JP5181295B2 - Rolling method for clay-based soil materials - Google Patents

Rolling method for clay-based soil materials Download PDF

Info

Publication number
JP5181295B2
JP5181295B2 JP2009031956A JP2009031956A JP5181295B2 JP 5181295 B2 JP5181295 B2 JP 5181295B2 JP 2009031956 A JP2009031956 A JP 2009031956A JP 2009031956 A JP2009031956 A JP 2009031956A JP 5181295 B2 JP5181295 B2 JP 5181295B2
Authority
JP
Japan
Prior art keywords
rolling
clay
runner
based soil
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009031956A
Other languages
Japanese (ja)
Other versions
JP2010189835A (en
Inventor
卓 石井
至鎬 張
光信 沖原
亮 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2009031956A priority Critical patent/JP5181295B2/en
Publication of JP2010189835A publication Critical patent/JP2010189835A/en
Application granted granted Critical
Publication of JP5181295B2 publication Critical patent/JP5181295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、粘土系土質材料の転圧施工方法に関するものであって、たとえば、低レベル放射性廃棄物の埋設処分施設における低透水層を構成する粘土系土質材料の転圧施工方法に関するものである。   TECHNICAL FIELD The present invention relates to a rolling compaction method for clay-based soil materials, and, for example, relates to a compacting method for clay-based soil materials that constitute a low water-permeable layer in a low-level radioactive waste embedding disposal facility. .

低レベルの放射性廃棄物の埋設処分施設100が、たとえば、図13に示すような断面構造の坑道施設として計画されている。埋設処分施設100は、掘削した地下坑道の内部に埋戻材101と低透水層102とを敷設した、その内部に放射性廃棄物収納体103およびその周囲をモルタル104で充填して埋設可能な構造となっている。放射性廃棄物収納体の外周部に配置する低透水層にはベントナイト系粘土材料を転圧施工することにより、遮水性能に優れた層を構築することにしている(たとえば、特許文献1参照)。   A low-level radioactive waste embedding disposal facility 100 is planned as a mine facility having a cross-sectional structure as shown in FIG. 13, for example. The buried disposal facility 100 has a structure in which a backfill material 101 and a low water permeable layer 102 are laid in an excavated underground mine, and a radioactive waste container 103 and its surroundings are filled with a mortar 104 to be buried. It has become. A layer having excellent water shielding performance is constructed by rolling the bentonite clay material on the low water permeability layer disposed on the outer peripheral portion of the radioactive waste container (see, for example, Patent Document 1). .

また、低レベルの放射性廃棄物の埋設処分施設では、低透水層の性能として難透水性(透水係数が1E−12m/s未満)を提供できる密度1.6Mg/m以上が求められる一方で、いたずらに高密度にすることによる低透水層の吸水膨潤圧が内部に収容する放射性廃棄物格納躯体に力学的に悪影響を与えることを抑制しなければならない。たとえば、図14に示すような有効ベントナイト乾燥密度と透水係数の関係(たとえば、非特許文献1参照)があり、図15に示すようなベントナイト密度と膨潤圧の関係(たとえば、非特許文献1参照)があるので、できるだけ乾燥密度が1.6Mg/mに近くてバラツキがすくない密度分布でベントナイト系粘土材料を転圧施工することが望まれている。 In addition, in a low-level radioactive waste burial facility, a density of 1.6 Mg / m 3 or more capable of providing poor permeability (permeability coefficient of less than 1E-12 m / s) is required as the performance of the low permeability layer. In addition, it is necessary to suppress that the water absorption swelling pressure of the low water permeable layer due to unnecessarily high density adversely affects the radioactive waste storage housing accommodated therein. For example, there is a relationship between effective bentonite dry density and hydraulic conductivity as shown in FIG. 14 (see, for example, Non-Patent Document 1), and a relationship between bentonite density and swelling pressure as shown in FIG. 15 (see, for example, Non-Patent Document 1). Therefore, it is desired that the bentonite-based clay material be pressed by a density distribution that has a dry density as close to 1.6 Mg / m 3 as possible and does not vary as much as possible.

一方、上述した低透水層は、たとえば、1mの厚さでベントナイトを乾燥密度に換算した値で1.6Mg/m程度に締め固めることが必要とされている。このような性能のベントナイト系粘土材料の転圧方法として、本願出願人は、特許文献2,3に示すような多連装ランマ装置による転圧方法を提案している。 On the other hand, the low water-permeable layer described above is required to be compacted to about 1.6 Mg / m 3 with a value obtained by converting bentonite into a dry density with a thickness of 1 m, for example. As a rolling method for bentonite clay material having such a performance, the applicant of the present application has proposed a rolling method using a multi-running rammer device as shown in Patent Documents 2 and 3.

特開2004−12356号公報JP 2004-12356 A 特開2008−38338号公報JP 2008-38338 A 特開2008−49312号公報JP 2008-49312 A

前田宗宏,棚井賢治他,カルシウム型化及びカルシウム型ベントナイトの基本特性 ─膨潤圧、透水係数、一軸圧縮強度及び弾性係数─,動力炉・核燃料開発事業団,PNC TN841098−021,1998年Munehiro Maeda, Kenji Tanai et al., Basic Properties of Calcium-type and Calcium-type Bentonite ─Swelling pressure, hydraulic conductivity, uniaxial compressive strength and elastic modulus─, Power Reactor and Nuclear Fuel Development Corporation, PNC TN841098-021, 1998

しかしながら、特許文献2,3で示した技術では乾燥密度が1.6〜1.8Mg/mの範囲にあり、乾燥密度が均一ではなかった。 However, in the techniques shown in Patent Documents 2 and 3, the dry density is in the range of 1.6 to 1.8 Mg / m 3 , and the dry density is not uniform.

本発明は、上記に鑑みてなされたものであって、乾燥密度のバラツキを小さくし、乾燥密度を均一にすることができる粘土系土質材料の転圧方法を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the compaction method of the clay-type soil material which can make variation in dry density small and can make dry density uniform.

上述した課題を解決し、目的を達成するために、本発明は、自走式多連装ランマ装置を用いて粘土系土質材料を転圧する粘土系土質材料の転圧施工方法において、前記自走式多連装ランマ装置の一の転圧板と同等面積の円形転圧板が繰り出し可能な円筒容器に、施工予定の粘土系土質材料を施工予定の厚みで撒きだし、前記一の転圧板を繰り出すランマと前記円形転圧板を用いて、転圧時間、繰出高さを変えて転圧試験を行うことにより、各条件における転圧後の密度を測定し、ランマが効率良く締め固めるランマの繰出高さと前記自走式多連装ランマ装置の走行速度を導き出し、ランマの繰出高さを導き出したランマの繰出高さとするとともに、転圧が終了した転圧終了面に前記自走式多連装ランマ装置を導き出した自走式多連装ランマ装置の走行速度で等速走行させることにより、施工面に対するランマの繰出高さを導き出したランマの繰出高さで一定に保ち、一定速度で漸次転圧することを特徴とする。 To solve the above problems and achieve the object, the present invention provides a compaction method of constructing clay soil material pressure rolling the clay soil material with self-propelled Tarenso rammer device, the self-propelled In a cylindrical container in which a circular rolling plate having the same area as one rolling plate of a multi-running lammer device can be drawn out, the clay-based soil material to be constructed is sprinkled with a thickness to be constructed, and the rammer that delivers the one rolling plate and the above-mentioned By performing a rolling test using a circular rolling plate with different rolling time and feeding height, the density after rolling in each condition is measured, and the feeding height of the hammer that allows the hammer to efficiently compact and The traveling speed of the traveling multi-runner device is derived, the feeding height of the runner is derived, and the self-running multi-runner device is derived on the rolling end surface where the rolling is completed. Multi-running rammers By running at a constant rate over a speed kept constant at feeding height rammer which derive feeding height of rammer for construction surface, characterized in that the pressure gradually rolling at a constant speed.

また、本発明は、上記粘土系土質材料の転圧施工方法において、粘土系土質材料を複数回に分けて所望の密度まで締め固めることを特徴とする。   Moreover, the present invention is characterized in that, in the above-mentioned method for rolling compaction of clay-based soil material, the clay-based soil material is divided into a plurality of times and compacted to a desired density.

また、本発明は、上記粘土系土質材料の転圧施工方法において、目標密度に締め固めた場合の飽和度が85%から90%になるように、含水比を調整した粘土系土質材料を撒き出し、転圧施工することを特徴とする。   Further, according to the present invention, in the above-mentioned method for rolling compaction of clay-based soil material, a clay-based soil material having a moisture content adjusted so that the saturation degree when it is compacted to the target density is 85% to 90%. It is characterized by taking out and rolling.

本発明にかかる粘土系土質材料の転圧施工方法は、転圧が終了した転圧終了面に自走式多連装ランマ装置を等速走行させることにより、これから施工する施工面に対するランマの繰出高さを一定にするとともに、一定速度で漸次転圧するようにしたので、均一な密度で締め固めることができる。   The method for rolling compaction of clay-based soil material according to the present invention is such that a self-propelled multi-equipped runner device is driven at a constant speed on the rolling completion surface after rolling, so that the feeding amount of the runner for the construction surface to be constructed from now on. Since the thickness is made constant and the rolling is gradually performed at a constant speed, it can be compacted with a uniform density.

また、施工面に対するランマの繰出高さをランマが効率良く締め固める高さとしたので、粘土系土質材料を効率的に転圧施工することができる。   Moreover, since the feeding height of the rammer relative to the construction surface is set to a height at which the rammer can be compacted efficiently, the clay-based soil material can be efficiently compacted.

また、転圧が進むと転圧の途中で施工面が低くなり、ランマの繰出高さが高くなるが、粘土系土質材料を複数回に分けて所望の密度まで締め固めるので、著しく高くなることはなく、均一な密度で締め固めることができる。   In addition, as the rolling progresses, the construction surface becomes lower in the middle of rolling, and the feeding height of the rammer becomes higher, but the clay-based soil material is divided into several times and compacted to the desired density, so it must be significantly higher. It can be compacted with a uniform density.

また、転圧時間が大きくなると、次第に密度は増大し、飽和度も増加する。そして、転圧が進み飽和度が85%〜90%になるような含水比になると、それ以上は飽和度が進まない。すなわち、施工面に撒き出す粘土系土質材料を、目標密度に締め固めた場合の飽和度が85%から90%になるように含水比を調整しておくことで、目標密度に近い均一密度で転圧施工することができる。   In addition, as the rolling time increases, the density gradually increases and the degree of saturation also increases. And when rolling pressure advances and it becomes the water content ratio which becomes 85%-90% of saturation, saturation will not advance any more. In other words, by adjusting the water content ratio so that the degree of saturation when the clay-based soil material rolled out on the construction surface is compacted to the target density is 85% to 90%, the uniform density close to the target density can be obtained. Rolling work can be performed.

自走式多連装ランマ装置の一の転圧板を繰り出すランマと一の転圧板と同等面積の円形転圧板とを用いて、転圧時間、繰出高さを変えて転圧試験を行うことにより、各条件における転圧後の密度を測定すれば、施工面に対するランマの繰出高さと多連装ランマ装置の走行速度を導きだすことができる。   By performing a rolling test by changing the rolling time and feeding height, using a rammer that feeds out one rolling plate of a self-propelled multi-runner device and a circular rolling plate having the same area as the one rolling plate, If the density after rolling in each condition is measured, it is possible to derive the running height of the runner relative to the construction surface and the traveling speed of the multi-runner runner device.

図1は、一の転圧板と同等面積の円形転圧板を有する単一のランマを用いた締め固め試験を示す概念図である。FIG. 1 is a conceptual diagram showing a compaction test using a single rammer having a circular rolling plate having the same area as one rolling plate. 図2は、反力をフリーとした場合の締め固め試験の結果を示した図である。FIG. 2 is a diagram showing the result of the compaction test when the reaction force is free. 図3は、反力を逃がさないようにした場合の締め固め試験の結果を示した図である。FIG. 3 is a diagram showing a result of a compaction test in a case where reaction force is not released. 図4は、締め固め試験におけるランマの転圧ストロークと乾燥密度との関係を示す図であって、転圧時間を5秒とした場合の結果を示す図である。FIG. 4 is a diagram showing the relationship between the rolling stroke of the runner and the dry density in the compaction test, and shows the result when the rolling time is 5 seconds. 図5は、締め固め試験におけるランマの転圧ストロークと乾燥密度との関係を示す図であって、転圧時間を10秒とした場合の結果を示す図である。FIG. 5 is a diagram showing a relationship between the rolling pressure stroke of the runner and the dry density in the compaction test, and shows the result when the rolling time is 10 seconds. 図6は、転圧の途中で施工面が低くなり、ランマの転圧ストロークが最適ではなくなる例を示した図である。FIG. 6 is a diagram showing an example in which the construction surface becomes low during the rolling and the rolling stroke of the rammer is not optimal. 図7は、転圧の途中で施工面が低くなった場合に、ランマの転圧ストロークを調整し、ランマの転圧ストロークを最適にする例を示した図である。FIG. 7 is a diagram illustrating an example in which the rolling pressure stroke of the rammer is adjusted and the rolling pressure stroke of the rammer is optimized when the construction surface becomes low during the rolling. 図8は、締め固め試験における試験結果を示した図であって、転圧時間と乾燥密度との関係を示す図である。FIG. 8 is a diagram showing the test results in the compaction test, and is a diagram showing the relationship between the rolling time and the dry density. 図8に示した試験結果を転圧時間と飽和度の関係に整理した図である。It is the figure which arranged the test result shown in FIG. 8 in the relationship between rolling pressure time and saturation. 図10は、多連装ランマ装置による転圧施工方法を示した図である。FIG. 10 is a diagram showing a rolling compaction method using a multi-running rammers device. 図11は、多連装ランマ装置による締め固め試験の試験結果を示した図である。FIG. 11 is a diagram showing a test result of a compaction test using a multi-running rammers device. 図12は、多連装ランマ装置によって締め固めた各層を上中下に分割して密度分布を示した図である。FIG. 12 is a diagram showing the density distribution obtained by dividing each layer compacted by the multi-running rammers into upper, middle and lower parts. 図13は、低レベルの放射性廃棄物の埋設処分施設における坑道施設を示す横断面図である。FIG. 13 is a cross-sectional view showing a tunnel facility in a low-level radioactive waste burying and disposal facility. 図14は、ベントナイトの乾燥密度と透水係数の関係を示した図である。FIG. 14 is a diagram showing the relationship between the drying density of bentonite and the water permeability. 図15は、ベントナイトの乾燥密度と膨潤圧の関係を示した図である。FIG. 15 is a diagram showing the relationship between the drying density of bentonite and the swelling pressure.

以下に、本発明にかかる粘土系土質材料の転圧施工方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, an embodiment of a rolling compaction method for clay-based soil material according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

本実施の形態である粘土系土質材料の転圧施工方法は、低レベル放射性廃棄物の埋設処分施設における低透水層を構築するためのものであって、自走式多連装ランマ装置3(図10参照)による粘土系土質材料の転圧施工方法における乾燥密度のバラツキを小さくすること、図1に示すような、小規模な要素試験によって目標乾燥密度に合致する転圧条件を事前に決めることができるようにすることを目的としている。   The clay-based soil material rolling method according to the present embodiment is for constructing a low-permeability layer in a low-level radioactive waste burying disposal facility, and is a self-propelled multi-runner device 3 (Fig. 10) to reduce the variation in dry density in the rolling compaction method for clay-based soil materials, and to determine in advance the compaction conditions that match the target dry density by small-scale element tests as shown in FIG. The purpose is to be able to.

まず、図1に基づいて、一のランマ2を用いた締め固め試験について説明する。転圧条件として注目した因子は、転圧時間、ベントナイト材料の含水比である。   First, a compaction test using one rammer 2 will be described with reference to FIG. Factors noted as rolling conditions are rolling time and moisture content of bentonite material.

一のランマ2の締め固め試験に用いた材料は、ベントナイトの10mmアンダー(商品名:クニゲルGX、クニミネ工業(株)製造・販売)であり、含水比を20%〜25%の範囲で5水準に調整したものを用いた。一のランマ2は、自走式多連装ランマ装置3に使用している空圧駆動式ユニット(商品名:サンドランマ)を用いた。また、試験方法は、図1に示すように、直径150mm、高さ200mmの試験モールド1の中に所定の含水比を有するベントナイト材料Bを投入し、一のランマ2により5秒から45秒間転圧し、乾燥密度を測定する方法による。一回の転圧による仕上がり厚は、50mmとし、試験モールド1は、4回の転圧で一つのサンプルが作成される。   The material used for the compaction test of one Ramma 2 is bentonite 10 mm under (trade name: Kunigel GX, manufactured and sold by Kunimine Industries Co., Ltd.), with a moisture content ranging from 20% to 25% in 5 levels. What was adjusted to was used. One rammer 2 used was a pneumatically driven unit (trade name: Sandranma) used in the self-propelled multi-runner device 3. In addition, as shown in FIG. 1, the test method is as follows. A bentonite material B having a predetermined moisture content is put into a test mold 1 having a diameter of 150 mm and a height of 200 mm, and rolled by a single rammer 2 for 5 to 45 seconds. And measuring the dry density. The finished thickness by one rolling is 50 mm, and one sample is prepared for the test mold 1 by four rollings.

また、本試験では、ベントナイト材料の含水比、転圧時間の二つの要因のほかに、ランマ固定条件、ランマの転圧ストローク(繰出高さ)にも着目した。   In addition, in addition to the two factors of bentonite material moisture content and rolling time, the test also focused on the fixing conditions of the luma and the rolling stroke (feeding height) of the rammer.

まず、ランマ2の頭部を手で把持し、頭部の反力をフリーとし、所定の転圧時間に達するまで、連続で転圧した。このため、円形転圧板21とベントナイト材料Bまでの距離は一定ではない。この試験結果を図2に示す。横軸が転圧時間であり、縦軸が乾燥密度である。この図から、含水比が大きくなるにしたがって締め固めにくくなるが、乾燥密度は変化しなくなることがわかる。   First, the head of Ranma 2 was grasped by hand, the reaction force of the head was made free, and the pressure was continuously rolled until a predetermined rolling time was reached. For this reason, the distance between the circular rolling plate 21 and the bentonite material B is not constant. The test results are shown in FIG. The horizontal axis is the rolling time, and the vertical axis is the dry density. From this figure, it can be seen that as the moisture content increases, it becomes difficult to compact, but the dry density does not change.

また、図2に示すように、ベントナイト材料の含水比が22.2%、23.2%の場合には、連続転圧時間を20秒以上とすることによって、乾燥密度は、1.6(Mg/m)に達しており、これ以上の転圧時間にしても密度の増加は見られない。すなわち、転圧エネルギーの変化に伴う密度のバラツキが減少していることから、含水比を工夫することで、バラツキの少ない低透水層が構築可能であることを示唆している。 In addition, as shown in FIG. 2, when the water content ratio of the bentonite material is 22.2%, 23.2%, the dry density is 1.6 ( Mg / m 3 ), and even if the rolling time is longer than this, no increase in density is observed. That is, since the density variation accompanying the change in the rolling pressure energy is reduced, it is suggested that a low water permeability layer with little variation can be constructed by devising the water content ratio.

つぎに、ランマ2の頭部を固定し反力を逃がさないようにした。具体的には、ランマ2の高さ位置を固定して、5秒間転圧を継続した後に、その都度、ランマ2の転圧ストローク(円形転圧板21の底面とベントナイト材料までの距離)が100mmとなるように、ランマ2の高さ位置を再調整しながら、5秒間の転圧を繰り返して、所定の累計時間まで転圧した。この場合には、ランマ2の転圧ストロークの変動を小さくすることができるため、バラツキの少ない転圧エネルギーをベントナイト材料Bに与えることができる。また、ランマ2の高さ位置を固定している場合には、反力効果によりベントナイト材料Bに大きな転圧エネルギーを与えることができると考えられる。この試験結果を図3に示す。横軸が転圧累計時間であり、縦軸が乾燥密度である。この図から、ランマ2の高さ位置を固定した場合には、10秒間転圧すれば、乾燥密度が1.6Mg/mとなるように締め固めることができることがわかる。また、この図から、ベントナイト材料の含水比が23%、23.6%の場合には、転圧時間が2倍に増えても、目標密度から乖離しないことが確認される。 Next, the head of Ramma 2 was fixed so as not to release the reaction force. Specifically, after fixing the height position of the ramp 2 and continuing the rolling for 5 seconds, the rolling stroke of the ramp 2 (the distance from the bottom surface of the circular rolling plate 21 to the bentonite material) is 100 mm each time. Thus, while adjusting the height position of the runner 2, the rolling pressure was repeated for 5 seconds until the predetermined cumulative time was reached. In this case, since the fluctuation of the rolling stroke of the rammer 2 can be reduced, rolling energy with little variation can be given to the bentonite material B. Moreover, when the height position of the rammer 2 is fixed, it is considered that a large rolling energy can be applied to the bentonite material B due to the reaction force effect. The test results are shown in FIG. The horizontal axis is the total rolling time, and the vertical axis is the dry density. From this figure, it can be seen that when the height position of the luma 2 is fixed, it can be compacted to a dry density of 1.6 Mg / m 3 by rolling for 10 seconds. Further, from this figure, it is confirmed that when the water content ratio of the bentonite material is 23% and 23.6%, it does not deviate from the target density even if the rolling pressure time is doubled.

つぎに、ランマ2の転圧ストロークを変えて締め固め試験を行い、好適な転圧ストロークを導いた。図4に示す試験結果は転圧時間を5秒としたものであり、図5に示す試験結果は転圧時間を10秒としたものである。これらの図には、ランマ2の転圧ストロークによってランマ2の転圧エネルギーが異なり、結果として乾燥密度に差がでることが明確に示されている。また、試験に用いたランマ2は、転圧ストロークを13cmとすれば、効率が良いこともわかる。   Next, a compaction test was performed by changing the rolling stroke of the runner 2, and a suitable rolling stroke was derived. The test results shown in FIG. 4 are those in which the rolling time is 5 seconds, and the test results shown in FIG. 5 are those in which the rolling time is 10 seconds. In these drawings, it is clearly shown that the rolling energy of the rammer 2 varies depending on the rolling stroke of the rammer 2 and, as a result, the dry density varies. It can also be seen that the runner 2 used in the test is efficient when the rolling stroke is 13 cm.

ところで、ランマ2の頭部を固定し反力を逃がさないようにすると、最初は最適な転圧ストローク(たとえば、13cm)で繰り出されるが、ベントナイト材料Bの締め固めが進むと、図6に示すように、転圧の途中でベントナイト材料Bの施工面が低くなり、最適な転圧ストロークでなくなる。そして、ベントナイト材料Bに適正な転圧エネルギーが与えられなくなる。   By the way, if the head of the luma 2 is fixed so as not to release the reaction force, it is initially fed out with an optimum rolling stroke (for example, 13 cm), but when the compaction of the bentonite material B proceeds, it is shown in FIG. Thus, the construction surface of the bentonite material B becomes low in the middle of rolling, and the optimum rolling stroke is lost. And the appropriate rolling energy cannot be given to the bentonite material B.

そこで、図7に示すように、ベントナイト材料Bを複数回に分けて締め固めることとし、その都度転圧ストロークを調整するようにすれば、ランマ2の転圧ストロークの変動を小さくすることができる。したがって、ベントナイト材料Bに適正なエネルギーが与えられる。   Therefore, as shown in FIG. 7, if the bentonite material B is compacted in a plurality of times and the rolling stroke is adjusted each time, the fluctuation of the rolling stroke of the rammer 2 can be reduced. . Therefore, appropriate energy is given to the bentonite material B.

つぎに、撒き出すベントナイト材料Bの含水比を変えて締め固め試験を行い、ベントナイト材料Bの含水比ごとに転圧時間と乾燥密度との関係を求めた。この試験結果を図8に示す。この試験結果を乾燥密度と含水比とから求めた飽和度に着目し整理したものを図9に示す。横軸が転圧時間であり、縦軸が飽和度である。これらの図から、転圧時間が長くなると転圧エネルギーが大きくなり、乾燥密度と飽和度が増大することがわかる。また、転圧が進み飽和度が85%〜90%になると、それ以上飽和度が増大しにくいこともわかる。換言すると、目標密度に締め固めた場合の飽和度が85%〜90%となるように、含水比を調整した粘土系土質材料を撒き出し、転圧施工することとすれば、転圧エネルギーが多少ばらついたとしても、その影響を受けにくく、目標密度に近い均一密度で転圧施工することができる。なお、本発明の実施の形態において、目標密度に締め固めた場合の飽和度が85%〜90%となる粘土系土質材料の含水比は、18.5%〜であり、これによると、粘土系土質材料がウェットな状態であれば、締め固めエネルギーが多少変動しても、乾燥密度がばらつくことはない。 Next, a compaction test was performed by changing the water content ratio of the bentonite material B, and the relationship between the rolling time and the dry density was determined for each water content ratio of the bentonite material B. The test results are shown in FIG. FIG. 9 shows a summary of the test results focusing on the degree of saturation obtained from the dry density and the water content ratio. The horizontal axis is the rolling time, and the vertical axis is the saturation. From these figures, it can be seen that as the rolling time increases, the rolling energy increases and the drying density and saturation increase. It can also be seen that when the rolling pressure advances and the saturation level is 85% to 90%, the saturation level is less likely to increase. In other words, if the clay-based soil material whose water content ratio is adjusted is rolled out and subjected to rolling so that the saturation when compacted to the target density is 85% to 90%, the rolling energy is reduced. Even if there is some variation, it is difficult to be affected by it, and it can be rolled at a uniform density close to the target density. In the embodiment of the present invention, the moisture content of the clay-based soil material having a saturation degree of 85% to 90% when compacted to the target density is 18.5%, and according to this, If the soil material is wet, the dry density will not vary even if the compaction energy varies somewhat.

以上のことを踏まえて、自走式多連装ランマ装置3を用いてベントナイト系土質材料Bを転圧施工する場合には、図10に示すように、転圧が終了した転圧終了面に自走式多連装ランマ装置3を等速走行させることにより、これから施工する施工面に対するランマ2の繰出高さを一定とするとともに、一定速度で漸次転圧することにする。   Based on the above, when the bentonite-based soil material B is rolled using the self-propelled multiple-running rammers 3, as shown in FIG. By making the traveling multi-equipment runner device 3 run at a constant speed, the feeding height of the runner 2 with respect to the construction surface to be constructed is made constant, and the rolling is gradually rolled at a constant speed.

また、施工面に対するランマ2の繰出高さは、ランマ2が効率良く締め固める高さ、すなわち、上述した試験結果から13cmとする。また、転圧施工は、複数回、たとえば、3回または4回に分けて所望の密度まで締め固めることが好ましく、必要な転圧時間を転圧回数で除した時間を転圧するように、自走式多連装ランマ装置3を等速走行させながら、転圧施工させることにする。   Further, the feeding height of the rammer 2 relative to the construction surface is set to 13 cm from the test result described above, that is, the height at which the rammer 2 is efficiently compacted. In addition, it is preferable that the compacting operation is compacted into a plurality of times, for example, three times or four times, and is compacted to a desired density. The rolling type multi-equipment runner device 3 is rolled and applied while running at a constant speed.

さらに、目標密度に締め固めた場合の飽和度が85%から90%になるように、含水比を調整したベントナイト系土質材料Bを撒き出し、転圧施工することにする。このような転圧施工を複数回に分けて行うことによって、ランマ3の転圧ストロークの変動を小さくすることができ、自走式ランマ装置3におけるランマ2の繰出高さを微調整することが不要となり、施工時の管理が容易となる。   Furthermore, the bentonite-based soil material B with the moisture content adjusted is rolled out and subjected to rolling so that the degree of saturation when it is compacted to the target density is 85% to 90%. By performing such rolling operation in a plurality of times, fluctuations in the rolling stroke of the runner 3 can be reduced, and the feed height of the runner 2 in the self-propelled runner device 3 can be finely adjusted. It becomes unnecessary and management at the time of construction becomes easy.

このように、目標密度に締め固めた場合の飽和度が85%から90%になるように、含水比を調整したベントナイト系土質材料Bを撒き出した後、効率良く締め固める繰出高さにランマ2の繰出高さをあらかじめ調整した自走式多連装ランマ装置3が必要な転圧時間を転圧回数で除した時間だけ転圧するように、転圧が終了した転圧終了面を等速走行させながら、転圧施工させれば、図11に示すように、多連装ランマ装置による転圧施工の結果得られるベントナイト系土質材料Bの乾燥密度も非常に均質なものとなる。   In this way, after the bentonite-based soil material B with the moisture content adjusted so that the saturation when the compaction is compacted to the target density is 85% to 90%, the runner height is set to a feeding height that can be compacted efficiently. The self-propelled multi-equipped runner device 3 with the feed height of 2 adjusted in advance runs at a constant speed on the rolling end surface where the rolling is completed so that the required rolling time is divided by the number of rolling times. However, if the rolling compaction is applied, the dry density of the bentonite-based soil material B obtained as a result of the rolling compaction by the multi-running rammers becomes very homogeneous as shown in FIG.

上述したように、図10に示す自走式多連装ランマ装置3によって実際に転圧施工したベントナイト系土質材料Bをコア抜きして、転圧各層の平均乾燥密度をプロットしたものが図11である。さらに、これらの採取サンプルのうち、No2孔から採取したサンプルを上、中、下に3分割して、より詳細な乾燥密度の分布を測定した。その結果を図12に示すが、転圧した各層上部は、より高密度であり、下部は低密度となるという傾向が読み取れる一方で、局部的な高密度な部分は生じても、飽和度が95%を超えることはないということも事実である。結果として、転圧した各層の平均乾燥密度は、目標とする1.6Mg/mに近い値を呈し、各層の平均飽和度は、85〜90%の範囲に入っている。 As described above, the bentonite-based soil material B actually rolled by the self-propelled multi-runner device 3 shown in FIG. 10 is cored, and the average dry density of each layer of the rolling is plotted in FIG. is there. Further, among these collected samples, the sample collected from the No. 2 hole was divided into three parts, upper, middle, and lower, and a more detailed distribution of dry density was measured. The results are shown in FIG. 12, and it can be seen that the upper part of each pressed layer has a higher density and the lower part has a lower density. It is also true that it does not exceed 95%. As a result, the average dry density of each rolled layer exhibits a value close to the target 1.6 Mg / m 3, and the average saturation of each layer is in the range of 85 to 90%.

換言すれば、上述した要素試験によって転圧条件を決定すれば、その転圧条件がそのまま自走式多連装ランマ装置3の転圧条件となることになる。すなわち、自走式多連装ランマ装置3の一の転圧板と同等面積の円形転圧板21が繰り出し可能な円筒容器に、施工予定の粘土系土質材料を施工予定の厚みで撒き出し、一の転圧板を繰り出すランマ2と円形転圧板21を用いて、転圧時間、繰出高さを変えて転圧試験を行うことにより、各条件における転圧後の密度を測定し、最適な転圧条件を決定すれば、それを用いて自走式多連装ランマ装置3のランマ2の繰出高さと自走式多連装ランマ装置3の走行速度を設定できる。   In other words, if the rolling condition is determined by the above-described element test, the rolling condition becomes the rolling condition of the self-propelled multi-runner device 3 as it is. That is, the clay-based soil material to be constructed is sprinkled to the construction work thickness in a cylindrical container in which the circular rolling plate 21 having the same area as that of one rolling plate of the self-propelled multi-runner device 3 can be fed. By measuring the density after rolling in each condition by changing the rolling time and feeding height using the rammer 2 and the circular rolling plate 21 for feeding the pressure plate, the optimum rolling conditions are determined. If it is determined, the feed height of the runner 2 of the self-propelled multi-runner device 3 and the traveling speed of the self-runner multi-runner device 3 can be set.

1 試験モールド
2 ランマ
21 円形転圧板
3 自走式多連装ランマ装置
B ベントナイト材料
DESCRIPTION OF SYMBOLS 1 Test mold 2 Rama 21 Circular compaction board 3 Self-propelled multi-equipment Ranma equipment B Bentonite material

Claims (3)

自走式多連装ランマ装置を用いて粘土系土質材料を転圧する粘土系土質材料の転圧施工方法において、
前記自走式多連装ランマ装置の一の転圧板と同等面積の円形転圧板が繰り出し可能な円筒容器に、施工予定の粘土系土質材料を施工予定の厚みで撒きだし、前記一の転圧板を繰り出すランマと前記円形転圧板を用いて、転圧時間、繰出高さを変えて転圧試験を行うことにより、各条件における転圧後の密度を測定し、ランマが効率良く締め固めるランマの繰出高さと前記自走式多連装ランマ装置の走行速度を導き出し、
ランマの繰出高さを導き出したランマの繰出高さとするとともに、転圧が終了した転圧終了面に前記自走式多連装ランマ装置を導き出した自走式多連装ランマ装置の走行速度で等速走行させることにより、施工面に対するランマの繰出高さを導き出したランマの繰出高さで一定に保ち、一定速度で漸次転圧することを特徴とする粘土系土質材料の転圧施工方法。
In the rolling compaction construction method for clay-based soil materials, which rolls clay-based soil materials using a self-propelled multi-running ramma device ,
In a cylindrical container in which a circular rolling plate having the same area as one rolling plate of the self-propelled multi-runner device can be drawn out, the clay-based soil material to be constructed is sprinkled with the planned construction thickness, and the one rolling plate is disposed. Performing the rolling test by changing the rolling time and the feeding height using the feeding roller and the circular rolling plate, measure the density after rolling in each condition, and feed the hammer that efficiently compacts the hammer. Deriving the height and the traveling speed of the self-propelled multi-runner device,
The running height of the runner is the same as the running height of the runner, and the self-propelled multi-runner device is derived from the self-propelled multi-runner device on the rolling end surface after rolling. A rolling compaction method for a clay-based soil material, characterized in that, by running, the feed height of the runner with respect to the construction surface is kept constant at the feed height of the runner, and rolling is performed gradually at a constant speed.
粘土系土質材料を複数回に分けて所望の密度まで締め固めることを特徴とする請求項1に記載の粘土系土質材料の転圧施工方法。 The method for rolling and applying clay-based soil material according to claim 1, wherein the clay-based soil material is divided into a plurality of times and compacted to a desired density . 目標密度に締め固めた場合の飽和度が85%から90%になるように、含水比を調整した粘土系土質材料を撒き出し、転圧施工することを特徴とする請求項1または2に記載の粘土系土質材料の転圧施工方法。 3. The clay-based soil material having a moisture content adjusted so as to have a saturation degree of 85% to 90% when compacted to a target density, and rolling and rolling. Rolling construction method for clay soil materials.
JP2009031956A 2009-02-13 2009-02-13 Rolling method for clay-based soil materials Active JP5181295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009031956A JP5181295B2 (en) 2009-02-13 2009-02-13 Rolling method for clay-based soil materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009031956A JP5181295B2 (en) 2009-02-13 2009-02-13 Rolling method for clay-based soil materials

Publications (2)

Publication Number Publication Date
JP2010189835A JP2010189835A (en) 2010-09-02
JP5181295B2 true JP5181295B2 (en) 2013-04-10

Family

ID=42816162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009031956A Active JP5181295B2 (en) 2009-02-13 2009-02-13 Rolling method for clay-based soil materials

Country Status (1)

Country Link
JP (1) JP5181295B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5789467B2 (en) * 2011-09-29 2015-10-07 大成建設株式会社 Method for compacting the granulated product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012356A (en) * 2002-06-07 2004-01-15 Shimizu Corp Working method and construction system of high density clay-based soil material
JP4358036B2 (en) * 2004-06-03 2009-11-04 鹿島建設株式会社 Method for estimating rolling characteristics of construction materials
JP4687968B2 (en) * 2005-10-04 2011-05-25 清水建設株式会社 Impermeable member construction device and impermeable member construction method
JP4858831B2 (en) * 2006-08-01 2012-01-18 清水建設株式会社 Compaction machine
JP5131512B2 (en) * 2006-08-28 2013-01-30 清水建設株式会社 Laying a clay-based impermeable layer

Also Published As

Publication number Publication date
JP2010189835A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
Ali et al. Model tests on geosynthetic-reinforced stone columns: a comparative study
Ali et al. Model tests on single and groups of stone columns with different geosynthetic reinforcement arrangement
McKelvey et al. Modelling vibrated stone columns in soft clay
Black et al. The settlement performance of stone column foundations
EP2018454B1 (en) Ground engineering method
Araujo et al. Behaviour of geosynthetic-encased granular columns in porous collapsible soil
CN102251512A (en) Construction method for compacting high loess-filled embankment by combining vibration roller compaction with dynamic compaction
CN202380454U (en) Combined treating collapsible loess foundation of factory building by adopting plain concrete pile and branch filling pile
CN101168961A (en) Method for treating ground foundation of expansive soil area by using geotextile bag and application thereof
Consoli et al. Loading tests on compacted soil, bottom-ash and lime layers
Phanikumar et al. Field behaviour of granular pile-anchors in expansive soils
Rollins et al. Optimum moisture content for dynamic compaction of collapsible soils
Alipour et al. Settlement control by deep and mass soil mixing in clayey soil
JP5181295B2 (en) Rolling method for clay-based soil materials
CN102051847A (en) Method for treating collapsible loess foundation by dynamic compaction
CN104727295A (en) Pre-hole-forming padding substitution hammer flattener dynamic compaction method
JP6304813B2 (en) Saturated ground compaction method
CN100410455C (en) Strong rammer treatment high-water content foundation soil auxiliary construction process
JP2010266237A (en) Jig for tamping test, and method for preparing sample for tamping test
CN206477351U (en) Element earth pile for the high collapsible loess foundation of big thickness
JP5261837B2 (en) Placing a wooden pile
Rao et al. Efficacy of lime-stabilised fly ash in expansive soils
JP2004012356A (en) Working method and construction system of high density clay-based soil material
CN107313468A (en) A kind of seepage proof curtain for releasing collapsible loess foundation settlement by soaking is with level every infiltration level structure and method
JP2005238175A (en) Granular bentonite impervious material, impervious structure, and its construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R150 Certificate of patent or registration of utility model

Ref document number: 5181295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3