JP4361301B2 - 熱電変換装置 - Google Patents
熱電変換装置 Download PDFInfo
- Publication number
- JP4361301B2 JP4361301B2 JP2003078422A JP2003078422A JP4361301B2 JP 4361301 B2 JP4361301 B2 JP 4361301B2 JP 2003078422 A JP2003078422 A JP 2003078422A JP 2003078422 A JP2003078422 A JP 2003078422A JP 4361301 B2 JP4361301 B2 JP 4361301B2
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- organic compound
- hydrogenation
- dehydrogenation
- supplied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Description
【発明の属する技術分野】
この発明は、熱エネルギーを電気エネルギーに変換する熱電変換装置に関するものである。
【0002】
【従来の技術】
近年、例えば100゜C程度までの比較的に低温な熱(以下、低品位熱という)を回収して電気エネルギーに変換する熱電変換装置として、熱再生型燃料電池を備えた熱電変換システムが注目されている(特許文献1、特許文献2参照)。
この熱電変換システムでは、熱エネルギーを与えて触媒上である種の有機化合物を脱水素吸熱反応させ、この反応で生成した水素と脱水素された物質(以下、脱水素物という)と水素を電気化学的に反応(水素化反応)させて電気エネルギーを取り出している。この熱電変換システムによれば、熱力学的な制約(カルノー効率)を受けないので、高い熱電変換効率を得ることが期待できる。
例えば、脱水素物であるアセトンを水素化反応させてイソプロピルアルコール(以下、IPAと略す)を生成する場合、その反応式は(1)式で示される。
(CH3)2CO → H2 + (CH3)2CHOH ・・・(1)式
【0003】
ところで、燃料電池による発電では一般に、得られる電流量に対する反応物の供給量を、電極触媒への反応物の供給律速つまり十分な反応物が供給されていないことによる電位低下を防ぐため、理論上必要な反応物の供給量よりも多くしている。例えば、1アンペアの電流を得るためには1.4アンペア分の反応物(例えば、水素とアセトン)を供給する。このときの電流量と反応供給物質量の電流換算値の比を利用率と称しており、前記例では70%の利用率となる。したがって、残りの約30%の反応供給物が未反応物として燃料電池から排出されることとなる。
【0004】
【特許文献1】
特公平1−25972号公報
【特許文献2】
特開2002−208430号公報
【0005】
【発明が解決しようとする課題】
しかしながら、アセトンと水素を反応物とする熱再生型燃料電池を用いた場合の起電力は水素と空気を反応物とする燃料電池の起電力の10分の1以下と低い。特に、カソードの電極触媒に白金(Pt)を用いた熱再生型燃料電池の場合には、カソード電位が水素発生電位(約50mV以上)に近く、このため、電解質膜を介してカソード電極に達したプロトンがアセトンと結合する反応と、プロトン同士の再結合反応が競合反応となる。したがって、カソード電極ではアセトン水素化反応と水素発生反応の両方が起きて、カソード出口のガスは生成IPAと未反応アセトンと水素の混合ガスとなる。
【0006】
また、アセトンと水素を反応物とする熱再生型燃料電池においては、カソード電極ではアセトンの水素化反応によりIPAが生成されるが、その他にもアノード極から水素が透過し、カソード出口のガスはIPAと未反応アセトンに加え、透過した水素などが混合された混合ガスとして排出される。さらにアノード極側では逆にアセトンが透過し、アノード出口のガスは未反応の水素に加え、アセトンが混合した混合ガスの状態で排出される。これらの混合ガスを燃料電池で再利用するためには個別の分離器をそれぞれ設けなくてはならず、複雑な装置を構成しなくてはならなかった。
さらに、熱再生型燃料電池のカソードから排出される水素およびアセトンが混合したIPAを脱水素反応器で循環再利用する場合には、IPAの純度が低く、水素とアセトンが脱水素反応器で水素化反応してしまうため、IPAの供給量に対し水素の発生量が減少してしまうといった問題があった。
そこで、この発明は、簡単な装置構成ながら、燃料電池のアノードとカソードから排出される排出物を効率的に、かつ純度の高い有機化合物を循環再利用することができる熱電変換装置を提供するものである。
【0007】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係る発明は、有機化合物(例えば、後述する実施の形態におけるイソプロピルアルコール)を触媒および熱源からの熱の存在下で脱水素吸熱反応させて水素と脱水素物(例えば、後述する実施の形態におけるアセトン)を生成する脱水素反応器(例えば、後述する実施の形態における脱水素反応器4)と、前記脱水素反応器によって生成された前記水素をアノードに供給し前記脱水素物をカソードに供給して電気化学反応させることで発電をする燃料電池(例えば、後述する実施の形態における燃料電池8)と、前記燃料電池のアノードとカソードから排出される排出物を導入して該排出物中の脱水素物を触媒の存在下で水素化反応させることにより前記脱水素反応器に供給される前記有機化合物を生成する水素化反応器(例えば、後述する実施の形態における水素化反応器9)と、を備え、前記脱水素反応器と前記燃料電池と前記水素化反応器が閉鎖系に接続されたことを特徴とする熱電変換装置(例えば、後述する実施の形態における熱電変換装置1)である。
このように構成することにより、燃料電池のアノードとカソードから排出される排出物を同一の水素化反応器に導入し、この水素化反応器における水素化反応により生成された水素化物を、前記脱水素反応器に有機化合物として供給することができる。また、水素化反応を燃料電池と水素化反応器の両方で行うことができるので、純度の高い有機化合物を生成することができ、後段の脱水素反応器での脱水素反応効率が向上する。
【0008】
請求項2に係る発明は、請求項1に記載の発明において、前記水素化反応器における水素化反応に伴って発生する熱を前記脱水素反応器に供給する熱伝達手段(例えば、後述する実施の形態における熱媒体循環配管28)を備えることを特徴とする。
このように構成することにより、水素化反応器を脱水素反応器における脱水素反応の熱源として利用することができる。
【0009】
請求項3に係る発明は、請求項1または請求項2に記載の発明において、前記水素化反応器で生成された前記有機化合物を受け入れて該有機化合物を貯蔵する有機化合物貯蔵タンク(例えば、後述する実施の形態におけるIPAタンク2)と、前記水素化反応器で生成された前記有機化合物を前記有機化合物貯蔵タンクを介して前記脱水素反応器に供給可能にする第1流路(例えば、後述する実施の形態におけるIPA移送管21,31、移送管29)と、前記水素化反応器で生成された前記有機化合物を前記有機化合物貯蔵タンクをバイパスして前記脱水素反応器に供給可能にする第2流路(例えば、後述する実施の形態におけるIPA移送管21、移送管29,33)と、を備えたことを特徴とする。
このように構成することにより、起動時には有機化合物貯蔵タンクに貯蔵された有機化合物を第1流路を介して脱水素反応器に供給することが可能になり、起動後は水素化反応器で生成された有機化合物を有機化合物貯蔵タンクを通さずに第2流路を介して脱水素反応器に供給することが可能になる。
【0010】
請求項4に係る発明は、請求項3に記載の発明において、起動時には前記有機化合物貯蔵タンクに貯蔵された有機化合物が前記第1流路を介して前記脱水素反応器に供給され、起動後は前記水素化反応器で生成された前記有機化合物が前記第2流路を介して前記脱水素反応器に供給されることを特徴とする。
このように構成することにより、起動時には脱水素反応器に有機化合物を確実に供給することが可能になり、一方、起動後は有機化合物貯蔵タンクをバイパスさせることで熱損失を低減することが可能になる。
【0011】
【発明の実施の形態】
以下、この発明に係る熱電変換装置の一実施の形態を図1の図面を参照して説明する。
図1に示すように、熱電変換装置1は、IPAタンク(有機化合物貯蔵タンク)2、IPAポンプ3、脱水素反応器4、第1気液分離器5、アセトンタンク6、アセトンポンプ7、燃料電池8、水素化反応器9、第2気液分離器10、外部熱源11、を主要構成としている。
【0012】
IPAタンク2には脱水素すべき有機化合物としてのIPA(イソプロピルアルコール)が貯蔵されており、このIPAタンク2のIPAがIPAポンプ3およびIPA移送管21を介して脱水素反応器4に供給される。
脱水素反応器4は、脱水素反応を促す脱水素触媒を備えた触媒反応器であり、IPAを脱水素触媒の存在下で脱水素吸熱反応させて水素とアセトン(脱水素物)を生成する。この脱水素吸熱反応を継続させるために、脱水素反応器4には外部熱源11から熱が供給されるとともに、水素化反応器9で発生する熱が熱媒体循環配管28を介して供給される。なお、脱水素触媒としては、例えばルテニウム(Ru)等を例示することができる。外部熱源11は電気ヒータであってもよいし、内燃機関や燃料電池の廃熱を利用してもよい。
【0013】
脱水素反応器4で生成された水素とアセトンは水素・アセトン移送管22を介して第1気液分離器5に供給され、ここで、水素とアセトンに分離される。そして、第1気液分離器5で分離された水素は水素移送管23を介して燃料電池8のアノード側に供給され、アセトンはアセトン移送管24を介してアセトンタンク6に供給された後、アセトンタンク6からアセトンポンプ7およびアセトン移送管25を介して燃料電池8のカソード側に供給される。
【0014】
燃料電池8は、固体高分子電解質膜8aをアノード電極8bとカソード電極8cとで両側から挟み込んでなる膜構造体を備えたセルを複数積層して構成されており(図1では単位セルのみ示す)、アノード側に水素を供給し、カソード側にアセトンを供給すると、アノード電極8bの触媒上で水素が電離し、電子が外部回路50を流れて電力を発生する。一方、水素イオンは、固体高分子電解質膜8aを通過してカソード電極8cまで移動し、カソード電極8cでアセトンがプロトンおよび電子と結合し、アセトン水素化反応が発熱的に進行してIPAを生成する。すなわち、この燃料電池8は、脱水素反応器4によって生成された水素をアノードに供給しアセトンをカソードに供給して電気化学反応させることで発電をする。なお、カソード電極8cでは一部のプロトン同士が再結合反応して若干の水素が生成するとともに固体高分子電解質膜8aを水素分圧の差によって透過した水素が存在する。アノード電極8bでは逆にアセトン分圧の差によって固体高分子電解質膜8aを透過したアセトンが存在する。
【0015】
なお、固体高分子電解質膜8aとしてはポリベンゾイミダゾール(PBI)にリン酸を含浸したものを例示でき、アノード触媒としては白金を例示でき、カソード触媒としては白金・ルテニウム合金を例示することができる。
【0016】
燃料電池8のアノード側から排出される未反応の水素およびカソード側から透過したアセトンは水素移送管26を介して水素化反応器9に供給される。一方、燃料電池8のカソード側からは水素化反応で生成されたIPAと未反応のアセトンと水素とが混合した状態で排出され、これらは混合状態で移送管27を介して水素化反応器9に供給される。
水素化反応器9は、水素化反応を促す水素化触媒を備えた触媒反応器であり、アセトンを水素化触媒の存在下で水素化反応させてIPAを生成する。すなわち、水素化反応器9は、燃料電池8のアノードとカソードから排出される排出物を導入して該排出物中のアセトン(脱水素物)を触媒の存在下で水素化反応させることにより脱水素反応器4に供給されるIPA(有機化合物)を生成する。
この水素化反応器9に用いる水素化触媒は、燃料電池8の電極触媒とは異なって耐電解質性や電気伝導性についての制約がないので、高活性で選択性の高い一般的な水素化触媒を用いることができ、例えば、ラネーニッケル触媒や、ニッケル触媒や、白金担持チタニア(Pt/TiO2)触媒などを例示することができる。
【0017】
この水素化反応は発熱を伴うので、水素化反応で発生した熱を脱水素反応器4で吸熱させるために、水素化反応器9と脱水素反応器4の間で熱媒体(例えば、水など)を循環させる熱媒体循環配管(熱伝達手段)28およびポンプ34が設けられている。
水素化反応器9における水素化反応により生成されたIPAと、元からIPAあるいは水素の形態で水素化反応器9に供給されたIPAおよび水素は、水素化反応器9から移送管29を介して第2気液分離器10に供給され、ここでIPAと水素に分離される。そして、第2気液分離器10で分離された水素は水素移送管30を介して水素移送管23に移送され、第1気液分離器5から移送されてくる水素と合流して再び燃料電池8のアノード側に供給される。一方、第2気液分離器10で分離されたIPAはIPA移送管31を介してIPAタンク2に移送される。
【0018】
また、移送管29は、切替弁32および移送管33を介してIPA移送管21にも接続されている。切替弁32は、水素化反応器9から排出される水素とIPAの混合流体を、第2気液分離器10に流すか移送管33に流すかいずれかに切り替えるものである。また、この実施の形態において、移送管29とIPA移送管21,31は、水素化反応器9で生成されたIPAをIPAタンク2を介して脱水素反応器4に供給可能にする第1流路を構成し、移送管29,33とIPA移送管21は、水素化反応器9で生成されたIPAをIPAタンク2をバイパスして脱水素反応器4に供給可能にする第2流路を構成する。したがって、切替弁32は第1流路と第2流路を切り替える手段と言える。
【0019】
この実施の形態では、熱電変換装置1の起動時には前記混合流体が第2気液分離器10に流れるように切替弁32が制御され、前記第1流路が選択される。これにより、起動時にはIPAタンク2に貯蔵されているIPAがIPAポンプ3およびIPA移送管21を介して脱水素反応器4に供給される。したがって、IPAポンプ3にガス(水素)が供給されるのを防止することができるとともに、水素化反応器9が定常状態に至っていないため十分な量のIPAを送り出せない時にも、脱水素反応器4に必要量のIPAを確実に供給することができる。
【0020】
一方、起動を完了した定常運転時には前記混合流体が移送管33に流れるように切替弁32が制御され、前記第2流路が選択される。これにより、定常運転時には水素化反応器9から排出される水素とIPAの混合流体が、第1気液分離器5とIPAタンク2とIPAポンプ3をバイパスして、移送管33およびIPA移送管21を通って脱水素反応器4に供給される。したがって、水素化反応器9から排出された水素とIPAを温度の高い状態のまま脱水素反応器4に供給することができるので、熱損失を低減することができ、脱水素反応器での水素発生効率が向上する。
このように構成された熱電変換装置1は、脱水素反応器4と燃料電池8と水素化反応器9が閉鎖系に接続された熱電変換装置ということができる。
【0021】
この熱電変換装置1によれば、燃料電池8のアノードとカソードから排出される排出物を同一の水素化反応器9に導入し、この水素化反応器9における水素化反応により生成されたIPAを脱水素反応器4に供給することができるので、アノードとカソードから排出される排出物を別々に処理し再利用する場合に比べて、燃料電池8から排出される排出物を循環再利用するための循環系の構成が簡略化される。
また、水素化反応が、燃料電池8における電気化学的な水素化反応と、水素化反応器9における触媒反応による水素化反応の両方で行われるので、熱電変換装置1全体としての水素化効率を向上することができるので、純度の高い有機化合物を生成することができ、後段の脱水素反応器4での脱水素反応効率が向上する。
【0022】
また、水素化反応器9における発熱は閉鎖系の熱電変換装置1全体として見た場合に自己発熱であり、この自己発熱の熱を、熱媒体循環配管28を流通する熱媒体を介して脱水素反応器4に伝達し、脱水素反応器4で吸熱させて脱水素反応の熱源として利用しているので、熱電変換装置1の熱電変換効率を高めることができる。
また、この熱電変換装置1は、停止時には閉鎖系に接続された系内の水素やアセトンなどの反応ガスや生成物であるIPAをIPAタンク2に戻す。ここで、水素化反応器9を設けたことによって、燃料電池8の発電を停止した後にも系内の反応ガスを水素化させることでIPAの状態でIPAタンク2に保管することができ、次回始動時に備えている。
【0023】
本発明の効果を実証するために、従来技術との比較実験を行ったので、これについて説明する。実験は、水素化反応を燃料電池だけで行った場合(以下、燃料電池単独方式という)と、本発明のように水素化反応を燃料電池と水素化反応器の両方で行った場合(以下、水素化反応器併用方式という)について、次のように同一条件下で行い、生成された物質の組成分析と物質量測定を行った。
燃料電池単独方式、水素化反応器併用方式いずれの場合も、燃料電池のカソード触媒として白金とルテニウムの原子比が1対1の合金をカーボンブラックに担持したものを用い、アノード触媒として白金をカーボンブラックに担持したものを用いた。また、触媒の担持量は、カーボンとの比を1対1(すなわち、50%担持)とし、アルコール等の溶媒でスラリー化したものをカーボンペーパーに所定の厚さに塗布して電極を形成した。また、電解質膜にはポリベンゾイミダゾールにリン酸を含浸させた30ミクロン厚のものを用いた。この電解質膜をアノード電極とカソード電極で挟みホットプレスにより接合して膜電極構造体(MEA)とし発電セルを構成した。
水素化反応器には、白金担持チタニア触媒をステンレス管に充填した水素化反応管を用いた。
【0024】
また、燃料電池単独方式、水素化反応器併用方式いずれの場合も、前記発電セルの温度を140°Cに保持し、アセトンを0.1cc毎分、水素を30cc毎分で供給した。この供給量は電流量換算で約4アンペアに相当する。
そして、前記条件下で、燃料電池単独方式と水素化反応器併用方式に対し、ガルバノスタットを用いて3アンペアの電流を流し、それぞれのアセトン水素化効率を測定した。ここで、アセトン水素化効率とは、供給したアセトン量(mol)、排出された未反応のアセトン量(mol)を測定することで、どれだけのアセトンが水素化したかを算出するもので、式としては下記のように表される。
アセトン水素化効率=1−(未反応アセトン量)/(供給アセトン量)
【0025】
<燃料電池単独方式>
燃料電池単独方式では、発電セルのアノードとカソードからそれぞれ排出されたガスを別々にコールドトラップで液成分を凝縮させた後、1リットル容量のガスビュレットでガス量を測定し、さらに、液成分を採取してガスクロマトグラフィを用いて組成分析を行った。その結果、アノードからは1アンペア分の水素が未反応ガスとして排出された。そして、カソードガスの組成と物質量は以下の通りであった。なお、物質量は電流換算して示す。
[カソードガス]
アセトン:2.2アンペア、
IPA :1.8アンペア、
水素 :1.2アンペア。
この結果、燃料電池単独方式の場合のアセトン水素化効率は55%であった。
【0026】
<水素化反応器併用方式>
水素化反応器併用方式では、発電セルのアノードとカソードからそれぞれ排出されるガスを合流させて、120゜Cに加熱した前記水素化反応管に導入した。そして、水素化反応管から排出されるガスをコールドトラップで液成分を凝縮させた後、1リットル容量のガスビュレットでガス量を測定し、さらに、液成分を採取してガスクロマトグラフィを用いて組成分析を行った。その結果、水素化反応管出口ガスの組成と物質量(電流換算)は以下の通りであった。
[水素化反応管出口ガス]
アセトン:0.2アンペア、
IPA :3.8アンペア、
水素 :0.2アンペア。
この結果、水素化反応器併用方式の場合のアセトン水素化効率は95%であった。
この実験結果からも、燃料電池の下流に水素化反応器を設けることによって未反応アセトンが効率よく水素化されてIPAとなり、燃料電池と水素化反応器を合わせた水素化部トータルの水素化効率が向上することが確認できる。
【0027】
〔他の実施の形態〕
なお、この発明は前述した実施の形態に限られるものではない。
例えば、脱水素されるべき有機化合物はIPAに限るものではなく、デカリン、2−プロパノール、シクロヘキサノール、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン類等を用いることができる。
また、脱水素物はアセトンに限るものではなく、前記有機化合物に何を採用するかによって決まるものであり、アセトンのほか、ナフタレン、シクロヘキサノン、ベンゼン、トルエン、キシレン類が脱水素物になり得る。
【0028】
【発明の効果】
以上説明するように、請求項1に係る発明によれば、燃料電池のアノードとカソードから排出される排出物を同一の水素化反応器に導入し、この水素化反応器における水素化反応により生成された水素化物を、前記脱水素反応器に有機化合物として供給することができるので、燃料電池から排出される排出物を循環再利用するための循環系の構成が簡単になるという優れた効果が奏される。さらに、水素化反応は発熱反応であることから、温度の高い有機化合物を脱水素化反応器に供給することができるので脱水素化反応を向上させることができる。
また、水素化反応が燃料電池と水素化反応器の両方で行われるので、水素化効率を向上することができ、したがって、純度の高い有機化合物を生成することができ、循環した際に後段の脱水素反応器での脱水素反応効率が向上する。
【0029】
請求項2に係る発明によれば、閉鎖系の熱電変換装置において水素化反応器で発生した熱を脱水素反応器における脱水素反応に利用することができるので、熱電変換装置の熱電変換効率を高くすることができる。
請求項3に係る発明によれば、起動時には有機化合物貯蔵タンクに貯蔵された有機化合物を第1流路を介して脱水素反応器に供給することができ、起動後は水素化反応器で生成された有機化合物を有機化合物貯蔵タンクをバイパスし第2流路を介して脱水素反応器に供給することができる。
請求項4に係る発明によれば、起動時には脱水素反応器に有機化合物を確実に供給することが可能になり、一方、起動後は有機化合物貯蔵タンクをバイパスさせることで熱損失を低減することが可能になるという効果がある。
【図面の簡単な説明】
【図1】 この発明に係る熱電変換装置の一実施の形態の構成図である。
【符号の説明】
1 熱電変換装置
2 IPAタンク(有機化合物貯蔵タンク)
4 脱水素反応器
8 燃料電池
9 水素化反応器
28 熱媒体循環配管(熱伝達手段)
31 IPA移送管(第1流路)
33 移送管(第2流路)
Claims (4)
- 有機化合物を触媒および熱源からの熱の存在下で脱水素吸熱反応させて水素と脱水素物を生成する脱水素反応器と、
前記脱水素反応器によって生成された前記水素をアノードに供給し前記脱水素物をカソードに供給して電気化学反応させることで発電をする燃料電池と、
前記燃料電池のアノードとカソードから排出される排出物を導入して該排出物中の脱水素物を触媒の存在下で水素化反応させることにより前記脱水素反応器に供給される前記有機化合物を生成する水素化反応器と、
を備え、前記脱水素反応器と前記燃料電池と前記水素化反応器が閉鎖系に接続されたことを特徴とする熱電変換装置。 - 前記水素化反応器における水素化反応に伴って発生する熱を前記脱水素反応器に供給する熱伝達手段を備えることを特徴とする請求項1に記載の熱電変換装置。
- 前記水素化反応器で生成された前記有機化合物を受け入れて該有機化合物を貯蔵する有機化合物貯蔵タンクと、前記水素化反応器で生成された前記有機化合物を前記有機化合物貯蔵タンクを介して前記脱水素反応器に供給可能にする第1流路と、前記水素化反応器で生成された前記有機化合物を前記有機化合物貯蔵タンクをバイパスして前記脱水素反応器に供給可能にする第2流路と、を備えたことを特徴とする請求項1または請求項2に記載の熱電変換装置。
- 起動時には前記有機化合物貯蔵タンクに貯蔵された有機化合物が前記第1流路を介して前記脱水素反応器に供給され、起動後は前記水素化反応器で生成された前記有機化合物が前記第2流路を介して前記脱水素反応器に供給されることを特徴とする請求項3に記載の熱電変換装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003078422A JP4361301B2 (ja) | 2003-03-20 | 2003-03-20 | 熱電変換装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003078422A JP4361301B2 (ja) | 2003-03-20 | 2003-03-20 | 熱電変換装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004288458A JP2004288458A (ja) | 2004-10-14 |
JP4361301B2 true JP4361301B2 (ja) | 2009-11-11 |
Family
ID=33292910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003078422A Expired - Fee Related JP4361301B2 (ja) | 2003-03-20 | 2003-03-20 | 熱電変換装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4361301B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007026652A1 (de) | 2007-06-08 | 2008-12-11 | Forschungszentrum Jülich GmbH | Hochtemperatur-Polymerelektrolyt-Brennstoffzellensystem sowie Verfahren zum Betreiben desselben |
JP5288840B2 (ja) * | 2008-03-17 | 2013-09-11 | Jx日鉱日石エネルギー株式会社 | 水素製造システム |
-
2003
- 2003-03-20 JP JP2003078422A patent/JP4361301B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004288458A (ja) | 2004-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4340315B2 (ja) | 燃料電池パワープラント及び燃料電池パワープラントを作動させる方法 | |
Pan et al. | Integration of high temperature PEM fuel cells with a methanol reformer | |
JP3554092B2 (ja) | 燃料電池の燃料ガス供給方法 | |
JP2002526355A (ja) | 電気触媒法及び水素に富むガスから一酸化炭素を除去する方法及び装置 | |
US6410175B1 (en) | Fuel cell system with improved starting capability | |
US11616249B2 (en) | Solid oxide fuel cell system with hydrogen pumping cell with carbon monoxide tolerant anodes and integrated shift reactor | |
WO2013145674A1 (ja) | 燃料電池モジュール及び燃料電池システム | |
WO2005069420A1 (ja) | 燃料電池システム | |
JP4065235B2 (ja) | 燃料電池改質器用の水蒸気転移装置 | |
JP2018190649A (ja) | Sofcスタック、soecスタック、及びリバーシブルsocスタック、並びに、sofcシステム、soecシステム、及びリバーシブルsocシステム | |
JP2000251906A (ja) | 固体高分子電解質膜及びこれを用いたバイポーラ膜型燃料電池 | |
US20030091875A1 (en) | Method for cold starting fuel cells of a fuel cell facility, and corresponding fuel cell facility | |
US7122269B1 (en) | Hydronium-oxyanion energy cell | |
JP4361301B2 (ja) | 熱電変換装置 | |
JP2002231254A (ja) | 燃料電池電極 | |
US7338587B2 (en) | Electrochemical process for oxidation of alkanes to alkenes | |
JP2005243603A (ja) | 燃料電池システム | |
JP4697921B2 (ja) | 電力、水素及び芳香族炭化水素の併産システム | |
US20020022164A1 (en) | Fuel cell having an internal reformation unit and a cell with a cation-conducting electrolyte membrane | |
JP3685136B2 (ja) | 固体高分子型燃料電池 | |
JP2004192834A (ja) | 燃料電池 | |
JP2007287357A (ja) | 熱再生型の燃料電池システムならびに燃料電池の燃料循環方法 | |
JP2004247080A (ja) | 燃料電池 | |
CN217881590U (zh) | 一种甲醇重整及固体氧化物结合的氢燃料电池系统 | |
JP2001023673A (ja) | 燃料電池システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051202 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090804 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090812 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120821 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |