JP4358036B2 - Method for estimating rolling characteristics of construction materials - Google Patents

Method for estimating rolling characteristics of construction materials Download PDF

Info

Publication number
JP4358036B2
JP4358036B2 JP2004165832A JP2004165832A JP4358036B2 JP 4358036 B2 JP4358036 B2 JP 4358036B2 JP 2004165832 A JP2004165832 A JP 2004165832A JP 2004165832 A JP2004165832 A JP 2004165832A JP 4358036 B2 JP4358036 B2 JP 4358036B2
Authority
JP
Japan
Prior art keywords
construction
dry density
rolling
water content
content ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004165832A
Other languages
Japanese (ja)
Other versions
JP2005344390A (en
Inventor
輝 吉田
幸義 北本
勉 早崎
悟 三浦
耕平 景山
康典 平山
隆 青野
道男 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2004165832A priority Critical patent/JP4358036B2/en
Publication of JP2005344390A publication Critical patent/JP2005344390A/en
Application granted granted Critical
Publication of JP4358036B2 publication Critical patent/JP4358036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は、施工用材料の転圧特性(N−ρ線)の推定方法に関するものである。 The present invention relates to a method of estimating the rolling pressure characteristics of the construction material (N-ρ d line).

従来、盛土工事における品質管理方式には、(1)品質規定方式、(2)施工規定方式、(3)工法規定方式等がある。(1)の品質規定方式は、盛土の乾燥密度や空気間隙率などを直接測定して、規格値を満たすことを確認する方法である。(2)の施工規定方式、(3)の工法規定方式は、乾燥密度や空気間隙率などの規格値を達成するために必要な転圧回数をあらかじめ調べておき、転圧回数を管理することによって品質を確保する方法の一種である。   Conventionally, quality control methods in embankment work include (1) quality regulation method, (2) construction regulation method, and (3) construction method regulation method. The quality prescribing method (1) is a method of directly measuring the dry density and air porosity of the embankment and confirming that the standard value is satisfied. The construction regulation method of (2) and the construction regulation method of (3) are to investigate in advance the number of rolling times necessary to achieve standard values such as dry density and air porosity, and manage the number of rolling times. Is a kind of method to ensure quality.

(2)の方式では、転圧機械の走行軌跡をGPS等で捕捉することによって、施工箇所の全体にわたり、転圧回数不足(踏み残し)がないことを保証する(例えば、特許文献1参照)。(3)の方式では、施工面積と必要転圧回数とから必要転圧時間を計算し、タスクメータ等によって記録された実際の転圧時間がそれ以上であることを確認する。但し、転圧機械の動きが特定できないため、踏み残しがないことを保証できない。   In the method (2), the running locus of the compacting machine is captured by GPS or the like, thereby ensuring that there is no shortage of rolling pressure (remaining stepping) throughout the construction site (see, for example, Patent Document 1). . In the method (3), the required rolling time is calculated from the construction area and the required number of rolling times, and it is confirmed that the actual rolling time recorded by a task meter or the like is longer than that. However, since the movement of the rolling machine cannot be specified, it cannot be guaranteed that there is no leftover.

特許第3362833号公報Japanese Patent No. 3362833

しかしながら、(1)の方式は、乾燥密度や空気間隙率などの測定中にその上層の施工ができないので、急速大量施工には向かない。また、大規模な盛土工事において、乾燥密度や空気間隙率などの測定には、膨大な労力・費用・時間がかかる。さらに、層厚が20〜30cmを上回る場合、一般的に市販されているRI計器では層全体を表面から測定することができず、深部を測定するためには掘削が必要となる。   However, the method (1) is not suitable for rapid mass construction because the upper layer cannot be constructed during measurement of dry density, air porosity, and the like. Moreover, in large-scale embankment construction, it takes enormous labor, cost, and time to measure dry density and air porosity. Furthermore, when the layer thickness exceeds 20 to 30 cm, the commercially available RI instrument cannot measure the entire layer from the surface, and excavation is necessary to measure the depth.

そのため、転圧回数によって品質を管理する(2)、(3)の方式が有効である。が、大規模工事においては、盛土材の採取場所が広範囲にわたるため、盛土材の品質(含水状態や粒度、鉱物組成、粒子形状、粒子の硬さ、人為的乃至それ以外の各種混合物の含有量等)が施工中に大きく変動する場合がある。このような場合、工事着手時に試験施工(現場転圧試験)を実施して設定した必要転圧回数を満たしていても、盛土材の品質変動によって、盛土体に密度等の品質の不良が生じたり、品質が過剰で不経済となったりするおそれがある。盛土材の品質が変化するごとに必要転圧回数を見直せば上記の問題は解消するが、そのためには転圧試験を追加実施しなければならず、現場条件・時間・費用などの面から負担が大きい。   Therefore, the methods (2) and (3) for managing the quality by the number of rolling times are effective. However, in large-scale construction, there are a wide range of collection sites for the embankment material, so the quality of the embankment material (moisture content, particle size, mineral composition, particle shape, particle hardness, artificial or other contents of various mixtures) Etc.) may vary greatly during construction. In such a case, even if the required number of rollings set by carrying out test construction (on-site rolling test) at the start of the construction is satisfied, quality defects such as density occur in the embankment due to the quality fluctuation of the embankment material. Or the quality may be excessive and uneconomical. The above problem can be solved by revising the required number of rolling rolls every time the quality of the embankment material changes, but in order to do so, a rolling roll test must be additionally performed, which is a burden from the standpoint of site conditions, time, and costs. Is big.

第1の発明は、ある含水比を有する標準材料について現場転圧試験を行って、前記含水比における転圧回数Nと乾燥密度ρとの関係を表す第1のN−ρ線を作成する工程(a)と、前記標準材料について、少なくとも2種類の仕事量での室内突固め試験による、前記含水比における乾燥密度を取得する工程(b)と、前記第1のN−ρ線と前記含水比における乾燥密度とから、前記仕事量とそれぞれ等価な現場転圧回数を設定する工程(c)と、施工用材料について、前記仕事量での室内突固め試験による、施工含水比における乾燥密度を取得する工程(d)と、前記施工用材料について、前記施工含水比における乾燥密度と、前記現場転圧回数とを用いて、前記施工含水比における転圧回数Nと乾燥密度ρとの関係を表す第2のN−ρ線を作成する工程(e)とを具備することを特徴とする施工用材料の転圧特性の推定方法である。 The first invention performs an on-site rolling test on a standard material having a certain moisture content, and creates a first N-ρ d line representing the relationship between the rolling frequency N and the dry density ρ d at the moisture content. Step (a), obtaining a dry density at the water content ratio by an indoor tamping test with at least two kinds of work for the standard material, and the first N-ρ d line And the step (c) of setting the number of on-site rolling compaction equivalent to the work amount from the dry density at the water content ratio, and the construction material, at the construction water content ratio by the indoor tamping test at the work amount. Step (d) of obtaining a dry density, and the construction material, using the dry density at the construction water content ratio and the number of on-site rolling pressures, the number N of rolling pressures and the drying density ρ d at the construction water content ratio. The second N- a rolling pressure characteristic estimation method for construction materials, characterized by comprising a step (e) to create a [rho d line.

第1の発明では、工程(a)で、標準材料について現場転圧試験を行って、ある含水比W(現場転圧試験時の含水比;自然含水比)における転圧回数Nと乾燥密度ρとの関係を表す第1のN−ρ線を作成する。標準材料には、工程(a)の時点で使用可能な材料(盛土材)、または、工程(c)で使用する施工用材料(盛土材)を用いる。含水比Wの取得には、JIS等の既往の試験方法を用いる。 In the first aspect of the invention, in step (a), the the standard material subjected to site compaction test, there the water content ratio W A (water content ratio during the field compacting test; Nature water content ratio) drying and rolling pressure circuit number N in density creating a first N-[rho d line representing the relationship between [rho d. As the standard material, a material (filling material) that can be used at the time of the step (a) or a construction material (filling material) used in the step (c) is used. The acquisition of the water content ratio W A, using a history test methods JIS like.

工程(b)では、標準材料について、少なくとも2種類の仕事量Ec1、Ec2での室内突固め試験を行って、含水比Wにおける乾燥密度ρd11、ρd21を取得する。突固め試験の方法、仕事量Ec1、Ec2には、例えば、JISの突固め試験方法とそれに定められた仕事量を用いる。標準材料に施工用材料を用いる場合には、工程(b)で、仕事量Ec1、Ec2での含水比Wと乾燥密度ρとの関係を表すW−ρ線を作成しておくのが望ましい。 In step (b), the standard material, by performing the room compaction test at least two types of workload E c1, E c2, dry density [rho d11 in the water content ratio W A, obtains the [rho d21. For the tamping test method and the work amounts E c1 and E c2 , for example, a JIS tamping test method and the work amount determined thereto are used. When a construction material is used as the standard material, a W-ρ d line representing the relationship between the water content ratio W and the dry density ρ d at the work amounts E c1 and E c2 is created in step (b). Is desirable.

工程(c)では、工程(a)で作成した第1のN−ρ線と、工程(b)で取得した含水比Wにおける乾燥密度ρd11、ρd21とから、仕事量Ec1、Ec2とそれぞれ等価な現場転圧回数N、Nを設定する。すなわち、第1のN−ρ線から、乾燥密度ρd11、ρd21のときの転圧回数Nを読み取り、現場転圧回数N、Nとする。 In step (c), a first N-[rho d line created in step (a), the dry density [rho d11 in the water content ratio W A obtained in step (b), from [rho d21 Prefecture, workload E c1, The number of on-site rolling times N 1 and N 2 equivalent to E c2 is set. That is, from the first N-ρ d line, the number N of rolling pressures at the dry density ρ d11 , ρ d21 is read and set as the number of on-site rolling times N 1 , N 2 .

工程(d)では、施工用材料について、仕事量Ec1、Ec2での室内突固め試験による、施工含水比Wにおける乾燥密度ρd12、ρd22を取得する。工程(a)で標準材料に施工用材料を用いる場合、工程(b)でW−ρ線を作成してあれば、工程(d)ではW−ρ線から施工含水比Wのときの乾燥密度を読み取り、乾燥密度ρd12、ρd22とする。 In the step (d), dry densities ρ d12 and ρ d22 at a construction water content ratio W B are obtained for the construction material by an indoor tamping test with work amounts E c1 and E c2 . When using the construction material as the standard material in the step (a), if the W-ρ d line is created in the step (b), the construction moisture content W B from the W-ρ d line in the step (d) The dry density is read and set as dry densities ρ d12 and ρ d22 .

工程(a)で標準材料に施工用材料を用いるが、工程(b)でW−ρ曲線を作成していない場合や、標準材料に施工用材料を用いない場合には、工程(d)で突固め試験を行って、施工含水比Wにおける乾燥密度ρd12、ρd22を求める。突固め試験方法、仕事量Ec1、Ec2は、工程(b)と同様のものを用いる。なお、標準材料に施工用材料を用いない場合、工程(d)で、施工用材料について、仕事量Ec1、Ec2での含水比Wと乾燥密度ρとの関係を表すW−ρ曲線を作成しておくのが望ましい。 Step uses a construction material for the standard material (a), step (b) If you have not created a W-[rho d curve in the case of not using the construction material for the standard material, the step (d) in performing compaction test, dry density [rho d12 in construction water content ratio W B, obtains the [rho d22. The tamping test method and the work amounts E c1 and E c2 are the same as those in the step (b). In addition, when the construction material is not used as the standard material, W-ρ d representing the relationship between the moisture content W and the dry density ρ d at the work loads E c1 and E c2 in the step (d). It is desirable to create a curve.

工程(e)では、施工用材料について、工程(d)で取得した乾燥密度ρd12、ρd22と、工程(c)で設定した現場転圧回数N、Nとを用いて、施工含水比Wにおける転圧回数Nと乾燥密度ρとの関係を表す第2のN−ρ線を作成する。第2のN−ρ線は、(N、ρd12)、(N、ρd22)の2点を通過するものとする。 In step (e), for the construction material, using the dry density ρ d12 and ρ d22 obtained in step (d) and the number of on-site rolling times N 1 and N 2 set in step (c), to create a second N-[rho d line representing the relationship between the rolling pressure circuit number N and dry density [rho d in the ratio W B. Second N-[rho d line shall pass through the two points (N 1, ρ d12), (N 2, ρ d22).

第2のN−ρ線の精度を上げるには、工程(e)に際して施工含水比Wにおける乾燥密度の上限値ρdsatを求めておき、工程(e)で、(N、ρd12)(N、ρd22)の2点を通過し、転圧回数Nの増加とともに漸近線ρ=ρdsatに近づくように第2のN−ρ線を求める。または、工程(a)から工程(d)で、3種類以上の仕事量Ec1、Ec2、Ec3…を用い、工程(e)で、3点以上の点(N、ρd12)、(N、ρd22)、(N、ρd32)…を最小自乗法で曲線近似して第2のN−ρ線を求める。 To increase the accuracy of the second N-[rho d line, to previously obtain the upper limit value [rho dsat dry density in construction water content ratio W B during step (e), in step (e), (N 1, ρ d12 ) The second N-ρ d line is obtained so that it passes through two points (N 2 , ρ d22 ) and approaches the asymptotic line ρ d = ρ dsat as the number of rolling operations N increases. Alternatively , three or more kinds of work E c1 , E c2 , E c3 ... Are used in steps (a) to (d), and three or more points (N 1 , ρ d12 ) in step (e), (N 2 , ρ d22 ), (N 3 , ρ d32 )... Are approximated by a least square method to obtain a second N-ρ d line.

工程(e)の後、施工中に施工用材料の含水比以外の品質が変化した場合や、含水比以外の品質は変化しないが施工含水比Wが変化した場合には、工程(d)の突固め試験を再度行って工程(d)以降を繰り返し、必要転圧回数を再設定する。但し、含水比以外の品質が変化しない場合、工程(b)や工程(d)で施工用材料のW−ρ線を作成してあれば、W−ρ線から新たな施工含水比の時の乾燥密度を読み取って工程(d)以降を繰り返せばよい。 Subsequent steps (e), if the quality of the non-water content of the construction material in construction is and when changed, the quality of the non-water content is not changed, which changes the construction water content W B, the step (d) The tamping test is performed again, the process (d) and the subsequent steps are repeated, and the necessary number of rolling times is reset. However, when the quality other than the moisture content does not change, if the W-ρ d line of the construction material is created in the step (b) or the step (d), the new construction moisture content is determined from the W-ρ d line. What is necessary is just to read the dry density of time and to repeat a process (d) and subsequent steps.

本発明によれば、施工中に盛土材の品質が変化しても、簡易な方法で必要転圧回数を合理的に再設定できるよう、転圧回数Nと乾燥密度ρとの関係を示すN−ρ線を推定できる施工用材料の転圧特性の推定方法を提供できる。 According to the present invention, even if the quality of the embankment material changes during construction, the relationship between the number N of rolling compaction and the dry density ρ d is shown so that the necessary number of rolling compaction can be reasonably reset by a simple method. rolling pressure characteristic estimation method for construction materials capable of estimating the N-[rho d line can provide.

以下、図面に基づいて、本発明の第1の実施の形態について詳細に説明する。図1は、盛土の施工方法の流れを示すフローチャートである。図1に示すように、本実施の形態では、盛土を施工する(ステップ113)前に、標準材料Aを用いて事前検討19を行う。また、施工用材料Bを用いて施工時検討21を行う。   Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a flowchart showing the flow of the embankment construction method. As shown in FIG. 1, in this embodiment, prior construction 19 is performed using the standard material A before the embankment is constructed (step 113). In addition, a construction study 21 is performed using the construction material B.

事前検討19では、まず、標準材料Aについて、現場転圧試験を実施し、試験時の含水比Wを測定する(ステップ101)。標準材料Aには、事前検討19の開始時点において使用可能な盛土材料を用いる。図2は、標準材料Aについて、転圧回数Nと乾燥密度ρとの関係を示す図であり、横軸は転圧回数N、縦軸は乾燥密度ρを示す。 In preliminary study 19, first, the standard material A, conducted situ compaction test, measures the water content ratio W A during the test (step 101). As the standard material A, a fill material that can be used at the start of the preliminary study 19 is used. FIG. 2 is a diagram showing the relationship between the number of rollings N and the drying density ρ d for the standard material A, where the horizontal axis represents the number of rollings N and the vertical axis represents the drying density ρ d .

ステップ101では、実際の施工時と同様の層厚、施工機種で現場転圧試験すなわち試験施工を行って、図2に示すように、複数の実測値1(転圧回数N,乾燥密度ρ)を取得する。また、現場転圧試験時の含水比Wを取得する。含水比の測定は、JIS等の試験方法を用いて行う。 In step 101, an on-site rolling test, that is, test construction is performed with the same layer thickness and construction model as in the actual construction, and as shown in FIG. 2, a plurality of actual measurement values 1 (number of rolling times N, dry density ρ d ) To get. In addition, to get the water content ratio W A at the time of the field compaction test. The moisture content is measured using a test method such as JIS.

次に、転圧回数N−乾燥密度ρ曲線3(第1のN−ρ線)を求める(ステップ102)。ステップ102では、図2に示すように、現場転圧試験での実測値1を曲線近似し、転圧回数N−乾燥密度ρ曲線3を求める。転圧回数N−乾燥密度ρ曲線3は、例えば、ρ=a+N/(b+c・N)という形式の双曲線で良好に近似できると言われている。係数a、b、cは、含水比以外の盛土材品質や施工方法(層厚、施工機種など)などによって異なる係数である。なお、図2では実測値1を曲線近似したが、折れ線で転圧回数Nと乾燥密度ρとの関係を表してもよい。 Next, the number of rolling times N-dry density ρ d curve 3 (first N-ρ d line) is obtained (step 102). In step 102, as shown in FIG. 2, the measured value 1 in the field compaction tested curve approximation, rolling seek pressure circuit number N- dry density [rho d curve 3. It is said that the rolling frequency N-dry density ρ d curve 3 can be satisfactorily approximated by a hyperbola of the form ρ d = a + N / (b + c · N), for example. The coefficients a, b, and c are coefficients that vary depending on the embankment material quality other than the water content ratio, the construction method (layer thickness, construction model, etc.), and the like. In FIG. 2, the actual measurement value 1 is approximated by a curve, but the relationship between the number of rollings N and the drying density ρ d may be represented by a broken line.

ステップ101、ステップ102を行う一方、標準材料Aについて、2種類の突固め仕事量Ec1、Ec2を用いて室内突固め試験を行う(ステップ103)。突固め試験には、例えば、JISのA−1210の試験方法を用いる。 While performing steps 101 and 102, the standard material A is subjected to an indoor tamping test using two types of tamping work amounts E c1 and E c2 (step 103). For the tamping test, for example, a test method of JIS A-1210 is used.

突固め仕事量Eとは、単位体積当たりに与えられる仕事量(kJ/m)であり、2種類の突固め仕事量Ec1、Ec2は、例えば、Ec1≒550kJ/m、Ec2≒1100kJ/mとする。Eは、単位体積当たりの土に与えられるエネルギを示し、総突固め回数n、ランマ質量m、ランマ落下高さh、重力加速度gおよび容器体積Vを用いて、E=nmgh/Vで計算される。 The tamping work amount E c is a work amount (kJ / m 3 ) given per unit volume, and two types of tamping work amounts E c1 and E c2 are, for example, E c1 ≈550 kJ / m 3 , Let E c2 ≈ 1100 kJ / m 3 . E c indicates the energy given to the soil per unit volume, and using E c = nmgh / V, using the total number of times of compaction n, the ramer mass m, the rammer fall height h, the gravitational acceleration g, and the container volume V. Calculated.

図3は、標準材料Aについて、含水比Wと乾燥密度ρとの関係を示す図であり、横軸は含水比W、縦軸は乾燥密度ρを示す。ステップ103では、標準材料Aについて突固め仕事量Ec1、Ec2で突固め試験を行い、含水比および得られた乾燥密度に対して必要に応じて地盤工学会発行の地盤調査法(1995)などに示される礫補正を行って、現場粒度での含水比と乾燥密度とに換算する。ステップ103により、図3に示すように、突固め仕事量Ec1での含水比W、乾燥密度ρの関係を示す複数の点5a、突固め仕事量Ec2での含水比W、乾燥密度ρの関係を示す複数の点5bが得られる。 FIG. 3 is a diagram showing the relationship between the moisture content W and the dry density ρ d for the standard material A, where the horizontal axis represents the moisture content W and the vertical axis represents the dry density ρ d . In step 103, a tamping test is performed on the standard material A at a tamping work amount E c1 , E c2 , and a ground survey method published by the Geotechnical Society (1995) as necessary for the water content ratio and the obtained dry density. The gravel correction shown in the above is performed and converted to the moisture content and dry density at the on-site particle size. By step 103, as shown in FIG. 3, the water content ratio W at the tamping work amount E c1 , the plurality of points 5a indicating the relationship between the drying density ρ d , the water content ratio W at the tamping work amount E c2 , and the drying density plurality of points 5b showing the relationship between [rho d is obtained.

ステップ103の後、含水比W−乾燥密度ρ曲線7(7a、7b)を求める(ステップ104)。ステップ104では、図3に示すように、ステップ103で取得した複数の点5a、複数の点5bをそれぞれ曲線近似し、突固め仕事量Ec1での含水比W−乾燥密度ρ曲線7a、突固め仕事量Ec2での含水比W−乾燥密度ρ曲線7bを求める。なお、図3では点5a、点5bを曲線近似したが、折れ線で含水比Wと乾燥密度ρとの関係を表してもよい。 After step 103, water content ratio W- dry density [rho d curve 7 (7a, 7b) seek (step 104). In step 104, as shown in FIG. 3, the plurality of points 5a and the plurality of points 5b acquired in step 103 are respectively approximated by curves, and the water content ratio W-dry density ρ d curve 7a at the tamping work amount E c1 is obtained. determining the moisture ratio W- dry density [rho d curve 7b in compaction work of E c2. Incidentally, FIG. 3 at point 5a, is the point 5b and curve approximation may represent the relationship between the water content ratio W and dry density [rho d in a line.

ステップ102、ステップ104の終了後、現場転圧試験時の含水比Wにおける、突固め仕事量Ec1、Ec2と等価な現場転圧回数N、Nを推定する(ステップ105)。ステップ105では、図3に示すように、突固め仕事量Ec1での含水比W−乾燥密度ρ曲線7aから、現場転圧試験時の含水比W(自然含水比)での乾燥密度ρd11を読み取る。また、突固め仕事量Ec2での含水比W−乾燥密度ρ曲線7bから、現場転圧試験時の含水比Wでの乾燥密度ρd21を読み取る。 Step 102, after the completion of step 104, the water content ratio W A at site compaction test, estimates the compaction work of E c1, E c2 equivalent to the field inversion voltage dividing number N 1, N 2 (step 105). In step 105, as shown in FIG. 3, dry density in the water content ratio W- dry density [rho d curve 7a in compaction workload E c1, water content ratio at the site compacting test W A (natural water content ratio) Read ρd11 . Further, the water content ratio W- dry density [rho d curve 7b in compaction workload E c2, reads the dry density [rho d21 in water content ratio W A at site compacting tests.

さらに、図2に示すように、転圧回数N−乾燥密度ρ曲線3から、乾燥密度ρd11、ρd21となる現場転圧回数を読み取って、突固め仕事量Ec1、Ec2と等価な現場転圧回数N、Nとする。この現場転圧回数N、Nは、現場転圧試験時の含水比Wにおいて、2種類の突固め仕事量Ec1、Ec2での室内突固め試験によるのと同じ乾燥密度ρd11、ρd21を現場で達成するために必要な転圧回数を表す。転圧回数N、Nは、整数でなくてもよい。 Further, as shown in FIG. 2, the number of on-site rolling times at which the drying densities ρ d11 and ρ d21 are read from the rolling pressure N-dry density ρ d curve 3 is equivalent to the tamping work amounts E c1 and E c2. The on-site rolling times N 1 and N 2 are set. This site rolling pressure circuit number N 1, N 2, in the water content ratio W A at site compaction test, the same dry density as by Indoor compaction tests at two compaction workload E c1, E c2 ρ d11 , Ρ d21 represents the number of times of rolling required to achieve on-site. The number of rolling times N 1 and N 2 may not be an integer.

次に、施工時検討21について説明する。施工時検討21では、まず、施工用材料B1について、2種類の突固め仕事量Ec1、Ec2を用いて室内突固め試験を行う(ステップ106)。ステップ106では、事前検討19のステップ103と同様にして、2種類の突固め仕事量Ec1、Ec2で室内突固め試験を行い、必要に応じて礫補正を行う。 Next, the construction review 21 will be described. In the examination 21 during construction, first, an indoor tamping test is performed on the construction material B1 using two types of tamping work amounts E c1 and E c2 (step 106). In step 106, in the same manner as in step 103 of the preliminary study 19, an indoor tamping test is performed with two types of tamping work amounts E c1 and E c2 , and gravel correction is performed as necessary.

図4は、施工用材料B1について、含水比Wと乾燥密度ρとの関係を示す図であり、横軸は含水比Wを、縦軸は乾燥密度ρを示す。ステップ106により、図4に示すように、現場粒度での突固め仕事量Ec1での含水比W、乾燥密度ρの関係を示す複数の点11a、突固め仕事量Ec2での含水比W、乾燥密度ρの関係を示す複数の点11bが得られる。 FIG. 4 is a diagram showing the relationship between the water content ratio W and the dry density ρ d for the construction material B1, where the horizontal axis shows the water content ratio W and the vertical axis shows the dry density ρ d . By step 106, as shown in FIG. 4, the water content ratio W at the on-site particle size at the work load E c1 , a plurality of points 11a indicating the relationship between the dry density ρ d , the water content ratio at the work load E c2 W, a plurality of points 11b showing the relation between dry density [rho d is obtained.

ステップ106の後、含水比W−乾燥密度ρ曲線13(13a、13b)を求める(ステップ107)。ステップ107では、図4に示すように、ステップ106で得られた点11a、点11bをそれぞれ曲線近似し、突固め仕事量Ec1での含水比W−乾燥密度ρ曲線13a、突固め仕事量Ec2での含水比W−乾燥密度ρ曲線13bを求める。 After step 106, water content ratio W- dry density [rho d curve 13 (13a, 13b) obtaining a (step 107). In step 107, as shown in FIG. 4, 11a points obtained in step 106, respectively curve approximating the point 11b, the water content ratio in the compaction work of E c1 W- dry density [rho d curves 13a, compactor work The water content ratio W-dry density ρ d curve 13b at the amount E c2 is determined.

なお、ステップ107では、ゼロ空気間隙曲線15も求めておくとよい。ゼロ空気間隙曲線15は、乾燥密度ρの理論上の上限であり、含水比W(%)、水の密度ρw、土粒子密度ρsを用いて、ρ=ρw/(ρw/ρs+W/100)で表される。 In step 107, the zero air gap curve 15 may also be obtained. The zero air gap curve 15 is the theoretical upper limit of the dry density ρ d , and ρ d = ρw / (ρw / ρs + W / 100) using the water content ratio W (%), the water density ρw, and the soil particle density ρs. ).

次に、施工用材料B1について、施工時の施工含水比WB1を測定する(ステップ108)。含水比の測定は、事前検討19のステップ101と同様の方法で行う。 Next, the construction water content ratio W B1 at the time of construction is measured for the construction material B1 (step 108). The water content ratio is measured by the same method as in Step 101 of the preliminary study 19.

事前検討19の全ステップ、および、施工時検討21のステップ108の終了後、施工含水比WB1における、現場転圧回数N、Nのときの乾燥密度の推定値をρd12、ρd22とする(ステップ109)。ステップ109では、突固め仕事量Ec1での含水比W−乾燥密度ρ曲線13aから、施工時の施工含水比WB1での乾燥密度ρd12を読み取る。また、突固め仕事量Ec2での含水比W−乾燥密度ρ曲線13bから、施工時の施工含水比WB1での乾燥密度ρd22を読み取る。 After completion of all the steps of the preliminary study 19 and the step 108 of the construction-time study 21, the estimated dry density values at the construction water content ratio W B1 at the on-site rolling times N 1 and N 2 are ρ d12 and ρ d22. (Step 109). In step 109, the water content ratio W- dry density [rho d curve 13a in compaction workload E c1, reads the dry density [rho d12 in construction water content ratio W B1 during construction. Further, the water content ratio W- dry density [rho d curve 13b in compaction workload E c2, reads the dry density [rho d22 in construction water content ratio W B1 during construction.

ステップ109では、ステップ105で推定した、含水比Wの標準材料Aでの突固め仕事量Ec1、Ec2と現場転圧回数N、Nとの関係が、施工含水比WB1の施工用材料B1においても成立すると考え、現場転圧回数N、Nでの乾燥密度の推定値を、突固め仕事量Ec1、Ec2での乾燥密度ρd12、ρd22とする。 In step 109, estimated in step 105, the relationship between the compaction work of E c1, E c2 and field inversion voltage dividing number N 1, N 2 of the standard material A water content ratio W A is the construction water content ratio W B1 It is considered that the construction material B1 also holds, and the estimated dry density values at the on-site rolling times N 1 and N 2 are the dry densities ρ d12 and ρ d22 at the tamping work amounts E c1 and E c2 .

これは、実務上、室内突固め試験の単位体積当たりの突固めエネルギが、粒度分布に関わらず、重錘重量W(kgf)、重錘落下高さH(cm)、層あたりの突固め回数N、層の数N、容器体積Vを用いて、E=W・H・N・N/V=W・H・N/一層当たりの体積で表されることから、盛土の施工方法(層厚、締固め施工機種、走行速度、締固め出力、転圧回数)を一定とすれば、土が受け取るエネルギは粒度に関係ないとみなせるためである。 This is because, in practice, the tamping energy per unit volume in the indoor tamping test is the weight weight W R (kgf), the weight falling height H (cm), and the tamping force per layer. Using the number of times N B , the number of layers N L , and the container volume V, E c = W R · H · N B · N L / V = W R · H · N B / represented by volume per layer Therefore, if the construction method of the embankment (layer thickness, compaction construction model, running speed, compaction output, number of rollings) is constant, the energy received by the soil can be regarded as having no relation to the particle size.

ステップ108の後、施工含水比WB1における、乾燥密度の上限値ρdsatを求める(ステップ110)。ステップ110では、ステップ107で求めたゼロ空気間隙曲線15(図4)から、施工時の施工含水比WB1での乾燥密度の上限値ρdsatを読み取る。 After step 108, the upper limit value ρ dsat of the dry density at the construction water content ratio W B1 is obtained (step 110). In step 110, the upper limit value ρ dsat of the dry density at the construction water content ratio W B1 at the time of construction is read from the zero air gap curve 15 (FIG. 4) obtained in step 107.

ステップ109、ステップ110の終了後、現場における、施工用材料B1の転圧回数N−乾燥密度ρ曲線17(第2のN−ρ線)を求める(ステップ111)。図5は、施工用材料B1について、転圧回数Nと乾燥密度ρとの関係を示す図であり、横軸は転圧回数Nを、縦軸は乾燥密度ρを示す。 After the completion of Step 109 and Step 110, the number of rolling times N-dry density ρ d curve 17 (second N-ρ d line) of the construction material B1 at the site is obtained (Step 111). FIG. 5 is a diagram showing the relationship between the number of rolling compactions N and the drying density ρ d for the construction material B1, where the horizontal axis represents the number of rolling compactions N and the vertical axis represents the drying density ρ d .

ステップ111では、図5に示すように、ステップ109で推定した、現場転圧回数N、Nのときの乾燥密度ρd12、ρd22と、ステップ110で求めた乾燥密度の上限値ρdsatとから、施工用材料B1の施工含水比WB1での転圧回数N−乾燥密度ρ曲線17を設定する。転圧回数N−乾燥密度ρ曲線17は、2点(N、ρd12)、(N、ρd22)を通過し、転圧回数Nの増加とともに、漸近線ρ=ρdsatに近づく。転圧回数N−乾燥密度ρ曲線17も、ステップ102で求めた転圧回数N−乾燥密度ρ曲線3と同様に、双曲線で近似できる。また、折れ線で転圧回数Nと乾燥密度ρとの関係を表してもよい。 In step 111, as shown in FIG. 5, the drying densities ρ d12 and ρ d22 at the on-site rolling times N 1 and N 2 estimated in step 109 and the upper limit value ρ dsat of the drying density obtained in step 110 are obtained. from, it sets the rolling pressure circuit number N- dry density [rho d curve 17 in construction water content ratio W B1 construction material B1. The rolling number N-dry density ρ d curve 17 passes through two points (N 1 , ρ d12 ), (N 2 , ρ d22 ), and as the number of rolling times N increases, the asymptotic line ρ d = ρ dsat Get closer. The number of rolling times N-dry density ρ d curve 17 can also be approximated by a hyperbola, similar to the number of rolling times N-dry density ρ d curve 3 obtained in step 102. Moreover, you may represent the relationship between the rolling rolling frequency N and dry density (rho) d with a broken line.

以上のようにして施工用材料の転圧特性である転圧回数N−乾燥密度ρ曲線17を推定した後、乾燥密度ρが規格値以上となる必要転圧回数を設定する(ステップ112)。規格値は工事により異なるが、例えば、規格値が図4に示す乾燥密度の最大値ρdmaxを用いて0.9ρdmaxで表される場合、ステップ112では、図5に示すように、転圧回数N−乾燥密度ρ曲線17から、規格値0.9ρdmaxを満たす必要転圧回数を読み取る。 After estimating the rolling number N-dry density ρ d curve 17 which is the rolling characteristic of the construction material as described above, the necessary number of rolling times at which the drying density ρ d exceeds the standard value is set (step 112). ). Although the standard value varies depending on the construction, for example, when the standard value is expressed by 0.9ρ dmax using the maximum value ρ dmax of the dry density shown in FIG. 4, in step 112, as shown in FIG. The required number of rolling times satisfying the standard value 0.9ρ dmax is read from the number N-dry density ρ d curve 17.

ステップ112を終了し、施工時検討21を完了した後、盛土を施工する(ステップ113)。そして、施工完了かどうかを判定し(ステップ114)、完了であればYesの矢印に進み、施工を終える。   After completing step 112 and completing the examination 21 at the time of construction, the embankment is constructed (step 113). Then, it is determined whether or not the construction is completed (step 114).

完了でない場合、Noの矢印に進み、施工用材料B1の含水比以外の品質の見直しが必要かどうかを判定する(ステップ115)。含水比以外の品質が施工用材料B1とは異なる施工用材料B2を用いる場合、Yesの矢印に進んでステップ106に戻り、施工用材料B2について、施工時検討21を繰り返す。   If it is not completed, the process proceeds to an arrow No, and it is determined whether it is necessary to review the quality other than the water content ratio of the construction material B1 (step 115). When the construction material B2 having a quality other than the moisture content is different from that of the construction material B1, the process proceeds to the Yes arrow and returns to Step 106, and the construction examination 21 is repeated for the construction material B2.

含水比以外の品質の見直しが不要な場合、Noの矢印に進んでステップ108に戻る。2度目のステップ108で測定した施工含水比WB2が前回の施工含水比WB1と等しい場合は、前回のステップ111で求めた転圧回数N−乾燥密度ρ曲線17を再度利用できる。施工含水比WB2が施工含水比WB1と異なる場合は、ステップ109以降を繰り返す。すなわち、図4に示す含水比W−乾燥密度ρ曲線13、ゼロ空気間隙曲線15から、施工含水比WB2おける仕事量Ec1、Ec2での乾燥密度ρ、乾燥密度の上限値ρdsatを取得して、新たな転圧回数N−乾燥密度ρ曲線17を求める。 If it is not necessary to review the quality other than the water content ratio, the process proceeds to an arrow No and returns to step 108. When the construction water content ratio W B2 measured in the second step 108 is equal to the previous construction water content ratio W B1 , the rolling frequency N-dry density ρ d curve 17 obtained in the previous step 111 can be used again. When the construction water content ratio W B2 is different from the construction water content ratio W B1 , Step 109 and subsequent steps are repeated. That is, the water content ratio W- dry density [rho d curve 13 shown in FIG. 4, from zero air gap curve 15, dry density [rho d in construction water content ratio W B2 definitive workload E c1, E c2, the upper limit of the dry density [rho dsat is acquired, and a new number of rolling times N-dry density ρ d curve 17 is obtained.

図1のフローチャートは、(層厚、締固め施工機種、走行速度、締固め出力、転圧回数)が一定の場合に適用される。施工方法を変更する場合には、現場転圧試験(事前検討19のステップ101、ステップ102)を含む事前検討19を再度行って、現場転圧回数N、Nを推定し直す。 The flowchart of FIG. 1 is applied when (layer thickness, compaction construction model, running speed, compaction output, number of rollings) is constant. When changing the construction method, the preliminary examination 19 including the on-site rolling pressure test (step 101 and step 102 of the preliminary examination 19) is performed again, and the on-site rolling times N 1 and N 2 are estimated again.

このように、本実施の形態では、ある施工方法について事前検討19を行って所定の突固め仕事量Ec1、Ec2と等価な現場転圧回数N、Nを設定しておくことで、施工中に施工用材料の品質が変化した際、大掛かりな現場転圧試験を繰り返し行うことなく、突固め試験と含水比測定との繰り返し、または、含水比測定の繰り返しで転圧回数Nと乾燥密度ρとの関係を示すN−ρ線を推定できる。 As described above, in this embodiment, the preliminary examination 19 is performed for a certain construction method, and the on-site rolling times N 1 and N 2 equivalent to the predetermined tamping work amounts E c1 and E c2 are set. When the quality of the construction material changes during construction, the number of rolling rolls is determined by repeating the compaction test and the moisture content measurement, or repeating the moisture content measurement, without repeating a large on-site rolling test. The N-ρ d line showing the relationship with the dry density ρ d can be estimated.

本実施の形態の方法でN−ρ線を推定して必要転圧回数を設定することにより、転圧回数によって品質を管理する施工規定方式、工法規定方式で大規模工事を行う際、施工用材料の品質が施工中に大きく変動しても、その都度容易に必要転圧回数を見直すことができ、工程上、コスト上のメリットが期待できる。 When performing the large-scale construction by the construction regulation method and the construction method regulation method for managing the quality by the number of rolling pressures by estimating the N-ρ d line by the method of the present embodiment and setting the necessary number of rolling times, Even if the quality of the construction material fluctuates greatly during construction, it is possible to easily review the required number of rolling operations each time, and a cost advantage can be expected in the process.

次に、第2の実施の形態について説明する。第2の実施の形態は、事前検討19のステップ103、ステップ104を最も簡略化した方法であり、含水比W−乾燥密度ρ曲線7を求めない。図6は、ステップ103、ステップ104に代わるステップ116、ステップ117を示す図である。 Next, a second embodiment will be described. The second embodiment is a method in which Step 103 and Step 104 of the preliminary study 19 are most simplified, and the water content ratio W-dry density ρ d curve 7 is not obtained. FIG. 6 is a diagram showing step 116 and step 117 instead of step 103 and step 104.

第2の実施の形態では、図1に示すフローチャートにおいて、ステップ103、ステップ104の代わりに、現場転圧試験時の含水比Wの標準材料Aについてのみ、2種類の突固め仕事量Ec1、Ec2を用いて室内突固め試験を行い(ステップ116)、含水比W、突固め仕事量Ec1、Ec2のときの乾燥密度ρd11、ρd21を求める(ステップ117)。 In the second embodiment, in the flowchart shown in FIG. 1, step 103, instead of step 104, the standard material A water content ratio W A at site compacting test only two types of compaction work of E c1 performs Me indoor compaction tests with E c2 (step 116), dry density [rho d11 when the water content ratio W a, compactor workload E c1, E c2, obtains the [rho d21 (step 117).

図7は、標準材料Aについて、含水比Wと乾燥密度ρとの関係を示す図であり、横軸は含水比W、縦軸は乾燥密度ρを示す。ステップ116、ステップ117では、含水比W(突固め試験で許容される限度以上の粒径の礫分の除去前の値)の標準材料Aについて突固め仕事量Ec1、Ec2で突固め試験を行い、得られた乾燥密度に対して必要に応じて礫補正を行って、現場粒度での乾燥密度に換算する。突固め仕事量Ec1、Ec2の値、突固め試験や礫補正の方法は、第1の実施の形態のステップ103と同様とする。 FIG. 7 is a diagram showing the relationship between the moisture content W and the dry density ρ d for the standard material A, where the horizontal axis represents the moisture content W and the vertical axis represents the dry density ρ d . In step 116 and step 117, tamping with a tamping work amount E c1 and E c2 for a standard material A having a water content ratio W A (value before removal of gravel having a particle size exceeding the limit allowed in the tamping test). The test is performed, and the gravel correction is performed on the obtained dry density as necessary to convert it to the dry density at the in-situ particle size. The values of the tamping work amounts E c1 and E c2 , the tamping test, and the gravel correction method are the same as those in step 103 of the first embodiment.

ステップ116、ステップ117により、図7に示すように、含水比Wにおける突固め仕事量Ec1での乾燥密度ρを示す点23a、突固め仕事量Ec2での乾燥密度ρの関係を示す点23bが得られる。図6に示す手順を採用した場合、ステップ105では、図7の点23a、点23bが示す乾燥密度ρd11、ρd21となる現場転圧回数を、図2に示す転圧回数N−乾燥密度ρ曲線3から読み取って、突固め仕事量Ec1、Ec2と等価な現場転圧回数N、Nとする。 Step 116, in step 117, as shown in FIG. 7, 23a that indicates the dry density [rho d in compaction work load E c1 in the water content ratio W A, relationship dry density [rho d in compaction workload E c2 The point 23b which shows is obtained. When the procedure shown in FIG. 6 is adopted, in step 105, the number of on-site rolling pressures corresponding to the drying densities ρd11 and ρd21 indicated by the points 23a and 23b in FIG. 7 is determined as the number of rolling times N-drying density shown in FIG. reading from ρ d curve 3, and tamp amount of work E c1, E c2 equivalent to the field inversion voltage dividing the number N 1, N 2.

次に、第3の実施の形態について説明する。第3の実施の形態は、施工時検討21のステップ106からステップ108を最も簡略化した方法であり、含水比W−乾燥密度ρ曲線13を求めない。図8は、ステップ106からステップ108に代わるステップ118からステップ120を示す図である。 Next, a third embodiment will be described. Third embodiment is a method in which the most simplified step 108 from step 106 of construction during study 21, not seek water content ratio W- dry density [rho d curve 13. FIG. 8 is a diagram showing steps 118 to 120 in place of steps 106 to 108.

第3の実施の形態では、図1に示すフローチャートにおいて、ステップ106からステップ108の代わりに、まず、施工用材料Bの施工含水比Wを測定する(ステップ118)。含水比の測定は、事前検討19のステップ101と同様の方法で行う。 In the third embodiment, instead of step 106 to step 108 in the flowchart shown in FIG. 1, first, the construction moisture content WB of the construction material B is measured (step 118). The water content ratio is measured by the same method as in Step 101 of the preliminary study 19.

次に、施工含水比Wの施工用材料Bについてのみ、2種類の突固め仕事量Ec1、Ec2を用いて室内突固め試験を行い(ステップ119)、施工含水比W、突固め仕事量Ec1、Ec2のときの乾燥密度ρd12、ρd22を求める(ステップ120)。 Next, the construction material B construction water content ratio W B only, two performed Me indoor compaction test using a compaction workload E c1, E c2 (step 119), construction water content ratio W B, compactor The dry densities ρ d12 and ρ d22 for the work amounts E c1 and E c2 are obtained (step 120).

図9は、施工用材料Bについて、含水比Wと乾燥密度ρとの関係を示す図であり、横軸は含水比W、縦軸は乾燥密度ρを示す。ステップ119、ステップ120では、施工含水比W(突固め試験で許容される限度以上の粒径の礫分の除去前の値)の施工用材料Bについて突固め仕事量Ec1、Ec2で突固め試験を行い、得られた乾燥密度に対して必要に応じて礫補正を行って、現場粒度での乾燥密度に換算する。突固め仕事量Ec1、Ec2の値、突固め試験や礫補正の方法は、事前検討19(第1の実施の形態のステップ103または第2の実施の形態のステップ116)と同様とする。 FIG. 9 is a diagram showing the relationship between the water content ratio W and the dry density ρ d for the construction material B, where the horizontal axis shows the water content ratio W and the vertical axis shows the dry density ρ d . Step 119, in step 120, at the construction water content ratio W B tamp workload for construction material B of (the value before the removal of the gravel fraction limit or more particle size allowed by the compaction test) E c1, E c2 A tamping test is performed, and gravel correction is performed on the obtained dry density as necessary to convert it to a dry density at the on-site particle size. The values of the tamping work amounts E c1 and E c2 , the tamping test, and the gravel correction method are the same as those in the preliminary study 19 (step 103 in the first embodiment or step 116 in the second embodiment). .

ステップ118からステップ120により、図9に示すように、施工時の施工含水比Wにおける突固め仕事量Ec1での乾燥密度ρを示す点25a、突固め仕事量Ec2での乾燥密度ρの関係を示す点25bが得られる。図8に示す手順を採用した場合、ステップ109では、図5に示すように、現場転圧回数N、Nでの乾燥密度の推定値を、図9の点25a、点25bが示す乾燥密度ρd12、ρd22とする。 In step 120 from step 118, dry density in FIG as shown in 9, 25a point indicating the dry density [rho d in compaction work load E c1 in construction water content ratio W B during construction, tamp workload E c2 [rho d 25b point indicating the relationship is obtained. When the procedure shown in FIG. 8 is adopted, in step 109, as shown in FIG. 5, the estimated values of the dry density at the on-site rolling times N 1 and N 2 are shown by the points 25a and 25b in FIG. The densities are ρ d12 and ρ d22 .

第3の実施の形態では、ステップ114の後、ステップ115を行わずにステップ118に戻る。2度目のステップ118で測定した施工含水比WB2が前回の施工含水比WB1と等しい場合は、前回のステップ120で求めた乾燥密度ρd12、ρd22を、ステップ109で再度利用できる。施工含水比WB2が施工含水比WB1と異なる場合は、ステップ119、ステップ120を繰り返してステップ109に進む。 In the third embodiment, after step 114, the process returns to step 118 without performing step 115. When the construction water content ratio W B2 measured in the second step 118 is equal to the previous construction water content ratio W B1 , the dry densities ρ d12 and ρ d22 obtained in the previous step 120 can be used again in the step 109. If the construction water content ratio W B2 is different from the construction water content ratio W B1 , step 119 and step 120 are repeated and the process proceeds to step 109.

次に、第4の実施の形態について説明する。第4の実施の形態は、施工時検討21のステップ109からステップ111を最も簡略化した方法であり、施工含水比Wにおける施工用材料Bの乾燥密度の上限値ρdsatを求めない。図10は、施工用材料B1について、転圧回数Nと乾燥密度ρとの関係を示す図であり、横軸は転圧回数Nを、縦軸は乾燥密度ρを示す。 Next, a fourth embodiment will be described. Fourth embodiment is a method in which the most simplified step 111 from step 109 of construction during study 21, not determined the upper limit value [rho dsat the dry density of the construction material B in construction the water content ratio W B. FIG. 10 is a diagram showing the relationship between the number of rolling compactions N and the drying density ρ d for the construction material B1, where the horizontal axis represents the number of rolling compactions N and the vertical axis represents the drying density ρ d .

第4の実施の形態では、図1に示すフローチャートにおいて、ステップ110を省略する。そして、ステップ111に相当するステップとして、図10に示すように、ステップ109で推定した現場転圧回数N、Nのときの乾燥密度ρを表す点27a、点27bを通過するように、転圧回数N−乾燥密度ρ線31を求める。ステップ112では、図10に示す転圧回数N−乾燥密度ρ線31から、乾燥密度ρが規格値を満たすための必要転圧回数を読み取る。 In the fourth embodiment, step 110 is omitted in the flowchart shown in FIG. Then, as the step corresponding to step 111, as shown in FIG. 10, 27a that represents the dry density [rho d when the field inversion voltage dividing number N 1, N 2 estimated in step 109, to pass through the point 27b The number of rolling times N-dry density ρ d line 31 is obtained. In step 112, the rolling pressure circuit number N- dry density [rho d line 31 shown in FIG. 10, dry density [rho d reads necessary rolling pressure circuit number to meet the specifications.

第2から第4の実施の形態を単独でまたは組合わせて用いる場合においても、第1の実施の形態と同様に、ある施工方法について事前検討19を行って所定の突固め仕事量Ec1、Ec2と等価な現場転圧回数N、Nを設定しておくことで、施工中に施工用材料の品質が変化した際、大掛かりな現場転圧試験を繰り返し行うことなく、突固め試験と含水比測定との繰り返し、または、含水比測定の繰り返しで転圧回数Nと乾燥密度ρとの関係を示すN−ρ線を推定できる。 Even when the second to fourth embodiments are used alone or in combination, as in the first embodiment, a predetermined examination work 19 is performed for a certain construction method to obtain a predetermined tamping work amount E c1 , By setting the number of on-site rolling pressures N 1 and N 2 equivalent to E c2 , when the quality of the construction material changes during construction, a large-scale on-site rolling test is not repeated and a tamping test is performed. N-ρ d line indicating the relationship between the number N of rolling compaction and the dry density ρ d can be estimated by repeating the measurement of the water content ratio or the repetition of the water content ratio measurement.

以上、図1から図10を参照しながら本発明にかかる施工用材料の転圧特性の推定方法の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of the estimation method of the rolling characteristic of the construction material concerning this invention was described referring FIGS. 1-10, this invention is not limited to this example. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

例えば、事前検討19において、事前検討19の標準材料Aとして施工用材料B1を用いてもよい。この場合、第1から第4の実施の形態に述べた方法では、事前検討19で、突固め仕事量Ec1、Ec2のときの乾燥密度ρd11、ρd21を求めるための作業(図1に示すステップ103およびステップ104、または、図6に示すステップ116およびステップ117)を省略する。 For example, in the preliminary study 19, the construction material B1 may be used as the standard material A of the preliminary study 19. In this case, in the methods described in the first to fourth embodiments, the work for obtaining the dry densities ρ d11 and ρ d21 at the time of the tamping work amounts E c1 and E c2 in the preliminary examination 19 (FIG. 1). Step 103 and Step 104 shown in FIG. 6 or Step 116 and Step 117) shown in FIG. 6 are omitted.

そして、点線9に示すように、ステップ102で求めた転圧回数N−乾燥密度ρ曲線3とステップ107で求めた含水比W−乾燥密度ρ曲線13とを用いて、ステップ105の作業を行う。ステップ102で求めた転圧回数N−乾燥密度ρ曲線3とステップ120(図8)で求めた乾燥密度ρd12、ρd22を用いて、ステップ105の作業を行う。 Then, as shown by the dotted line 9, the operation of step 105 is performed using the number of rolling N-dry density ρ d curve 3 obtained in step 102 and the water content ratio W-dry density ρ d curve 13 obtained in step 107. I do. The operation of Step 105 is performed using the number of rolling times N-dry density ρ d curve 3 obtained in Step 102 and the dry densities ρ d12 and ρ d22 obtained in Step 120 (FIG. 8).

また、転圧回数N−乾燥密度ρ関係の精度を上げるために、標準材料Aおよび施工用材料Bについて、3種類以上の突固め仕事量Ec1、Ec2、Ec3…(例えば、Ec1≒550kJ/m、Ec2≒1100kJ/m、Ec3≒2500kJ/mとする)で室内突固め試験を行ってもよい。この場合、ステップ105に相当するステップで、各突固め仕事量と等価な現場転圧回数N、N、N…を推定し、ステップ109に相当するステップで、現場転圧回数N、N、N…のときの乾燥密度ρd12、ρd22、ρd32…を推定した後、ステップ111に相当するステップで、3点以上の点(N、ρd12)、(N、ρd22)、(N、ρd32)…を最小自乗法などで曲線近似し、転圧回数N−乾燥密度ρ曲線17を求める。3種類以上の突固め仕事量Ec1、Ec2、Ec3…で室内突固め試験を行うことにより、第4の実施の形態で示した転圧回数N−乾燥密度ρ線31の信頼性が向上する。 Moreover, the rolling in order to improve the accuracy of the pressure circuit number N- dry density [rho d relationships, for the standard material A and construction materials B, 3 or more compaction workload E c1, E c2, E c3 ... ( e.g., E c1 ≒ 550kJ / m 3, E c2 ≒ 1100kJ / m 3, E and c32500kJ / m 3) in may be performed Me indoor compaction test. In this case, in the step corresponding to step 105, the number of on-site rolling pressures N 1 , N 2 , N 3 ... Equivalent to each tamping work amount is estimated, and in the step corresponding to step 109, the on-site rolling pressure number N 1. , N 2 , N 3 ..., And after estimating the dry density ρ d12 , ρ d22 , ρ d32 ..., Three or more points (N 1 , ρ d12 ), (N 2 ) in a step corresponding to step 111. , Ρ d22 ), (N 3 , ρ d32 )... Are approximated by a least square method or the like to obtain the number of rolling times N-dry density ρ d curve 17. The reliability of the rolling compaction number N-dry density ρ d line 31 shown in the fourth embodiment by performing the indoor compaction test with three or more types of compaction work E c1 , E c2 , E c3 . Will improve.

さらに、本実施の形態では、盛土の施工方法(層厚、締固め施工機種、走行速度、締固め出力、転圧回数)を一定とすれば、土が受け取るエネルギは粒度に関係ないとみなし、標準材料Aでの事前検討19で得られた所定の突固め仕事量Eと現場転圧回数Nとの関係をそのまま施工用材料Bに当てはめたが、施工時検討21で、必要に応じてこの関係に補正を行ってもよい。 Furthermore, in this embodiment, if the construction method of the embankment (layer thickness, compaction construction model, running speed, compaction output, number of rollings) is constant, the energy received by the soil is considered to be unrelated to the particle size, While the pre-study 19 obtained in relation to a predetermined compaction workload E c and the field inversion voltage dividing number N of the standard material a was directly fitted to the construction material B, and construction time study 21, optionally You may correct | amend this relationship.

盛土の施工方法の流れを示すフローチャートFlow chart showing the flow of the embankment construction method 標準材料Aについて、転圧回数Nと乾燥密度ρとの関係を示す図The figure which shows the relationship between the rolling frequency N and dry density (rho) d about the standard material A 標準材料Aについて、含水比Wと乾燥密度ρとの関係を示す図The figure which shows the relationship between the moisture content W and dry density (rho) d about the standard material A 施工用材料B1について、含水比Wと乾燥密度ρとの関係を示す図The figure which shows the relationship between the moisture content W and dry density (rho) d about construction material B1 施工用材料B1について、転圧回数Nと乾燥密度ρとの関係を示す図The figure which shows the relationship between the rolling frequency | count N and dry density (rho) d about construction material B1. ステップ103、ステップ104に代わるステップ116、ステップ117を示す図The figure which shows step 116 and step 117 which replace step 103 and step 104 標準材料Aについて、含水比Wと乾燥密度ρとの関係を示す図The figure which shows the relationship between the moisture content W and dry density (rho) d about the standard material A ステップ106からステップ108に代わるステップ118からステップ120を示す図The figure which shows step 118 to step 120 which replaces step 106 to step 108 施工用材料Bについて、含水比Wと乾燥密度ρとの関係を示す図For construction materials B, fig showing the relationship between the water content ratio W and dry density [rho d 施工用材料B1について、転圧回数Nと乾燥密度ρの関係を示す図The figure which shows the relationship between the rolling compaction frequency N and dry density (rho) d about construction material B1.

符号の説明Explanation of symbols

3、17………転圧回数N−乾燥密度ρ曲線
7、7a、7b、13、13a、13b………含水比W−乾燥密度ρ曲線
15………ゼロ空気間隙曲線
19………事前検討
21………施工時検討
31………転圧回数N−乾燥密度ρ
3, 17 ............ Number of times of rolling N-dry density ρ d curve 7, 7a, 7b, 13, 13a, 13b ... water content W-dry density ρ d curve 15 ....... zero air gap curve 19 ... ... Preliminary examination 21 ... Construction examination 31 ......... Number of rolling N-dry density ρ d line

Claims (3)

ある含水比を有する標準材料について現場転圧試験を行って、前記含水比における転圧回数Nと乾燥密度ρとの関係を表す第1のN−ρ線を作成する工程(a)と、
前記標準材料について、少なくとも2種類の仕事量での室内突固め試験による、前記含水比における乾燥密度を取得する工程(b)と、
前記第1のN−ρ線と前記含水比における乾燥密度とから、前記仕事量とそれぞれ等価な現場転圧回数を設定する工程(c)と、
施工用材料について、前記仕事量での室内突固め試験による、施工含水比における乾燥密度を取得する工程(d)と、
前記施工用材料について、前記施工含水比における乾燥密度と、前記現場転圧回数とを用いて、前記施工含水比における転圧回数Nと乾燥密度ρとの関係を表す第2のN−ρ線を作成する工程(e)と、
を具備することを特徴とする施工用材料の転圧特性の推定方法。
A step (a) of conducting a field rolling test on a standard material having a certain water content to create a first N-ρ d line representing the relationship between the number N of rolling times and the dry density ρ d at the water content; ,
Step (b) for obtaining the dry density at the moisture content by an indoor compaction test with at least two kinds of work for the standard material;
A step (c) of setting the number of on-site rolling pressures equivalent to the work amount from the first N-ρ d line and the dry density at the water content ratio;
For the construction material, the step (d) of obtaining the dry density at the construction moisture content by the indoor compaction test at the work amount,
About the said construction material, 2nd N- (rho) showing the relationship between the rolling density N in the said construction moisture content, and dry density (rho) d using the dry density in the said construction moisture content, and the said number of on-site rolling pressures. a step (e) of creating a d- line;
A method for estimating a rolling property of a construction material, comprising:
前記工程(e)で、前記第2のN−ρ線を作成する際に、前記施工含水比における乾燥密度と、前記現場転圧回数とに加えて、前記施工含水比における乾燥密度の上限値を用いることを特徴とする請求項1記載の施工用材料の転圧特性の推定方法。 In the step (e), when creating the second N-[rho d line, the dry density of the working water content ratio, in addition to the said site rolling pressure circuit number, maximum dry density in the working water content ratio The method for estimating rolling characteristics of a construction material according to claim 1, wherein a value is used. 前記施工用材料について、前記少なくとも2種類の仕事量での室内突固め試験を行って、含水比Wと乾燥密度ρとの関係を表すW−ρ線を作成することを特徴とする請求項1記載の施工用材料の転圧特性の推定方法。 The construction material is subjected to an indoor tamping test with the at least two kinds of work, and a W-ρ d line representing a relationship between the water content ratio W and the dry density ρ d is created. Item 2. A method for estimating the rolling characteristics of the construction material according to Item 1.
JP2004165832A 2004-06-03 2004-06-03 Method for estimating rolling characteristics of construction materials Expired - Fee Related JP4358036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165832A JP4358036B2 (en) 2004-06-03 2004-06-03 Method for estimating rolling characteristics of construction materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165832A JP4358036B2 (en) 2004-06-03 2004-06-03 Method for estimating rolling characteristics of construction materials

Publications (2)

Publication Number Publication Date
JP2005344390A JP2005344390A (en) 2005-12-15
JP4358036B2 true JP4358036B2 (en) 2009-11-04

Family

ID=35497026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165832A Expired - Fee Related JP4358036B2 (en) 2004-06-03 2004-06-03 Method for estimating rolling characteristics of construction materials

Country Status (1)

Country Link
JP (1) JP4358036B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106320391A (en) * 2016-08-16 2017-01-11 中国电建集团成都勘测设计研究院有限公司 Rolling compaction type earth and rockfill dam rolling compaction number experimental determining method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4738378B2 (en) * 2007-04-25 2011-08-03 富二設計コンサルティング株式会社 Rib pipe construction method
JP5181295B2 (en) * 2009-02-13 2013-04-10 清水建設株式会社 Rolling method for clay-based soil materials
JP6805449B2 (en) * 2017-03-15 2020-12-23 株式会社安藤・間 Soil quality control method and soil quality monitoring system
JP6965489B2 (en) * 2018-03-01 2021-11-10 株式会社安藤・間 Rolling count prediction system and rolling method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106320391A (en) * 2016-08-16 2017-01-11 中国电建集团成都勘测设计研究院有限公司 Rolling compaction type earth and rockfill dam rolling compaction number experimental determining method
CN106320391B (en) * 2016-08-16 2018-08-21 中国电建集团成都勘测设计研究院有限公司 The Experimental Determination Method of rolling earth-rock dam rolling layer

Also Published As

Publication number Publication date
JP2005344390A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
CN108717082B (en) Soil and stone compaction quality continuous evaluation method based on integrated acoustic detection technology
Wichtmann et al. Improved simplified calibration procedure for a high-cycle accumulation model
MOGHADDAS et al. Experimental and numerical investigation on circular footing subjected to incremental cyclic loads
CN104931305B (en) The method and experimental rig of a kind of indoor reduced scale experiment relative density sample preparation standard for determining Coarse Aggregate
CN103255755A (en) Lossless method for fast evaluating filling compaction quality of soil building stones in real time and evaluating device thereof
Zhang et al. Behaviour and mechanism of failure process of soil slopes
Alonso et al. Modelling the response of Lechago earth and rockfill dam
JP2018154975A5 (en)
JP2018154975A (en) Quality control method of soil, and quality monitoring system of soil
JP4358036B2 (en) Method for estimating rolling characteristics of construction materials
Gabr et al. Elastic modulus of geogrid-reinforced sand using plate load tests
Neves et al. Slope stability assessment and evaluation of remedial measures using limit equilibrium and finite element approaches
Wang et al. Three-dimensional physical modeling of load transfer in basal reinforced embankments under differential settlement
Foroutan et al. Evaluation of correlations between intelligent compaction measurement values and in situ spot measurements
CN108931422B (en) Measuring and calculating method for lateral extrusion deformation of foundation under roadbed load
Hamdi et al. Studying the settlement of backfill sandy soil behind retaining wall under dynamic loads
Van Eekelen et al. Piled embankments in the Netherlands, a full-scale test, comparing 2 years of measurements with design calculations
Hariswaran et al. Experimental investigation on the behavior of a defective pile subject to a lateral load
Abelev et al. Determining the Deformability Characteristics of Sandy Soils at a Construction Base Using Field and Laboratory Techniques.
Noorany Soil tests for prediction of one-dimensional heave and settlement of compacted fills
Yelti Analysis and design of soil nail walls in high plasicity clays
Oh A review on intelligent compaction techniques in railroad construction
Jonsson Deep stabilization with Cement Columns: A Laboratory Studie
Foster et al. Testing the surcharge remediation hypothesis for secondary compression in foundation design
Nicks et al. Performance testing for geosynthetic reinforced soil composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4358036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150814

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees