JP4359116B2 - Micro-part X-ray irradiation apparatus and micro-part X-ray irradiation method of X-ray diffractometer - Google Patents

Micro-part X-ray irradiation apparatus and micro-part X-ray irradiation method of X-ray diffractometer Download PDF

Info

Publication number
JP4359116B2
JP4359116B2 JP2003362771A JP2003362771A JP4359116B2 JP 4359116 B2 JP4359116 B2 JP 4359116B2 JP 2003362771 A JP2003362771 A JP 2003362771A JP 2003362771 A JP2003362771 A JP 2003362771A JP 4359116 B2 JP4359116 B2 JP 4359116B2
Authority
JP
Japan
Prior art keywords
ray
sample
irradiation
micro
collimator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003362771A
Other languages
Japanese (ja)
Other versions
JP2005127817A (en
Inventor
明秀 土性
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Corp filed Critical Rigaku Corp
Priority to JP2003362771A priority Critical patent/JP4359116B2/en
Publication of JP2005127817A publication Critical patent/JP2005127817A/en
Application granted granted Critical
Publication of JP4359116B2 publication Critical patent/JP4359116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、コリメータからのX線を試料の微小領域に導くためのX線回折装置の微小部X線照射装置及び微小部X線照射方法に関し、特に、試料の面内回転を必要とするX線回折装置において好適なX線回折装置の微小部X線照射装置及び微小部X線照射方法に関する。   The present invention relates to a micro part X-ray irradiation apparatus and a micro part X-ray irradiation method of an X-ray diffraction apparatus for guiding X-rays from a collimator to a micro area of a sample, and in particular, X which requires in-plane rotation of a sample. The present invention relates to a micro X-ray irradiation apparatus and a micro X-ray irradiation method of an X-ray diffraction apparatus suitable for a line diffraction apparatus.

一般に、試料の微小領域に関して短時間に分解能の高いX線回折測定を行おうとする場合には、X線管からのX線をピンホールコリメータと呼ばれるコリメータによってX線を試料の微小領域に絞って照射することが行なわれている。   In general, when X-ray diffraction measurement with high resolution is performed in a short time with respect to a micro area of a sample, X-rays from the X-ray tube are focused on the micro area of the sample by a collimator called a pinhole collimator. Irradiation is performed.

また、例えば、以下の特許文献1によれば、特定のモノクロメータと焦点サイズが30μm以下のマイクロフォーカスのX線源とを組み合わせることにより、試料に集束するX線の強度を高める技術は、既に知られている。
特開平11−326599号公報
Further, for example, according to Patent Document 1 below, a technique for increasing the intensity of X-rays focused on a sample by combining a specific monochromator and a microfocus X-ray source having a focal size of 30 μm or less has already been disclosed. Are known.
JP-A-11-326599

ところで、上記のように試料の微小領域に関して分解能の高いX線回折測定を行なおうとする場合、試料を入射ビームに対し、15〜30度程度の傾斜角度で傾ける必要がある。これは、入射ビームを90度(入射X線と試料表面が垂直)で入射できれば、照射野は伸長しないが、しかし、その場合、回折線が試料自体に遮られてしまうので測定が出来ないことによる。そのため、この試料の傾斜により、傾斜した方向での照射野が拡大してしまい、微小部での検出感度が低下してしまうという問題点があった。このことは、特に、試料の微小部においてはその結晶の数も少なくなり、そのため、回折線を感度良く高精度で検出するためには、試料の面内回転(所謂、φ軸回転)が必要となるが、かかる場合、試料の傾斜によって生じる照射野の変化は、コリメータ径の4倍以上にも拡大してしまい、高精度な回折線の検出を不可能にしてしまう。   By the way, when the X-ray diffraction measurement with high resolution is performed on the minute region of the sample as described above, the sample needs to be tilted at an inclination angle of about 15 to 30 degrees with respect to the incident beam. This means that if the incident beam can be incident at 90 degrees (incident X-ray and sample surface are perpendicular), the irradiation field will not expand, but in that case, the diffraction line will be blocked by the sample itself and measurement will not be possible. by. For this reason, there is a problem that the irradiation field in the inclined direction is expanded due to the inclination of the sample, and the detection sensitivity at the minute portion is lowered. This is because the number of crystals is particularly small in the minute part of the sample, and therefore in-plane rotation of the sample (so-called φ axis rotation) is necessary to detect the diffraction line with high sensitivity and high accuracy. However, in such a case, the change in the irradiation field caused by the inclination of the sample expands to four times or more the collimator diameter, making it impossible to detect the diffraction lines with high accuracy.

そこで、本発明は、上述した従来技術における問題点を解消し、すなわち、試料の微小領域に関し、試料の面内回転を行なって検出感度の高いX線回折測定を実現するX線回折装置において好適な、X線回折装置の微小部X線照射装置、及び、その方法を提供することを目的とする。   Therefore, the present invention is suitable for an X-ray diffractometer that solves the above-described problems in the prior art, that is, that performs X-ray diffraction measurement with high detection sensitivity by performing in-plane rotation of the sample with respect to a minute region of the sample. It is another object of the present invention to provide an X-ray diffractometer micro-part X-ray irradiation apparatus and a method thereof.

かかる上記の目的を達成するため、本発明によれば、まず、X線源と、前記X線源からのX線を試料の微小領域に導くコリメータと、試料を少なくとも回転させることのできる試料保持機構と、前記試料で回折したX線を検出するX線検出器とを備えたX線回折装置において使用する微小部X線照射装置であって、前記コリメータから前記試料の表面に照射されるX線ビームの当該照射面における照射形状が、前記X線ビームと前記試料との傾斜角度にもかかわらず、略円形の一定の照射領域になるようにするX線回折装置の微小部X線照射装置が提供される。   In order to achieve the above-described object, according to the present invention, first, an X-ray source, a collimator for guiding X-rays from the X-ray source to a minute region of the sample, and a sample holder capable of rotating at least the sample A micro X-ray irradiation apparatus used in an X-ray diffraction apparatus including a mechanism and an X-ray detector for detecting X-rays diffracted by the sample, the X-ray being irradiated from the collimator onto the surface of the sample X-ray irradiator for a small part of an X-ray diffractometer that makes an irradiation shape of the irradiation surface of the X-ray beam on the irradiation surface be a substantially circular constant irradiation region regardless of the inclination angle between the X-ray beam and the sample Is provided.

また、本発明によれば、前記に記載したX線回折装置の微小部X線照射装置は、前記コリメータから出射する前記X線ビームに交差する一対のスリットを備えており、又は、前記一対のスリットの先端部は湾曲形状を有している。   Further, according to the present invention, the micro X-ray irradiation apparatus of the X-ray diffraction apparatus described above includes a pair of slits that intersect the X-ray beam emitted from the collimator, or the pair of slits The tip of the slit has a curved shape.

加えて、本発明では、やはり、上述の目的を達成するため、X線源と、前記X線源からのX線を試料の微小領域に導くコリメータと、試料を少なくとも回転させることのできる試料保持機構と、前記試料で回折したX線を検出するX線検出器とを備えたX線回折装置において、前記コリメータから前記試料の表面に照射されるX線ビームの当該照射面における照射形状が、前記X線ビームと前記試料との傾斜角度にもかかわらず、略円形の一定の照射領域になるようにするX線回折装置の微小部X線照射方法が提供される。   In addition, according to the present invention, in order to achieve the above-described object, an X-ray source, a collimator for guiding the X-rays from the X-ray source to a minute region of the sample, and a sample holder capable of rotating the sample at least In an X-ray diffraction apparatus including a mechanism and an X-ray detector that detects X-rays diffracted by the sample, the irradiation shape of the X-ray beam irradiated on the surface of the sample from the collimator is There is provided a micro-part X-ray irradiation method of an X-ray diffractometer that makes a substantially circular constant irradiation region irrespective of the tilt angle between the X-ray beam and the sample.

また、本発明によれば、好ましくは、前記に記載したX線回折装置の微小部X線照射方法であって、前記コリメータから出射する前記X線ビームに一対のスリットを交差するX線回折装置の微小部X線照射方法が提供される。   According to the present invention, it is preferable that the X-ray diffracting method of the X-ray diffracting apparatus described above is an X-ray diffracting apparatus that intersects a pair of slits with the X-ray beam emitted from the collimator. A method for irradiating a minute part X-ray is provided.

以上からも明らかなように、本発明になるX線回折装置の微小部X線照射装置及び微小部X線照射方法によれば、特に、試料の微小領域に関して試料の面内回転を行なって検出感度の高いX線回折測定を実現するX線回折装置において、試料を入射ビームに対して15〜30度程度の傾斜角度で傾けて試料の面内回転(所謂、φ軸回転)を行なっても照射野の変化を生じることなく、高感度かつ高精度な回折線の検出を可能にするという、技術的に極めて優れた効果を発揮する。   As is clear from the above, according to the micro-part X-ray irradiation apparatus and micro-part X-ray irradiation method of the X-ray diffraction apparatus according to the present invention, in particular, detection is performed by performing in-plane rotation of the specimen with respect to the micro area of the specimen. In an X-ray diffractometer that realizes highly sensitive X-ray diffraction measurement, even if the sample is tilted at an inclination angle of about 15 to 30 degrees with respect to the incident beam, in-plane rotation (so-called φ axis rotation) of the sample is performed. It exhibits a technically excellent effect of enabling highly sensitive and highly accurate detection of diffraction lines without causing a change in the irradiation field.

以下、本発明の実施の形態について、添付の図面を参照しながら詳細に説明する。
まず、添付の図4には、本発明の一実施の形態になる微小部X線照射装置及び微小部X線照射方法が利用される、所謂、微小部X線回折装置の概略構成の一例を示している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
First, in FIG. 4 attached, an example of a schematic configuration of a so-called micro X-ray diffractometer using a micro X-ray irradiation apparatus and a micro X-ray irradiation method according to an embodiment of the present invention is shown. Show.

この微小部X線回折装置は、X線を放射するX線源F(X線焦点)と、上記X線源Fから放射されるX線を単色化するモノクロメータ3と、このモノクロメータ3で単色化されたX線を微小断面径の平行X線ビームとして取り出すコリメータ4と、試料Sを支持する試料台1と、そして、試料Sの試料面に対向して配設された、例えば、一次元X線検出器としてのPSPC(位置敏感型比例計数管)2とを有している。   This micro X-ray diffractometer includes an X-ray source F (X-ray focal point) that emits X-rays, a monochromator 3 that monochromaticizes X-rays emitted from the X-ray source F, and the monochromator 3. A collimator 4 that takes out monochromatic X-rays as a parallel X-ray beam with a small cross-sectional diameter, a sample stage 1 that supports the sample S, and a sample surface of the sample S, for example, arranged to face the sample surface. And a PSPC (position sensitive proportional counter) 2 as an original X-ray detector.

試料Sは、それ自体が微小試料である場合もあり、あるいは、ある程度の大きさを有する試料の微小部である場合もある。そして、上記X線源F(X線焦点)は、例えばポイントフォーカスのX線焦点として形成され、また、モノクロメータ3は、例えば平板グラファイト結晶によって構成される。そして、コリメータ4は、例えば断面径が10〜100μmφ程度の、微小断面径の平行X線ビームを形成する。   The sample S may itself be a minute sample, or may be a minute part of a sample having a certain size. The X-ray source F (X-ray focal point) is formed as a point-focused X-ray focal point, for example, and the monochromator 3 is composed of, for example, a flat graphite crystal. The collimator 4 forms a parallel X-ray beam having a small cross-sectional diameter, for example, having a cross-sectional diameter of about 10 to 100 μmφ.

一方、試料台1はアーク支持台6によって支持され、このアーク支持台6は、面内スライダ7により支持され、そして、上記面内スライダ7は面直角スライダ8により支持されている。なお、試料台1にはφ回転装置9が付設され、このφ回転装置9によって駆動されて上記試料Sがφ軸線を中心として回転する。このφ軸線は、試料Sに入射するX線(すなわち、入射X線)R0の光軸X0と試料Sとが交わる点を通る軸線であって、所謂、試料Sを面内回転させるときの回転中心軸線となるものである。   On the other hand, the sample table 1 is supported by an arc support table 6, which is supported by an in-plane slider 7, and the in-plane slider 7 is supported by a plane perpendicular slider 8. The sample stage 1 is provided with a φ rotating device 9 and driven by the φ rotating device 9 to rotate the sample S around the φ axis. This φ axis is an axis passing through a point where the optical axis X0 of the X-ray (that is, incident X-ray) R0 incident on the sample S and the sample S intersect, and so-called rotation when the sample S is rotated in the plane. This is the central axis.

また、アーク支持台6にはω回転装置11が付設され、このω回転装置11によって駆動されて試料Sがω軸線を中心として回転する。このω軸線は、この図4の紙面垂直方向に延びると共に、上記の入射X線光軸X0と試料Sとが交わる点を通る軸線であって、入射X線R0の試料Sに対する入射角θを変化させるときの回転中心となるものである。   The arc support 6 is provided with a ω rotating device 11 and driven by the ω rotating device 11 to rotate the sample S around the ω axis. This ω-axis extends in the direction perpendicular to the paper surface of FIG. 4 and passes through the point where the incident X-ray optical axis X0 and the sample S intersect, and the incident angle θ of the incident X-ray R0 with respect to the sample S is This is the center of rotation when changing.

面内スライダ7は、水平面内を自由に平行移動できる、所謂、X−Yスライダを用いて構成されており、この平行移動により試料Sを平面内で平行移動させることができる。この内面スライダ7は、面内駆動装置12によって駆動されて移動する。   The in-plane slider 7 is configured using a so-called XY slider that can freely translate in a horizontal plane, and the sample S can be translated in the plane by this translation. The inner surface slider 7 is driven by the in-plane driving device 12 to move.

面直角スライダ8は、内面スライダ7の平行移動方向に対直の方向へ往復平行移動し、上記図2の場合には、上下方向へ往復移動できるスライダを用いて構成することができる。この移動により、試料Sを上記面内スライダ7の平行移動方向に対して直角の方向へ移動させることができる。この面直角スライダ8は、面直角駆動装置13によって駆動され、平行移動する。   The right-angle slider 8 reciprocally translates in a direction perpendicular to the parallel movement direction of the inner surface slider 7, and in the case of FIG. 2, it can be configured using a slider that can reciprocate up and down. By this movement, the sample S can be moved in a direction perpendicular to the parallel movement direction of the in-plane slider 7. The right-angle slider 8 is driven by the right-angle drive device 13 and moves in parallel.

上述したφ回転装置9、ω回転装置11、面内駆動装置12及び面直角駆動装置13は、それぞれ、任意の構造の駆動機構を用いて構成できるが、一般的には、例えばパルスモータ等の駆動源を含んで構成される。   The φ rotation device 9, the ω rotation device 11, the in-plane drive device 12, and the right-angle drive device 13 described above can each be configured using a drive mechanism having an arbitrary structure, but in general, for example, a pulse motor or the like A drive source is included.

PSPC2は、周知の一次元X線検出器であり、例えば、図示のような湾曲形状のケーシング14の内部に信号線16及びX線から電荷を誘導するための適宜の構造が格納される。X線から電荷を誘導する構造としえは、例えばアノード線及びカソード線を信号線16に平行に配設する構造が考えられる。ケーシング14のうち、試料Sに対向する面には、X線の回折角度(2θ)方向の広い範囲からX線を取り込むための細長い開口17が設けられている。   The PSPC 2 is a well-known one-dimensional X-ray detector. For example, an appropriate structure for inducing charges from the signal line 16 and the X-ray is stored in a curved casing 14 as shown in the figure. As a structure for inducing charges from X-rays, for example, a structure in which an anode line and a cathode line are arranged in parallel to the signal line 16 can be considered. An elongated opening 17 for taking in X-rays from a wide range in the X-ray diffraction angle (2θ) direction is provided on the surface of the casing 14 facing the sample S.

上記したPSPC2に取り込まれたX線の強度及び回折角度を検出するためのX線演算回路18は、図示のように、例えば、上記信号線16の両端からの信号を入力する位置演算回路19と、位置演算回路19の出力信号をピーク波形の波高に変換する位置/波高変換回路21と、そして、位置/波高変換回路21からの出力信号に基づいて回折角度(2θ)に関するX線強度分布を求めるMCA(Multi-Channel Height Analyzer:多重波高分析器)22とを含んで構成されている。このMCA22の出力端子には、必要に応じて、演算結果を映像として表示するためのディスプレイ23及び演算結果を紙等の印刷材上にプリントアウトするプリンタ24が接続されている。   The X-ray calculation circuit 18 for detecting the intensity and diffraction angle of the X-rays taken into the PSPC 2 is, for example, a position calculation circuit 19 for inputting signals from both ends of the signal line 16 as shown in the figure. The position / wave height conversion circuit 21 that converts the output signal of the position calculation circuit 19 into a peak wave height, and the X-ray intensity distribution relating to the diffraction angle (2θ) based on the output signal from the position / wave height conversion circuit 21. MCA (Multi-Channel Height Analyzer) 22 to be obtained. Connected to the output terminal of the MCA 22 are a display 23 for displaying the calculation result as an image and a printer 24 for printing out the calculation result on a printing material such as paper as necessary.

次に、本発明になる微小部X線照射装置及び微小部X線照射方法の原理について説明する。上述したように、特に、微小領域でのX線回折では、試料を入射ビームに対し、15〜30度程度の傾斜角度で傾ける必要がある。例えば、図5(a)に符号Bで示すように、略直角の入射時に得られる試料面での入射ビームの形状は、コリメータ径とほぼ同一の略円形になる。しかしながら、試料を入射ビームに対し、15〜30度程度の傾斜角度で傾けた場合には、図5(b)にも示すように、試料面での入射ビームの形状Cは試料面の傾斜方向に伸長されてしまい(楕円形状)、そのため、試料の面内回転(所謂、φ軸回転)を考慮すると、照射野VFは、コリメータ径の4倍以上にも拡大してしまい、高精度な微小部X線照射を不可能にしてしまう。   Next, the principle of the micro X-ray irradiation apparatus and micro X-ray irradiation method according to the present invention will be described. As described above, in particular, in X-ray diffraction in a minute region, it is necessary to tilt the sample with respect to the incident beam at an inclination angle of about 15 to 30 degrees. For example, as indicated by reference numeral B in FIG. 5A, the shape of the incident beam on the sample surface obtained at substantially right angle incidence is a substantially circular shape that is substantially the same as the collimator diameter. However, when the sample is tilted at an inclination angle of about 15 to 30 degrees with respect to the incident beam, as shown in FIG. 5B, the shape C of the incident beam on the sample surface is the inclination direction of the sample surface. Therefore, in consideration of the in-plane rotation of the sample (so-called φ axis rotation), the irradiation field VF is expanded to more than four times the collimator diameter, and a highly accurate minute X-ray irradiation becomes impossible.

そこで、図1に示すように、上記X線源F(X線焦点)から放射されるX線を、例えば、湾曲ミラーMに投射して平行な入射X線を得る場合、この平行な入射X線の途中に一対のスリット100、100を設けて、断面略円形状の入射X線の一部を遮断する。その結果、このスリット100、100を介して得られる入射X線の形状を、当該入射X線が試料Sの表面が傾斜している方向を短軸にした略楕円形状に形成する(図の符号MBを参照)。   Therefore, as shown in FIG. 1, when projecting X-rays radiated from the X-ray source F (X-ray focal point) onto, for example, the curved mirror M to obtain parallel incident X-rays, the parallel incident X-rays are obtained. A pair of slits 100, 100 are provided in the middle of the line to block part of incident X-rays having a substantially circular cross section. As a result, the shape of the incident X-ray obtained through the slits 100 and 100 is formed into a substantially elliptical shape with the minor axis in the direction in which the surface of the sample S is inclined. See MB).

その結果、上記試料Sの微小部表面に照射される入射X線の形状は、図中にMCで示すように、略円形に形成されることとなる。すなわち、コリメータからの入射X線の断面形状を、円ではなく、その縦横比を適宜変更可能とする(例えば、入射角θが30度の場合、1:2とする)。これにより、試料を傾斜させる方向における入射X線の照射幅を減少し(上記の例では1/2)、もって、試料表面上での照射野の縦横比を同じくすることが出来、たとえ試料を面内回転させてもその照射野が変化することがない。なお、従来の方法では、例えば10μmφの照射野を得る場合には、5μmφのコリメータを要したが、本発明の微小部X線照射装置及び微小部X線照射方法によれば、10×5μmの楕円形状の入射X線を得ることにより同じ照射野が得られることとなる。すなわち、2倍のX線量で同じ照射野になり、強度が2倍になる。   As a result, the shape of the incident X-ray irradiated on the surface of the micro part of the sample S is formed in a substantially circular shape as indicated by MC in the figure. That is, the cross-sectional shape of the incident X-rays from the collimator is not a circle but the aspect ratio thereof can be changed as appropriate (for example, 1: 2 when the incident angle θ is 30 degrees). This reduces the irradiation width of incident X-rays in the direction in which the sample is tilted (1/2 in the above example), so that the aspect ratio of the irradiation field on the sample surface can be made the same. Even if it is rotated in-plane, the irradiation field does not change. In the conventional method, for example, in order to obtain an irradiation field of 10 μmφ, a collimator of 5 μmφ is required. However, according to the micro-part X-ray irradiation apparatus and micro-part X-ray irradiation method of the present invention, 10 × 5 μm By obtaining an elliptical incident X-ray, the same irradiation field can be obtained. That is, the same irradiation field is obtained with twice the X-ray dose, and the intensity is doubled.

次に、添付の図2には、より具体的に、上記コリメータ4の入射X線の射出口(コリメータの先端)、又は、その近傍に、上記一対のスリット100、100を設けた例を示している。なお、これら一対のスリット100、100は、射出口の先端又は近傍に配置された部材上に搭載されており、例えば、スクリュー機構など、その位置を微調整することの可能な機構を介し、図に矢印aで示すように、互いに近接し、又は、離隔することが可能になっている。すなわち、この微小部X線照射装置によって得られる略楕円形状のX線の断面形状を、入射角度θの変化に対応して、適宜、可変することが出来るようになっている。なお、これら一対のスリット100、100の位置微調整機構は、例えば、手動で行なうように構成することも出来るが、又は、設定した入射角度θに対応して、パルスモータ等により自動的に駆動調整するようにしてもよい。なお、一般的に、入射X線に対する試料の傾斜角度(入射角度θ)は、測定中は一定である。   Next, FIG. 2 attached more specifically shows an example in which the pair of slits 100, 100 are provided at or near the exit of the incident X-ray of the collimator 4 (the tip of the collimator). ing. The pair of slits 100, 100 are mounted on a member disposed at or near the tip of the injection port. For example, through a mechanism that can finely adjust its position, such as a screw mechanism, FIG. As shown by an arrow a, they can be close to each other or separated from each other. In other words, the substantially elliptical X-ray cross-sectional shape obtained by this micro X-ray irradiation apparatus can be appropriately changed in accordance with the change in the incident angle θ. The fine position adjustment mechanism for the pair of slits 100, 100 can be configured to be performed manually, or is automatically driven by a pulse motor or the like corresponding to the set incident angle θ. You may make it adjust. In general, the inclination angle (incident angle θ) of the sample with respect to incident X-rays is constant during measurement.

さらに、添付の図3には、上記一対のスリット100、100の具体的な形状を示している。図3(a)には、これら一対のスリット100、100を、方形の板状部材で構成した例を示しており、なお、図中の破線は、コリメータからの入射X線の外径を示している。この図からも明らかなように、上記方形のスリット100、100によれば、略円形の入射X線の外径を上下から遮断することから、特に、その遮蔽部分が大きくなると(即ち、入射角θが小さく、スリット間の距離が小さくなった場合)、楕円形状とは遠い形状となる。そこで、図3(b)にも示すように、上記一対のスリット100、100の対向する端部の形状を湾曲状に形成することにより、遮蔽部分が大きくなってもより楕円形状に近い入射X線の断面外径を得ることが可能となる。   Further, FIG. 3 attached here shows a specific shape of the pair of slits 100, 100. FIG. 3A shows an example in which the pair of slits 100 and 100 is formed of a rectangular plate-like member, and the broken line in the figure indicates the outer diameter of the incident X-ray from the collimator. ing. As is clear from this figure, according to the rectangular slits 100, 100, the outer diameter of the substantially circular incident X-ray is blocked from above and below, so that the shielding portion is particularly large (that is, the incident angle). When θ is small and the distance between the slits is small), the shape is far from the elliptical shape. Therefore, as shown in FIG. 3B, by forming the opposing end portions of the pair of slits 100, 100 in a curved shape, the incident X closer to an elliptical shape even if the shielding portion becomes larger. It becomes possible to obtain the cross-sectional outer diameter of the wire.

また、上記の実施の形態では、本発明になる微小部X線照射装置を、上記図4に示した微小部X線回折装置において使用した例を示したが、しかしながら、本発明はこれにのみ限定されることなく、特に、試料を搭載して所望の角度位置に調整するための機構としては、上記に代えて、例えば、添付の図6や図7に示すようなものであってもよい。   In the above embodiment, the micro X-ray irradiation apparatus according to the present invention is used in the micro X-ray diffraction apparatus shown in FIG. 4, however, the present invention is limited to this. Without limitation, in particular, as a mechanism for mounting the sample and adjusting it to a desired angular position, for example, the mechanism shown in the attached FIG. 6 or FIG. 7 may be used instead of the above. .

以上にも述べたように、本発明によれば、入射X線に対し斜めに傾けた試料の微小部分を、当該試料を面内回転させながら測定するX線回折装置において、試料の傾斜角度を一定に保持した状態で面内回転させても、X線の当る部分(位置)が変化しないように、即ち、一定のX線照射領域とするために、試料面上でのX線照射領域を、当該試料の回転中心を中心とした略円形に近い形状としている。これによれば、そのX線の照射面積を一定とすると共に、面内回転により試料の表面を回転しても、その照射場所が変わらないようにすることが可能となる。   As described above, according to the present invention, in an X-ray diffractometer that measures a minute portion of a sample obliquely inclined with respect to incident X-rays while rotating the sample in-plane, the inclination angle of the sample is set. The X-ray irradiation area on the sample surface is set so that the portion (position) where the X-ray hits does not change even if the in-plane rotation is performed in a constant state, that is, in order to obtain a constant X-ray irradiation area. The shape is close to a substantially circular shape around the center of rotation of the sample. According to this, it is possible to make the irradiation area of the X-ray constant and to keep the irradiation place unchanged even if the surface of the sample is rotated by in-plane rotation.

これに対し、従来は、微小な部分を測定する場合には、その周囲の余計な部分にX線を照射しないようにするために、照射野が広がる分を予め見込んで更に径の小さいコリメータを選択して使用する必要があり、そのため、X線強度が非常に弱くなってしまっていた。これに対し、本発明では、上記の詳細に説明したように、照射形状が伸長する方向にだけ入射X線を細くして、その照射形状がほぼ円形になるようにしたので、試料を面内回転させてもその照射野は変わらず、従来にように、X線強度が弱くなり過ぎることもなくなる。   On the other hand, conventionally, when measuring a minute part, in order not to irradiate the surrounding extra part with X-rays, a collimator with a smaller diameter is expected in advance so that the irradiation field is widened. The X-ray intensity has become very weak because it has to be selected and used. On the other hand, in the present invention, as described in detail above, the incident X-ray is thinned only in the direction in which the irradiation shape extends, so that the irradiation shape becomes substantially circular. Even if it is rotated, the irradiation field does not change, and the X-ray intensity does not become too weak as in the prior art.

さらに、上記の説明では、入射X線を制限するための具体的な方法の一例として、所謂、スリットを用いる方法について述べたが、しかしながら、コリメータ自体が楕円の出口を持ったものを使用することも可能である。なお、その場合、予め試料の傾斜角度に対応して、楕円の扁平率の異なる複数のコリメータを用意しておき、測定時の傾斜角度の設定により適宜選択して使用することが考えられる。また、ある特定した試料の傾斜角度の範囲では、1種類の楕円コリメータを使用して測定することも可能であろう。更には、スリットに関しても、上述のような可変スリットでもよく、又は、これに代え、例えば、予め幅の異なる複数個の固定スリットを用意しておき、試料の傾斜角度に応じて適切な固定スリットを選択することも可能である。   Furthermore, in the above description, a method using a so-called slit has been described as an example of a specific method for limiting incident X-rays. However, the collimator itself has an elliptical exit. Is also possible. In this case, it is conceivable that a plurality of collimators having different elliptical flatness ratios are prepared in advance corresponding to the inclination angle of the sample, and appropriately selected and used depending on the setting of the inclination angle at the time of measurement. It may also be possible to measure using a single elliptical collimator within a range of tilt angles of a particular sample. Furthermore, regarding the slit, the variable slit as described above may be used. Alternatively, for example, a plurality of fixed slits having different widths are prepared in advance, and appropriate fixed slits are prepared according to the inclination angle of the sample. It is also possible to select.

本発明の一実施の形態になるX線回折装置の微小部X線照射装置及び微小部X線照射方法を説明する図である。It is a figure explaining the micro part X-ray irradiation apparatus and micro part X-ray irradiation method of the X-ray diffraction apparatus which become one embodiment of this invention. 上記微小部X線照射装置のより具体的な例を示す一部拡大斜視図である。It is a partially expanded perspective view which shows the more specific example of the said micro part X-ray irradiation apparatus. 上記微小部X線照射装置における一対のスリットの具体的な形状を説明する平明図である。It is a plain view explaining the specific shape of a pair of slit in the said micro part X-ray irradiation apparatus. 上記微小部X線照射装置及び微小部X線照射方法が使用される微小部X線回折装置の概略構成の一例を示すブロック図である。It is a block diagram which shows an example of schematic structure of the micro part X-ray diffraction apparatus in which the said micro part X-ray irradiation apparatus and the micro part X-ray irradiation method are used. 上記微小部X線照射装置及び微小部X線照射方法の原理について説明するための図である。It is a figure for demonstrating the principle of the said micro part X-ray irradiation apparatus and the micro part X-ray irradiation method. 上記微小部X線照射装置及び微小部X線照射方法が使用される他のX線回折装置の例を示す図である。It is a figure which shows the example of the other X-ray diffraction apparatus in which the said micro part X-ray irradiation apparatus and the micro part X-ray irradiation method are used. やはり、上記微小部X線照射装置及び微小部X線照射方法が使用される他のX線回折装置の例を示す図である。Again, it is a figure which shows the example of the other X-ray diffraction apparatus in which the said micro part X-ray irradiation apparatus and the micro part X-ray irradiation method are used.

符号の説明Explanation of symbols

1 試料台(φ軸回転)
100 スリット
4 コリメータ
9 φ回転装置
S 試料
MB スリットからの楕円形状入射X線
MC 試料上の円形状の入射X線。
1 Sample stage (φ axis rotation)
100 slit 4 collimator 9 φ rotating device S sample MB elliptical incident X-ray from the slit MC circular incident X-ray on the sample.

Claims (5)

X線源と、前記X線源からのX線を試料の微小領域に導くコリメータと、試料を少なくとも回転させることのできる試料保持機構と、前記試料で回折したX線を検出するX線検出器とを備えたX線回折装置微小部X線照射装置であって、
前記試料の保持角度を一定に保持した状態で、前記コリメータから前記試料の表面に照射されるX線ビームの当該照射面における照射形状が、前記試料の回転中心を中心とした略円形の一定の照射領域になるようにし、前記試料の表面を回転してもその照射場所が変わらないようにすることを特徴とするX線回折装置の微小部X線照射装置。
An X-ray source, a collimator for guiding X-rays from the X-ray source to a minute region of the sample, a sample holding mechanism capable of rotating at least the sample, and an X-ray detector for detecting X-rays diffracted by the sample A micro-part X-ray irradiation apparatus of an X-ray diffraction apparatus comprising:
In a state where the holding angle of the sample is held constant, the irradiation shape of the X-ray beam irradiated on the surface of the sample from the collimator is a substantially circular constant around the rotation center of the sample. An X-ray diffractometer for X-ray diffractometer, wherein the X-ray diffractometer is an irradiation region, and the irradiation location is not changed even if the surface of the sample is rotated.
前記請求項1に記載した微小部X線照射装置であって、前記コリメータから出射する前記X線ビームに交差する一対のスリットを備えていることを特徴とするX線回折装置の微小部X線照射装置。   The micro X-ray irradiation apparatus according to claim 1, further comprising a pair of slits intersecting the X-ray beam emitted from the collimator. Irradiation device. 前記請求項2に記載した微小部X線照射装置であって、前記一対のスリットの先端部は、前記X線ビームの当該照射面における照射形状を制御する湾曲形状を有していることを特徴とするX線回折装置の微小部X線照射装置。   3. The micro X-ray irradiation apparatus according to claim 2, wherein tip portions of the pair of slits have a curved shape for controlling an irradiation shape of the X-ray beam on the irradiation surface. X-ray diffractometer of X-ray diffractometer. X線源と、前記X線源からのX線を試料の微小領域に導くコリメータと、試料を少なくとも回転させることのできる試料保持機構と、前記試料で回折したX線を検出するX線検出器とを備えたX線回折装置の微小部X線照射方法において、
前記試料の保持角度を一定に保持した状態で、前記コリメータから前記試料の表面に照射されるX線ビームの当該照射面における照射形状が、前記試料の回転中心を中心とした略円形の一定の照射領域になるようにし、前記試料の表面を回転してもその照射場所が変わらないようにすることを特徴とするX線回折装置の微小部X線照射方法。
An X-ray source, a collimator for guiding X-rays from the X-ray source to a minute region of the sample, a sample holding mechanism capable of rotating at least the sample, and an X-ray detector for detecting X-rays diffracted by the sample In the X-ray diffraction apparatus for X-ray diffractometer,
In a state where the holding angle of the sample is held constant, the irradiation shape of the X-ray beam irradiated on the surface of the sample from the collimator is a substantially circular constant around the rotation center of the sample. A method for irradiating a minute portion of an X-ray diffractometer, wherein the irradiation location is not changed even when the surface of the sample is rotated.
前記請求項4に記載した微小部X線照射方法であって、前記コリメータから出射する前記X線ビームに一対のスリットを交差することを特徴とするX線回折装置の微小部X線照射方法。   5. The micro X-ray irradiation method according to claim 4, wherein a pair of slits are crossed with the X-ray beam emitted from the collimator.
JP2003362771A 2003-10-23 2003-10-23 Micro-part X-ray irradiation apparatus and micro-part X-ray irradiation method of X-ray diffractometer Expired - Fee Related JP4359116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003362771A JP4359116B2 (en) 2003-10-23 2003-10-23 Micro-part X-ray irradiation apparatus and micro-part X-ray irradiation method of X-ray diffractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003362771A JP4359116B2 (en) 2003-10-23 2003-10-23 Micro-part X-ray irradiation apparatus and micro-part X-ray irradiation method of X-ray diffractometer

Publications (2)

Publication Number Publication Date
JP2005127817A JP2005127817A (en) 2005-05-19
JP4359116B2 true JP4359116B2 (en) 2009-11-04

Family

ID=34642291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003362771A Expired - Fee Related JP4359116B2 (en) 2003-10-23 2003-10-23 Micro-part X-ray irradiation apparatus and micro-part X-ray irradiation method of X-ray diffractometer

Country Status (1)

Country Link
JP (1) JP4359116B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331852A (en) * 2005-05-26 2006-12-07 Jeol Ltd Surface observation analyzer
KR101167846B1 (en) 2010-11-12 2012-07-24 (주)코메드메디칼 Collimator apparatus can controlling x-ray radiation field
EP3719484B1 (en) * 2019-04-04 2024-02-14 Malvern Panalytical B.V. X-ray beam shaping apparatus and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8201343A (en) * 1982-03-31 1983-10-17 Philips Nv ROENTGEN ANALYSIS DEVICE WITH ADJUSTABLE SPRAY BEAM.
JPS60205243A (en) * 1984-03-30 1985-10-16 Mitsubishi Heavy Ind Ltd X ray diffraction apparatus
JPH05188019A (en) * 1991-07-23 1993-07-27 Hitachi Ltd X-ray composite analysis device
JPH0587646A (en) * 1991-09-25 1993-04-06 Toshiba Corp Measuring method for residual stress of ceramic member
JP3221619B2 (en) * 1992-04-20 2001-10-22 株式会社マック・サイエンス X-ray diffractometer
JP3236688B2 (en) * 1993-01-13 2001-12-10 理学電機株式会社 Small area X-ray diffractometer
JP3091821B2 (en) * 1993-09-06 2000-09-25 キヤノン株式会社 Exposure apparatus and device manufacturing method
JPH08313458A (en) * 1995-05-17 1996-11-29 Rigaku Corp X-ray equipment
JP3734366B2 (en) * 1998-03-20 2006-01-11 株式会社リガク X-ray analyzer
JP2001153826A (en) * 1999-11-26 2001-06-08 Matsushita Electronics Industry Corp Device and method for x-ray photoelectron spectroscopy
JP2002250704A (en) * 2001-02-26 2002-09-06 Rigaku Corp X-ray measuring instrument and x-ray measuring method

Also Published As

Publication number Publication date
JP2005127817A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JP4669004B2 (en) Vertical and horizontal small angle X-ray scattering apparatus and small angle X-ray scattering measuring method
JP2008014861A (en) Super-small-angle x-ray scattering measuring device
CN110389143B (en) X-ray analysis apparatus
JP2007121324A (en) X-ray diffractometer
JP6198406B2 (en) Micro diffraction method and apparatus
US5446777A (en) Position-sensitive X-ray analysis
JP4359116B2 (en) Micro-part X-ray irradiation apparatus and micro-part X-ray irradiation method of X-ray diffractometer
JPH05322804A (en) Method and device for measuring reflected profile of x ray
EP0014500B1 (en) X-ray powder diffractometer
JP3519292B2 (en) X-ray diffraction measurement method for minute area and X-ray diffraction apparatus for minute area
JPH04160351A (en) Test object inspection device by gamma or x-ray
JP2000258366A (en) Minute part x-ray diffraction apparatus
KR200418412Y1 (en) An apparatus for measuring the distance between bragg's planes of a crystal using X-ray
US10722192B2 (en) Variable stop apparatus and computed-tomography scanner comprising a variable stop apparatus
US2615136A (en) X-ray single crystal goniometer
JP3197104B2 (en) X-ray analyzer
US3200248A (en) Apparatus for use as a goniometer and diffractometer
JP2019184609A (en) X-ray analysis apparatus and method
JP4155538B2 (en) X-ray measuring apparatus and X-ray measuring method
JP7207186B2 (en) X-ray diffraction device and X-ray diffraction measurement method
JP3190989B2 (en) X-ray collimator
JP4227706B2 (en) Crystal orientation measuring apparatus and crystal orientation measuring method
JPH0989813A (en) Xafs measurement method and instrument
JP2001083105A (en) X-ray diffractometer and method for measuring diffracted x-ray
EP3719484B1 (en) X-ray beam shaping apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees