JP6965489B2 - Rolling count prediction system and rolling method - Google Patents

Rolling count prediction system and rolling method Download PDF

Info

Publication number
JP6965489B2
JP6965489B2 JP2018036999A JP2018036999A JP6965489B2 JP 6965489 B2 JP6965489 B2 JP 6965489B2 JP 2018036999 A JP2018036999 A JP 2018036999A JP 2018036999 A JP2018036999 A JP 2018036999A JP 6965489 B2 JP6965489 B2 JP 6965489B2
Authority
JP
Japan
Prior art keywords
rolling
compaction
physical property
embankment
property value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018036999A
Other languages
Japanese (ja)
Other versions
JP2019152005A (en
Inventor
昌弘 黒台
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Ando Corp filed Critical Hazama Ando Corp
Priority to JP2018036999A priority Critical patent/JP6965489B2/en
Publication of JP2019152005A publication Critical patent/JP2019152005A/en
Application granted granted Critical
Publication of JP6965489B2 publication Critical patent/JP6965489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本願発明は、宅地造成や、道路、河川堤防などにおいて構築される盛土に関する技術であり、より具体的には、人工知能AI(Artificial Intelligence)を用いて大量のデータを処理することによって最適な転圧回数を予測する転圧回数予測システムと、これを用いた転圧方法に関するものである。 The present invention is a technique relating to residential land development, embankment constructed on roads, river embankments, etc., and more specifically, optimal transfer by processing a large amount of data using artificial intelligence AI (Artificial Intelligence). The present invention relates to a rolling compaction number prediction system for predicting the number of compactions and a rolling compaction method using the same.

盛土は、宅地造成や、道路、河川堤防などその用途に応じてあらかじめ要求性能(強度や、変形・圧縮特性、透水性など)が設定されおり、この要求性能を満足するため盛土は適切な締固めが行われる。具体的には、盛土材をあらかじめ定めた所定厚(以下、「計画まき出し厚」という。)だけまき出し、これを転圧機械があらかじめ定めた回数(以下、「計画転圧回数」という。)だけ転圧する。 The required performance (strength, deformation / compression characteristics, water permeability, etc.) of the embankment is set in advance according to the application such as residential land development, roads, river embankments, etc., and the embankment is properly tightened to satisfy this required performance. Hardening is done. Specifically, the embankment material is rolled out by a predetermined thickness (hereinafter referred to as "planned rolling thickness"), and this is referred to as a predetermined number of times by the compaction machine (hereinafter referred to as "planned rolling number of times"). ) Only roll.

通常、計画まき出し厚と計画転圧回数は、あらかじめ試験施工を実施することによって決定される。本施工で使用する材料(盛土材)に対して、本施工と同等の転圧機械を用い、数種類の施工仕様(まき出し厚と転圧回数を含む施工条件の組み合わせ)で転圧を行い、砂置換法やRI(Radio Isotope)計法などで転圧状態を確認することによって、最適な施工仕様(つまり、計画まき出し厚と計画転圧回数)を決定するわけである。このとき転圧機械は、試験ヤードを複数に分割した転圧レーンをそれぞれ往復することとされ、したがって試される施工仕様のうち転圧回数は偶数回(2回、4回、6回、8回など)で計画されるのが一般的である。 Usually, the planned ejection thickness and the planned number of rolling compactions are determined by conducting a test construction in advance. The material (filling material) used in this construction is compacted using the same compaction machine as in this construction, with several types of construction specifications (combination of construction conditions including rolling thickness and number of compactions). By confirming the rolling compaction state by a sand replacement method, an RI (Radio Isotope) measuring method, or the like, the optimum construction specifications (that is, the planned ejection thickness and the planned rolling compaction number) are determined. At this time, the compaction machine is supposed to reciprocate in each of the compaction lanes in which the test yard is divided into a plurality of parts, and therefore, among the construction specifications to be tested, the number of compactions is an even number (2 times, 4 times, 6 times, 8 times). Etc.) is generally planned.

本施工では、試験施工で決定された計画まき出し厚で盛土材をまき出し、試験施工で決定された計画転圧回数で転圧を行っていく。その計画転圧回数で全面を転圧すると、ひとまず転圧作業を終了する。そして、代表箇所で砂置換法やRI計法などによる密度計測を実施し、これら代表箇所での計測結果が規定を満たしていれば最終的に施工完了とする。すなわち、実際の状態を検査しているのは代表個所のみであって、未検査の個所を残した状態で施工完了としているのが実情である。 In this construction, the embankment material is sprinkled with the planned sprinkling thickness determined in the test construction, and the compaction is performed at the planned rolling number of times determined in the test construction. When the entire surface is compacted by the planned number of compactions, the compaction work is completed for the time being. Then, the density is measured at the representative points by the sand replacement method or the RI metering method, and if the measurement results at these representative points satisfy the regulations, the construction is finally completed. That is, the actual condition is inspected only at the representative part, and the actual condition is that the construction is completed with the uninspected part left.

試験施工と本施工では、締固めエネルギーや土質の状態などの条件が完全に一致することはない。そのため、計画まき出し厚で盛土材をまき出し、計画転圧回数で転圧を行ったとしても、特に未検査の個所では、本施工後の盛土が要求性能を満足しない状態、すなわち転圧不足や過転圧の状態となるおそれもある。このような問題を解決するため、締固め土の品質管理手法として新たな取り組みがこれまでも行われてきた。例えば特許文献1では、振動ローラで転圧しながら地盤の加速度応答値(振動ローラの振動加速度の時間変化を示す加速度波形を用いて、盛土の締固め程度を表す値)を計測し、この地盤の加速度応答値と締固め実測値(砂置換等による試験値)との関係式に基づいて締固め管理ブロックごとにブロック特性値を算出し、このブロック特性値を指標として締固め土の品質を管理する技術を提案している。 Conditions such as compaction energy and soil condition do not completely match between the test construction and the main construction. Therefore, even if the embankment material is rolled out with the planned rolling thickness and the rolling compaction is performed at the planned rolling compaction number, the embankment after the main construction does not satisfy the required performance, that is, the rolling compaction is insufficient, especially in the uninspected part. And there is a risk of over-rolling. In order to solve such problems, new efforts have been made as a quality control method for compacted soil. For example, in Patent Document 1, the acceleration response value of the ground (a value indicating the degree of compaction of the embankment using an acceleration waveform indicating the time change of the vibration acceleration of the vibrating roller) is measured while rolling with the vibrating roller, and the ground is used. The block characteristic value is calculated for each compaction management block based on the relational expression between the acceleration response value and the actual compaction value (test value by sand replacement, etc.), and the quality of the compacted soil is controlled using this block characteristic value as an index. We are proposing the technology to do.

特開2002−327429号公報Japanese Unexamined Patent Publication No. 2002-327429

既述したとおり試験施工で試される施工仕様のうち転圧回数は偶数回で計画されることから、当然ながら計画転圧回数も偶数回として決定される。つまり、所定の奇数回(例えば、5回)の転圧で本施工後の盛土が要求性能を満たしている場合であっても、さらに1回(この場合、6回)の転圧が追加されるわけである。すなわち、計画転圧回数による盛土の施工管理手法は、偶数回で計画転圧回数を決定することによる過転圧の問題を指摘することができ、さらに前述したように試験施工と本施工の条件の不一致に起因する転圧不足や過転圧の問題を指摘することができる。 As described above, among the construction specifications tested in the test construction, the number of rolling compactions is planned to be an even number of times, so naturally the planned number of rolling compactions is also determined to be an even number of times. That is, even if the embankment after the main construction satisfies the required performance by rolling compaction a predetermined odd number of times (for example, 5 times), another rolling compaction (6 times in this case) is added. That's why. That is, the construction management method of filling by the planned number of rolling compactions can point out the problem of overrolling by determining the planned number of rolling compactions in an even number of times, and as described above, the conditions of the test construction and the main construction. It is possible to point out the problems of insufficient rolling compaction and overrolling due to the discrepancy between the two.

一方、引用文献1の手法は、転圧した盛土の加速度応答値CCV(Compaction Control Value)を実際に計測することで、リアルタイムかつ面的に盛土の品質管理を行うことができる。しかしながら、あくまでその転圧時点における盛土の状態を評価する手法であり、今後何回の転圧を必要とするか(あるいは必要としないか)を示すものではない。そのため、今回の転圧でたとえ若干程度であっても基準を下回る場合は次回の転圧が行われることとなり、その結果、大幅な過転圧の状態に転じてしまうこともある。つまり引用文献1の手法は、最適な回数で転圧することができないケースが生じるおそれがあるわけである。 On the other hand, in the method of Cited Document 1, the quality control of the embankment can be performed in real time and in a face-to-face manner by actually measuring the acceleration response value CCV (Compaction Control Value) of the compacted embankment. However, it is only a method of evaluating the state of the embankment at the time of compaction, and does not indicate how many compactions will be required (or will not be required) in the future. Therefore, if the rolling compaction this time is below the standard even if it is only a little, the next rolling compaction will be performed, and as a result, it may turn into a state of significant overrolling. That is, in the method of Cited Document 1, there may be a case where the compaction cannot be performed the optimum number of times.

本願発明の課題は、従来技術が抱える問題を解決することであり、すなわち残りの必要転圧回数(今後実施すべき転圧の回数)を予測することで、最適回数での転圧を可能とし、転圧不足や過転圧を回避して高品質の盛土を提供することができる転圧回数予測システムと、これを用いた転圧方法を提供することである。 The object of the present invention is to solve the problem of the prior art, that is, by predicting the remaining required number of rolling compactions (the number of rolling compactions to be performed in the future), it is possible to roll at the optimum number of rolling compactions. It is to provide a rolling compaction number prediction system capable of providing a high-quality filling by avoiding insufficient rolling compaction and overrolling, and a rolling compaction method using the same.

本願発明は、人工知能AIを活用し、転圧施工中に取得した変動物性値(転圧の程度に応じて変動する盛土の物性値)に基づいて残りの必要転圧回数を予測する、という点に着目してなされたものであり、これまでにない発想に基づいて行われた発明である。 According to the present invention, artificial intelligence AI is utilized to predict the remaining required number of rolling compactions based on the fluctuating physical property values (the physical properties of the embankment that fluctuate according to the degree of rolling compaction) acquired during the compaction construction. It was made by paying attention to the points, and it is an invention made based on an unprecedented idea.

本願発明の転圧回数予測システムは、変動物性値に基づいて盛土の必要転圧回数を予測するシステムであり、学習手段と、変動物性値計測手段、変動物性値予測手段、転圧回数算出手段を備えたものである。このうち学習手段は、多数の標本盛土の学習データセットを学習する手段であり、変動物性値計測手段は、施工盛土(施工対象の盛土)の変動物性値を計測して計測変動物性値を取得する手段である。また変動物性値予測手段は、施工盛土の入力データセットに基づいて今後の転圧回数ごとの変動物性値を予測する手段であり、転圧回数算出手段は、基準変動物性値(対象盛土が目標とする変動物性値)と予測された今後の転圧回数ごとの変動物性値に基づいて残りの必要転圧回数を求める手段である。なお、標本盛土ごとに用意される学習データセットは、標本盛土の複数種類の物性値と標本盛土を転圧したときの転圧回数ごとの変動物性値を含むものであり、一方の入力データセットは、施工盛土の複数種類の物性値を含むものである。そして学習手段が、学習データセットに基づいて転圧回数と変動物性値の関係を示す変動モデルを生成し、変動物性値予測手段が、入力データセット、施工盛土の転圧回数、転圧回数ごとの変動物性値、及び変動モデルに基づいて変動物性値を予測する。 The rolling compaction number prediction system of the present invention is a system that predicts the required rolling compaction number of the embankment based on the fluctuating physical property value, and is a learning means, a fluctuating physical property value measuring means, a fluctuating physical property value predicting means, and a rolling compaction number calculating means. It is equipped with. Of these, the learning means is a means for learning the learning data set of a large number of sample embankments, and the variable physical property value measuring means measures the variable physical property values of the construction embankment (the embankment to be constructed) and acquires the measured variable physical property values. It is a means to do. Further, the variable physical property value predicting means is a means for predicting the variable physical property value for each number of rolling compactions in the future based on the input data set of the construction filling, and the means for calculating the number of rolling compactions is the reference variable physical property value (target filling is the target). This is a means for obtaining the remaining required number of rolling compactions based on the variable physical property value for each number of rolling compactions predicted in the future. The training data set prepared for each sample embankment includes a plurality of types of physical property values of the sample embankment and variable physical property values for each number of compactions when the sample embankment is compacted, and one of the input data sets is used. Includes multiple types of physical property values of the construction embankment. Then, the learning means generates a fluctuation model showing the relationship between the number of rolling compactions and the fluctuating physical property value based on the learning data set, and the fluctuating physical property value predicting means is used for each input data set, the number of rolling compactions of the construction filling, and the number of rolling compactions. Predict the fluctuating physical characteristics value based on the fluctuating physical characteristics value and the fluctuation model.

本願発明の転圧回数予測システムは、変動物性値計測手段が小領域(施工盛土を複数に分けた分割領域)ごとに計測変動物性値を取得するものとすることもできる。この場合、変動物性値予測手段は小領域ごとに変動物性値を予測し、転圧回数算出手段は小領域ごとに残りの必要転圧回数を求める。 In the rolling compaction frequency prediction system of the present invention, the variable physical property value measuring means may acquire the measured variable physical property value for each small area (divided area in which the construction embankment is divided into a plurality of areas). In this case, the fluctuating physical property value predicting means predicts the fluctuating physical property value for each small region, and the rolling compaction frequency calculating means obtains the remaining required number of rolling compactions for each small region.

本願発明の転圧回数予測システムは、転圧経路設定手段をさらに備えたものとすることもできる。この転圧経路設定手段は、転圧回数算出手段が求めた小領域ごとの残りの必要転圧回数に基づいて、今後の転圧経路を設定する手段である。 The compaction number prediction system of the present invention may further include a compaction path setting means. This rolling compaction path setting means is a means for setting a future rolling compaction path based on the remaining required rolling compaction number for each small region obtained by the rolling compaction number calculation means.

本願発明の転圧回数予測システムは、施工盛土を転圧する転圧機械をさらに備えたものとすることもできる。この場合の変動物性値計測手段は、転圧機械に設けられ、転圧機械と一緒に移動しながら計測変動物性値を取得する。 The compaction number prediction system of the present invention may further include a compaction machine for compacting the construction embankment. The variable physical property value measuring means in this case is provided in the compaction machine and acquires the measured variable physical characteristic value while moving together with the compaction machine.

本願発明の転圧方法は、本願発明の転圧回数予測システムを用いて施工盛土を転圧する方法であり、転圧工程と変動物性値計測工程を備えた方法である。このうち転圧工程では、残りの必要転圧回数(転圧回数算出手段によって算出)となるまで転圧機械によって施工盛土を転圧し、変動物性値計測工程では、変動物性値計測手段によって施工盛土の計測変動物性値を取得する。 The compaction method of the present invention is a method of compacting a construction embankment using the compaction number prediction system of the present invention, and is a method including a compaction step and a variable physical property value measurement step. Of these, in the compaction process, the construction embankment is compacted by the compaction machine until the remaining required number of compactions (calculated by the compaction number calculation means) is reached, and in the variable physical property value measurement process, the construction embankment is compacted by the variable physical property value measurement means. Acquire the measurement fluctuation physical property value of.

本願発明の転圧回数予測システム、及び転圧方法には、次のような効果がある。
(1)最適な回数で転圧することができるため、転圧不足や過転圧を避けることができ、その結果、高品質の盛土を提供することができる。
(2)試験施工で決定された計画転圧回数よりも少ない回数で転圧を終えることもあり、この場合、施工コストを低減することができ、すなわち効率的な転圧施工を実現することができる。
(3)従来の往復走行に基づく計画転圧回数にとらわれない、合理的な転圧回数を提供することができるため、転圧にかかる時間数を低減することができ、その結果、土工全体のサイクルタイムを短縮することができる。
The rolling compaction number prediction system and the rolling compaction method of the present invention have the following effects.
(1) Since the compaction can be performed at the optimum number of times, insufficient compaction and overcompacting can be avoided, and as a result, high-quality embankment can be provided.
(2) The rolling compaction may be completed less than the planned number of rolling compactions determined in the test construction. In this case, the construction cost can be reduced, that is, efficient compaction construction can be realized. can.
(3) Since it is possible to provide a reasonable number of rolling compactions regardless of the planned number of rolling compactions based on the conventional reciprocating running, the number of hours required for rolling compaction can be reduced, and as a result, the entire earthwork The cycle time can be shortened.

施工範囲と小領域を説明するモデル図。A model diagram explaining the construction range and small area. 本願発明の転圧回数予測システムの主な構成を示すブロック図。The block diagram which shows the main structure of the compaction number prediction system of this invention. 本願発明の転圧回数予測システムの主な処理の流れを示すフロー図。The flow chart which shows the main processing flow of the compaction number prediction system of this invention. 「実績転圧回数−計測変動物性値」と「今後転圧回数−予測変動物性値」を示すモデル図。A model diagram showing "actual rolling number of times-measured variable physical property value" and "future rolling number of times-predicted variable physical property value". 転圧経路設定手段によって求められた今後の転圧経路を示すモデル図。A model diagram showing a future rolling path obtained by the rolling path setting means. 本願発明の転圧方法の主な工程の流れを示すフロー図。The flow chart which shows the flow of the main process of the compaction method of this invention.

本願発明の転圧回数予測システム、及び転圧方法の実施形態の例を図に基づいて説明する。 An example of the rolling compaction number prediction system of the present invention and the embodiment of the rolling compaction method will be described with reference to the drawings.

1.定義
本願発明の実施形態の例を説明するにあたって、はじめにここで用いる用語の定義を示しておく。既述したとおり本願発明は人工知能AI(特に、機械学習)を利用することをひとつの特徴としており、過去実施された盛土転圧の実績データを数多く機械学習し、その結果を実際の施工に活用する。ここでは便宜上、過去に転圧された盛土のことを特に「標本盛土」ということとし、これから実施しようとする転圧施工のことを「本施工」、この本施工が対象とする盛土のことを特に「施工盛土」ということとする。
1. 1. Definitions In explaining an example of an embodiment of the present invention, first, definitions of terms used here will be shown. As described above, one of the features of the present invention is the use of artificial intelligence AI (particularly machine learning). use. Here, for the sake of convenience, the embankment that has been compacted in the past is referred to as the "specimen embankment", the compaction work that is to be carried out from now on is referred to as the "main construction", and the embankment that is the target of this construction. In particular, it is called "construction embankment".

(盛土の物性値と変動物性値)
盛土の物性値とは、その盛土にかかる種々の属性のことであり、盛土材にかかる属性や、施工にかかる属性などが挙げられる。盛土材にかかる属性としては、材質(粘性土やシルト、砂や砂質土、レキ、など)や、状態を表す諸元(乾燥密度、含水比、間隙率、均等係数など)などを例示することができる。一方、施工にかかる属性としては、転圧機械の性能や規格、転圧機械の運転者、転圧回数、盛土量(面積や体積)、施工状況(期間や機械台数、天候など)を例示することができる。
(Physical value of embankment and variable physical property)
The physical property value of the embankment is various attributes related to the embankment, and examples thereof include attributes related to the embankment material and attributes related to the construction. Examples of the attributes of the embankment material include materials (cohesive soil and silt, sand and sandy soil, gravel, etc.) and specifications indicating the state (dry density, water content ratio, porosity, uniformity coefficient, etc.). be able to. On the other hand, as attributes related to construction, the performance and specifications of the compaction machine, the operator of the compaction machine, the number of compactions, the amount of embankment (area and volume), and the construction status (period, number of machines, weather, etc.) are exemplified. be able to.

盛土の物性値のうち、転圧の程度に応じて変動するものをここでは特に「変動物性値」ということとする。換言すれば変動物性値は、転圧によって締め固まるたびに変化する物性値のことであり、例えば、加速度応答値CCVや、飽和度、沈下量などが挙げられる。変動物性値は転圧されるたびにその値が変化することから、通常は転圧しながら順次計測することで取得していく。具体的には、加速度応答値CCVであれば加速度計等による計測で取得され、飽和度は水分センサやRI計法(中性子線)などの計測結果に基づいて取得され、沈下量は衛星観測システムGNSS(Global Navigation Satellite System)やトータルステーションTS(Total Station)などを利用した高さ計測によって取得される。なお、変動物性値はその取得位置とともに(関連付けて)記憶すると以降の処理が極めて効率的となることから、変動物性値の計測とともに衛星観測システムGNSSやトータルステーションTSなどを利用した平面座標計測を行うとよい。 Among the physical property values of the embankment, those that fluctuate according to the degree of rolling compaction are referred to as "variable physical property values" here. In other words, the fluctuating physical characteristic value is a physical characteristic value that changes each time it is compacted by rolling compaction, and examples thereof include an acceleration response value CCV, a degree of saturation, and a settlement amount. Since the fluctuating physical property value changes each time it is compacted, it is usually acquired by sequentially measuring while compacting. Specifically, if the acceleration response value is CCV, it is acquired by measurement with an accelerometer, etc., the saturation degree is acquired based on the measurement results of a moisture sensor, RI metering method (neutron beam), etc., and the amount of sinking is a satellite observation system. It is acquired by height measurement using GNSS (Global Navigation Satellite System) or total station TS (Total Station). If the variable physical property value is stored (associated) with the acquisition position, the subsequent processing becomes extremely efficient. Therefore, the plane coordinate measurement using the satellite observation system GNSS, total station TS, etc. is performed together with the measurement of the variable physical property value. It is good.

(計測変動物性値と基準変動物性値)
前述したように、通常は転圧しながら変動物性値を順次計測していく。そこで、本施工中に計測して得られた変動物性値のことを、ここでは便宜上、「計測変動物性値」ということとする。また、転圧されるたびに変動物性値が変化することを考えると、この変動物性値が施工盛土を評価する指標になりうると考えることができる。すなわち、あらかじめ基準となる変動物性値を設定しておき、計測変動物性値がその基準に達したときに施工盛土が目標とする要求性能を満足したと評価するわけである。ここでは便宜上、この基準となる変動物性値のことを「計測変動物性値」ということとする。
(Measured variable physical property value and standard variable physical property value)
As described above, usually, the fluctuating physical property values are sequentially measured while rolling. Therefore, the fluctuating physical characteristic value obtained by measuring during the main construction is referred to as "measured fluctuating physical property value" here for convenience. Further, considering that the fluctuating physical property value changes each time the compaction is performed, it can be considered that this fluctuating physical property value can be an index for evaluating the construction embankment. That is, a reference variable physical property value is set in advance, and when the measured variable physical property value reaches the standard, it is evaluated that the required performance required by the construction embankment is satisfied. Here, for convenience, the variable physical characteristic value that serves as a reference is referred to as a “measured variable physical characteristic value”.

(施工範囲と小領域)
一般的に施工盛土は比較的広い範囲で計画されることから、全体をまとめて盛土品質を評価するのではなく、全体を分割してそれぞれの部分を個別に評価する方が、高品質な盛土を得ることができる。ここでは、施工盛土の平面範囲のことを「施工範囲」、施工範囲を分割して得られるそれぞれの部分のことを「小領域」ということとする。例えば図1では、施工範囲Crをいわゆるメッシュ分割することで多数(図では8×11)の小領域Msを設定している。なお、基本的に転圧機械の走行レーンLn(図に示す矢印方向)は、1列に並べられた複数の小領域Msによって形成される。
(Construction range and small area)
Since construction embankments are generally planned over a relatively wide range, it is better to divide the entire embankment and evaluate each part individually, rather than evaluating the embankment quality as a whole. Can be obtained. Here, the plane range of the construction embankment is referred to as "construction range", and each part obtained by dividing the construction range is referred to as "small area". For example, in FIG. 1, a large number (8 × 11 in the figure) of small regions Ms are set by dividing the construction range Cr into so-called meshes. It should be noted that basically, the traveling lane Ln (in the direction of the arrow shown in the figure) of the compaction machine is formed by a plurality of small regions Ms arranged in a row.

2.転圧回数予測システム
次に、本願発明の転圧回数予測システムについて説明する。図2は、本願発明の転圧回数予測システム100の主な構成を示すブロック図であり、図3は、転圧回数予測システム100の主な処理の流れを示すフロー図である。なおこのフロー図では、中央の列に実施する処理を示し、左列にはその処理に必要な入力情報を、右列にはその処理から生ずる出力情報を示している。
2. Rolling Count Prediction System Next, the rolling compaction prediction system of the present invention will be described. FIG. 2 is a block diagram showing a main configuration of the rolling compaction number prediction system 100 of the present invention, and FIG. 3 is a flow diagram showing a main processing flow of the rolling compaction number prediction system 100. In this flow chart, the processing to be performed is shown in the center column, the input information required for the processing is shown in the left column, and the output information generated from the processing is shown in the right column.

図2は、転圧回数予測システム100の主な構成を示すブロック図であり、図3は、転圧回数予測システム100の主な構成を模式的に示したモデル図である。図2に示すように転圧回数予測システム100は、学習手段101と、変動物性値計測手段102、変動物性値予測手段103、転圧回数算出手段104を含んで構成され、さらに学習データセット記憶手段105や、変動モデル記憶手段106、入力データセット記憶手段107、計測変動物性値記憶手段108、転圧経路設定手段109、ディスプレイやプリンタといった出力手段110を含んで構成することもできるし、さらに転圧機械111や測位手段112を含んで構成することもできる。なお転圧回数予測システム100は、専用のものとして製造することもできるが、汎用的なコンピュータ装置を利用することもできる。このコンピュータ装置は、パーソナルコンピュータ(PC)や、iPad(登録商標)といったタブレットPC、あるいはPDA(Personal Data Assistance)などによって構成することができる。以下、転圧回数予測システム100を構成する主な要素ごとに詳しく説明する。 FIG. 2 is a block diagram showing the main configuration of the rolling compaction number prediction system 100, and FIG. 3 is a model diagram schematically showing the main configuration of the rolling compaction number prediction system 100. As shown in FIG. 2, the rolling compaction number prediction system 100 includes a learning means 101, a variable physical property value measuring means 102, a variable physical property value predicting means 103, and a rolling compaction number calculating means 104, and further includes learning data set storage. The means 105, the variation model storage means 106, the input data set storage means 107, the measurement variation physical property value storage means 108, the compaction path setting means 109, and the output means 110 such as a display or a printer can be included. It can also be configured to include a compaction machine 111 and a positioning means 112. The rolling compaction number prediction system 100 can be manufactured as a dedicated one, but a general-purpose computer device can also be used. This computer device can be configured by a personal computer (PC), a tablet PC such as an iPad (registered trademark), a PDA (Personal Data Assistance), or the like. Hereinafter, each of the main elements constituting the rolling compaction number prediction system 100 will be described in detail.

(学習手段)
学習手段101は、多数の標本盛土の「学習データセット」を学習するものであり、この学習データセットは学習データセット記憶手段105に記憶される。ここで学習セットとは、標本盛土ごとに用意されるデータセットであり、その標本盛土における複数種類の物性値と、転圧回数と変動物性値の関係(以下、「転圧回数−変動物性値」と記す。)を含んで構成されるデータセットである。なお、転圧回数−変動物性値は、標本盛土を転圧したときの記録であり、それぞれの転圧回数(1回、2回、3回・・・)とそのときの変動物性値との関係を表すものである。
(Learning means)
The learning means 101 learns a "learning data set" of a large number of sample fillings, and this learning data set is stored in the learning data set storage means 105. Here, the learning set is a data set prepared for each sample embankment, and the relationship between a plurality of types of physical property values in the sample embankment and the number of rolling compactions and the fluctuating physical property values (hereinafter, "number of rolling compactions-variable physical property values"). It is a data set including.). The number of rolling compactions-variable physical property values is a record when the sample embankment is compacted, and the number of rolling compactions (1 time, 2 times, 3 times, etc.) and the fluctuating physical property values at that time are It represents a relationship.

図2に示すように学習手段101は、学習データセット記憶手段105から多数の学習データセットを読み出し、これを学習(例えば、ディープラーニング等)することによって、標本盛土の物性値と転圧回数−変動物性値をパラメータ(変数)として変動物性値を予測するためのモデル(以下、「変動モデル」という。)を生成する(図3のStep10)。ここで生成された変動モデルは、図2に示すように変動モデル記憶手段106に記憶される。この変動モデルは、図3に示すように本施工を実施する前に作成しておくとよい。 As shown in FIG. 2, the learning means 101 reads a large number of learning data sets from the learning data set storage means 105 and learns them (for example, deep learning) to obtain a physical property value of the sample filling and the number of rolling compactions. A model for predicting the fluctuating physical property value (hereinafter referred to as “variable physical property value”) is generated using the fluctuating physical property value as a parameter (variable) (Step 10 in FIG. 3). The variation model generated here is stored in the variation model storage means 106 as shown in FIG. As shown in FIG. 3, this variation model should be created before the main construction is carried out.

(変動物性値計測手段)
変動物性値計測手段102は、施工盛土の変動物性値を計測して計測変動物性値を取得するものである。後述するように本願発明は、計測変動物性値と基準変動物性値を照らし合わせて、今後必要となる転圧回数を予測する。すなわち転圧しながら計測変動物性値を取得することとなり、そのため本施工にあたってはあらかじめ変動物性値の種類を設定しておくとよい。例えば、変動物性値を加速度応答値CCVとして評価する場合は変動物性値計測手段102として加速度計等を用意し、変動物性値を飽和度として評価する場合は変動物性値計測手段102として水分センサやRI計などを用意し、変動物性値を沈下量として評価する場合は変動物性値計測手段102として衛星観測システムGNSSやトータルステーションTSを用意する。もちろん1種類の変動物性値による評価に限らず、2種類以上の変動物性値(例えば加速度応答値CCVと飽和度など)で評価することもできる。
(Variable physical property value measuring means)
The fluctuating physical property value measuring means 102 measures the fluctuating physical characteristic value of the construction embankment and acquires the measured fluctuating physical characteristic value. As will be described later, the present invention predicts the number of rolling compactions that will be required in the future by comparing the measured fluctuating physical property value with the reference fluctuating physical property value. That is, the measured fluctuating physical property value is acquired while rolling, so it is advisable to set the type of fluctuating physical property value in advance in this construction. For example, when evaluating the fluctuating physical property value as the acceleration response value CCV, an accelerometer or the like is prepared as the fluctuating physical characteristic value measuring means 102, and when evaluating the fluctuating physical characteristic value as the saturation degree, a moisture sensor or the like is used as the fluctuating physical characteristic value measuring means 102. When an RI meter or the like is prepared and the fluctuating physical characteristic value is evaluated as the amount of subsidence, a satellite observation system GNSS or a total station TS is prepared as the fluctuating physical characteristic value measuring means 102. Of course, the evaluation is not limited to one type of fluctuating physical characteristic value, but can also be evaluated by two or more types of fluctuating physical characteristic values (for example, acceleration response value CCV and saturation).

変動物性値計測手段102によって取得された計測変動物性値は、計測変動物性値記憶手段108に記憶される。転圧回数を重ねるたびに変動物性値計測手段102は計測変動物性値を取得することから、計測変動物性値はその転圧の回数(以下、「実績転圧回数」という。)と関連付けられたうえで計測変動物性値記憶手段108に記憶される。具体的には、転圧1回目(実績転圧回数)の計測変動物性値、転圧2回目の計測変動物性値といった組み合わせで記憶される。また、特に施工盛土を小領域Ms(図1)ごとで評価する場合は、衛星観測システムGNSSなどの測位手段112を利用して変動物性値計測手段102の計測位置を測位し、その計測位置と計測変動物性値を関連付けて計測変動物性値記憶手段108に記憶するとよい。計測変動物性値が実績転圧回数を有するとともに計測位置(平面座標)を有することから、小領域Msごと(しかも実績転圧回数ごと)の計測変動物性値として表すことができるわけである。 The measured fluctuating physical property value acquired by the fluctuating physical characteristic value measuring means 102 is stored in the measured fluctuating physical property value storage means 108. Since the fluctuating physical property value measuring means 102 acquires the measured fluctuating physical property value each time the number of rolling compactions is repeated, the measured fluctuating physical property value is associated with the number of times of the rolling compaction (hereinafter, referred to as "actual rolling number of times"). Then, it is stored in the measured variable physical property value storage means 108. Specifically, it is stored as a combination of the measured variable physical property value of the first rolling compaction (actual rolling compaction number) and the measured variable physical property value of the second rolling compaction. Further, especially when the construction filling is evaluated for each small area Ms (FIG. 1), the measurement position of the variable physical characteristic value measuring means 102 is positioned by using the positioning means 112 such as the satellite observation system GNSS, and the measurement position is used as the measurement position. It is preferable to associate the measured variable physical property values and store them in the measured variable physical property value storage means 108. Since the measured variable physical property value has the actual number of rolling compactions and the measurement position (planar coordinates), it can be expressed as the measured variable physical property value for each small region Ms (and for each actual rolling number of times).

図3に示すように転圧(Step20)と略同時(直後)に変動物性値計測(Step30)と測位(Step40)を行うこともできるし、これに代え転圧した後に変動物性値計測と測位を行うこともできる。転圧と略同時に変動物性値計測と測位を行う場合は、転圧機械111に変動物性値計測手段102と測位手段112を搭載するとよい。転圧しながら移動する転圧機械111とともに、変動物性値計測手段102と測位手段112も移動しながらそれぞれ計測するわけである。一方、転圧した後に変動物性値計測と測位を行う場合は、転圧機械111とは別体として変動物性値計測手段102と測位手段112を用意し、転圧機械111の後を追いながらそれぞれ計測する。 As shown in FIG. 3, the variable physical characteristic value measurement (Step 30) and the positioning (Step 40) can be performed substantially at the same time (immediately after) as the rolling compaction (Step 20). Can also be done. When measuring and positioning the fluctuating physical property value substantially at the same time as rolling compaction, it is preferable to mount the fluctuating physical characteristic value measuring means 102 and the positioning means 112 on the rolling compaction machine 111. Along with the compaction machine 111 that moves while rolling, the variable physical characteristic value measuring means 102 and the positioning means 112 also measure while moving. On the other hand, when the variable physical property value measurement and the positioning are performed after the compaction is performed, the variable physical characteristic value measurement means 102 and the positioning means 112 are prepared separately from the compaction machine 111, and each of them follows the compaction machine 111. measure.

(変動物性値予測手段)
変動物性値予測手段103は、今後の転圧回数ごとの変動物性値を予測するものである。なお、本施工で既に実施した転圧回数のことを「実績転圧回数」としたが、これに対して本施工において今後実施する転圧回数のことをここでは「今後転圧回数」ということとする。図3に示すように、変動物性値計測手段102によって計測変動物性値が取得されると、変動物性値予測手段103が今後転圧回数ごとの変動物性値を予測する(Step50)。ただし、第1回目の転圧後に予測し、第2回目の転圧後にも予測するなど毎回転圧するたびに予測する仕様としてもよいし、あらかじめ定めた実績転圧回数(例えば第3回目)で予測する仕様としてもよい。
(Means for predicting variable physical property values)
The fluctuating physical property value predicting means 103 predicts the fluctuating physical characteristic value for each number of rolling compactions in the future. The number of rolling compactions already carried out in this construction is referred to as the "actual number of rolling compactions", whereas the number of rolling compactions to be carried out in this construction in the future is referred to here as the "number of rolling compactions in the future". And. As shown in FIG. 3, when the measured fluctuating physical property value is acquired by the fluctuating physical characteristic value measuring means 102, the fluctuating physical characteristic value predicting means 103 predicts the fluctuating physical property value for each number of rolling compactions in the future (Step 50). However, the specification may be such that the prediction is made after the first rolling compaction and the prediction is made after the second rolling compaction, etc. It may be a specification to predict.

以下、変動物性値予測手段103が今後転圧回数ごとの予測変動物性値を求める処理について図2を参照しながら詳しく説明する。まず変動物性値予測手段103は、変動モデル記憶手段106から変動モデルを読み出し、計測変動物性値記憶手段108から実績転圧回数と計測変動物性値の関係(以下、「実績転圧回数−計測変動物性値」と記す。)を読み出し、入力データセット記憶手段107から「入力データセット」を読み出す。ここで入力データセットとは、施工盛土における複数種類の物性値(本施工に用いられる盛土材にかかる属性や、計画された施工にかかる属性)を含むデータセットであり、いわば本施工前に用意することができるデータセットである。したがって入力データセットは、本施工前に計測変動物性値記憶手段108に記憶させておくとよい。 Hereinafter, the process by which the fluctuating physical characteristic value predicting means 103 obtains the predicted fluctuating physical property value for each number of rolling compactions will be described in detail with reference to FIG. First, the variable physical property value predicting means 103 reads out the variable model from the variable model storage means 106, and the relationship between the actual rolling number of times and the measured variable physical property value from the measured variable physical property value storing means 108 (hereinafter, “actual rolling number of times-measured variation”). It is described as "physical characteristic value"), and the "input data set" is read from the input data set storage means 107. Here, the input data set is a data set including a plurality of types of physical property values (attributes related to the filling material used for the main construction and attributes related to the planned construction) in the construction filling, so to speak, prepared before the main construction. It is a dataset that can be used. Therefore, the input data set may be stored in the measurement variation physical property value storage means 108 before the main construction.

変動モデルと、実績転圧回数−計測変動物性値、入力データセットを読み出した変動物性値予測手段103は、実績転圧回数−計測変動物性値と入力データセットをパラメータ(変数)とし、変動モデルを用いて今後転圧回数ごとの予測変動物性値(以下、「今後転圧回数−予測変動物性値」と記す。)を求める。図4は、「実績転圧回数−計測変動物性値」と「今後転圧回数−予測変動物性値」を示すモデル図であり、「実績転圧回数−計測変動物性値」を実線で表し、「今後転圧回数−予測変動物性値」を破線で表している。したがってこの図では、第3回の転圧が終わった時点で今後転圧回数−予測変動物性値を求めており、すなわち第1回目から第3回目までが実績転圧回数、第4回目以降が今後転圧回数とされている。なお、施工盛土を小領域Ms(図1)ごとで評価する場合は、変動物性値予測手段103が小領域Msごとの今後転圧回数−予測変動物性値を求める仕様とするとよい。 The fluctuation model, the actual rolling number of times-measured variable physical property value, and the variable physical property value predicting means 103 that read the input data set use the actual rolling number of times-measured variable physical characteristic value and the input data set as parameters (variables), and the fluctuation model. Is used to obtain the predicted fluctuating physical property value for each number of rolling compactions in the future (hereinafter, referred to as "the number of rolling compactions in the future-predicted fluctuating physical property value"). FIG. 4 is a model diagram showing "actual rolling number of times-measured variable physical property value" and "future rolling number of times-predicted variable physical property value", and "actual rolling number of times-measured variable physical property value" is represented by a solid line. "Future compaction frequency-predicted fluctuation physical property value" is indicated by a broken line. Therefore, in this figure, the number of rolling compactions-predicted fluctuation physical property value is obtained at the end of the third rolling compaction, that is, the actual number of rolling compactions is from the first to the third, and the fourth and subsequent ones are. It is said to be the number of rolling compactions in the future. When the construction embankment is evaluated for each small area Ms (FIG. 1), it is preferable that the variable physical property value predicting means 103 obtains the number of future rolling compactions minus the predicted variable physical property value for each small area Ms.

(転圧回数算出手段)
転圧回数算出手段104は、残りの必要転圧回数(本施工においてあと何回転圧すべきか)を求めるものである。図3に示すように、変動物性値予測手段103によって今後転圧回数−予測変動物性値が求められると、転圧回数算出手段104が残りの必要転圧回数を算出する(Step60)。具体的には図4に示すように、今後転圧回数−予測変動物性値と、あらかじめ設定された基準変動物性値に基づいて、予測変動物性値が基準変動物性値に達する(あるいは上回る)今後転圧回数(以下、「最終転圧回数)という。)を求め、現時点の実績転圧回数と最終転圧回数の差から残りの必要転圧回数を算出する。例えば図4のケースでは、第5回目(最終転圧回数)の転圧で予測変動物性値が基準変動物性値を上回ると予測され、現時点までに3回(実績転圧回数)の転圧を行っていることから、残りの必要転圧回数は2回として求められる。なお、施工盛土を小領域Ms(図1)ごとで評価する場合は、転圧回数算出手段104が小領域Msごとの残りの必要転圧回数を求める仕様とするとよい。
(Means for calculating the number of rolling compactions)
The rolling compaction number calculation means 104 obtains the remaining required rolling compaction count (how many more rotation pressures should be applied in this construction). As shown in FIG. 3, when the rolling compaction number-predicted variable physical property value is obtained by the variable physical property value predicting means 103 in the future, the rolling compaction number calculating means 104 calculates the remaining required rolling compaction number (Step 60). Specifically, as shown in FIG. 4, the predicted variable physical property value reaches (or exceeds) the standard variable physical property value based on the number of rolling compactions-predicted variable physical property value and the preset standard variable physical property value. The number of rolling compactions (hereinafter referred to as "the number of final rolling compactions") is obtained, and the remaining required number of rolling compactions is calculated from the difference between the current actual number of rolling compactions and the final number of rolling compactions. It is predicted that the predicted variable physical property value will exceed the standard variable physical property value at the 5th (final rolling number of times) rolling, and since the rolling has been performed 3 times (actual rolling number of times) so far, the remaining The required number of rolling compactions is calculated as two times. When the construction filling is evaluated for each small area Ms (FIG. 1), the rolling compaction number calculating means 104 obtains the remaining required number of rolling compactions for each small area Ms. It should be a specification.

図3に示すように、転圧回数算出手段104によって残りの必要転圧回数が求められると、その回数だけ繰り返し転圧を行い(Step70)、施工盛土を小領域Msごとで評価する場合は、すべての小領域Msにおいて最終転圧回数に達するまで繰り返し転圧を行う(Step80)。このように、必要転圧回数(最終転圧回数)を求めて合理的に転圧を行うことによって、転圧不足や過転圧が生じることがなく、極めて高品質の盛土を完成することができる。 As shown in FIG. 3, when the remaining required number of rolling compactions is obtained by the rolling compaction number calculation means 104, the rolling compaction is repeated for that number of times (Step 70), and when the construction embankment is evaluated for each small area Ms, Repeated rolling is performed in all small region Ms until the final number of rolling compactions is reached (Step 80). In this way, by obtaining the required number of rolling compactions (final number of rolling compactions) and performing rational rolling, it is possible to complete an extremely high-quality embankment without causing insufficient rolling compaction or over-rolling. can.

(転圧経路設定手段)
図1に示すように、施工盛土を小領域Msごとで評価する場合、計測変動物性値記憶手段108は小領域Msごとに計測変動物性値を記憶し、変動物性値予測手段103は小領域Msごとに今後転圧回数−予測変動物性値を求め、転圧回数算出手段104は小領域Msごとに残りの必要転圧回数を算出すると説明した。したがって、すべての小領域Msが同じ必要転圧回数となることもあれば、それぞれの小領域Msで異なる必要転圧回数が算出されることがある。それぞれの小領域Msで必要転圧回数が異なる場合に、図1に示すような単純直線の走行レーンLnで転圧していくと、既に最終転圧回数に達した小領域Msを走行することもあり、すなわち過転圧を引き超すことも考えられる。
(Rolling path setting means)
As shown in FIG. 1, when the construction embankment is evaluated for each small area Ms, the measured variable physical property value storage means 108 stores the measured variable physical property value for each small area Ms, and the variable physical property value predicting means 103 stores the measured variable physical property value for each small area Ms. It was explained that the number of rolling compactions-predicted fluctuation physical property value is obtained for each rolling compaction, and the rolling compaction number calculating means 104 calculates the remaining required number of rolling compactions for each small region Ms. Therefore, all the small region Ms may have the same required number of rolling compactions, and each small region Ms may have a different required number of rolling compactions. When the required number of rolling compactions is different for each small region Ms, if rolling is performed in the simple straight traveling lane Ln as shown in FIG. 1, the small region Ms that has already reached the final number of rolling compactions may be traveled. Yes, that is, it is possible to exceed the overturning pressure.

転圧経路設定手段109は、転圧回数算出手段104によって算出された最終転圧回数に基づいて今後の転圧経路(転圧機械111が走行するルート)を求めるものである。具体的には図5に示すように、最終転圧回数に達していない小領域Ms(以下、便宜上「未完の小領域Ms」という。)を抽出するとともに、未完の小領域Msを通過するように最適な(最も効率の良い)転圧経路を求める。最適な転圧経路を求める手法としては、例えば、周囲の小領域Msを探索する手法や、全ケースから抽出する手法などが挙げられる。 The rolling compaction path setting means 109 obtains a future rolling compaction path (route on which the compaction machine 111 travels) based on the final rolling compaction number calculated by the rolling compaction number calculation means 104. Specifically, as shown in FIG. 5, a small region Ms that has not reached the final rolling number of times (hereinafter, referred to as "unfinished small region Ms" for convenience) is extracted and passed through the unfinished small region Ms. Find the optimal (most efficient) rolling path. Examples of the method for obtaining the optimum compaction path include a method for searching the surrounding small region Ms and a method for extracting from all cases.

まず周囲の小領域Msを探索する手法について説明する。この手法では、転圧機械111が現在位置している小領域Msを起点とし、その周囲の小領域Ms(図6では8つの小領域Ms)から未完の小領域Msのうちいずれかを抽出する。さらにその抽出された小領域Msを起点としたうえで、その周囲の小領域Msから未完の小領域Msのうちいずれかを抽出する。これを繰り返すことで転圧経路が設定される。ところで、起点の小領域Msの周囲には複数の未完の小領域Msが配置されるケースもある。つまり、起点の小領域Msの周囲に複数の選択肢があるということであり、これらの選択肢に対応する複数の転圧経路を設定し得るということである。この場合、複数の転圧経路を設定したうえで、その複数の転圧経路の中から最適な(例えば最短となる)ものを選出するとよい。 First, a method for searching the surrounding small area Ms will be described. In this method, starting from the small region Ms where the compaction machine 111 is currently located, one of the unfinished small regions Ms is extracted from the surrounding small regions Ms (8 small regions Ms in FIG. 6). .. Further, after starting from the extracted small region Ms, any one of the unfinished small region Ms is extracted from the surrounding small region Ms. By repeating this, the rolling path is set. By the way, there are cases where a plurality of unfinished small regions Ms are arranged around the starting small region Ms. That is, there are a plurality of options around the small region Ms of the starting point, and a plurality of rolling compaction paths corresponding to these options can be set. In this case, after setting a plurality of rolling compaction paths, it is advisable to select the optimum (for example, the shortest) one from the plurality of rolling compaction paths.

次に全ケースから抽出する手法について説明する。この手法では、転圧機械111が現在位置している小領域Msを起点とし、(未完の小領域Msにかかわらず)そこから進み得るすべての経路を求める。そして、求められたすべての経路の中から、最適な(例えば最短となる)ものを選出する。 Next, the method of extracting from all cases will be described. In this method, starting from the small region Ms where the compaction machine 111 is currently located, all routes that can be taken from there (regardless of the unfinished small region Ms) are determined. Then, the optimum (for example, the shortest) route is selected from all the obtained routes.

このように転圧経路設定手段109が最適な転圧経路を求めることで、少なくとも図1に示す単純直線の走行レーンLnで転圧していくより、過転圧となる小領域Msを低減することができ、転圧にかかる時間を大幅に削減することができる。 By obtaining the optimum rolling path in this way, the rolling path setting means 109 reduces the small region Ms that causes excessive rolling, as compared with rolling in at least the simple straight traveling lane Ln shown in FIG. This makes it possible to significantly reduce the time required for rolling.

3.転圧方法
続いて、本願発明の転圧方法について、図6を参照しながら説明する。なお、本願発明の転圧方法は、ここまで説明した転圧回数予測システム100を使用する方法であり、したがって転圧回数予測システム100で説明した内容と重複する説明は避け、本願発明の転圧方法に特有の内容のみ説明することとする。すなわち、ここに記載されていない内容は、「1.定義」を含め「2.転圧回数予測システム」で説明したものと同様である。
3. 3. Rolling Method Next, the rolling method of the present invention will be described with reference to FIG. The rolling compaction method of the present invention is a method using the rolling compaction number prediction system 100 described so far. Therefore, avoiding explanations that overlap with the contents described in the rolling compaction number prediction system 100, the rolling compaction of the present invention. Only the content specific to the method will be explained. That is, the contents not described here are the same as those described in "2. Rolling number prediction system" including "1. Definition".

図6は、本願発明の転圧方法の主な工程の流れを示すフロー図である。本施工が開始されると、測位手段112で転圧を行い(Step100)ながら、変動物性値計測手段102で計測変動物性値を取得するとともに(Step200)、測位手段112で計測変動物性値の計測位置を測位する(Step300)。そして、転圧回数予測システム100の転圧回数算出手段104によって求められた残りの必要転圧回数だけ繰り返し転圧を行い(Step400)、すべての小領域Msにおいて最終転圧回数に達するまで繰り返し転圧を行う(Step500)。 FIG. 6 is a flow chart showing the flow of the main steps of the compaction method of the present invention. When this construction is started, while rolling compaction with the positioning means 112 (Step 100), the measured fluctuating physical property value is acquired by the fluctuating physical characteristic value measuring means 102 (Step 200), and the measured fluctuating physical property value is measured by the positioning means 112. Positioning is performed (Step 300). Then, the rolling compaction is repeatedly performed for the remaining required number of rolling compactions determined by the rolling compaction number calculation means 104 of the rolling compaction number prediction system 100 (Step 400), and the rolling compaction is repeatedly rolled until the final rolling compaction number is reached in all the small region Ms. Apply pressure (Step 500).

本願発明の転圧回数予測システム、及び転圧方法は、造成盛土に利用できるほか、道路、河川堤防、海岸堤防、ダム、堰堤などの盛土構造物に広く利用することができる。本願発明が、社会インフラストラクチャーとして高品質の土構造物を提供することを考えれば、産業上利用できるばかりでなく社会的にも大きな貢献を期待し得る発明といえる。 The compaction frequency prediction system and the compaction method of the present invention can be used for embankment construction, and can be widely used for embankment structures such as roads, river embankments, coastal levees, dams, and embankments. Considering that the invention of the present application provides a high-quality soil structure as a social infrastructure, it can be said that the invention can be used not only industrially but also can be expected to make a great contribution to society.

100 転圧回数予測システム
101 (転圧回数予測システムの)学習手段
102 (転圧回数予測システムの)変動物性値計測手段
103 (転圧回数予測システムの)変動物性値予測手段
104 (転圧回数予測システムの)転圧回数算出手段
105 (転圧回数予測システムの)学習データセット記憶手段
106 (転圧回数予測システムの)変動モデル記憶手段
107 (転圧回数予測システムの)入力データセット記憶手段
108 (転圧回数予測システムの)計測変動物性値記憶手段
109 (転圧回数予測システムの)転圧経路設定手段
110 (転圧回数予測システムの)出力手段
111 (転圧回数予測システムの)転圧機械
112 (転圧回数予測システムの)測位手段
Cr 施工範囲
Ms 小領域
Ln 走行レーン
100 Rolling number prediction system 101 Learning means (of rolling number prediction system) 102 (Rolling number prediction system) Fluctuation physical property value measuring means 103 (Rolling number prediction system) Variable physical property value predicting means 104 (Rolling count prediction system) Rolling count calculation means (of the prediction system) 105 Learning data set storage means (of the rolling count prediction system) 106 (Variation model storage means (of the rolling count prediction system) 107 Input data set storage means (of the rolling count prediction system) 108 Measurement fluctuation physical property value storage means (of rolling compaction number prediction system) 109 Rolling compaction route setting means (of rolling compaction number prediction system) 110 Output means (of rolling compaction number prediction system) 111 (of rolling compaction number prediction system) Pressure machine 112 Positioning means (of rolling compaction number prediction system) Cr Construction range Ms Small area Ln Travel lane

Claims (5)

転圧の程度に応じて変動する盛土の物性値である変動物性値に基づいて、該盛土の必要転圧回数を予測するシステムであって、
多数の標本盛土の学習データセットを学習する学習手段と、
施工対象である施工盛土の前記変動物性値を計測して計測変動物性値を取得する変動物性値計測手段と、
前記施工盛土の入力データセットに基づいて、該施工盛土の今後の転圧回数ごとの前記変動物性値を予測する変動物性値予測手段と、
前記対象盛土が目標とする前記変動物性値である基準変動物性値と、前記変動物性値予測手段によって予測された今後の転圧回数ごとの前記変動物性値と、に基づいて残りの必要転圧回数を求める転圧回数算出手段と、を備え、
前記標本盛土ごとに用意される前記学習データセットは、該標本盛土の複数種類の物性値と、該標本盛土を転圧したときの転圧回数ごとの前記変動物性値と、を含み、
前記入力データセットは、前記施工盛土の複数種類の物性値を含み、
前記学習手段は、前記学習データセットに基づいて、転圧回数と前記変動物性値の関係を示す変動モデルを生成し、
前記変動物性値予測手段は、前記入力データセット、前記施工盛土の転圧回数、該施工盛土の転圧回数ごとの前記計測変動物性値、及び前記変動モデルに基づいて、前記変動物性値を予測する、
ことを特徴とする転圧回数予測システム。
It is a system that predicts the required number of times of rolling of the embankment based on the fluctuating physical property value which is the physical property value of the embankment that fluctuates according to the degree of rolling.
A learning method for learning a large number of sample embankment learning datasets,
A fluctuating physical property value measuring means for acquiring the measured fluctuating physical property value by measuring the fluctuating physical property value of the construction embankment to be constructed, and
A variable physical property value predicting means for predicting the variable physical property value for each future rolling number of times of the construction embankment based on the input data set of the construction embankment.
The remaining required rolling compaction is based on the reference variable physical characteristic value which is the variable physical characteristic value targeted by the target embankment and the variable physical characteristic value for each future rolling compaction predicted by the variable physical property value predicting means. A means for calculating the number of rolling compactions for obtaining the number of times is provided.
The learning data set prepared for each sample embankment includes a plurality of types of physical property values of the sample embankment and the variable physical property values for each number of times of compaction when the sample embankment is compacted.
The input data set includes a plurality of types of physical property values of the construction embankment.
The learning means generates a fluctuation model showing the relationship between the number of rolling compactions and the fluctuation physical property value based on the training data set.
The fluctuating physical property value predicting means predicts the fluctuating physical property value based on the input data set, the number of rolling compactions of the construction embankment, the measured fluctuating physical property value for each number of rolling compactions of the construction embankment, and the fluctuation model. do,
A rolling compaction number prediction system characterized by this.
前記変動物性値計測手段は、前記施工盛土を複数に分割して得られる小領域ごとに、該小領域の前記計測変動物性値を取得し、
前記変動物性値予測手段は、前記小領域ごとに、前記変動物性値を予測し、
前記転圧回数算出手段は、前記小領域ごとに、残りの必要転圧回数を求める、
ことを特徴とする請求項1記載の転圧回数予測システム。
The variable physical characteristic value measuring means acquires the measured variable physical characteristic value of the small area for each small area obtained by dividing the construction embankment into a plurality of parts.
The variable physical characteristic value predicting means predicts the variable physical characteristic value for each of the small regions.
The rolling compaction number calculation means obtains the remaining required rolling compaction count for each of the small regions.
The rolling compaction number prediction system according to claim 1.
前記転圧回数算出手段が求めた前記小領域ごとの残りの必要転圧回数に基づいて、今後の転圧経路を設定する転圧経路設定手段を、さらに備えた、
ことを特徴とする請求項2記載の転圧回数予測システム。
Further provided with a rolling compaction path setting means for setting a future rolling compaction path based on the remaining required rolling compaction number for each small region obtained by the rolling compaction number calculation means.
2. The rolling compaction number prediction system according to claim 2.
前記施工盛土を転圧する転圧機械を、さらに備え、
前記変動物性値計測手段は、前記転圧機械に設けられ、該転圧機械の移動に伴って前記計測変動物性値を取得する、
ことを特徴とする請求項1乃至請求項3のいずれかに記載の転圧回数予測システム。
Further equipped with a compaction machine for compacting the construction embankment,
The variable physical property value measuring means is provided in the compaction machine, and acquires the measured variable physical characteristic value as the compaction machine moves.
The rolling compaction number prediction system according to any one of claims 1 to 3, wherein the rolling compaction number prediction system is characterized.
請求項1乃至請求項4のいずれかに記載の転圧回数予測システムを用いて、前記施工盛土を転圧する方法であって、
転圧機械によって、前記施工盛土を転圧する転圧工程と、
前記変動物性値計測手段によって、前記施工盛土の前記計測変動物性値を取得する変動物性値計測工程と、を備え、
前記転圧工程では、前記転圧回数算出手段によって求められた残りの必要転圧回数となるまで、前記施工盛土を転圧する、
ことを特徴とする転圧方法。
A method of rolling the construction embankment using the rolling compaction number prediction system according to any one of claims 1 to 4.
The compaction process of compacting the construction embankment with a compaction machine,
A variable physical property value measuring step for acquiring the measured variable physical characteristic value of the construction embankment by the variable physical characteristic value measuring means is provided.
In the compaction step, the construction embankment is compacted until the remaining required number of compactions determined by the compaction number calculation means is reached.
A compaction method characterized by that.
JP2018036999A 2018-03-01 2018-03-01 Rolling count prediction system and rolling method Active JP6965489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018036999A JP6965489B2 (en) 2018-03-01 2018-03-01 Rolling count prediction system and rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018036999A JP6965489B2 (en) 2018-03-01 2018-03-01 Rolling count prediction system and rolling method

Publications (2)

Publication Number Publication Date
JP2019152005A JP2019152005A (en) 2019-09-12
JP6965489B2 true JP6965489B2 (en) 2021-11-10

Family

ID=67948450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018036999A Active JP6965489B2 (en) 2018-03-01 2018-03-01 Rolling count prediction system and rolling method

Country Status (1)

Country Link
JP (1) JP6965489B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6979503B1 (en) * 2020-10-23 2021-12-15 酒井重工業株式会社 Compaction management method
JP6978577B1 (en) * 2020-12-24 2021-12-08 日本国土開発株式会社 Compaction method and compaction management device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3908031B2 (en) * 2001-12-27 2007-04-25 前田建設工業株式会社 Embankment rolling pressure management method and apparatus
JP2004278248A (en) * 2003-03-19 2004-10-07 Tatsuro Muro Thick-layer rolling compaction construction method
JP2005030073A (en) * 2003-07-04 2005-02-03 Fudo Constr Co Ltd Compaction quality control method
JP4358036B2 (en) * 2004-06-03 2009-11-04 鹿島建設株式会社 Method for estimating rolling characteristics of construction materials
JP6161475B2 (en) * 2013-09-05 2017-07-12 鹿島建設株式会社 Compaction management method and compaction management system
WO2016027291A1 (en) * 2014-08-21 2016-02-25 日本電気株式会社 Slope monitoring system, device for slope safety analysis, method, and program
US20160076205A1 (en) * 2014-09-16 2016-03-17 Caterpillar Paving Products Inc. Device and Process for Controlling Compaction Based on Previously Mapped Data

Also Published As

Publication number Publication date
JP2019152005A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
CN112252292B (en) Real-time highway compactness monitoring method based on artificial neural network
CN104318103A (en) Landslide hazard monitoring and early warning rainfall threshold judging method
JP6805449B2 (en) Soil quality control method and soil quality monitoring system
JP6965489B2 (en) Rolling count prediction system and rolling method
US10435852B2 (en) Method for determining the compaction state of substrate
CN107943823A (en) The real-time big data processing platform of digitlization construction
CN115034697B (en) Multi-domain analysis-based multi-element intelligent compaction index grading optimization method and system
CN103205972B (en) A kind of method analyzing foundation pit deformation and hole outer ground settlement relationship
JP2018154975A5 (en)
CN111307055A (en) Design method of pipeline digital twin system
Bitelli et al. Updating the subsidence map of Emilia-Romagna region (Italy) by integration of SAR interferometry and GNSS time series: The 2011–2016 period
Yao et al. Intelligent compaction methods and quality control
White et al. Power-based compaction monitoring using vibratory padfoot roller
JP2020007730A (en) Movable measuring device of water content, and rolling compaction method
CN114880755B (en) Surrounding rock grading method, device and equipment for railway tunnel and readable storage medium
CN114663840B (en) Tunnel environment inspection equipment monitoring method and system
White et al. Iowa DOT intelligent compaction research and implementation—Phase I
JP2023016137A (en) Quality management system, and quality management method
CN114066271A (en) Tunnel water inrush disaster monitoring and management system
White et al. Implementation of intelligent compaction performance based specifications in Minnesota
Jakobsson et al. Data driven modeling and estimation of accumulated damage in mining vehicles using on-board sensors
CN113449362A (en) Road reconnaissance design method and system based on 5G mobile network
Hiraoka et al. A full-Scale model test for predicting collapse time using displacement of slope surface during slope cutting work
Chattopadhyay et al. Prediction of CBR of different groups of alluvial soils for design of flexible pavements
Hariswaran et al. Experimental investigation on the behavior of a defective pile subject to a lateral load

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210929

R150 Certificate of patent or registration of utility model

Ref document number: 6965489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350