, the control unit 70 lowers the distance L 4a in the Z direction between the lower distance sensor 20 and the distance measurement position 27a on the surface 24 on the side where the bumps 23 of the semiconductor die 21 adsorbed to the collet 13 are formed. Obtained from the distance sensor 20 and stored in the memory. When the acquisition of the distance L 4a in the Z direction is completed, the control unit 70 can measure the distance of the distance measurement position 27b at which the lower distance sensor 20 is slightly shifted in the X direction from the distance measurement position 27a. The mounting head 12 is moved in the X direction to the 2b position. Then, the control unit 70 reduces the distance L 4b in the Z direction between the lower distance sensor 20 and the distance measurement position 27b on the surface 24 on the side where the bumps 23 of the semiconductor die 21 adsorbed to the collet 13 are formed. Obtained from the distance sensor 20 and stored in the memory.

図11(a)、図11(b)に示すように、制御部70は、マウンティングヘッド12を基板31の上に上部距離センサ14が来る第3aポジションに移動させ、上部距離センサ14と基板31のバンプ33が形成された側の面34にある距離測定位置37aとの間のZ方向の距離L2aを上部距離センサ14から取得し、メモリに格納する。距離L2aの取得が終了したら、制御部70は、上部距離センサ14が距離測定位置37aよりもX方向に少しずれた位置にある距離測定位置37bの距離を測定することができる第3bポジションまでマウンティングヘッド12をX方向に移動させる。そして、制御部70は、上部距離センサ14と基板31のバンプ33が形成された側の面34にある距離測定位置37bとの間のZ方向の距離L2bを上部距離センサ14から取得し、メモリに格納する。 As shown in FIGS. 11A and 11B, the control unit 70 moves the mounting head 12 to the 3a position where the upper distance sensor 14 comes on the substrate 31, and the upper distance sensor 14 and the substrate 31 are moved. The distance L 2a in the Z direction from the distance measurement position 37a on the surface 34 on the side where the bump 33 is formed is obtained from the upper distance sensor 14 and stored in the memory. When the acquisition of the distance L 2a is completed, the control unit 70 reaches the third position b where the upper distance sensor 14 can measure the distance of the distance measurement position 37b at a position slightly shifted in the X direction from the distance measurement position 37a. The mounting head 12 is moved in the X direction. And the control part 70 acquires the distance L2b of the Z direction between the upper distance sensor 14 and the distance measurement position 37b in the surface 34 by which the bump 33 of the board | substrate 31 was formed from the upper distance sensor 14, Store in memory.

制御部70は、取得したZ方向の距離L4aとL4bとの内の小さい方をZ方向の距離L4としてメモリに格納し、取得したZ方向の距離L2aとL2bとの内の小さい方をZ方向の距離L2としてメモリに格納し、先に説明した実施形態と同様、第1の距離差ΔL1と第2の距離差ΔL2を計算し、第1の距離差ΔL1と、第2の距離差ΔL2とを加え、その合計からリファレンス部材17の厚さtを差し引くことによって、コレット13に吸着された半導体ダイ21のバンプ23が形成された側の面24と基板31のバンプ33が形成された側の面34との間のZ方向の距離L6を取得し、メモリに格納する。Z方向の距離L6は、上部距離センサ14と下部距離センサ20とによって取得したコレット13に吸着されている半導体ダイ21のバンプ23が形成された側の面24と基板31のバンプ33が形成された側の面34と複数の距離の内の最も小さいZ方向の距離である。 The control unit 70 stores the smaller one of the acquired distances L 4a and L 4b in the Z direction in the memory as the distance L 4 in the Z direction, and stores the distance between the acquired distances L 2a and L 2b in the Z direction. The smaller one is stored in the memory as the distance L 2 in the Z direction, and the first distance difference ΔL 1 and the second distance difference ΔL 2 are calculated and the first distance difference ΔL 1 as in the embodiment described above. And the second distance difference ΔL 2, and the thickness t of the reference member 17 is subtracted from the total thereof, whereby the surface 24 on the side on which the bumps 23 of the semiconductor die 21 adsorbed to the collet 13 are formed and the substrate The distance L 6 in the Z direction between the surface 31 on which the bump 33 is formed and the Z direction is obtained and stored in the memory. The distance L 6 in the Z direction is formed by the surface 24 on the side where the bumps 23 of the semiconductor die 21 adsorbed by the collet 13 obtained by the upper distance sensor 14 and the lower distance sensor 20 and the bumps 33 of the substrate 31 are formed. The distance in the Z direction is the smallest of a plurality of distances from the surface 34 on the side.

そして、図12に示すように、制御部70は、半導体ダイ21のバンプ23が形成された側の面24と基板31のバンプ33が形成された側の面34との間のZ方向の距離L6から半導体ダイ21のバンプ23が形成された側の面24からのバンプ高さH2と基板31のバンプ33が形成された側の面34からのバンプ高さH3との合計高さを差し引いてZ方向の降下高さDを計算し、降下高さDだけコレット13を降下させ、半導体ダイ21を基板31に重ね合わせる。すると、図9(c)に示すように、半導体ダイ21のバンプ23と基板31のバンプ33とが接触し、液相の各バンプ23,33とは一体となって接合バンプ26を形成する。 Then, as shown in FIG. 12, the controller 70 determines the distance in the Z direction between the surface 24 of the semiconductor die 21 on which the bumps 23 are formed and the surface 34 of the substrate 31 on which the bumps 33 are formed. The total height of the bump height H 2 from the surface 24 on which the bump 23 of the semiconductor die 21 is formed from L 6 and the bump height H 3 from the surface 34 on the side of the substrate 31 on which the bump 33 is formed. Is subtracted to calculate the descending height D in the Z direction, the collet 13 is lowered by the descending height D, and the semiconductor die 21 is superimposed on the substrate 31. Then, as shown in FIG. 9C, the bumps 23 of the semiconductor die 21 and the bumps 33 of the substrate 31 come into contact with each other, and the bumps 23 and 33 in the liquid phase are integrated to form the bonding bumps 26.

本実施形態は、上部距離センサ14と下部距離センサ20とによって取得したコレット13に吸着されている半導体ダイ21のバンプ23が形成された側の面24と基板31のバンプ33が形成された側の面34との複数のZ方向の距離の内の最も小さいZ方向の距離であるL6に基づいてコレット13の降下高さDを算出しているので、図12に示すように、コレット13に吸着された半導体ダイ21と基板31との間に傾斜がある場合でも、一番接近しているバンプ23,33を潰すことなく半導体ダイ21を基板31の上に重ね合わせることができるという効果を奏する。 In the present embodiment, the surface 24 on which the bumps 23 of the semiconductor die 21 adsorbed by the collet 13 acquired by the upper distance sensor 14 and the lower distance sensor 20 are formed and the side on which the bumps 33 of the substrate 31 are formed. Since the descending height D of the collet 13 is calculated on the basis of L 6 which is the smallest Z-direction distance among the plurality of Z-direction distances to the surface 34, as shown in FIG. Even when there is an inclination between the semiconductor die 21 adsorbed on the substrate 31 and the substrate 31, the semiconductor die 21 can be superimposed on the substrate 31 without crushing the bumps 23 and 33 that are closest to each other. Play.

図10から図12を参照して他の実施形態について説明する。先に説明した実施形態と同様の部分には同様の符号を付して説明は省略する。   Another embodiment will be described with reference to FIGS. 10 to 12. Parts similar to those of the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.

図10(a)、図10(c)に示すように、本実施形態のダイマウント装置10のコレット13は、半導体ダイ21を吸着した状態で回転することができるよう構成されている。   As shown in FIGS. 10A and 10C, the collet 13 of the die mount apparatus 10 of the present embodiment is configured to be able to rotate while the semiconductor die 21 is adsorbed.

制御部70は、先に説明した実施形態と同様、マウンティングヘッド12をコレット13が吸着している半導体ダイ21のバンプ23が形成された側の面24の中心よりも少しずれた位置が下部距離センサ20の上に来る第2aポジションに移動させ、トレイ16を退避位置まで移動させる。そして、制御部70は、下部距離センサ20とコレット13に吸着された半導体ダイ21のバンプ23が形成された側の面24にある距離測定位置27aと下部距離センサ20との間のZ方向の距離L4aを下部距離センサ20から取得し、メモリに格納する。また、制御部70は、マウンティングヘッド12のXY方向の位置と、下部距離センサ20の位置とから距離測定位置27aのXY方向の座標位置を取得する。Z方向の距離L4aと距離測定位置27aの座標位置の取得が終了したら、制御部70は、コレット13を例えば45度回転させ、距離測定位置27aを含む円弧28の上にある距離測定位置27bが下部距離センサ20の上に来るようにする。そして、制御部70は、距離測定位置27bと下部距離センサ20との間のZ方向の距離L4bを下部距離センサ20から取得し、メモリに格納する。また、制御部70は、マウンティングヘッド12のXY方向の位置と、コレット13の回転角度と、下部距離センサ20の位置とから距離測定位置27bのXY方向の座標位置を取得する。Z方向の距離L4bと距離測定位置27bの座標位置の取得が終了したら、制御部70は、コレット13を更に45度回転させ、距離測定位置27aを含む円弧28の上にある距離測定位置27cが下部距離センサ20の上に来るようにする。そして、制御部70は、距離測定位置27cと下部距離センサ20との間のZ方向の距離L4cを下部距離センサ20から取得し、メモリに格納する。また、制御部70は、マウンティングヘッド12のXY方向の位置と、コレット13の回転角度と、下部距離センサ20の位置とから距離測定位置27cのXY方向の座標位置を取得する。図10(d)に示すように、各距離測定位置27a,27b,27cは、半導体ダイ21のバンプ23が形成された側の面24の上で一直線上にない位置となっている。 As in the above-described embodiment, the control unit 70 is located at a position where the mounting head 12 is slightly displaced from the center of the surface 24 on the side where the bump 23 of the semiconductor die 21 on which the collet 13 is attracted is formed. The tray 16 is moved to the retracted position by moving to the second position a that comes above the sensor 20. And the control part 70 of the Z direction between the distance measurement position 27a and the lower distance sensor 20 in the surface 24 in the side in which the bump 23 of the semiconductor die 21 attracted | sucked by the lower distance sensor 20 and the collet 13 was formed. The distance L 4a is acquired from the lower distance sensor 20 and stored in the memory. In addition, the control unit 70 acquires the coordinate position in the XY direction of the distance measurement position 27 a from the position in the XY direction of the mounting head 12 and the position of the lower distance sensor 20. When the acquisition of the coordinate position of the distance L 4a in the Z direction and the distance measurement position 27a is completed, the control unit 70 rotates the collet 13 by 45 degrees, for example, and the distance measurement position 27b on the arc 28 including the distance measurement position 27a. Is placed on the lower distance sensor 20. And the control part 70 acquires the distance L4b of the Z direction between the distance measurement position 27b and the lower distance sensor 20 from the lower distance sensor 20, and stores it in memory. In addition, the control unit 70 acquires the coordinate position in the XY direction of the distance measurement position 27b from the position in the XY direction of the mounting head 12, the rotation angle of the collet 13, and the position of the lower distance sensor 20. When the acquisition of the coordinate positions of the distance L 4b in the Z direction and the distance measurement position 27b is completed, the control unit 70 further rotates the collet 13 by 45 degrees, and the distance measurement position 27c on the arc 28 including the distance measurement position 27a. Is placed on the lower distance sensor 20. And the control part 70 acquires distance L4c of the Z direction between the distance measurement position 27c and the lower distance sensor 20 from the lower distance sensor 20, and stores it in memory. In addition, the control unit 70 acquires the coordinate position in the XY direction of the distance measurement position 27 c from the position in the XY direction of the mounting head 12, the rotation angle of the collet 13, and the position of the lower distance sensor 20. As shown in FIG. 10D, the distance measurement positions 27a, 27b, and 27c are positions that are not in a straight line on the surface 24 of the semiconductor die 21 on which the bumps 23 are formed.

図11(a)、図11(c)に示すように、制御部70は、マウンティングヘッド12を基板31の上に上部距離センサ14が来る第3aポジションに移動させ、上部距離センサ14と基板31のバンプ33が形成された側の面34にある距離測定位置37aとの間のZ方向の距離L2aを上部距離センサ14から取得し、メモリに格納する。また、制御部70は、マウンティングヘッド12のXY方向の位置から距離測定位置37aのXY方向の座標位置を取得する。Z方向の距離L2aの取得と距離測定位置37aのXY方向の座標位置の取得が終了したら、制御部70は、上部距離センサ14が距離測定位置37aよりもX方向に少しずれた位置にある距離測定位置37bの距離を測定することができる第3bポジションまでマウンティングヘッド12をX方向に移動させる。そして、制御部70は、上部距離センサ14と基板31のバンプ33が形成された側の面34にある距離測定位置37bとの間のZ方向の距離L2bを上部距離センサ14から取得し、メモリに格納する。また、制御部70は、マウンティングヘッド12のXY方向の位置から距離測定位置37bのXY方向の座標位置を取得する。Z方向の距離L2bの取得と距離測定位置37bのXY方向の座標位置の取得が終了したら、制御部70は、上部距離センサ14が距離測定位置37bよりもY方向に少しずれた位置にある距離測定位置37cの距離を測定することができるよう、図11(c)に示すように、基板31をY方向に移動させる。そして、制御部70は、上部距離センサ14と基板31のバンプ33が形成された側の面34にある距離測定位置37cとの間のZ方向の距離L2cを上部距離センサ14から取得し、メモリに格納する。また、制御部70は、マウンティングヘッド12のXY方向の位置と基板31のY方向位置とから距離測定位置37cのXY方向の座標位置を取得する。図11(d)に示すように、各距離測定位置37a,37b,37cは、基板31のバンプ33が形成された側の面34の上で一直線上にない位置となっている。 As shown in FIGS. 11A and 11C, the control unit 70 moves the mounting head 12 to the third position where the upper distance sensor 14 comes on the substrate 31, so that the upper distance sensor 14 and the substrate 31 are moved. The distance L 2a in the Z direction from the distance measurement position 37a on the surface 34 on the side where the bump 33 is formed is obtained from the upper distance sensor 14 and stored in the memory. Further, the control unit 70 acquires the coordinate position of the distance measurement position 37a in the XY direction from the position of the mounting head 12 in the XY direction. When the acquisition of the distance L 2a in the Z direction and the acquisition of the coordinate position in the XY direction of the distance measurement position 37a is completed, the control unit 70 is at a position where the upper distance sensor 14 is slightly shifted in the X direction from the distance measurement position 37a. The mounting head 12 is moved in the X direction to a third position b where the distance measurement position 37b can be measured. And the control part 70 acquires the distance L2b of the Z direction between the upper distance sensor 14 and the distance measurement position 37b in the surface 34 by which the bump 33 of the board | substrate 31 was formed from the upper distance sensor 14, Store in memory. Further, the control unit 70 acquires the coordinate position of the distance measurement position 37b in the XY direction from the position of the mounting head 12 in the XY direction. When the acquisition of the distance L 2b in the Z direction and the acquisition of the coordinate position in the XY direction of the distance measurement position 37b are completed, the control unit 70 is at a position where the upper distance sensor 14 is slightly shifted in the Y direction from the distance measurement position 37b. As shown in FIG. 11C, the substrate 31 is moved in the Y direction so that the distance at the distance measurement position 37c can be measured. Then, the control unit 70 obtains the upper distance sensor 14 and the Z-direction distance L 2c between the distance measurement position 37c on the side surface 34 on which the bumps 33 are formed in the substrate 31 from the upper distance sensor 14, Store in memory. Further, the control unit 70 acquires the coordinate position in the XY direction of the distance measurement position 37 c from the position in the XY direction of the mounting head 12 and the Y direction position of the substrate 31. As shown in FIG. 11D, the distance measurement positions 37a, 37b, and 37c are positions that are not in a straight line on the surface 34 of the substrate 31 on which the bumps 33 are formed.

制御部70は、取得した各距離測定位置37a,37b,37cのXY方向の位置とZ方向の距離L2a,L2b,L2cとから基板31のバンプ33が形成された側の面34のXY面に対する傾斜角度、方向を計算し、バンプ33が形成された側の面34の中で一番上部距離センサ14に近くなっている位置を計算し、基板31のバンプ33が形成された側の面34と上部距離センサ14との間のZ方向の最小距離L2’を算出し、Z方向の距離L2’からL1を差し引いてZ方向の第1の距離差ΔL1を計算する。また、制御部70は、取得した各距離測定位置27a,27b,27cのXY方向の位置とZ方向の距離L4a,L4b,L4cとからコレット13に吸着された半導体ダイ21のバンプ23が形成された側の面24のXY面に対する傾斜角度、方向を計算し、バンプ23が形成された側の面24の中で一番下部距離センサ20に近くなっている位置を計算し、コレット13に吸着された半導体ダイ21のバンプ23が形成された側の面24と下部距離センサ20との間のZ方向の最小距離L4’を算出し、Z方向の距離L4’からL3を差し引いてZ方向の第2の距離差ΔL2を計算する。そして、制御部70は、第1の距離差ΔL1と、第2の距離差ΔL2とを加え、その合計からリファレンス部材17の厚さtを差し引くことによって、コレット13に吸着された半導体ダイ21のバンプ23が形成された側の面24と基板31のバンプ33が形成された側の面34との間のZ方向の最小面間距離L7を取得し、メモリに格納する。 The controller 70 determines the surface 34 on the side where the bumps 33 of the substrate 31 are formed from the acquired positions in the XY direction of the distance measurement positions 37a, 37b and 37c and the distances L 2a , L 2b and L 2c in the Z direction. The inclination angle and direction with respect to the XY plane are calculated, the position closest to the uppermost distance sensor 14 in the surface 34 on the side where the bumps 33 are formed is calculated, and the side on which the bumps 33 of the substrate 31 are formed The minimum distance L 2 ′ in the Z direction between the surface 34 and the upper distance sensor 14 is calculated, and the first distance difference ΔL 1 in the Z direction is calculated by subtracting L 1 from the distance L 2 ′ in the Z direction. . Further, the control unit 70 uses the acquired distance measurement positions 27a, 27b, and 27c in the XY direction and the distances L 4a , L 4b , and L 4c in the Z direction to bumps 23 of the semiconductor die 21 attracted to the collet 13. The inclination angle and direction of the surface 24 on the side where the bumps 23 are formed with respect to the XY plane are calculated, the position on the side 24 where the bumps 23 are formed is closest to the lowermost distance sensor 20, and the collet is calculated. The minimum distance L 4 ′ in the Z direction between the surface 24 on which the bump 23 of the semiconductor die 21 adsorbed on the side 13 is formed and the lower distance sensor 20 is calculated, and the distance L 4 ′ from the distance L 4 ′ in the Z direction is calculated as L 3. Is subtracted to calculate the second distance difference ΔL 2 in the Z direction. Then, the control unit 70 adds the first distance difference ΔL 1 and the second distance difference ΔL 2, and subtracts the thickness t of the reference member 17 from the total, thereby obtaining the semiconductor die adsorbed on the collet 13. The minimum inter-surface distance L 7 in the Z direction between the surface 24 on the side where the bumps 23 are formed and the surface 34 on the side where the bumps 33 of the substrate 31 are formed is acquired and stored in the memory.

そして、図12に示すように、制御部70は、半導体ダイ21のバンプ23が形成された側の面24と基板31のバンプ33が形成された側の面34との間のZ方向の最小面間距離L7から半導体ダイ21のバンプ23が形成された側の面24からのバンプ高さH2と基板31のバンプ33が形成された側の面34からのバンプ高さH3との合計高さを差し引いてZ方向の降下高さDを計算し、降下高さDだけコレット13を降下させ、半導体ダイ21を基板31に重ね合わせる。 Then, as shown in FIG. 12, the control unit 70 is the minimum in the Z direction between the surface 24 of the semiconductor die 21 where the bumps 23 are formed and the surface 34 of the substrate 31 where the bumps 33 are formed. The bump height H 2 from the surface 24 on the side where the bump 23 of the semiconductor die 21 is formed and the bump height H 3 from the surface 34 on the side where the bump 33 of the substrate 31 is formed from the inter-surface distance L 7 . The total height is subtracted to calculate the descending height D in the Z direction, the collet 13 is lowered by the descending height D, and the semiconductor die 21 is overlaid on the substrate 31.

本実施形態は、上部距離センサ14と下部距離センサ20とによって取得したコレット13に吸着されている半導体ダイ21のバンプ23が形成された側の面24と基板31のバンプ33が形成された側の面34との間のZ方向の最小面間距離L7に基づいてコレット13のZ方向の降下高さDを算出しているので、図12に示すように、コレット13に吸着された半導体ダイ21と基板31との間に傾斜がある場合でも、一番接近しているバンプ23,33を潰すことなく半導体ダイ21を基板31の上に重ね合わせることができるという効果を奏する。 In the present embodiment, the surface 24 on which the bumps 23 of the semiconductor die 21 adsorbed by the collet 13 acquired by the upper distance sensor 14 and the lower distance sensor 20 are formed and the side on which the bumps 33 of the substrate 31 are formed. Since the descending height D of the collet 13 in the Z direction is calculated on the basis of the minimum inter-plane distance L 7 in the Z direction with respect to the surface 34, the semiconductor adsorbed on the collet 13 as shown in FIG. Even when there is an inclination between the die 21 and the substrate 31, the semiconductor die 21 can be superimposed on the substrate 31 without crushing the bumps 23 and 33 that are closest to each other.

以上説明した各実施形態は、半導体ダイ21を基板31の上に重ね合わせることとして説明したが、図13に示すように、本発明は、コレット13に吸着された半導体ダイ51を他の半導体ダイ61の上に重ね合わせる場合にも適用することができる。   In each of the embodiments described above, the semiconductor die 21 is superposed on the substrate 31. However, as shown in FIG. 13, the present invention relates to the semiconductor die 51 adsorbed on the collet 13 as another semiconductor die. It can also be applied to the case of superimposing on 61.

図13に示す半導体ダイ61は貫通電極62を備えており、先に説明した実施形態による方法によって基板31の上に重ね合わされ、その後、焼結によって貫通電極62の基板側と基板31の電極32との間に接合金属層56が形成されているものである。そして、半導体ダイ61の基板と反対側にある貫通電極62の上に先の実施形態で説明したと同様、金属ナノインクを用いたバンプ63が形成されている。また、コレット13に吸着されている半導体ダイ51の電極52の上にも金属ナノインクによってバンプ53が形成されている。   A semiconductor die 61 shown in FIG. 13 includes a through electrode 62 and is superimposed on the substrate 31 by the method according to the above-described embodiment, and thereafter, the substrate side of the through electrode 62 and the electrode 32 of the substrate 31 are sintered. The bonding metal layer 56 is formed between the two. A bump 63 using metal nano ink is formed on the through electrode 62 on the opposite side of the substrate of the semiconductor die 61 as described in the previous embodiment. Also, bumps 53 are formed by metal nano ink on the electrodes 52 of the semiconductor die 51 adsorbed by the collet 13.

制御部70は先に説明した実施形態と同様に、上部距離センサ14と下部距離センサ20とによって、上部距離センサ14とリファレンス部材17の上部距離センサ14側の上面17aとの間のZ方向の距離L1と、上部距離センサ14と半導体ダイ61のバンプ63が形成された側の面64との間のZ方向の距離L2と、下部距離センサ20とリファレンス部材17の下部距離センサ20側の下面17bとの距離L3と、下部距離センサ20とコレット13に吸着された半導体ダイ51のバンプ53が形成された側の面54との間のZ方向の距離L4とを、取得してメモリに格納する。そして、制御部70は、Z方向の距離L2からL1を差し引いてZ方向の第1の距離差ΔL1を計算し、Z方向の距離L4からL3を差し引いてZ方向の第2の距離差ΔL2を計算し、第1の距離差ΔL1と、第2の距離差ΔL2とを加え、その合計からリファレンス部材17の厚さtを差し引くことによって、図13(a)に示すように、コレット13に吸着された半導体ダイ51のバンプ53が形成された側の面54と半導体ダイ61のバンプ63が形成された側の面64との間のZ方向の距離L5を取得し、メモリに格納する。 Similarly to the embodiment described above, the control unit 70 uses the upper distance sensor 14 and the lower distance sensor 20 in the Z direction between the upper distance sensor 14 and the upper surface 17a of the reference member 17 on the upper distance sensor 14 side. The distance L 1 , the distance L 2 in the Z direction between the upper distance sensor 14 and the surface 64 on which the bump 63 of the semiconductor die 61 is formed, the lower distance sensor 20 and the lower distance sensor 20 side of the reference member 17 and the distance L 3 between the lower surface 17b, and a Z-direction distance L 4 between the lower distance sensor 20 and the side surface 54 on which the bumps 53 are formed in the collet 13 semiconductor die 51 adsorbed to acquire Stored in memory. Then, the control unit 70 calculates the first distance difference ΔL 1 in the Z direction by subtracting L 1 from the distance L 2 in the Z direction, and subtracts L 3 from the distance L 4 in the Z direction to calculate the second distance in the Z direction. The distance difference ΔL 2 is calculated, the first distance difference ΔL 1 and the second distance difference ΔL 2 are added, and the thickness t of the reference member 17 is subtracted from the total, thereby obtaining the result shown in FIG. As shown, the distance L 5 in the Z direction between the surface 54 of the semiconductor die 51 adsorbed by the collet 13 on the side where the bumps 53 are formed and the surface 64 of the semiconductor die 61 on which the bumps 63 are formed is shown. Acquire and store in memory.

制御部70は、図13(b)に示すように、半導体ダイ51のバンプ53が形成された側の面54と半導体ダイ61のバンプ63が形成された側の面64との間のZ方向の距離L5から半導体ダイ51のバンプ53が形成された側の面54からのバンプ高さH2と半導体ダイ61のバンプ63が形成された側の面64からのバンプ高さH3との合計高さを差し引いてZ方向の降下高さDを計算し、コレット13を降下高さDだけ基板31に向かって降下させる。そして、制御部70は図13(c)に示すように、コレット13の真空を開放し、半導体ダイ51を半導体ダイ61の上に降下させて重ね合わせる。すると、半導体ダイ51のバンプ53と半導体ダイ61のバンプ63とが接触し、液相の各バンプ53,63とは一体となって接合バンプ55を形成する。 As shown in FIG. 13 (b), the control unit 70 is arranged in the Z direction between the surface 54 of the semiconductor die 51 where the bumps 53 are formed and the surface 64 of the semiconductor die 61 where the bumps 63 are formed. From the distance L 5, the bump height H 2 from the surface 54 of the semiconductor die 51 on which the bump 53 is formed and the bump height H 3 from the surface 64 of the semiconductor die 61 on which the bump 63 is formed are The total height is subtracted to calculate the descending height D in the Z direction, and the collet 13 is lowered toward the substrate 31 by the descending height D. Then, as shown in FIG. 13C, the control unit 70 releases the vacuum of the collet 13 and lowers the semiconductor die 51 on the semiconductor die 61 so as to overlap each other. Then, the bumps 53 of the semiconductor die 51 and the bumps 63 of the semiconductor die 61 come into contact with each other, and the bumps 53 and 63 in the liquid phase are integrated to form a bonding bump 55.

本実施形態は先に説明した各実施形態と同様の効果を奏する。   This embodiment has the same effects as the previously described embodiments.

本発明の実施形態におけるダイマウント装置の構成を示す斜視図である。It is a perspective view which shows the structure of the die mount apparatus in embodiment of this invention. 金属ナノインクによって半導体ダイおよび基板の電極上へのバンプ形成を示す説明図である。It is explanatory drawing which shows bump formation on the electrode of a semiconductor die and a board | substrate with metal nano ink. バンプが形成された半導体ダイをトレイに保持させた状態と、バンプが形成された基板をマウンティングステージに吸着させた状態を示す説明図である。It is explanatory drawing which shows the state which hold | maintained the semiconductor die in which the bump was formed in the tray, and the state in which the board | substrate with which the bump was formed was made to adsorb | suck to the mounting stage. 本発明の実施形態におけるダイマウント装置の動作の内、半導体ダイのピックアップを示す説明図である。It is explanatory drawing which shows the pick-up of a semiconductor die among operation | movement of the die mounting apparatus in embodiment of this invention. 本発明の実施形態におけるダイマウント装置の動作の内、上部距離センサと下部距離センサによるリファレンス部材の上面と下面の距離の測定を示す説明図である。It is explanatory drawing which shows the measurement of the distance of the upper surface and lower surface of a reference member by an upper distance sensor and a lower distance sensor among operation | movement of the die-mount apparatus in embodiment of this invention. 本発明の実施形態におけるダイマウント装置の動作の内、下部距離センサによる半導体ダイの距離の測定を示す説明図である。It is explanatory drawing which shows the measurement of the distance of the semiconductor die by a lower distance sensor among operation | movement of the die-mount apparatus in embodiment of this invention. 本発明の実施形態におけるダイマウント装置の動作の内、上部距離センサによる基板の距離の測定を示す説明図である。It is explanatory drawing which shows the measurement of the distance of the board | substrate by an upper distance sensor among operation | movement of the die-mount apparatus in embodiment of this invention. 本発明の実施形態におけるダイマウント装置の動作において、取得した各距離の関係と距離差を示す説明図である。In operation | movement of the die-mount apparatus in embodiment of this invention, it is explanatory drawing which shows the relationship and distance difference of each acquired distance. 本発明の実施形態におけるダイマウント装置の動作において、半導体ダイを基板に重ね合わせる動作を示す説明図である。It is explanatory drawing which shows the operation | movement which superimposes a semiconductor die on a board | substrate in operation | movement of the die-mount apparatus in embodiment of this invention. 本発明の他の実施形態におけるダイマウント装置の動作の内、下部距離センサによる半導体ダイの距離の測定を示す説明図である。It is explanatory drawing which shows the measurement of the distance of the semiconductor die by a lower distance sensor among operation | movement of the die-mount apparatus in other embodiment of this invention. 本発明の他の実施形態におけるダイマウント装置の動作の内、上部距離センサによる基板の距離の測定を示す説明図である。It is explanatory drawing which shows the measurement of the distance of the board | substrate by an upper distance sensor among operation | movement of the die-mount apparatus in other embodiment of this invention. 本発明の他の実施形態におけるダイマウント装置の動作において、相対的に傾斜した半導体ダイと基板との関係を示す説明図である。It is explanatory drawing which shows the relationship between the semiconductor die and board | substrate which inclined relatively in operation | movement of the die-mount apparatus in other embodiment of this invention. 本発明の他の実施形態におけるダイマウント装置の動作において、半導体ダイを他の半導体ダイに重ね合わせる動作を示す説明図である。It is explanatory drawing which shows the operation | movement which superimposes a semiconductor die on another semiconductor die in operation | movement of the die-mount apparatus in other embodiment of this invention.

符号の説明Explanation of symbols

10 ダイマウント装置、11 ヘッドガイド、12 マウンティングヘッド、13 コレット、14 上部距離センサ、15 トレイガイド、16 トレイ、16a 保持部、17 リファレンス部材、17a 上面、17b 下面、18 ガイドレール、19 マウンティングステージ、20 下部距離センサ、21,51,61 半導体ダイ、22,32,52 電極、23,33,53,63 バンプ、24,34,54,64 面、25 吸着側面、26,55 接合バンプ、27a,27b,27c,37a,37b,37c 距離測定位置、28 円弧、31 基板、40 射出ヘッド、41 微液滴、42 上下二視野カメラ、56 接合金属層、62 貫通電極、70 制御部、D 降下高さ、H0,H1 高さ、H2,H3 バンプ高さ、L1〜L4,L2a,L2b,L2c,L4a,L4b,L4c,L5,L6 距離、L2’,L4’ 最小距離、L7 最小面間距離、δ 隙間、ΔL1,ΔL2 距離差。 DESCRIPTION OF SYMBOLS 10 Die mounting apparatus, 11 Head guide, 12 Mounting head, 13 Collet, 14 Upper distance sensor, 15 Tray guide, 16 Tray, 16a Holding part, 17 Reference member, 17a Upper surface, 17b Lower surface, 18 Guide rail, 19 Mounting stage, 20 Lower distance sensor, 21, 51, 61 Semiconductor die, 22, 32, 52 Electrode, 23, 33, 53, 63 Bump, 24, 34, 54, 64 surface, 25 Adsorption side surface, 26, 55 Bond bump, 27a, 27b, 27c, 37a, 37b, 37c Distance measurement position, 28 arc, 31 substrate, 40 ejection head, 41 fine droplet, 42 top and bottom two-field camera, 56 junction metal layer, 62 penetrating electrode, 70 control unit, D descending height H 0 , H 1 height, H 2 , H 3 bump height, L 1 to L 4 , L 2a , L 2b , L 2c, L 4a, L 4b, L 4c, L 5, L 6 distance, L 2 ', L 4' minimum distance, L 7 minimum level distance, [delta] clearance, ΔL 1, ΔL 2 distance difference.

Claims (8)

金属ナノ粒子を有機溶剤中に混合させた金属ナノインクを用いて電極上にバンプが形成された半導体ダイを、金属ナノインクを用いて電極上にバンプが形成された基板または金属ナノインクを用いて電極上にバンプが形成された他の半導体ダイの上にフェースダウンして半導体ダイを基板または他の半導体ダイに重ね合わせるダイマウント装置であって、
板または他の半導体ダイのバンプ側に配置された第1の距離センサと、
コレットに吸着された半導体ダイのバンプ側に配置された第2の距離センサと、
第1の距離センサと第2の距離センサとの間に配置され、基板表面または他の半導体ダイの表面に沿った方向に伸びるリファレンス部材と、
半導体ダイを吸着して基板または他の半導体ダイに向かって降下するコレットと、コレットの降下を制御する制御部とを含み、
制御部は、
リファレンス部材の第1の距離センサ側の面と第1の距離センサとの間のコレット降下方向に沿った第1の距離と、基板のバンプ側表面または他の半導体ダイのバンプ側表面と第1の距離センサとの間のコレット降下方向に沿った第2の距離とを第1の距離センサによって取得し、第1の距離と第2の距離の差として第1の距離差を検出し、リファレンス部材の第2の距離センサ側の面と第2の距離センサとの間のコレット降下方向に沿った第3の距離と、コレットに吸着された半導体ダイのバンプ側の表面と第2の距離センサとの間のコレット降下方向に沿った第4の距離とを第2の距離センサによって取得し、第3の距離と第4の距離との差として第2の距離差を検出し、第1の距離差と第2の距離差の和からリファレンス部材のコレット降下方向に沿った厚さを差し引いてコレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面とのコレットの降下方向に沿った距離を取得する距離取得手段と、
距離取得手段によって取得した距離に応じてコレットに吸着されている半導体ダイのバンプ先端が基板または他の半導体ダイのバンプ先端の直上に来るまでコレットを基板または他の半導体ダイに向かって降下させた後、コレットの半導体ダイの吸着を開放して半導体ダイのバンプを基板または他の半導体ダイのバンプに重ね合わせる重ね合わせ手段と、
を有することを特徴とするダイマウント装置。
A semiconductor die bumps are formed on the electrode by using a metal nano ink obtained by mixing metal nanoparticles in an organic solvent, the use of a metal nano ink bumps group Saitama other formed on the electrode by using a metal nano ink the bumps group Saitama other semiconductor die by face-down on top of the other semiconductor die formed on the electrode Te a die mount device superimposed on another semiconductor die,
Groups Saitama other a first distance sensors disposed in the bump side of the other semiconductor die,
A second distance sensor disposed on the bump side of the semiconductor die adsorbed to the collet;
Is disposed between the first distance sensor and the second distance sensor, the substrate table Menma other and the reference member extending in a direction along the surface of another semiconductor die,
Group Saitama Other adsorbs the semiconductor die includes a collet descends toward the other semiconductor die, and a control unit for controlling the descent of the collet,
The control unit
First distance and, bump-side table Menma other substrate bump side surface of the other semiconductor die along the collet descent direction between the first distance sensor side surface and a first distance sensor reference member And a second distance along the collet descending direction between the first distance sensor and the first distance sensor is obtained by the first distance sensor, and a first distance difference is detected as a difference between the first distance and the second distance. The third distance along the collet descending direction between the second distance sensor side surface of the reference member and the second distance sensor, the bump side surface of the semiconductor die adsorbed by the collet, and the second distance A fourth distance along the collet descent direction with respect to the distance sensor of the second distance sensor is acquired by the second distance sensor, and the second distance difference is detected as a difference between the third distance and the fourth distance, The collage of the reference member from the sum of the first distance difference and the second distance difference Surface and the substrate table Menma another semiconductor die adsorbed on the collet by subtracting the thickness along the descent direction and distance obtaining means for obtaining a distance along the descent direction of the collet with the other semiconductor die surface ,
Other semiconductor die to the group Saitama other collet until the top end of the bump of the semiconductor die being adsorbed groups Saitama other the collet according to the distance obtained by the distance obtaining means come just above the top end of the bump of another semiconductor die after it descends toward the, based Saitama other bumps of the semiconductor die by opening the suction of the semiconductor die collet and superimposing means for superimposing the bump of another semiconductor die,
A die mounting apparatus comprising:
請求項1に記載のダイマウント装置であって、
重ね合わせ手段は、距離取得手段によって取得したコレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面との距離からコレットに吸着されている半導体ダイの表面からのバンプ高さと基板または他の半導体ダイの表面からのバンプの高さとを差し引いた距離だけコレットを降下させること、
を特徴とするダイマウント装置。
The die mounting apparatus according to claim 1,
Superimposing means, the distance the substrate table Menma other and the surface of the semiconductor die that is adsorbed to the obtained collet by the acquisition means from the surface of the semiconductor die has been adsorbed from the distance between the other semiconductor die surface collet bump height and the base Saitama others lowering the distance collet obtained by subtracting the height of the bump from the surface of another semiconductor die,
A die mounting device characterized by the above.
請求項1に記載のダイマウント装置であって、
距離取得手段は、コレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面とのコレットの降下方向に沿った距離を複数取得し、
重ね合わせ手段は、距離取得手段によって取得したコレットに吸着されている半導体ダイの表面と基板表または他の半導体ダイの表面との複数の距離の内の最も小さい距離からコレットに吸着されている半導体ダイの表面からのバンプ高さと基板または他の半導体ダイの表面からのバンプの高さとを差し引いた距離だけコレットを降下させること、
を特徴とするダイマウント装置。
The die mounting apparatus according to claim 1,
Distance obtaining means, the surface and the substrate table Menma another semiconductor die being adsorbed on collet plurality acquires distance along the descent direction of the collet with the other semiconductor die surface,
Superimposing means is adsorbed from the smallest distance among the plurality of distances between the acquired surface of the semiconductor die that is adsorbed on the collet and the substrate table surface or other semiconductor die surface to the collet by the distance obtaining means it bump height and groups Saitama another from the surface of the semiconductor die to lower the distance collet obtained by subtracting the height of the bump from the surface of another semiconductor die,
A die mounting device characterized by the above.
請求項1に記載のダイマウント装置であって、
制御部は、
コレットに吸着されている半導体ダイの表面の距離測定を行う位置と基板表面または他の半導体ダイの表面の距離測定を行う位置とを検出する距離測定位置検出手段を備え、
距離取得手段は、コレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面とのコレットの降下方向に沿った距離をそれぞれ少なくとも3つ取得し、
重ね合わせ手段は、検出した距離測定位置と、コレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面とのコレットの降下方向に沿った各距離測定位置での距離と、によってコレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面との間の最小面間距離を算出し、最小面間距離からコレットに吸着されている半導体ダイの表面からのバンプ高さと基板または他の半導体ダイの表面からのバンプの高さとを差し引いた距離だけコレットを降下させること、
を特徴とするダイマウント装置。
The die mounting apparatus according to claim 1,
The control unit
Position and the substrate table Menma other to perform distance measurement of the surface of the semiconductor die that is adsorbed on the collet comprises a distance measuring position detecting means for detecting the position for distance measurement of the surface of another semiconductor die,
Distance obtaining means, the surface and the substrate table Menma another semiconductor die being adsorbed on collet distance along the descent direction of the collet with the other semiconductor die surface to get at least three, respectively,
Superimposing means comprises a distance measuring position detected, the surface and the substrate table Menma another semiconductor die being adsorbed on collet at each distance measurement positions along the descent direction of the collet with the other semiconductor die surface distance and, the surface and the substrate table Menma another semiconductor die adsorbed on the collet by calculating the minimum surface distance between the other semiconductor die surface, is adsorbed from the minimum surface distance between the collet it bump height and groups Saitama another from the surface of the semiconductor die to lower the distance collet obtained by subtracting the height of the bump from the surface of another semiconductor die,
A die mounting device characterized by the above.
金属ナノ粒子を有機溶剤中に混合させた金属ナノインクを用いて電極上にバンプが形成された半導体ダイを、金属ナノインクを用いて電極上にバンプが形成された基板または金属ナノインクを用いて電極上にバンプが形成された他の半導体ダイの上にフェースダウンして半導体ダイを基板または他の半導体ダイに重ね合わせるダイマウント方法であって、
板または他の半導体ダイのバンプ側に配置された第1の距離センサとコレットに吸着された半導体ダイのバンプ側に配置された第2の距離センサとの間に配置され、基板表面または各半導体ダイの表面に沿った方向に伸びるリファレンス部材の第1の距離センサ側の面と第1の距離センサとの間のコレット降下方向に沿った第1の距離と、基板のバンプ側表面または他の半導体ダイのバンプ側表面と第1の距離センサとの間のコレット降下方向に沿った第2の距離とを第1の距離センサによって取得し、第1の距離と第2の距離の差として第1の距離差を検出し、リファレンス部材の第2の距離センサ側の面と第2の距離センサとの間のコレット降下方向に沿った第3の距離と、コレットに吸着された半導体ダイのバンプ側の表面と第2の距離センサとの間のコレット降下方向に沿った第4の距離とを第2の距離センサによって取得し、第3の距離と第4の距離との差として第2の距離差を検出し、第1の距離差と第2の距離差の和からリファレンス部材のコレット降下方向に沿った厚さを差し引いて基板または他の半導体ダイに向かって降下するコレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面とのコレットの降下方向に沿った距離を取得する距離取得工程と、
距離取得工程によって取得した距離に応じてコレットに吸着されている半導体ダイのバンプ先端が基板または他の半導体ダイのバンプ先端の直上に来るまでコレットを基板または他の半導体ダイに向かって降下させた後、コレットの半導体ダイの吸着を開放して半導体ダイのバンプを基板または他の半導体ダイのバンプに重ね合わせる重ね合わせ工程と、
を有することを特徴とするダイマウント方法。
A semiconductor die bumps are formed on the electrode by using a metal nano ink obtained by mixing metal nanoparticles in an organic solvent, the use of a metal nano ink bumps group Saitama other formed on the electrode by using a metal nano ink a semiconductor die and face-down on top of the other semiconductor die bumps are formed on the electrode base Saitama other is a die mounting method of superimposing the other semiconductor-die,
Groups Saitama other is disposed between the second distance sensor which is arranged on the bump side of the semiconductor die adsorbed to the first distance sensor and the collet arranged on the bump side of the other semiconductor die, the substrate table Menma other a first distance along the collet descent direction between the first distance sensor side surface and a first distance sensor reference member extending in a direction along the surface of the semiconductor die, the substrate bump side table Menma other acquires a second distance along the collet descent direction between the bump side surface of another semiconductor die first distance sensor by a first distance sensor, the first distance A first distance difference as a difference between the second distance sensor and the second distance sensor side surface of the reference member and a third distance along the collet descending direction between the second distance sensor; The bump-side surface of the semiconductor die adsorbed by the collet and the second A fourth distance along the collet descent direction with respect to the separation sensor is acquired by the second distance sensor, and a second distance difference is detected as a difference between the third distance and the fourth distance; 1 of the distance difference and the base Saitama other by subtracting the thickness along the sum of the second distance difference collet descent direction of the reference member is a semiconductor die that is adsorbed on the collet descends toward the other semiconductor die surface and the substrate table Menma other a distance obtaining step of obtaining a distance along the descent direction of the collet with the other semiconductor die surface,
Other semiconductor die to the group Saitama other collet until the top end of the bump of the semiconductor die being adsorbed groups Saitama other the collet according to the distance obtained by the distance obtaining step comes directly above the top end of the bump of another semiconductor die after it descends toward the, based Saitama other bumps of the semiconductor die by opening the suction of the semiconductor die collet and overlaying step is superimposed on the bump of another semiconductor die,
A die mounting method characterized by comprising:
請求項5に記載のダイマウント方法であって、
重ね合わせ工程は、距離取得工程によって取得したコレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面との距離からコレットに吸着されている半導体ダイの表面からのバンプ高さと基板または他の半導体ダイの表面からのバンプの高さとを差し引いた距離だけコレットを降下させること、
を特徴とするダイマウント方法。
The die mounting method according to claim 5, wherein
Superimposing step, the distance surface and the substrate table Menma another semiconductor die adsorbed on the acquired collet by the acquisition step from the surface of the semiconductor die has been adsorbed from the distance between the other semiconductor die surface collet bump height and the base Saitama others lowering the distance collet obtained by subtracting the height of the bump from the surface of another semiconductor die,
A die mounting method characterized by the above.
請求項5に記載のダイマウント方法であって、
距離取得工程は、コレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面とのコレットの降下方向に沿った距離を複数取得し、
重ね合わせ工程は、距離取得工程によって取得したコレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面との複数の距離の内の最も小さい距離からコレットに吸着されている半導体ダイの表面からのバンプ高さと基板または各半導体ダイの表面からのバンプの高さとを差し引いた距離だけコレットを降下させること、
を特徴とするダイマウント方法。
The die mounting method according to claim 5, wherein
Distance obtaining step, the surface and the substrate table Menma another semiconductor die being adsorbed on collet plurality acquires distance along the descent direction of the collet with the other semiconductor die surface,
Superimposing step, the surface and the substrate table Menma another semiconductor die adsorbed on the acquired collet by the distance obtaining step is adsorbed from the smallest distance among the plurality of distances between the other semiconductor die surface collet and the bump height and groups Saitama another from the surface of the semiconductor die are possible lowering distance collet obtained by subtracting the height of the bump from the surface of the semiconductor die,
A die mounting method characterized by the above.
請求項5に記載のダイマウント方法であって、
コレットに吸着されている半導体ダイの表面の距離測定を行う位置と基板表面または他の半導体ダイの表面の距離測定を行う位置とを検出する距離測定位置検出工程を有し、
距離取得工程は、コレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面とのコレットの降下方向に沿った距離をそれぞれ少なくとも3つ取得し、
重ね合わせ工程は、検出した距離測定位置と、コレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面とのコレットの降下方向に沿った各距離測定位置での距離と、によってコレットに吸着されている半導体ダイの表面と基板表面または他の半導体ダイの表面との間の最小面間距離を算出し、最小面間距離からコレットに吸着されている半導体ダイの表面からのバンプ高さと基板または他の半導体ダイの表面からのバンプの高さとを差し引いた距離だけコレットを降下させること、
を特徴とするダイマウント方法。
The die mounting method according to claim 5, wherein
Position and the substrate table Menma other to perform distance measurement of the surface of the semiconductor die that is adsorbed on the collet has a distance measuring position detection step of detecting the position for distance measurement of the surface of another semiconductor die,
Distance obtaining step, the surface and the substrate table Menma another semiconductor die being adsorbed on collet distance along the descent direction of the collet with the other semiconductor die surface to get at least three, respectively,
Superimposing step includes a distance measuring position detected, the surface and the substrate table Menma another semiconductor die being adsorbed on collet at each distance measurement positions along the descent direction of the collet with the other semiconductor die surface distance and, the surface and the substrate table Menma another semiconductor die adsorbed on the collet by calculating the minimum surface distance between the other semiconductor die surface, is adsorbed from the minimum surface distance between the collet it bump height and groups Saitama another from the surface of the semiconductor die to lower the distance collet obtained by subtracting the height of the bump from the surface of another semiconductor die,
A die mounting method characterized by the above.
JP2008176203A 2008-07-04 2008-07-04 DIE MOUNTING APPARATUS AND DIE MOUNTING METHOD Expired - Fee Related JP4361591B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008176203A JP4361591B1 (en) 2008-07-04 2008-07-04 DIE MOUNTING APPARATUS AND DIE MOUNTING METHOD
PCT/JP2008/073008 WO2010001501A1 (en) 2008-07-04 2008-12-17 Die mounting apparatus and die mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176203A JP4361591B1 (en) 2008-07-04 2008-07-04 DIE MOUNTING APPARATUS AND DIE MOUNTING METHOD

Publications (2)

Publication Number Publication Date
JP4361591B1 true JP4361591B1 (en) 2009-11-11
JP2010016262A JP2010016262A (en) 2010-01-21

Family

ID=41393528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176203A Expired - Fee Related JP4361591B1 (en) 2008-07-04 2008-07-04 DIE MOUNTING APPARATUS AND DIE MOUNTING METHOD

Country Status (2)

Country Link
JP (1) JP4361591B1 (en)
WO (1) WO2010001501A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104185384B (en) * 2013-05-22 2017-07-25 松下知识产权经营株式会社 The installation method and erecting device of installing component
JP5914868B2 (en) * 2013-05-22 2016-05-11 パナソニックIpマネジメント株式会社 Component mounting equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3116509B2 (en) * 1992-01-29 2000-12-11 松下電器産業株式会社 Heat sink bonding apparatus and bonding method
JP4128483B2 (en) * 2003-05-13 2008-07-30 オリンパス株式会社 Microparts laminating apparatus and microparts laminating method
JP4128540B2 (en) * 2003-06-05 2008-07-30 株式会社新川 Bonding equipment
JP4294451B2 (en) * 2003-11-21 2009-07-15 オリンパス株式会社 Semiconductor bonding equipment
CN101479839A (en) * 2006-04-24 2009-07-08 株式会社村田制作所 Electronic element, electronic element device using the same, and manufacturing method thereof

Also Published As

Publication number Publication date
WO2010001501A1 (en) 2010-01-07
JP2010016262A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
US7743964B2 (en) Bonding apparatus and bonding method
US6995469B2 (en) Semiconductor apparatus and fabricating method for the same
JP5167779B2 (en) Manufacturing method of semiconductor device
JP2008218474A5 (en)
JP5996983B2 (en) Electronic component mounting device
TWI649816B (en) Threading method and device
WO2009125609A1 (en) Bonding apparatus and bonding method
JP3635068B2 (en) Bump forming device
JP4361591B1 (en) DIE MOUNTING APPARATUS AND DIE MOUNTING METHOD
JP4592762B2 (en) Solder ball mounting method and solder ball mounting apparatus
JP2004155185A (en) Soldering paste printing method, soldering paste printing machine, and method for manufacturing wiring board having solder printing layer
JP2000299330A (en) Method and apparatus for mounting bare chip, and mounting board thereon
JP4369528B2 (en) Bonding apparatus and method
JP7163047B2 (en) Mounting apparatus, mounting method, and semiconductor device manufacturing method using the same
JP3666468B2 (en) Electronic component mounting apparatus and electronic component mounting method
JP6478371B2 (en) Manufacturing method of electronic device
JP4702237B2 (en) Electronic component mounting apparatus and electronic component mounting method
JP4743059B2 (en) Electronic component mounting system and electronic component mounting method
JP2000353717A (en) Manufacture of semiconductor device and semiconductor manufacturing apparatus
JP4119031B2 (en) Leveling apparatus, leveling method, bonding apparatus and bonding method
TWI460776B (en) Method for applying soldering material on conductive pillar of wafer and apparatus thereof
JP2000183114A (en) Bonding device
JP6776490B2 (en) Semiconductor inspection equipment and its manufacturing method
CN115101434A (en) Packaging structure manufacturing method and chip anti-warping device
JP2005203413A (en) Electronic component, electronic component holding method and board with mounted components

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees