JP4360140B2 - マイクロプロセッサ内蔵給電装置、マイクロプロセッサ内蔵給電装置のマイクロプロセッサ暴走時に対応した自動給電復帰方法および自動給電復帰プログラム - Google Patents
マイクロプロセッサ内蔵給電装置、マイクロプロセッサ内蔵給電装置のマイクロプロセッサ暴走時に対応した自動給電復帰方法および自動給電復帰プログラム Download PDFInfo
- Publication number
- JP4360140B2 JP4360140B2 JP2003209641A JP2003209641A JP4360140B2 JP 4360140 B2 JP4360140 B2 JP 4360140B2 JP 2003209641 A JP2003209641 A JP 2003209641A JP 2003209641 A JP2003209641 A JP 2003209641A JP 4360140 B2 JP4360140 B2 JP 4360140B2
- Authority
- JP
- Japan
- Prior art keywords
- microprocessor
- power supply
- power
- related information
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Debugging And Monitoring (AREA)
Description
【発明の属する技術分野】
本発明は、負荷に対して電力を給電するマイクロプロセッサ内蔵給電装置、マイクロプロセッサ内蔵給電装置のマイクロプロセッサ暴走時に対応した自動給電復帰方法および自動給電復帰プログラムに関する。
【0002】
【従来の技術】
従来、この種のマイクロプロセッサ(以下、CPUともいう)内蔵給電装置において、ウオッチ・ドック・タイマICを用いてCPU暴走検出を行う場合、CPUのNMI(Non-Maskable Interrupt)端子に、ウオッチ・ドック・タイマICの出力信号(以降WDT信号)を入力し、暴走ルーチンにて待機するように構成している。暴走ルーチンからの復帰は、電源リセットか、CPUのリセット端子にリセット信号を入力するようにしており、リセット後に初期状態から動作し直すものが知られている。
【0003】
これに対して、特許文献1に開示された給電装置においては、CPUがリセットスタートした時、その直前にCPUが暴走していたかどうかをCPUのエラー入力端子Eに入力される電圧信号の有無により判定し、CPUにエラーが生じて直前に暴走していた場合には、出力すべき給電制御信号を一時格納するためのRAMデータのチェックを行い、その暴走により破壊されていなければRAMの初期化を行なわず、給電制御信号をそのまま保持した状態で、メイン処理となる給電制御処理に移行するようにしている。
【0004】
これにより、給電開始後にCPUが暴走しても、CPUを再スタートさせることができるといった利点を有している。
【0005】
【特許文献1】
特開平5−333967号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記特許文献1記載の給電装置においては、CPUの暴走によりRAMに記憶されたデータの例えば一部が破壊されていた場合には、RAMをリセットしてしまうため、データ破壊時において給電装置をCPU暴走前の状態に自動復帰させることが困難であった。
【0007】
本発明は上述した事情に鑑みてなされたもので、マイクロプロセッサ(CPU)の暴走によりメモリ(RAM)に記憶された情報の例えば一部が破壊されていた場合でも、給電装置をマイクロプロセッサ暴走前の健全状態における運転状態に自動復帰させることを可能にしたマイクロプロセッサ内蔵給電装置、マイクロプロセッサ内蔵給電装置のマイクロプロセッサ暴走時に対応する自動給電復帰方法およびプログラムを提供することをその目的とする。
【0008】
【課題を解決するための手段】
請求項1記載の発明は、上記課題を解決するため、負荷に対して電力を給電するマイクロプロセッサ内蔵給電装置であって、交流電源に接続され、該交流電源から供給された交流電力を所定の交流電力に変換する電力変換回路と、前記電力変換回路および前記交流電源にそれぞれ接続され、該電力変換回路により変換された交流電力および該交流電源から前記電力変換回路をバイパスして供給されたバイパス交流電力の内の何れか一方を切換制御信号に応じて切り換えて前記負荷に供給する給電切換回路と、前記電力変換回路および前記給電切換回路にそれぞれ接続され、前記切換制御信号を出力する駆動回路と、メモリを有し前記駆動回路に接続されたマイクロプロセッサとを備え、前記マイクロプロセッサは、自マイクロプロセッサの暴走が検知されない健全状態において、所定の周期毎に前記給電装置の運転状態に関連する運転関連情報を前記メモリの複数の記憶領域それぞれに分散して書き込む運転関連情報書き込み手段と、自マイクロプロセッサの暴走が検知された際に、割込み処理により前記メモリの複数の記憶領域に分散して記憶された複数の運転関連情報を読み出す運転関連情報読み出し手段と、読み出された複数の運転関連情報間の一致状態に基づいて前記健全状態の運転関連情報を判定する運転関連情報判定手段と、判定された前記健全状態の運転関連情報に基づいて前記給電装置を前記健全状態へ自動復帰させるための制御を実行する自動復帰手段と、を備えたことを要旨とする。
【0009】
請求項2記載の発明は、上記課題を解決するため、前記マイクロプロセッサの割込み端子および入出力端子にそれぞれ接続され、該マイクロプロセッサの暴走を該入出力端子を介して検知し、その暴走検知を表す暴走検知信号を前記割込み端子を介して前記マイクロプロセッサに送信する暴走検知回路をさらに備え、前記運転関連情報読み出し手段は、前記暴走検知信号が送信されてきた際に前記割込み処理により前記複数の運転関連情報を読み出す手段を有することを要旨とする。
【0010】
請求項3記載の発明は、上記課題を解決するため、前記マイクロプロセッサは、自マイクロプロセッサの暴走を検知する暴走検知回路を内蔵しており、前記運転関連情報読み出し手段は、前記暴走検知回路による前記マイクロプロセッサの暴走検知に応じて前記割込み処理により前記複数の運転関連情報を読み出す手段を有することを要旨とする。
【0011】
請求項4記載の発明は、上記課題を解決するため、前記運転関連情報は、16ビットのコードデータとして前記メモリに分散して書き込まれることを要旨とする。
【0012】
請求項5記載の発明は、上記課題を解決するため、前記運転関連情報判定手段は、前記運転関連情報としての16ビットのコードデータ間の一致状態を、該16ビット単位で判定することを要旨とする。
【0013】
請求項6記載の発明は、上記課題を解決するため、前記健全状態の運転関連情報が前記給電装置の運転状態を表す情報を含む場合、前記自動復帰手段は、前記駆動回路を介して前記給電切換回路に前記切換制御信号を送信し、前記交流電源から供給されたバイパス交流電力を前記負荷に供給するように該給電切換回路を制御し、少なくとも前記健全状態の運転関連情報を前記メモリに保持した状態で前記マイクロプロセッサをリセットし、該リセット後、前記メモリに保持された前記健全状態の運転関連情報に応じて、前記駆動回路を介して前記給電切換回路に前記切換制御信号を送信し、前記電力変換回路により変換された交流電力を前記負荷に供給するように該給電切換回路を制御することを要旨とする。
【0014】
請求項7記載の発明は、上記課題を解決するため、前記マイクロプロセッサは、前記健全状態の運転関連情報が前記給電装置の停止状態を表す情報を含む場合、少なくとも前記健全状態の運転関連情報を前記メモリに保持した状態で自マイクロプロセッサをリセットし、該リセット後、前記メモリに保持された前記健全状態の運転関連情報に応じて、該給電装置の停止状態を継続させる制御を行う停止制御手段を備えたことを要旨とする。
【0015】
請求項8記載の発明は、上記課題を解決するため、前記マイクロプロセッサは、前記交流電源が停電であり、かつ前記健全状態の運転関連情報が前記給電装置の運転状態を表す情報を含む場合に、少なくとも前記健全状態の運転関連情報を前記メモリに保持した状態で自マイクロプロセッサをリセットし、該リセット後、前記メモリに保持された前記健全状態の運転関連情報に応じて、該給電装置の停止状態を継続させる制御を行う停止制御手段を備えたことを要旨とする。
【0016】
請求項9記載の発明は、上記課題を解決するため、交流電源に接続され、該交流電源から供給された交流電力を所定の交流電力に変換する電力変換回路と、前記電力変換回路および前記交流電源にそれぞれ接続され、該電力変換回路により変換された交流電力および該交流電源から前記電力変換回路をバイパスして供給されたバイパス交流電力の内の何れか一方を切換制御信号に応じて切り換えて負荷に供給する給電切換回路と、前記電力変換回路および前記給電切換回路にそれぞれ接続され、前記切換制御信号を出力する駆動回路と、メモリを含み前記駆動回路に接続されたマイクロプロセッサを有する制御回路と、を備えたマイクロプロセッサ内蔵の給電装置の前記マイクロプロセッサ暴走時に対応する該マイクロプロセッサが実行可能な自動給電復帰プログラムであって、前記マイクロプロセッサに、自マイクロプロセッサの暴走が検知されない健全状態において、所定の周期毎に前記給電装置の運転状態に関連する運転関連情報を前記メモリの複数の記憶領域それぞれに分散して書き込む処理と、自マイクロプロセッサの暴走が検知された際に、割込み処理により前記メモリの複数の記憶領域に分散して記憶された複数の運転関連情報を読み出す処理と、読み出された複数の運転関連情報間の一致状態に基づいて前記健全状態の運転関連情報を判定する処理と、判定された前記健全状態の運転関連情報に基づいて前記給電装置を前記健全状態の運転状態に自動復帰させるための制御を実行する処理と、をそれぞれ実行させることを要旨とする。
【0017】
請求項10記載の発明は、上記課題を解決するため、交流電源に接続され、該交流電源から供給された交流電力を所定の交流電力に変換する電力変換回路と、前記電力変換回路および前記交流電源にそれぞれ接続され、該電力変換回路により変換された交流電力および該交流電源から前記電力変換回路をバイパスして供給されたバイパス交流電力の内の何れか一方を切換制御信号に応じて切り換えて負荷に供給する給電切換回路と、前記電力変換回路および前記給電切換回路にそれぞれ接続され、前記切換制御信号を出力する駆動回路と、メモリを含み前記駆動回路に接続されたマイクロプロセッサを有する制御回路と、を備えたマイクロプロセッサ内蔵の給電装置の前記マイクロプロセッサ暴走時に対応する自動給電復帰方法であって、自マイクロプロセッサの暴走が検知されない健全状態において、所定の周期毎に前記給電装置の運転状態に関連する運転関連情報を前記メモリの複数の記憶領域それぞれに分散して書き込むステップと、自マイクロプロセッサの暴走が検知された際に、割込み処理により前記メモリの複数の記憶領域に分散して記憶された複数の運転関連情報を読み出すステップと、読み出された複数の運転関連情報間の一致状態に基づいて前記健全状態の運転関連情報を判定するステップと、判定された前記健全状態の運転関連情報に基づいて前記給電装置を前記健全状態の運転状態に自動復帰させるための制御を実行するステップと、を備えたことを要旨とする。
【0018】
【発明の実施の形態】
図1は、本発明の実施の形態に係る給電装置1の概略構成を示すブロック図である。
【0019】
図1に示すように、給電装置1は、商用交流電源3の電力線PSに接続され、その商用交流電源3から供給された交流電力を直流電力に変換し、変換された直流電力を交流電力に変換する電力変換回路5と、この電力変換回路5の出力線OSおよび商用交流電源3の電力線PSから分岐して電力変換回路5をバイパスする電力線(以下、バイパス電力線とする)BSにそれぞれ接続された給電切換回路7とを備えている。給電切換回路7の出力線LSは負荷9に接続されている。
【0020】
また、給電装置1は、電力変換回路5の制御端子および給電切換回路7の制御端子にそれぞれ接続され、制御端子を介して電力変換回路5および給電切換回路7に対して制御信号をそれぞれ出力して電力変換回路5および給電切換回路7を制御するための制御回路11を備えている。
【0021】
電力変換回路5は、図示しない例えばトランジスタ等の複数のスイッチング素子およびダイオード等の複数の整流素子を有している。各スイッチング素子の制御端子に対して制御回路11から駆動制御信号が出力されることにより、各スイッチング素子は、交流電力から直流電力への変換動作(コンバータ動作)、および直流電力から交流電力への変換動作(インバータ動作)をそれぞれ実行して、給電切換回路に交流電力を供給する動作、すなわち、インバータ給電動作を行うようになっている。
【0022】
給電切換回路7は、図1に示すように、リレー13を備えており、このリレー13の可動接点13aが、一端部が負荷9に接続された出力線LSの他端部に接続されている。また、リレー13の第1の固定接点13bがバイパス電力線BSの途中から分岐された電力線BS1に接続され、リレー13の第2の固定接点13cが電力変換回路5の出力線OSに接続されている。
【0023】
また、リレー13の可動接点13aには、この可動接点13aを第1の固定接点13bおよび第2の固定接点13cのどちらか一方をオンに切換駆動させるための補助リレー15が接続されており、この補助リレー15は、制御回路11に接続されている。
【0024】
さらに、給電切換回路7は、バイパス電力線BSの先端および負荷9に対する出力線LSにそれぞれ接続された交流(AC)スイッチ17を備えている。このACスイッチ17は、例えばトライアックにより構成されている。ACスイッチ17の制御端子(ゲート端子)が制御回路に接続され、制御回路からの制御信号により高速にオン/オフ動作するようになっている。
【0025】
一方、制御回路11は、図1に示すように、ノンマスカブル割込み(NMI)端子(ポート)Nおよび複数の入出力端子(I/O端子)を有するマイクロプロセッサ(以下、CPUと記載する)21と、このCPU21の複数の入出力端子におけるウオッチドッグタイマリセット端子(ポート)Rおよび上記NMI端子Nにそれぞれ接続された暴走検知回路{ウオッチドック(WD)タイマ回路}23とを備えている。
【0026】
このWDタイマ回路23は、CPU21からウオッチドッグタイマリセット端子Rを介して一定周期(例えば、給電装置1の運転制御周期に対応する10msec)毎に入力されたウオッチドックタイマリセットパルス信号(以下、WDTR信号と記載する)に応じてタイマをリセットし、一定期間WDTR信号の入力が無く、タイマ値が所定値を超えた場合(タイムアップ)に、CPU21のNMI端子Nに対してタイムアップ信号(WDTO信号)を出力するようになっている。
【0027】
一方、制御回路11は、CPU21のI/O端子T1および電力変換回路5の複数の制御端子にそれぞれ接続された電力変換回路ドライブ回路25を備えており、この電力変換回路ドライブ回路25は、CPU21からの所定の運転制御周期に基づく制御信号に応じて電力変換回路5の複数のスイッチング素子それぞれの制御端子に駆動制御信号を出力するように構成されている。
【0028】
また、制御回路11は、CPU21のI/O端子T2および給電切換回路7の補助リレー15にそれぞれ接続されたリレードライブ回路27を備えており、このリレードライブ回路27は、CPU21からの制御信号に応じて補助リレー15に駆動制御信号を出力し、補助リレー15を介してリレー13の接点制御を行うように構成されている。
【0029】
さらに、制御回路11は、CPU21のI/O端子T3および給電切換回路7のACスイッチ17の制御端子にそれぞれ接続されたACスイッチドライブ回路29を備えており、このACスイッチドライブ回路29は、CPU21からの制御信号に応じてACスイッチ17に駆動制御信号を出力し、ACスイッチ17のオン/オフ制御を行うように構成されている。
【0030】
そして、制御回路11のCPU21は、図1に示すように、CPU21がアクセス自在なROM(リードオンリーメモリ)31およびRAM(ランダムアクセスメモリ)33を備えている。
【0031】
このROM31には、CPU21に給電装置運転制御処理を実行させるための制御プログラムP1が格納されている。また、ROM31には、CPU21に後述する図5に示すCPU暴走時自動復帰処理を実行させるための割込プログラムP2がROM31の特定アドレスに格納されている。
【0032】
CPU21は、制御プログラムP1に従った給電装置運転制御処理を実行中に、そのNMI端子Nを介してWDTO信号を受信した際に、上記特定アドレスに格納された割込プログラムP2を実行するようになっている。
【0033】
一方、RAM33の例えば先頭アドレスから所定アドレス間には、図2に示すように、CPU21の暴走時における運転情報を再生して記憶するための記憶領域RA1、およびCPU暴走時のバイパス制御(バイパス給電)用の端子(ポート;T1、T2、T3)の情報をそれぞれ記憶するための記憶領域RA2がそれぞれ確保されており、この記憶領域RA1およびRA2がCPU21のリセット時においてクリアされない非クリア範囲となっている。
【0034】
次に、本実施の形態に係わる制御回路11による給電装置1の運転制御処理およびCPU21の暴走時における自動復帰制御処理について説明する。
【0035】
給電装置1のCPU21は、健全状態において、ROM31に記憶された制御プログラムP1に従って動作する。
【0036】
すなわち、図3の符号TS1に示すように、給電装置1のCPU21が健全状態であり、かつ給電装置1の通常運転時においては、制御回路11のCPU21により、ACスイッチドライブ回路29を介してACスイッチ17がオフに制御され、リレードライブ回路27および補助リレー15を介してリレー13の可動接点13aがインバータ電力側の第2の固定接点13cに切換制御されている。
【0037】
この状態において、制御回路11のCPU21は、運転制御周期毎に、その電力変換回路ドライブ回路25を介して電力変換回路5に対して駆動制御信号を出力する。
【0038】
この結果、商用交流電源3から供給された交流電力は、バイパス電力側の第1の固定接点13bおよびACスイッチ17がそれぞれオフであるため、負荷9に供給されない。
【0039】
電力線PSを介して電力変換回路5に送られた交流電力は、電力変換回路5の複数のスイッチング素子によるスイッチング処理等の電力変換制御処理により直流電力に変換された後、再度交流電力に変換され、出力線OS、リレー13の第2の固定接点13c、可動接点13aおよび出力線LSを介して負荷9に供給される。
【0040】
以上述べたように、給電装置1のCPU21が健全状態で、かつ給電装置1の通常運転時においては、電力変換回路5および給電切換回路7を介して負荷9にインバータ給電が実行されている(図3、TS2参照)。
【0041】
上記運転制御処理と並行して、CPU21は、WDTR信号をWDタイマ回路23に送信している(図3、TS3参照)。
【0042】
一方、給電装置1のCPU21が健全状態であり、かつ給電装置1が停止時においては、制御回路11のCPU21により、ACスイッチドライブ回路29を介してACスイッチ17がオフに制御され、リレードライブ回路27および補助リレー15を介してリレー13の可動接点13aが第1の固定接点13bをオフにするように切換制御され、さらに、電力変換回路ドライブ回路25がオフ制御される。
【0043】
この停止時において、CPU21は、上記WDTR信号送信処理を行っている(図3、TS4参照)。
【0044】
CPU21が健全状態において、そのCPU21の制御に基づく給電装置1の現在の運転状態に関連する運転関連情報41は、CPU21の制御時において、それぞれ二者択一の状態(「1」あるいは「0」)の1ビットの運転状態パラメータとしてRAM33における運転関連情報書込エリアの所定の記憶領域RBに格納されている。
【0045】
運転関連情報41は、給電装置1が「運転中(1)」であるか「運転停止中(0)」であるかを表す運転/停止状態パラメータP1に加えて、バイパス使用許可設定状態パラメータP2、給電装置1の停止時におけるバイパス設定状態を表すパラメータP3、自発送信許可状況を表すパラメータP4、CPU21による送信ポートの選択状況を表すパラメータP5、CPU21の通信速度の選択状況を表すパラメータP6およびリレー13の制御状態を表すパラメータP7をそれぞれ含んでいる。
【0046】
このとき、CPU21は、図3に示す運転関連情報記録処理(TS5)として、上記運転制御周期毎にRAM33に格納(更新)している現在の給電装置1の運転関連情報41(運転状態パラメータP1〜P7)を、上記「1」あるいは「0」のビット情報から、それぞれ16ビット(2バイト)の所定の運転状態コードデータC1〜C7に置き換える(図4;ステップS1)。
【0047】
例えば、運転/停止状態パラメータP1が「運転中」を表す1ビットの情報「1」の場合には、16ビットの運転状態コードデータである例えば「A5h」に置き換えられ、運転/停止状態パラメータP1が「停止中」を表す1ビットの情報「0」の場合には、16ビットの運転状態コードデータである例えば「5Ah」に置き換えられる。
【0048】
次いで、CPU21は、運転関連情報41(運転状態コードデータC1〜C7)と全く同一(コピー)を表す情報(同一の16ビットの情報)を複数個(N個;41a1〜41aN)生成し(ステップS2)、生成した複数(第1〜第N)の運転関連情報41a1〜41aNを、RAM33の運転関連情報書込エリアにおける分散した複数の記憶領域R1〜RNにそれぞれ書き込む(記録する)(ステップS3)。
【0049】
CPU21は、上記運転関連情報記録処理(ステップS1〜ステップS3)を給電装置1の運転制御周期毎に実行しているため、RAM33には、常に給電装置1の動作と完全に一致した運転関連情報が記録されている。
【0050】
このとき、例えば、外来雑音(ノイズ)や給電装置1の内部で発生した雑音(ノイズ)等の影響を受けてCPU21に暴走(制御プログラムの実行が正常な順序で進行しないこと)が発生した場合、図3に示すように、WDタイマ回路23に対してCPU21からのWDTR信号の入力が一定期間以上停止する。
【0051】
この結果、WDタイマ回路23からWDTO信号がCPU21のNMI端子Nに出力される。
【0052】
CPU21は、NMI端子Nを介してWDTO信号が入力されると、このWDTO信号に応じた割込み処理により、ROM31の特定アドレスから割込プログラムP2を読み出し、その割込プログラムP2に従って割込処理(自動復帰処理)を開始する(図5;ステップS10)。なお、このとき、給電装置1は、図3に示すように、自動復帰処理による自動復帰中を表す状態(TS6)となる。
【0053】
すなわち、CPU21は、RAM33の複数の記憶領域R1〜RNに記録された複数の運転関連情報41a1〜41aNをそれぞれ読み出し、互いの運転関連情報41a1〜41aNをコードデータ単位で比較して、その運転関連情報41a1〜41aNに対する破損発生の有無、言い換えれば運転関連情報41a1〜41aNの健全性を確認し(ステップS11)、運転状態の判定ができるか否か(OKであるか否か)判断する(ステップS12)。
【0054】
このとき、本実施形態では、複数の運転関連情報41a1〜41aNそれぞれが16ビットの運転状態コードデータであるため、数ビット程度の破損に関しては、運転関連情報41a1〜41aN間の比較により、その運転関連情報41a1〜41aNに対する破損の有無を容易に検出することができる。
【0055】
ステップS12の判断処理の結果、運転関連情報41a1〜41aNに運転状態判定が困難となるデータ破損が生じている場合(例えば、運転関連情報41a1〜41aNの過半数以上が破損している場合;ステップS12→NO)、CPU21は、後述するステップS15の処理に移行する。
【0056】
一方、ステップS12の確認処理の結果、運転関連情報41a1〜41aNにデータ破損が生じていないか、破損が生じていても運転状態判定処理が実行できると判断した場合(ステップS12→YES)、CPU21は、運転関連情報41a1〜41aN間の各情報C1〜C7単位での一致状態を求め、求めた一致状態により、健全状態での運転状態を判定する(ステップS13;図3、TS7参照)。
【0057】
例えば、運転関連情報41a1〜41aNそれぞれの運転状態コードデータC1において、「運転中」を表すコードデータ「A5h」の個数が所定数(上記N個に応じて決まる数、例えばN個のうちの過半数)に達している場合(残りはCPU21の暴走により破損して「A5h」とは異なるコードデータに変化した場合)、CPU21は、給電装置1の健全状態時の運転/停止状態パラメータP1が「運転中」であると判定する。
【0058】
同様に、その他の運転関連情報41a1〜41aNそれぞれの運転状態コードデータC2〜C7においても、例えば過半数を占めるコードデータに対応する運転状態パラメータが健全状態の運転状態パラメータP2〜P7として判定される。
【0059】
CPU21は、判定された運転状態パラメータP1〜P7に従って給電装置1全体の制御を行う。
【0060】
例えば運転/停止状態パラメータP1が「運転中」と判定されたため、CPU21は、ACスイッチドライブ回路29を介してACスイッチ17をオンに制御し、リレードライブ回路27および補助リレー15を介してリレー13の可動接点13aをバイパス電力側の第1の固定接点13bへ切換制御する。
【0061】
この結果、商用交流電源3から供給された交流電力は、バイパス電力側の第1の固定接点13bおよびACスイッチ17がそれぞれオンであるため、バイパス電力線BS、リレー13、ACスイッチ17および出力線LSを介して負荷9に供給される(ステップS14)。
【0062】
このとき、ACスイッチ17は瞬時にオフからオンに切り換り、ステップS11(CPU21の暴走発生時)からステップS14の処理まで例えば数μsで行われるため、交流電力を無瞬断で負荷9に供給することができる(バイパス給電;図3、TS8参照)。
【0063】
一方、ステップS12により運転状態判定処理が困難なデータ破損が確認された場合、あるいはステップS13により、運転関連情報41a1〜41aNそれぞれの運転状態コードデータC1〜C7において、「運転停止中」を表すコードデータ「5Ah」の個数が所定数(例えば、上記過半数)に達しており、給電装置1の健全状態時の運転/停止状態パラメータP1が「運転停止中」であると判定された場合、CPU21は、上記リレー13およびACスイッチ17に対する切換制御を行わず、運転停止状態を維持する(ステップS15;図3、TS9参照)。
【0064】
ステップS14あるいはS15の処理後、CPU21は、所定時間(例えば10秒間待機し、上記ノイズ等の暴走理由から連続して暴走が発生した場合、その暴走を無視する(ステップS16;図3、TS10参照)。
【0065】
次いで、CPU21は、ステップS13およびS14の処理により判定された給電装置1の自動復帰後(健全状態)の運転関連情報(CPU21により再生される運転関連情報)、およびバイパス給電に必要なポートT1〜T3の状態を表すBPS(バイパス)給電用ポート情報を、RAM33のリセット時非クリア範囲における記憶領域RA1およびRA2にそれぞれ書込み、書込後にリセット(ソフトウェアリセット)処理を行う(ステップS17;図3、TS11参照)。
【0066】
リセット完了後、CPU21は、WDTR信号送信処理を開始し(図3、TS12参照)、そのCPU21の初期化処理を行う(ステップS17)。
【0067】
すなわち、CPU21は、現在のリセット後の初期化がNMI自動復帰に基づく初期化であるか、通常のリセット操作(電源リセット、リセット端子によるリセット等)に基づく初期化であるか否か判断し(ステップS19)、通常のリセット操作に基づく初期化である場合には(ステップS19→NO)、通常の初期化処理によりRAM33の記録内容を全て初期化する(ステップS20)。
【0068】
一方、NMI自動復帰に基づく初期化である場合には(ステップS19→YES)、CPU21は、NMI自動復帰専用初期化処理として、RAM33のリセット時RAM非クリア範囲(記憶領域RA1、RA2)を除くRAM33の全ての領域(リセット時RAMクリア範囲)の初期化処理を行う(ステップS21)。
【0069】
続いて、CPU21は、割込み処理により起動し(ステップS22)、電力変換回路ドライブ回路25を介して電力変換回路5を商用交流電源3に同期させた後、NMI自動復帰判定処理を行う(ステップS23)。
【0070】
ステップS23の判断の結果、「通常リセット」と判断された場合、CPU21は停止状態で待機する(ステップS24)。
【0071】
一方、ステップS23の判断の結果、「自動復帰」と判断された場合、CPU21は、RAM33の記憶領域RA1に記録された運転関連情報を読み出し、読み出した運転関連情報が「運転中」であるか否か判断する(ステップS25)。
【0072】
ステップS25の判断の結果「運転中」であれば(ステップS25→YES)、CPU21は、RAM33の記憶領域RA2からBPS給電用ポート情報を読み出し、読み出したBPS給電用ポート情報に基づいて、対応するポートT1、T2およびT3を介して電力変換回路ドライブ回路25、リレードライブ回路27およびACスイッチドライブ回路29をそれぞれ駆動する。この結果、給電装置1が起動して自動的に運転を開始する(ステップS26;図3、TS13参照)。なお、このとき、給電装置1は、図3に示すように、NMI処理による自動復帰後(健全状態;TS14)となる。
【0073】
すなわち、CPU21は、リレードライブ回路27および補助リレー15を介してリレー13の可動接点13aをインバータ電力側の第2の固定接点13cに切換制御し、切換制御完了後、ACスイッチドライブ回路29を介してACスイッチ17をオフに制御し、リレードライブ回路27および補助リレー15を介してリレー13の可動接点13aをインバータ電力側の第2の固定接点13cに切換制御して電力変換回路ドライブ回路25を介して電力変換回路5の複数のスイッチング素子をスイッチング制御する。
【0074】
この結果、商用交流電源3から供給された交流電力は、リレー13の可動接点13aがインバータ電力側の第2の固定接点13cに切り換った後にACスイッチ17がオフに制御されるため、無瞬断で電力変換回路5、リレー13の第2の固定接点13c等を介して負荷9に供給される。すなわち、バイパス給電から無瞬断でインバータ給電に移行される(図3、TS15参照)。
【0075】
一方、ステップS25の判断の結果「運転停止中」であれば(ステップS25→NO)、CPU21は、電力変換回路5等の制御を行わず、停止状態で待機し(ステップS27;図3、TS16参照)、手動操作により運転を再開するようになっている。
【0076】
このようにして、割込プログラムP2に従った給電装置1の自動復帰処理(割込み処理)S10〜S17とCPU初期化処理S18〜S27が完了すると(ステップS28)、CPU21は、制御プログラムP1に従って、健全状態時における運転制御処理を運転制御周期で開始する(ステップS29)。
【0077】
すなわち、CPU21は、WDTR信号送信処理を含む運転制御処理(「運転」→電力変換回路5の制御処理、「運転停止」→停止待機処理)を実行し(ステップS30)、運転周期毎に、図4のステップS1〜S3に示した運転関連情報記録処理を実行する(ステップS31;図3、TS17参照)。
【0078】
以下、CPU21は、制御プログラムP1に従ってステップS29〜S31の処理を繰り返し実行し、CPU21が新たに暴走した場合には、その暴走を検知してCPU21に送信されたWDTO信号に応じた割込み処理により、割込プログラムP2に従った割込処理(自動復帰処理;ステップS10〜S17とCPU初期化処理;ステップS18〜28参照)が実行される。
【0079】
以上述べたように、本実施形態によれば、CPU21が健全状態において、給電装置1の運転状態に関連する運転関連情報を、それぞれ16ビットから成る運転状態コードデータC1〜C7に置換し、置換した運転関連情報を、その運転関連情報と同一の複数の運転関連情報41a1〜41aNとしてRAM33の分散した複数の記憶領域R1〜RNにそれぞれ書き込んでいる。
【0080】
このため、CPU21の暴走により複数の運転関連情報41a1〜41aN自体の一部が破損した場合や、RAM33における上記複数の運転関連情報41a1〜41aNが書き込まれた記憶領域の一部に不具合が生じた場合でも、他の運転関連情報によりCPU21の暴走前の運転状態を確実に判定することができる。
【0081】
したがって、CPU21の暴走時においてRAM33自体および/またはRAM33に書き込まれた運転関連情報の例えば一部に不具合が生じた場合であっても、給電装置1をCPU21の暴走前の運転状態に自動復帰させることができる。
【0082】
この結果、例えば給電装置1がCPU21暴走前に運転中状態であった場合、すなわち、負荷9に電力を供給していた場合、CPU21暴走後も、給電装置1を運転中状態(負荷9に対する給電状態)に確実に自動復帰させることができる。
【0083】
また、本実施形態によれば、CPU21が健全状態において運転中であった場合、CPU21が暴走しても、バイパス給電により負荷9に対する給電を継続させることができるため、負荷9に対する電力供給停止状態の発生を回避することができる。
【0084】
さらに、本実施形態によれば、給電装置1の運転状態に関連する運転関連情報を、それぞれ16ビットから成る運転状態コードデータC1〜C7としてRAM33に記録しているため、CPU21の暴走時において同一のコードデータが偶然に生成されてしまう確率は、それぞれ1/216=1/65536と非常に小さくなっている。
【0085】
すなわち、CPU21の暴走時において、複数の運転関連情報41a1〜41aNの内の少なくとも1つの運転関連情報のコードデータが破損した場合、破損後、破損前のコードデータと同一のデータとなる確率は極めて小さく、コードデータが破損した場合、そのコードデータの破損を容易に検知することが可能になる。
【0086】
なお、本実施形態では、運転関連情報41a1〜41aNそれぞれのN個の運転状態コードデータにおいて、二者択一の一方の運転状態に対応する同一コードデータの個数が所定数、例えば過半数に達している場合に、給電装置1がその同一のコードデータに対応する所定の運転状態にあるものと判定したが、本発明はこの構成に限定されるものではない。
【0087】
例えば、二者択一の一方の運転状態に対応するコードデータの数が所定数(過半数よりも小さい)を超えた場合、そのコードデータの運転状態を給電装置1の運転状態と判定することも可能であり、最も同一となる個数の多いコードデータに対応する運転状態を給電装置1の運転状態と判定することもできる。
【0088】
また、本実施形態の給電装置1の電力変換回路5を、バッテリ内蔵型の電力変換回路5として構成し、給電装置1を、商用交流電源3の停電時において、電力変換回路5の内蔵バッテリからの交流電力に基づくインバータ給電を負荷9に行う電源装置として構成することも可能である。
【0089】
給電装置1を上記電源装置として構成した場合、図6に示すように、CPU21の健全状態時(暴走前)、例えば商用交流電源3が停電時において電力変換回路5の内蔵バッテリからインバータ給電を行っている際(図6、TS2)にCPU21に暴走が生じたとき、CPU21の図5のステップS13の判断は、運転関連情報として運転/停止状態パラメータP1が「バッテリによる運転中」であるにも係らず、停止状態の場合と同様の処理となり、CPU21は、給電装置1を停電時に適した状態、すなわち停止状態に設定する(ステップS15;図6、TS8参照)。
【0090】
この場合、CPU21が自動復帰した場合でも、CPU21は、電力変換回路5等の制御を行わず、停止状態で待機する(ステップS27;図6、TS8参照)、手動操作により運転を再開する。
【0091】
なお、上記制御以外の自動復帰処理については、図5に示した処理と同様であり、給電装置1を上記電源装置として構成した場合であっても、給電装置1の場合と略同様の効果を得ることができる。
【0092】
また、本実施の形態においては、マイクロプロセッサ(CPU)の暴走を検知するウオッチドッグ(WD)タイマ回路23を、マイクロプロセッサ(CPU)のウオッチドッグタイマリセット端子およびNMI端子を介して外付けに接続したが、本発明は上記構成に限定されるものではなく、図7に示すように、ウオッチドッグタイマ回路23をマイクロプロセッサ(CPU)に内蔵するように構成してもよく、上述した実施の形態で得られた効果に加えて、部品点数の削減に寄与することができる。
【0093】
【発明の効果】
以上述べたように、請求項1、請求項2、請求項3、請求項9および請求項10記載の本発明によれば、マイクロプロセッサの暴走が検知されない健全状態において前記メモリの複数の記憶領域にそれぞれ分散して書き込まれた複数の運転関連情報間の一致状態に基づいて、該複数の運転関連情報から前記健全状態の運転関連情報を判定することができる。
【0094】
このため、仮に複数の運転関連情報の一部がマイクロプロセッサの暴走により破損した場合でも、残りの運転関連情報に基づいて健全状態の運転関連情報を判定することが可能になり、その判定結果に基づいて給電装置をマイクロプロセッサ暴走前の健全状態に自動復帰させることができる。
【0095】
請求項3記載の本発明によれば、その本発明に係るマイクロプロセッサ内蔵給電装置の部品点数を削減することができる。
【0096】
請求項4記載の本発明によれば、運転関連情報を16ビットのコードデータとして前記メモリに分散して書き込むようにしたため、例えばコードデータにビット単位で破損が生じた際に、その破損を容易に検出することができる。
【0097】
請求項5記載の本発明によれば、運転関連情報としての16ビットのコードデータ間の一致状態を、該16ビット単位で判定しており、16ビットのコードデータがマイクロプロセッサ暴走時に偶然生成される確率が極めて低いため、健全状態時の運転状態を誤まった状態に判定する可能性を回避することができる。
【0098】
請求項6記載の本発明によれば、前記健全状態の運転関連情報が前記給電装置の運転状態を表す情報を含む場合、メモリに保持された健全状態の運転関連情報に応じて、前記駆動回路を介して前記給電切換回路に前記切換制御信号を出力し、前記電力変換回路により変換された交流電力を前記負荷に供給することにより、給電装置を健全状態時の運転状態に自動復帰させることができる。
【0099】
請求項7記載の本発明によれば、前記健全状態の運転関連情報が前記給電装置の停止状態を表す情報を含む場合、前記メモリに保持された前記健全状態の運転関連情報に応じて該給電装置の停止状態を継続させることにより、給電装置を健全状態時の停止状態に自動復帰させることができる。
【0100】
請求項8記載の本発明によれば、前記交流電源が停電であり、かつ前記健全状態の運転関連情報が前記給電装置の運転状態を表す情報を含む場合に、前記メモリに保持された前記健全状態の運転関連情報に応じて、該給電装置の停止状態を継続させることにより、健全状態時が運転状態であるにも係らず、給電装置を、停電時に適した停止状態に自動復帰させることが可能になる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る給電装置の概略構成を示すブロック図である。
【図2】図1に示すRAMの記憶領域を概念的に示す図である。
【図3】図1に示す給電装置の動作状態を時系列的に示す図である。
【図4】図1に示すCPUの運転関連情報記録処理の一例を示す概略フローチャートである。
【図5】図1に示すCPUの暴走時自動復帰処理の一例を示す概略フローチャートである。
【図6】図1に示す給電装置の変形例における動作状態を時系列的に示す図である。
【図7】本発明の実施の形態に係る給電装置の変形例の概略構成を示すブロック図である。
【符号の説明】
1…給電装置
3…商用交流電源
5…電力変換回路
7…給電切換回路
9…負荷
11…制御回路
13…リレー
13a…可動接点
13b…第1の固定接点
13c…第2の固定接点
15…補助リレー
17…ACスイッチ
21…CPU
23…WDタイマ回路
25…電力変換回路ドライブ回路
27…リレードライブ回路
29…ACスイッチドライブ回路
31…ROM
33…RAM
Claims (10)
- 負荷に対して電力を給電するマイクロプロセッサ内蔵給電装置であって、
交流電源に接続され、該交流電源から供給された交流電力を所定の交流電力に変換する電力変換回路と、
前記電力変換回路および前記交流電源にそれぞれ接続され、該電力変換回路により変換された交流電力および該交流電源から前記電力変換回路をバイパスして供給されたバイパス交流電力の内の何れか一方を切換制御信号に応じて切り換えて前記負荷に供給する給電切換回路と、
前記電力変換回路および前記給電切換回路にそれぞれ接続され、前記切換制御信号を出力する駆動回路と、
メモリを有し前記駆動回路に接続されたマイクロプロセッサとを備え、
前記マイクロプロセッサは、
自マイクロプロセッサの暴走が検知されない健全状態において、所定の周期毎に前記給電装置の運転状態に関連する運転関連情報を前記メモリの複数の記憶領域それぞれに分散して書き込む運転関連情報書き込み手段と、
自マイクロプロセッサの暴走が検知された際に、割込み処理により前記メモリの複数の記憶領域に分散して記憶された複数の運転関連情報を読み出す運転関連情報読み出し手段と、
読み出された複数の運転関連情報間の一致状態に基づいて前記健全状態の運転関連情報を判定する運転関連情報判定手段と、
判定された前記健全状態の運転関連情報に基づいて前記給電装置を前記健全状態へ自動復帰させるための制御を実行する自動復帰手段と、
を備えたことを特徴とするマイクロプロセッサ内蔵給電装置。 - 前記マイクロプロセッサの割込み端子および入出力端子にそれぞれ接続され、該マイクロプロセッサの暴走を該入出力端子を介して検知し、その暴走検知を表す暴走検知信号を前記割込み端子を介して前記マイクロプロセッサに送信する暴走検知回路をさらに備え、
前記運転関連情報読み出し手段は、前記暴走検知信号が送信されてきた際に前記割込み処理により前記複数の運転関連情報を読み出す手段を有することを特徴とする請求項1記載のマイクロプロセッサ内蔵給電装置。 - 前記マイクロプロセッサは、自マイクロプロセッサの暴走を検知する暴走検知回路を内蔵しており、
前記運転関連情報読み出し手段は、前記暴走検知回路による前記マイクロプロセッサの暴走検知に応じて前記割込み処理により前記複数の運転関連情報を読み出す手段を有することを特徴とする請求項1記載のマイクロプロセッサ内蔵給電装置。 - 前記運転関連情報は、16ビットのコードデータとして前記メモリに分散して書き込まれることを特徴とする請求項1乃至3の内の何れか1項記載のマイクロプロセッサ内蔵給電装置。
- 前記運転関連情報判定手段は、前記運転関連情報としての16ビットのコードデータ間の一致状態を、該16ビット単位で判定することを特徴とする請求項4記載のマイクロプロセッサ内蔵給電装置。
- 前記健全状態の運転関連情報が前記給電装置の運転状態を表す情報を含む場合、前記自動復帰手段は、前記駆動回路を介して前記給電切換回路に前記切換制御信号を送信し、前記交流電源から供給されたバイパス交流電力を前記負荷に供給するように該給電切換回路を制御し、少なくとも前記健全状態の運転関連情報を前記メモリに保持した状態で前記マイクロプロセッサをリセットし、該リセット後、前記メモリに保持された前記健全状態の運転関連情報に応じて、前記駆動回路を介して前記給電切換回路に前記切換制御信号を送信し、前記電力変換回路により変換された交流電力を前記負荷に供給するように該給電切換回路を制御することを特徴とする請求項1乃至5の内の何れか1項記載のマイクロプロセッサ内蔵給電装置。
- 前記マイクロプロセッサは、前記健全状態の運転関連情報が前記給電装置の停止状態を表す情報を含む場合、少なくとも前記健全状態の運転関連情報を前記メモリに保持した状態で自マイクロプロセッサをリセットし、該リセット後、前記メモリに保持された前記健全状態の運転関連情報に応じて、該給電装置の停止状態を継続させる制御を行う停止制御手段を備えたことを特徴とする請求項1乃至5の内の何れか1項記載のマイクロプロセッサ内蔵給電装置。
- 前記マイクロプロセッサは、前記交流電源が停電であり、かつ前記健全状態の運転関連情報が前記給電装置の運転状態を表す情報を含む場合に、少なくとも前記健全状態の運転関連情報を前記メモリに保持した状態で自マイクロプロセッサをリセットし、該リセット後、前記メモリに保持された前記健全状態の運転関連情報に応じて、該給電装置の停止状態を継続させる制御を行う停止制御手段を備えたことを特徴とする請求項1乃至5の内の何れか1項記載のマイクロプロセッサ内蔵給電装置。
- 交流電源に接続され、該交流電源から供給された交流電力を所定の交流電力に変換する電力変換回路と、
前記電力変換回路および前記交流電源にそれぞれ接続され、該電力変換回路により変換された交流電力および該交流電源から前記電力変換回路をバイパスして供給されたバイパス交流電力の内の何れか一方を切換制御信号に応じて切り換えて負荷に供給する給電切換回路と、
前記電力変換回路および前記給電切換回路にそれぞれ接続され、前記切換制御信号を出力する駆動回路と、
メモリを含み前記駆動回路に接続されたマイクロプロセッサを有する制御回路と、
を備えたマイクロプロセッサ内蔵の給電装置の前記マイクロプロセッサ暴走時に対応する該マイクロプロセッサが実行可能な自動給電復帰プログラムであって、
前記マイクロプロセッサに、
自マイクロプロセッサの暴走が検知されない健全状態において、所定の周期毎に前記給電装置の運転状態に関連する運転関連情報を前記メモリの複数の記憶領域それぞれに分散して書き込む処理と、
自マイクロプロセッサの暴走が検知された際に、割込み処理により前記メモリの複数の記憶領域に分散して記憶された複数の運転関連情報を読み出す処理と、
読み出された複数の運転関連情報間の一致状態に基づいて前記健全状態の運転関連情報を判定する処理と、
判定された前記健全状態の運転関連情報に基づいて前記給電装置を前記健全状態の運転状態に自動復帰させるための制御を実行する処理と、
をそれぞれ実行させることを特徴とするマイクロプロセッサ内蔵給電装置のマイクロプロセッサ暴走時に対応した自動給電復帰プログラム。 - 交流電源に接続され、該交流電源から供給された交流電力を所定の交流電力に変換する電力変換回路と、
前記電力変換回路および前記交流電源にそれぞれ接続され、該電力変換回路により変換された交流電力および該交流電源から前記電力変換回路をバイパスして供給されたバイパス交流電力の内の何れか一方を切換制御信号に応じて切り換えて負荷に供給する給電切換回路と、
前記電力変換回路および前記給電切換回路にそれぞれ接続され、前記切換制御信号を出力する駆動回路と、
メモリを含み前記駆動回路に接続されたマイクロプロセッサを有する制御回路と、
を備えたマイクロプロセッサ内蔵の給電装置の前記マイクロプロセッサ暴走時に対応する自動給電復帰方法であって、
自マイクロプロセッサの暴走が検知されない健全状態において、所定の周期毎に前記給電装置の運転状態に関連する運転関連情報を前記メモリの複数の記憶領域それぞれに分散して書き込むステップと、
自マイクロプロセッサの暴走が検知された際に、割込み処理により前記メモリの複数の記憶領域に分散して記憶された複数の運転関連情報を読み出すステップと、
読み出された複数の運転関連情報間の一致状態に基づいて前記健全状態の運転関連情報を判定するステップと、
判定された前記健全状態の運転関連情報に基づいて前記給電装置を前記健全状態の運転状態に自動復帰させるための制御を実行するステップと、
を備えたことを特徴とするマイクロプロセッサ内蔵給電装置のマイクロプロセッサ暴走時に対応した自動給電復帰方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003209641A JP4360140B2 (ja) | 2003-08-29 | 2003-08-29 | マイクロプロセッサ内蔵給電装置、マイクロプロセッサ内蔵給電装置のマイクロプロセッサ暴走時に対応した自動給電復帰方法および自動給電復帰プログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003209641A JP4360140B2 (ja) | 2003-08-29 | 2003-08-29 | マイクロプロセッサ内蔵給電装置、マイクロプロセッサ内蔵給電装置のマイクロプロセッサ暴走時に対応した自動給電復帰方法および自動給電復帰プログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005078112A JP2005078112A (ja) | 2005-03-24 |
JP4360140B2 true JP4360140B2 (ja) | 2009-11-11 |
Family
ID=34402502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003209641A Expired - Fee Related JP4360140B2 (ja) | 2003-08-29 | 2003-08-29 | マイクロプロセッサ内蔵給電装置、マイクロプロセッサ内蔵給電装置のマイクロプロセッサ暴走時に対応した自動給電復帰方法および自動給電復帰プログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4360140B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104104371A (zh) * | 2014-06-27 | 2014-10-15 | 青岛歌尔声学科技有限公司 | 一种电子产品的开关电路 |
-
2003
- 2003-08-29 JP JP2003209641A patent/JP4360140B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005078112A (ja) | 2005-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101329632B (zh) | 一种使用boot启动cpu的方法与装置 | |
US7461291B2 (en) | Arbitration method and system for redundant controllers, with output interlock and automatic switching capabilities | |
KR101333641B1 (ko) | 차량용 장치 | |
CN109032822B (zh) | 一种死机信息的保存方法和装置 | |
KR960035229A (ko) | 컴퓨터 시스템 및 그 제어 방법 | |
JPH08241151A (ja) | 計算機システムの電源制御装置及び方法 | |
CN103796066A (zh) | 一种智能电视系统及其关机和开机方法 | |
US7428660B2 (en) | Starting control method, duplex platform system, and information processor | |
JP3626741B2 (ja) | データ転送システム | |
CN110502369B (zh) | 一种设备死机恢复的方法、装置和存储介质 | |
CN113691722A (zh) | 一种控制方法、装置及电子设备 | |
JP5445572B2 (ja) | コンピュータシステム、待機電力削減方法、及びプログラム | |
JP4360140B2 (ja) | マイクロプロセッサ内蔵給電装置、マイクロプロセッサ内蔵給電装置のマイクロプロセッサ暴走時に対応した自動給電復帰方法および自動給電復帰プログラム | |
CN100353321C (zh) | 具有主用和备用引导程序的系统及启动方法 | |
CN103890713A (zh) | 用于管理处理系统内的寄存器信息的装置及方法 | |
TW201244450A (en) | System and method for correcting AT commands in a mobile phone with double cards | |
JP4826557B2 (ja) | 二重化plc | |
CN102402447A (zh) | 设备启动方法和设备 | |
JP2002041189A (ja) | 無停電電源装置 | |
JP2008262426A (ja) | 2重化コントローラシステム、そのコントローラ | |
CN1323361C (zh) | 一种使用多个启动程序存储器的处理器系统及其启动方法 | |
CN109308234B (zh) | 一种控制板卡上多个控制器进行主备切换的方法 | |
CN112783690A (zh) | 死机处理方法及装置 | |
JPH0764930A (ja) | Cpu間相互監視方法 | |
CN218974903U (zh) | 一种国产服务器bios固件备份装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060707 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090721 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090803 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4360140 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120821 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120821 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130821 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |