JP4357759B2 - Calorimeter - Google Patents

Calorimeter Download PDF

Info

Publication number
JP4357759B2
JP4357759B2 JP2001080528A JP2001080528A JP4357759B2 JP 4357759 B2 JP4357759 B2 JP 4357759B2 JP 2001080528 A JP2001080528 A JP 2001080528A JP 2001080528 A JP2001080528 A JP 2001080528A JP 4357759 B2 JP4357759 B2 JP 4357759B2
Authority
JP
Japan
Prior art keywords
resistor
absorber
calorimeter
insulating film
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001080528A
Other languages
Japanese (ja)
Other versions
JP2002277418A (en
Inventor
啓一 田中
利光 師岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2001080528A priority Critical patent/JP4357759B2/en
Publication of JP2002277418A publication Critical patent/JP2002277418A/en
Application granted granted Critical
Publication of JP4357759B2 publication Critical patent/JP4357759B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Measurement Of Radiation (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は超伝導転移端を利用した高エネルギー分解能、高計数率の特徴をもつカロリーメータに関し、特に放射線の検出効率の向上とカロリーメータの高速化に関する。
【0002】
【従来の技術】
元素分析や不純物検査等で用いられる従来の半導体を利用した検出器のエネルギー分解能、計数率を上回る超伝導転移端を利用したカロリーメータが注目されている(以後カロリーメータと呼ぶ)。従来の半導体を用いた検出器として、Energy Disperse Spectroscopy (EDS)が知られており、広いエネルギー範囲を短時間で元素分析ができることが特徴である。しかしエネルギー分解能は、半導体がもつエネルギーギャップ幅に依存するために、100eVを下回ることは難しかった。このエネルギー分解能の性能を改善し、かつ高計数率の性能を併せ持つ検出器としてカロリーメータが期待されている。計数率とは、放射線検出により発生するパルスの時定数を4〜20倍した時間の逆数であり、1秒あたりにカウント可能なパルス数を表す。
【0003】
カロリーメータは、超伝導転移近傍に温度設定をし、定電圧駆動させることによりネガティブフィードバック状態にして動作させることにより高エネルギー分解能、高係数率を達成している。ネガティブフィードバックとは、定常状態にあるカロリーメータに放射線を入射させ不安定状態になると自己フィードバックにより安定状態に戻る動作を表す。カロリーメータの詳細な説明は、K. D. Irwin, Applied physics Letters 66, 1988 (1995) に記載されている。超伝導転移温度は、物質が常伝導状態から超伝導状態へ転移する温度を表す。超伝導体に薄く常伝導体を成膜すると近接効果により超伝導転移温度を単層のそれに比べ低温側にシフトさせることができる。近接効果とは、超伝導体に常伝導体を積層すると常伝導体により超伝導体の超伝導性が弱められ、超伝導転移温度をシフトさせる効果を表す。温度のシフト量は超伝導体と常伝導体の膜厚比により決定される。カロリーメータが超伝導体と常伝導体の2層構造である場合、放射線の吸収にともない発生した活性電子は常伝導体の中を拡散する。電子の拡散はできるだけ早いほうがよく、電子の拡散長が短いとカロリーメータが昇温される時間が長くなる。電子の拡散長とは、電子が拡散する物質を構成する原子により散乱され、さらに次の原子に散乱されるまでの長さを表す。昇温される時間が長い場合、均一のカロリーメータが昇温される前に一部の電子がカロリーメータから外部に拡散する。カロリーメータの温度は、拡散する電子の数に依存するため、一部の電子が外部へ拡散すると、カロリーメータの温度にばらつきが生じる。その結果、エネルギー分解能を決定する信号パルスの波高値のばらつきに影響を及ぼす。特に薄膜になるほど電子の拡散長が短くなることを薄膜効果と呼ぶ。薄膜効果とは、電子の拡散長より薄膜の厚みが薄い場合、薄膜表面で電子が散乱されるため、電子の拡散長は薄膜の厚みに依存する効果である。
【0004】
【発明が解決しようとする課題】
従来のカロリーメータを図3に示す。図3(a)は真上からみたカロリーメータの図であり、図3(b)はA-A ’線に沿った断面図である。カロリーメータは、放射線を吸収する吸収体1と、吸収体1で発生した熱により電気信号を発生する抵抗体2と、吸収体1と抵抗体2で発生した熱の基板3への逃げをコントロールするメンブレン4と超伝導配線5から構成されている。抵抗体2は、超伝導体のみ、または超伝導体上に常伝導体が積層された2層構造(Bilayer)になっている。
【0005】
吸収体1の面積は抵抗体2の面積より小さく設計されており、吸収体1が積層されていない抵抗体2の領域で超伝導転移温度が決定される。理由は、カロリーメータの超伝導転移温度は、吸収体1が常伝導体の場合、吸収体2が積層された抵抗体は近接効果により抵抗体2の超伝導性は消失され、吸収体1が積層されていない超伝導性が残っている抵抗体2の領域で決定されるためである。そのため従来構造では、吸収体1と抵抗体2の面積を等しくすることはできない。
【0006】
吸収体1と抵抗体2の面積が異なる場合、吸収体1だけでなく必ず抵抗体2に直接放射線が吸収されてしまう問題がある。抵抗体2に直接放射線が吸収された場合と、吸収体1で吸収された場合では発生した熱の拡散時間が異なるため、異なる信号が発生する。その結果、抵抗体2で発生した信号は除去する必要があり、放射線検出の時間にロスが生じる。また、抵抗体2が露出している領域が無駄になってしまい、面積的な吸収効率が低下する。
【0007】
抵抗体2が常伝導体と超伝導体の2層構造で構成されている場合、吸収体で発生した活性電子は抵抗体の常伝導層を伝わり、抵抗体を暖める。しかし、常伝導層が薄く面積が大きい場合、薄膜効果により電子の拡散長が短くなるため、抵抗体が昇温される時間が長くなる問題が生じる。
【0008】
メンブレンは、例えばシリコン窒化膜などの薄い薄膜であり、基板4上に成膜された薄い薄膜下部の一部の基板をエッチングすることにより作製される。基板4がシリコンである場合、例えばウェットエッチングにより基板をエッチングするが、エッチング液に吸収体1と抵抗体2を形成した後エッチング工程を行うと、吸収体1が積層されていない抵抗体2がエッチングまたは破壊される問題が生じる。
【0009】
【課題を解決するための手段】
このような目的を達成するために、放射線を吸収し熱を発生させる吸収体が、熱により抵抗値を変化させる抵抗体の上に形成されており、前記抵抗体が熱の逃げをコントロールするメンブレン上に形成されている超伝導転移端を用いたカロリーメータにおいて、熱伝導率を決定するメンブレン上に温度によって抵抗値を変化させる抵抗体が形成されており、吸収体と抵抗体の一部が接触しており、抵抗体上に放射線を吸収する吸収体が形成されており、かつ吸収体と前記抵抗体の間に絶縁膜が形成されており、絶縁膜下部の抵抗体領域で超伝導転移温度を決定することを特徴とするカロリーメータを用いた。その結果、絶縁膜が積層された抵抗体上に抵抗体と面積が等しい、または抵抗体より面積が大きい吸収体を積層することができる。絶縁膜が積層された抵抗体は吸収体と接触していないため、吸収体との近接効果により超伝導性が破壊されず、超伝導転移温度は絶縁膜下部の抵抗体の超伝導性により保たれる。また、抵抗体の上には必ず吸収体があるため、カロリーメータの面積的な放射線吸収効率は場所によらず一定になり、検出効率が向上する。また、厚い吸収体が薄い抵抗体上に重なっているため、メンブレン作製時に抵抗体が基板のエッチング液によりエッチングされない。そのため再現性よく、かつ安定にカロリーメータを作製することができる。
【0010】
また、絶縁膜が短冊状にパターニングされており、短冊状の絶縁膜が抵抗体上に複数個配置されていることを特徴とするカロリーメータを用いた。放射線吸収により吸収体で発生した活性電子は抵抗体へと拡散し、次に絶縁膜下部の抵抗体へと拡散する。絶縁膜の幅が短冊上であり、かつ長さが十分短いと活性電子が抵抗体中を拡散する長さが短くなる。抵抗体の長さが電子拡散長に比べ大きい場合、絶縁膜下部の電子拡散時間を十分短くなるように設計し、絶縁膜を複数個配列すると電子拡散時間を低下させずに絶縁膜の数に応じてカロリーメータの抵抗値を変化させることができる。その結果、放射線の吸収によりカロリーメータが消温される時間が短くなり、カロリーメータの高速化を図ることができた。
【0011】
また、吸収体の面積が前記抵抗体の面積より大きいカロリーメータを用いた。吸収体の面積を抵抗体の面積より大きくすることにより、吸収体と抵抗体の面積が同じ場合と比較し、メンブレンを形成するときのエッチング液により抵抗体が破壊されることを防ぐ事ができる。そのため再現性よく、かつ安定にカロリーメータを作製することができる。以上により、従来のカロリーメータと比較し、高速にカロリーメータを消温することができ、かつ放射線の吸収効率がよく、かつ再現性よく安定してカロリーメータを作製することができるカロリーメータを得る事ができる。
【0012】
【発明の実施の形態】
(実施例1)
図1は、放射線を吸収し熱を発生させる吸収体が、熱により抵抗値を変化させる抵抗体の上に形成されており、抵抗体が熱の逃げをコントロールするメンブレン上に形成されている超伝導転移端を用いたカロリーメータにおいて、
熱伝導率を決定するメンブレン上に温度によって抵抗値を変化させる抵抗体が形成されており、抵抗体上に放射線を吸収する吸収体が形成されており、かつ吸収体と抵抗体の間に絶縁膜が形成されており、吸収体と抵抗体の一部が接触しており、絶縁膜下部の前記抵抗体領域で超伝導転移温度を決定するカロリーメータを表した模式図である。
【0013】
図1(a)は、カロリーメータ11を上からみた図を表し、図1(b)は図1(a)に示されたA-A ’線に沿った断面図を表す。
【0014】
カロリーメータ11の構成は、支持基板12上にメンブレン13が形成され、メンブレン13上に抵抗体14と吸収体15と超伝導配線16が形成されている。抵抗体14は超伝導体17と常伝導体18の2層構造となっている。なお、所望とする超伝導転移温度が超伝導体17単層で得られるならば常伝導体18を必要としない。吸収体15は超伝導体、常伝導体どちらでもかまわないが、測定する放射線のエネルギーが低い場合(例えば数十keV以下)、できるだけ常伝導体を用いたほうがよい。抵抗体14と吸収体15の間にはコンタクト部分19を残して絶縁膜20により電気的に絶縁されている。抵抗体14と吸収体15の面積は等しい、または吸収体15の方が大きくなるように設計する。超伝導配線16は、例えば抵抗体14の下部に設置することができる。メンブレン13は、熱的に基板12と弱い結合をもつ構造であり、例えば窒化シリコンを用いた薄膜を用いる事ができる。
【0015】
抵抗体4を例えば金(常伝導体)とチタン(超伝導体)の2層構造とし、吸収体5を抵抗体4に比べ十分厚い金(常伝導体)である場合、放射線のほとんどは吸収体5に吸収され、抵抗体14上を完全に覆うように吸収体14が形成されている。従って、従来のマイクロカロリーメータでは抵抗体2に直接放射線が吸収される問題を、本発明により解決することができる。その結果、本発明では放射線の吸収効率が従来のカロリーメータと比較し向上した。以上から、高感度なカロリーメータを得ることができた。
【0016】
またカロリーメータ11は、抵抗体14の上に吸収体15を配置するために、吸収体15と抵抗体14の間に絶縁膜20が挟まれている。超伝導転移温度は、抵抗体14の常伝導体17と超伝導体118の2層構造であるが、常伝導体18の厚みが式(1)に示すコヒーレント長さより厚くなると抵抗体14の超伝導性は消失する(近接効果)。
【0017】
【数1】

Figure 0004357759
【0018】
【数2】
Figure 0004357759
vFN,Sは常伝導体で用いられる材料のフェルミ速度であり、lN,Sは常伝導体で用いられる材料の平均自由行程を表す。
【0019】
本発明では、抵抗体14と吸収体15の一部に、吸収体15で発生した活性電子を抵抗体14に拡散させるためのコンタクト部分19を作製し、それ以外は絶縁膜20により電気的に絶縁させることにより、絶縁膜20下部の抵抗体14の超伝導性は失われない構造にした。絶縁膜20の厚みは十分薄くても、抵抗体14と吸収体15の間で電子の移動ができないため、絶縁膜20の厚みは絶縁膜20が抵抗体14を完全に覆う事ができる程度でかまわない。絶縁膜20の材質としては、例えば2酸化シリコンを用いることができる。
【0020】
また絶縁膜20は、図2に示すように短冊状にし、抵抗体14に対して複数個平行に並べることも可能である。抵抗体14を構成する常伝導体17の膜厚が薄い場合、薄膜効果により電子の拡散長さが短くなる。しかし、短く切られた短冊状下部の抵抗体17の長さは短いため、常伝導体17の拡散長が短くても短時間で抵抗体14中を拡散することができる。短冊状に切られた絶縁膜20を複数個並べる事によりコンタクト部分9と絶縁膜10の面積比を調整することができ、カロリーメータ11の抵抗値を制御することができ、かつ絶縁膜20下部の抵抗体14の超伝導温度によりカロリーメータ11の超伝導転移温度は設定される。その結果、抵抗体14の面積が大きい場合でも放射線吸収にともない発生する活性電子が絶縁膜20下部の抵抗体14中を拡散する時間を短縮することができた。以上から、高速応答可能なカロリーメータを得ることができた。
【0021】
またカロリーメータ11を作製する工程は、支持基板12に抵抗体14と吸収体15と超伝導配線16を作製する工程と、メンブレン13下部の支持基板12をエッチングする工程から成り立っている。詳細なプロセスは、例えばK. Tanaka et.al. Appl.Phys.Lett. 77, 4196 (2000)に報告されている。支持基板13がシリコンである場合、支持基板13はウェットエッチングによりエッチングされる。エッチング液は強アルカリ性であることが多く、吸収体15に覆われていない抵抗体14はエッチング液により破壊されることがあった。しかし、本発明のカロリーメータ11は、抵抗体14の上に吸収体15が必ず積層されているため、エッチング液が抵抗体14に触れないため抵抗体14が破壊される心配がなくなった。また、吸収体15の大きさを抵抗体14の大きさより大きくすることにより、ウェットエッチングによる抵抗体14のサイドエッチングによる破壊も完全に防ぐ事ができた。
【0022】
【発明の効果】
このような目的を達成するために、放射線を吸収し熱を発生させる吸収体が、熱により抵抗値を変化させる抵抗体の上に形成されており、抵抗体が熱の逃げをコントロールするメンブレン上に形成されている超伝導転移端を用いたカロリーメータにおいて、熱伝導率を決定するメンブレン上に温度によって抵抗値を変化させる抵抗体が形成されており、抵抗体上に放射線を吸収する吸収体が形成されており、かつ吸収体と抵抗体の間に絶縁膜が形成されており、吸収体と前記抵抗体の一部が接触しており、絶縁膜下部の抵抗体領域で超伝導転移温度を決定するカロリーメータを用いた。その結果、絶縁膜が積層された抵抗体上に抵抗体と面積が等しい、または抵抗体より面積が大きい吸収体を積層することができる。絶縁膜が積層された抵抗体は吸収体と接触していないため、吸収体との近接効果により超伝導性が破壊されず、超伝導転移温度は絶縁膜下部の抵抗体の超伝導性により保たれる。また、抵抗体の上には必ず吸収体があるため、カロリーメータの面積的な放射線吸収効率は場所によらず一定になり、検出効率が向上する。また、厚い吸収体が薄い抵抗体上に重なっているため、メンブレン作製時に抵抗体が基板のエッチング液によりエッチングされない。そのため再現性よく、かつ安定にカロリーメータを作製することができる。また、絶縁膜が短冊状にパターニングされており、短冊状の絶縁膜が抵抗体上に複数個配置されているカロリーメータを用いた。放射線吸収により吸収体で発生した活性電子は抵抗体へと拡散し、次に絶縁膜下部の抵抗体へと拡散する。絶縁膜の幅が短冊上であり、かつ長さが十分短いと活性電子が抵抗体中を拡散する長さが短くなる。抵抗体の長さが電子拡散長に比べ大きい場合、絶縁膜下部の電子拡散時間を十分短くなるように設計し、絶縁膜を複数個配列すると電子拡散時間を低下させずに絶縁膜の数に応じてカロリーメータの抵抗値を変化させることができる。その結果、放射線の吸収によりカロリーメータが消温される時間が短くなり、カロリーメータの高速化を図ることができる。
【0023】
また、吸収体の面積が前記抵抗体の面積より大きいカロリーメータを用いた。吸収体の面積を抵抗体の面積より大きくすることにより、吸収体と抵抗体の面積が同じ場合と比較し、メンブレンを形成するときのエッチング液により抵抗体が破壊されることを防ぐ事ができる。そのため再現性よく、かつ安定にカロリーメータを作製することができる。以上により、従来のカロリーメータと比較し、高速にカロリーメータを消温することができ、かつ放射線の吸収効率がよく、かつ再現性よく安定してカロリーメータを作製することができるカロリーメータを得る事ができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に関わるカロリーメータ示す概略図である。
【図2】本発明の実施の形態2に関わるカロリーメータを示す概略図である。
【図3】従来のカロリーメータを示す概略図である。
【符号の説明】
1 吸収体
2 抵抗体
3 基板
4 メンブレン
5 超伝導配線
11 カロリーメータ
12 支持基板
13 メンブレン
14 抵抗体
15 吸収体
16 超伝導配線
17 超伝導体
18 常伝導体
19 コンタクト部分
20 絶縁膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a calorimeter having features of high energy resolution and high counting rate using a superconducting transition edge, and more particularly to improvement in radiation detection efficiency and speeding up of the calorimeter.
[0002]
[Prior art]
A calorimeter using a superconducting transition edge exceeding the energy resolution and counting rate of a conventional detector using a semiconductor used in elemental analysis, impurity inspection, etc. has attracted attention (hereinafter referred to as a calorimeter). As detector using the conventional semiconductor, E nergy D isperse S pectroscopy ( EDS) are known, it is characterized that it is a short time by elemental analysis a wide energy range. However, since the energy resolution depends on the energy gap width of the semiconductor, it was difficult to fall below 100 eV. A calorimeter is expected as a detector that improves the performance of this energy resolution and also has the performance of a high count rate. The count rate is the reciprocal of the time obtained by multiplying the time constant of pulses generated by radiation detection by 4 to 20 and represents the number of pulses that can be counted per second.
[0003]
The calorimeter achieves high energy resolution and a high coefficient rate by setting the temperature in the vicinity of the superconducting transition and operating in a negative feedback state by driving at a constant voltage. The negative feedback represents an operation of returning to a stable state by self-feedback when radiation is incident on a calorimeter in a steady state to become an unstable state. A detailed description of the calorimeter is given in KD Irwin, Applied physics Letters 66, 1988 (1995). Superconducting transition temperature represents the temperature at which a substance transitions from a normal state to a superconducting state. When a thin normal conductor is formed on the superconductor, the superconducting transition temperature can be shifted to a lower temperature than that of the single layer by the proximity effect. The proximity effect represents an effect of shifting the superconducting transition temperature by laminating the normal conductor on the superconductor to weaken the superconductivity of the superconductor by the normal conductor. The amount of temperature shift is determined by the film thickness ratio between the superconductor and the normal conductor. When the calorimeter has a two-layer structure of a superconductor and a normal conductor, active electrons generated as a result of radiation absorption diffuse in the normal conductor. Electron diffusion is preferably as fast as possible. If the electron diffusion length is short, the time for which the calorimeter is heated increases. The electron diffusion length is the length of time until electrons are scattered by the atoms constituting the material to which the electrons diffuse and are further scattered by the next atom. When the temperature is raised for a long time, some electrons diffuse from the calorimeter to the outside before the uniform calorimeter is heated. Since the temperature of the calorimeter depends on the number of electrons diffusing, when some electrons diffuse to the outside, the calorimeter temperature varies. As a result, the fluctuation of the peak value of the signal pulse that determines the energy resolution is affected. In particular, the fact that the electron diffusion length becomes shorter as the film becomes thinner is called the thin film effect. The thin film effect is an effect in which the electron diffusion length depends on the thickness of the thin film because electrons are scattered on the surface of the thin film when the thickness of the thin film is smaller than the electron diffusion length.
[0004]
[Problems to be solved by the invention]
A conventional calorimeter is shown in FIG. FIG. 3 (a) is a view of a calorimeter viewed from directly above, and FIG. 3 (b) is a cross-sectional view taken along the line AA ′. The calorimeter controls the absorber 1 that absorbs radiation, the resistor 2 that generates an electrical signal by the heat generated in the absorber 1, and the escape of heat generated in the absorber 1 and the resistor 2 to the substrate 3. And a superconducting wiring 5. The resistor 2 has a two-layer structure (bilayer) in which a superconductor alone or a normal conductor is laminated on the superconductor.
[0005]
The area of the absorber 1 is designed to be smaller than the area of the resistor 2, and the superconducting transition temperature is determined in the region of the resistor 2 where the absorber 1 is not laminated. The reason is that when the absorber 1 is a normal conductor, the superconductor transition temperature of the calorimeter is such that the superconductor of the resistor 2 disappears due to the proximity effect in the resistor laminated with the absorber 2, and the absorber 1 This is because the superconductivity that is not laminated is determined in the region of the resistor 2. Therefore, in the conventional structure, the areas of the absorber 1 and the resistor 2 cannot be made equal.
[0006]
When the areas of the absorber 1 and the resistor 2 are different from each other, there is a problem that radiation is directly absorbed not only by the absorber 1 but also by the resistor 2. Since the diffusion time of the generated heat differs between the case where the radiation is directly absorbed by the resistor 2 and the case where the radiation is absorbed by the absorber 1, different signals are generated. As a result, the signal generated by the resistor 2 needs to be removed, and a loss occurs in the time of radiation detection. Further, the region where the resistor 2 is exposed is wasted, and the area-wise absorption efficiency is lowered.
[0007]
When the resistor 2 has a two-layer structure of a normal conductor and a superconductor, active electrons generated in the absorber are transmitted through the normal layer of the resistor and warm the resistor. However, when the normal conductive layer is thin and has a large area, the diffusion length of electrons is shortened due to the thin film effect, so that there is a problem that the time during which the resistor is heated is long.
[0008]
The membrane is a thin thin film such as a silicon nitride film, for example, and is manufactured by etching a part of the substrate below the thin thin film formed on the substrate 4. When the substrate 4 is silicon, for example, the substrate is etched by wet etching. However, when the etching process is performed after the absorber 1 and the resistor 2 are formed in the etching solution, the resistor 2 in which the absorber 1 is not stacked is obtained. The problem of being etched or destroyed arises.
[0009]
[Means for Solving the Problems]
In order to achieve such an object, an absorber that absorbs radiation and generates heat is formed on a resistor that changes the resistance value by heat, and the resistor controls the escape of heat. In the calorimeter using the superconducting transition edge formed above, a resistor that changes the resistance value depending on the temperature is formed on the membrane that determines the thermal conductivity. An absorber that absorbs radiation is formed on the resistor, and an insulating film is formed between the absorber and the resistor, and a superconducting transition occurs in the resistor region below the insulating film. A calorimeter characterized by determining the temperature was used. As a result, an absorber having the same area as the resistor or having a larger area than the resistor can be stacked on the resistor on which the insulating film is stacked. Since the resistor with the insulating film laminated is not in contact with the absorber, the superconductivity is not destroyed by the proximity effect with the absorber, and the superconducting transition temperature is maintained by the superconductivity of the resistor under the insulating film. Be drunk. Also, since there is always an absorber above the resistor, the area-specific radiation absorption efficiency of the calorimeter is constant regardless of location, and detection efficiency is improved. In addition, since the thick absorber is overlaid on the thin resistor, the resistor is not etched by the substrate etchant during membrane fabrication. Therefore, a calorimeter can be produced with good reproducibility and stability.
[0010]
In addition, a calorimeter characterized in that the insulating film is patterned in a strip shape and a plurality of strip-shaped insulating films are arranged on the resistor is used. Active electrons generated in the absorber by radiation absorption diffuse to the resistor, and then diffuse to the resistor below the insulating film. If the width of the insulating film is on a strip and the length is sufficiently short, the length of diffusion of active electrons in the resistor is shortened. When the length of the resistor is larger than the electron diffusion length, the electron diffusion time under the insulating film is designed to be sufficiently short, and if multiple insulating films are arranged, the number of insulating films can be reduced without reducing the electron diffusion time. The resistance value of the calorimeter can be changed accordingly. As a result, the time for which the calorimeter is turned off due to the absorption of radiation is shortened, and the speed of the calorimeter can be increased.
[0011]
Moreover, the calorimeter whose area of an absorber is larger than the area of the said resistor was used. By making the area of the absorber larger than the area of the resistor, it is possible to prevent the resistor from being destroyed by the etching solution when forming the membrane, compared to the case where the area of the absorber and the resistor is the same. . Therefore, a calorimeter can be produced with good reproducibility and stability. By the above, compared with the conventional calorimeter, the calorimeter which can cool the calorimeter at high speed, has a high radiation absorption efficiency, and can stably produce the calorimeter with good reproducibility is obtained. I can do things.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
(Example 1)
FIG. 1 shows that an absorber that absorbs radiation and generates heat is formed on a resistor that changes its resistance value by heat, and the resistor is formed on a membrane that controls the escape of heat. In the calorimeter using the conduction transition edge,
A resistor that changes the resistance value according to temperature is formed on the membrane that determines the thermal conductivity, an absorber that absorbs radiation is formed on the resistor, and insulation is provided between the absorber and the resistor. FIG. 6 is a schematic diagram showing a calorimeter in which a film is formed, an absorber and a part of a resistor are in contact, and a superconducting transition temperature is determined in the resistor region below the insulating film.
[0013]
1A shows a view of the calorimeter 11 as viewed from above, and FIG. 1B shows a cross-sectional view along the line AA ′ shown in FIG.
[0014]
In the configuration of the calorimeter 11, a membrane 13 is formed on a support substrate 12, and a resistor 14, an absorber 15, and a superconducting wiring 16 are formed on the membrane 13. The resistor 14 has a two-layer structure of a superconductor 17 and a normal conductor 18. Note that the normal conductor 18 is not required if the desired superconducting transition temperature can be obtained with a single layer of the superconductor 17. The absorber 15 may be either a superconductor or a normal conductor, but when the energy of radiation to be measured is low (for example, several tens of keV or less), it is better to use a normal conductor as much as possible. The resistor 14 and the absorber 15 are electrically insulated by an insulating film 20 leaving a contact portion 19. The area of the resistor 14 and the absorber 15 is equal, or the absorber 15 is designed to be larger. The superconducting wiring 16 can be installed under the resistor 14, for example. The membrane 13 has a structure having a weak bond with the substrate 12 thermally. For example, a thin film using silicon nitride can be used.
[0015]
For example, when the resistor 4 has a two-layer structure of gold (normal conductor) and titanium (superconductor) and the absorber 5 is gold (normal conductor) that is sufficiently thicker than the resistor 4, most of the radiation is absorbed. Absorber 14 is formed so as to be absorbed by body 5 and completely cover resistor 14. Therefore, the problem that radiation is directly absorbed by the resistor 2 in the conventional microcalorimeter can be solved by the present invention. As a result, in the present invention, the radiation absorption efficiency was improved as compared with the conventional calorimeter. From the above, a highly sensitive calorimeter could be obtained.
[0016]
In the calorimeter 11, an insulating film 20 is sandwiched between the absorber 15 and the resistor 14 in order to place the absorber 15 on the resistor 14. The superconducting transition temperature is a two-layer structure of the normal conductor 17 and the superconductor 118 of the resistor 14, but when the thickness of the normal conductor 18 becomes thicker than the coherent length shown in the equation (1), the superconductor transition temperature is higher. Conductivity disappears (proximity effect).
[0017]
[Expression 1]
Figure 0004357759
[0018]
[Expression 2]
Figure 0004357759
v FN, S is the Fermi velocity of the material used in the normal conductor, and l N, S represents the mean free path of the material used in the normal conductor.
[0019]
In the present invention, a contact portion 19 for diffusing active electrons generated in the absorber 15 into the resistor 14 is formed in a part of the resistor 14 and the absorber 15, and the rest is electrically formed by the insulating film 20. By making the insulation, the superconductivity of the resistor 14 under the insulating film 20 is not lost. Even if the thickness of the insulating film 20 is sufficiently thin, electrons cannot move between the resistor 14 and the absorber 15, so the thickness of the insulating film 20 is such that the insulating film 20 can completely cover the resistor 14. It doesn't matter. As a material of the insulating film 20, for example, silicon dioxide can be used.
[0020]
Further, the insulating film 20 may be formed in a strip shape as shown in FIG. When the normal conductor 17 constituting the resistor 14 is thin, the electron diffusion length is shortened by the thin film effect. However, since the length of the short-cut strip-shaped resistor 17 is short, the resistor 14 can be diffused in a short time even if the normal conductor 17 has a short diffusion length. By arranging a plurality of strips of insulating film 20, the area ratio between the contact portion 9 and the insulating film 10 can be adjusted, the resistance value of the calorimeter 11 can be controlled, and the lower portion of the insulating film 20 The superconducting transition temperature of the calorimeter 11 is set by the superconducting temperature of the resistor 14. As a result, even when the area of the resistor 14 is large, it is possible to shorten the time for the active electrons generated due to radiation absorption to diffuse in the resistor 14 below the insulating film 20. From the above, a calorimeter capable of high-speed response could be obtained.
[0021]
The process of manufacturing the calorimeter 11 includes a process of manufacturing the resistor 14, the absorber 15 and the superconducting wiring 16 on the support substrate 12, and a process of etching the support substrate 12 below the membrane 13. A detailed process is reported, for example, in K. Tanaka et.al. Appl.Phys.Lett. 77, 4196 (2000). When the support substrate 13 is silicon, the support substrate 13 is etched by wet etching. The etching solution is often strongly alkaline, and the resistor 14 not covered with the absorber 15 may be destroyed by the etching solution. However, in the calorimeter 11 of the present invention, since the absorber 15 is always laminated on the resistor 14, the etching solution does not touch the resistor 14, so that the resistor 14 is not damaged. Further, by making the size of the absorber 15 larger than the size of the resistor 14, it was possible to completely prevent the resistor 14 from being damaged by side etching due to wet etching.
[0022]
【The invention's effect】
In order to achieve such an object, an absorber that absorbs radiation and generates heat is formed on a resistor that changes the resistance value by heat, and the resistor controls the escape of heat on the membrane. In the calorimeter using the superconducting transition edge formed in the above, a resistor that changes the resistance value with temperature is formed on the membrane that determines the thermal conductivity, and the absorber that absorbs radiation on the resistor And an insulating film is formed between the absorber and the resistor, the absorber and a part of the resistor are in contact with each other, and a superconducting transition temperature is formed in the resistor region below the insulating film. A calorimeter was used to determine. As a result, an absorber having the same area as the resistor or having a larger area than the resistor can be stacked on the resistor on which the insulating film is stacked. Since the resistor with the insulating film laminated is not in contact with the absorber, the superconductivity is not destroyed by the proximity effect with the absorber, and the superconducting transition temperature is maintained by the superconductivity of the resistor under the insulating film. Be drunk. Also, since there is always an absorber above the resistor, the area-specific radiation absorption efficiency of the calorimeter is constant regardless of location, and detection efficiency is improved. In addition, since the thick absorber is overlaid on the thin resistor, the resistor is not etched by the substrate etchant during membrane fabrication. Therefore, a calorimeter can be produced with good reproducibility and stability. Further, a calorimeter in which the insulating film is patterned in a strip shape and a plurality of strip-shaped insulating films are arranged on the resistor was used. Active electrons generated in the absorber by radiation absorption diffuse to the resistor, and then diffuse to the resistor below the insulating film. If the width of the insulating film is on a strip and the length is sufficiently short, the length of diffusion of active electrons in the resistor is shortened. When the length of the resistor is larger than the electron diffusion length, the electron diffusion time under the insulating film is designed to be sufficiently short, and if multiple insulating films are arranged, the number of insulating films can be reduced without reducing the electron diffusion time. The resistance value of the calorimeter can be changed accordingly. As a result, the time for which the calorimeter is turned off by absorption of radiation is shortened, and the speed of the calorimeter can be increased.
[0023]
Moreover, the calorimeter whose area of an absorber is larger than the area of the said resistor was used. By making the area of the absorber larger than the area of the resistor, it is possible to prevent the resistor from being destroyed by the etching solution when forming the membrane, compared to the case where the area of the absorber and the resistor is the same. . Therefore, a calorimeter can be produced with good reproducibility and stability. By the above, compared with the conventional calorimeter, the calorimeter which can cool the calorimeter at high speed, has a high radiation absorption efficiency, and can stably produce the calorimeter with good reproducibility is obtained. I can do things.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a calorimeter according to a first embodiment of the present invention.
FIG. 2 is a schematic diagram showing a calorimeter according to Embodiment 2 of the present invention.
FIG. 3 is a schematic view showing a conventional calorimeter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Absorber 2 Resistor 3 Substrate 4 Membrane 5 Superconducting wiring 11 Calorimeter 12 Support substrate 13 Membrane 14 Resistor 15 Absorber 16 Superconducting wiring 17 Superconductor 18 Normal conductor 19 Contact part 20 Insulating film

Claims (1)

放射線を吸収し熱を発生する吸収体
前記吸収体の下に配置され、前記吸収体から発生する熱により抵抗値変化する抵抗体と、
前記抵抗体を支持し前記吸収体から発生する熱の逃げをコントロールするメンブレンとからなる超伝導転移端を用いたカロリーメータにおいて、
前記吸収体の前記抵抗体に向き合う側と反対側の面積は、前記抵抗体の前記吸収体に向き合う側の面積と同じか、または、前記抵抗体の前記吸収体に向き合う側の面積よりも大きく、
前記抵抗体と前記吸収体との間に短冊状の絶縁膜が複数個配置され、
前記絶縁膜下部の前記抵抗体領域で超伝導転移温度を決定することを特徴とするカロリーメータ。
An absorber which generates heat by absorbing the radiation,
Disposed beneath the absorber, a resistor whose resistance value changes by heat generated from the absorber,
In a calorimeter using a superconducting transition edge composed of a membrane that supports the resistor and controls escape of heat generated from the absorber ,
The area of the absorber opposite to the side facing the resistor is the same as the area of the resistor facing the absorber or larger than the area of the resistor facing the absorber. ,
A plurality of strip-shaped insulating films are arranged between the resistor and the absorber ,
A calorimeter, wherein a superconducting transition temperature is determined in the region of the resistor under the insulating film.
JP2001080528A 2001-03-21 2001-03-21 Calorimeter Expired - Lifetime JP4357759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001080528A JP4357759B2 (en) 2001-03-21 2001-03-21 Calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001080528A JP4357759B2 (en) 2001-03-21 2001-03-21 Calorimeter

Publications (2)

Publication Number Publication Date
JP2002277418A JP2002277418A (en) 2002-09-25
JP4357759B2 true JP4357759B2 (en) 2009-11-04

Family

ID=18936794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001080528A Expired - Lifetime JP4357759B2 (en) 2001-03-21 2001-03-21 Calorimeter

Country Status (1)

Country Link
JP (1) JP4357759B2 (en)

Also Published As

Publication number Publication date
JP2002277418A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
JP2001201397A (en) Infrared sensor
US6239431B1 (en) Superconducting transition-edge sensor with weak links
US6332322B1 (en) Electronic device having a thermally isolated element
JP4080778B2 (en) Calorimeter
JP4357759B2 (en) Calorimeter
JP3928856B2 (en) Thermal infrared sensor, radiation thermometer, and infrared absorption film forming method
Tibuzzi et al. Polysilicon mesoscopic wires coated by Pd as high sensitivity H2 sensors
JP7412702B2 (en) heat flow switching element
JPH07167815A (en) Sensor device and preparation thereof
US20210249577A1 (en) Heat flow switching element
You et al. Single intrinsic Josephson junction with double-sided fabrication technique
Sadhu et al. Simultaneous measurements of thermal conductivity and seebeck coefficients of roughened nanowire arrays
Ghosh et al. A method for forming low resistance contact to P-CdTe
Zhu et al. Transport properties in iron-passivated porous silicon
JPH04356979A (en) Infrared ray sensor
JPS62220850A (en) Atmosphere detector
JP2002344036A (en) Manufacturing method of membrane
JPS6070774A (en) Detector for radiation
JP3824075B2 (en) Radiation detector
JPH03136363A (en) Polycrystalline silicon film resistor
JPH114014A (en) Semiconductor photodetector
JPH09138164A (en) Infrared detection element
JP3084741B2 (en) Planar type thermionic emission device
JPH08178741A (en) Infrared sensor and manufacture thereof
JPH07153999A (en) Josephson element

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4357759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091102

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term