JPH04356979A - Infrared ray sensor - Google Patents

Infrared ray sensor

Info

Publication number
JPH04356979A
JPH04356979A JP3121173A JP12117391A JPH04356979A JP H04356979 A JPH04356979 A JP H04356979A JP 3121173 A JP3121173 A JP 3121173A JP 12117391 A JP12117391 A JP 12117391A JP H04356979 A JPH04356979 A JP H04356979A
Authority
JP
Japan
Prior art keywords
thin film
film
infrared
infrared sensor
infrared ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3121173A
Other languages
Japanese (ja)
Inventor
Shigeaki Tomonari
恵昭 友成
Atsushi Sakai
淳 阪井
Takuro Nakamura
卓郎 中邑
Koichi Aizawa
浩一 相澤
Hidekazu Himesawa
秀和 姫澤
Yuji Takada
裕司 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP3121173A priority Critical patent/JPH04356979A/en
Publication of JPH04356979A publication Critical patent/JPH04356979A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a thermistor type thermal conversion infrared ray sensor which has high sensitivity, a low resistance value and low noise, and which is easily realized. CONSTITUTION:An infrared ray sensor 1 having a thin film 6 which has thermistor characteristics for detecting an infrared ray according to a temperature rise of the film 6, wherein the film 6 is a thin amorphous semiconductor film and electrodes 5, 7 are laminated to be formed on the front and rear surfaces of the film.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、サーミスタ式熱変換
型の赤外線センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermistor type heat conversion type infrared sensor.

【0002】0002

【従来の技術】サーミスタ式熱変換型の赤外線センサ(
赤外線検出素子)として、発明者らは、サーミスタ特性
を有する薄膜に、平均粒径0.01〜1.0μmで厚み
0.1〜5.0μmの多結晶シリコン薄膜を使い、その
表面に複数の電極を形成した赤外線センサを開発して検
討した。この赤外線センサは、従来のセラミック型セン
サに比べ、熱容量が小さく、高感度で応答速度も速く、
さらにICとの一体化が可能であり、信号処理回路と同
一の基板に形成できる等、多くの特徴があることが分か
った。
[Prior technology] Thermistor type heat conversion type infrared sensor (
As an infrared detection element), the inventors used a polycrystalline silicon thin film with an average grain size of 0.01 to 1.0 μm and a thickness of 0.1 to 5.0 μm as a thin film having thermistor characteristics, and a plurality of An infrared sensor with electrodes formed was developed and investigated. This infrared sensor has a smaller heat capacity, higher sensitivity, and faster response speed than conventional ceramic sensors.
Furthermore, it has been found that it has many features, such as being able to be integrated with an IC and being formed on the same substrate as a signal processing circuit.

【0003】0003

【発明が解決しようとする課題】しかしながら、上記赤
外線センサは、検討の結果、以下のような改善すべき点
のあることも分かった。ひとつは、図3にみるように、
電極31が全て多結晶シリコン薄膜30の表面に揃って
設けられる櫛型電極構造しか採れないことである。多結
晶シリコン薄膜30の形成時の温度が700℃以上であ
るために、多結晶シリコン薄膜の形成前に電極を予め設
けておくことが出来ず、多結晶シリコン薄膜を先に基板
32に形成してから薄膜30の表面に全電極31を揃っ
て設けざるを得ないのである。全での電極31が同一面
側に揃う櫛型電極構造の場合、以下のような問題がある
[Problems to be Solved by the Invention] However, as a result of study, it has been found that the above-mentioned infrared sensor has the following points to be improved. One is, as shown in Figure 3.
Only a comb-shaped electrode structure in which all the electrodes 31 are provided evenly on the surface of the polycrystalline silicon thin film 30 can be adopted. Since the temperature during formation of the polycrystalline silicon thin film 30 is 700° C. or higher, electrodes cannot be provided in advance before the polycrystalline silicon thin film is formed, so the polycrystalline silicon thin film is first formed on the substrate 32. After that, all the electrodes 31 have to be arranged on the surface of the thin film 30. In the case of a comb-shaped electrode structure in which all the electrodes 31 are aligned on the same side, there are the following problems.

【0004】第1の問題は、高感度にしようとすると多
結晶シリコン薄膜抵抗体の抵抗値を適切な範囲にもって
くることが事実上出来ないことである。赤外線吸収によ
る前記薄膜の温度上昇で赤外線の検出を行うのであるが
、高感度のためには多結晶シリコン薄膜の温度変化に対
する抵抗値変化(ふつう「B定数」で表される)の大き
いことが必要である。多結晶シリコン薄膜の場合、B定
数が活性化エネルギー(以下、「Ea」と言う)に対応
しており、図5から分かるように、大きいEaを得るに
は不純物が添加されない真性半導体を用いればよい。 しかしながら、図4にみるように、真性半導体は暗導電
率σRTが極小さいため、薄膜抵抗体の抵抗値が非常に
大きくなってしまう。赤外線センサで求められる抵抗値
は、おおよそ1MΩである。
The first problem is that if high sensitivity is desired, it is virtually impossible to bring the resistance value of the polycrystalline silicon thin film resistor into an appropriate range. Infrared rays are detected by the rise in temperature of the thin film due to infrared absorption, and in order to achieve high sensitivity, the resistance value change (usually expressed as the "B constant") with respect to temperature changes of the polycrystalline silicon thin film is large. is necessary. In the case of polycrystalline silicon thin films, the B constant corresponds to the activation energy (hereinafter referred to as "Ea"), and as can be seen from Figure 5, in order to obtain a large Ea, it is necessary to use an intrinsic semiconductor to which no impurities are added. good. However, as shown in FIG. 4, since the dark conductivity σRT of an intrinsic semiconductor is extremely small, the resistance value of the thin film resistor becomes extremely large. The resistance value required by an infrared sensor is approximately 1 MΩ.

【0005】上記のような暗導電率σRTが極小さい真
性半導体で1MΩを実現するためには、■薄膜の厚みを
極厚くする(10μm以上),■電極間のギャップを非
常に狭くする(〜1μm)■抵抗体の幅をずっと広くす
る(数mm以上)といった対応をとる必要が出てくる。 しかしながら、薄膜の膜質・微細加工能力・素子サイズ
等の制約を考えると、上記3つの対応はおよそ現実的で
ない。膜厚み1μm、幅16mmの多結晶シリコン薄膜
で電極間ギャップ20μmと、現状で現実的に可能な範
囲と言えるものでも40M以上の抵抗値になるからであ
る。
[0005] In order to achieve 1 MΩ with the above-mentioned intrinsic semiconductor with extremely low dark conductivity σRT, it is necessary to: 1) make the thin film extremely thick (10 μm or more), 2) make the gap between the electrodes very narrow (~ 1μm) ■It will be necessary to take measures such as making the width of the resistor much wider (several mm or more). However, considering constraints such as thin film quality, microfabrication capability, and element size, the above three measures are hardly realistic. This is because even if a polycrystalline silicon thin film with a thickness of 1 μm and a width of 16 mm has an interelectrode gap of 20 μm, which can be said to be within a realistically possible range at present, the resistance value will be 40 M or more.

【0006】第2の問題はノイズの問題である。高感度
を得る場合、高いB定数と共にS/N比の大きいことが
重要である。つまり、多結晶シリコン薄膜抵抗体のノイ
ズを低く抑えなければならないのである。通常、ノイズ
には熱雑音と過剰雑音があるが、この場合は熱雑音に比
べ過剰雑音の占める割合が大きく、主として過剰雑音が
問題となる。多結晶シリコン等の半導体の過剰雑音は「
NOISE(ALDERT VAN DER ZIEL
)」に記載の如く、一定条件下では抵抗体の体積に逆比
例する。MSD、櫛型電極構造においては、図3にみる
ように、斜め格子の電極形成部分は上記体積のうちに入
らず斜め格子の部分の間だけと考えられるため、過剰雑
音低減という点で大きなロスがあり、低ノイズレベルの
実現が困難なのである。
The second problem is that of noise. When obtaining high sensitivity, it is important to have a high S/N ratio as well as a high B constant. In other words, the noise of the polycrystalline silicon thin film resistor must be kept low. Normally, noise includes thermal noise and excessive noise, but in this case, the excess noise accounts for a larger proportion than the thermal noise, and the excess noise is the main problem. Excessive noise in semiconductors such as polycrystalline silicon is
NOISE(ALDERT VAN DER ZIEL
), under certain conditions it is inversely proportional to the volume of the resistor. In the MSD and comb-shaped electrode structure, as shown in Figure 3, the electrode forming part of the diagonal lattice does not fit into the above volume and is considered to be only between the parts of the diagonal lattice, so there is a large loss in terms of excessive noise reduction. This makes it difficult to achieve a low noise level.

【0007】この発明は、上記事情に鑑み、高感度かつ
低抵抗値であり、しかも、低雑音であって実現容易なサ
ーミスタ式熱変換型赤外線センサを提供することを課題
とする。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide a thermistor type thermal conversion type infrared sensor which is highly sensitive, has a low resistance value, has low noise, and is easy to implement.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
、この発明にかかる赤外線センサでは、サーミスタ特性
を有する薄膜を備え、赤外線吸収による前記薄膜の温度
上昇で赤外線の検出を行うようになっており、前記薄膜
が、非晶質半導体薄膜であって、その表面と裏面それぞ
れに電極を積層形成する構成をとるようにしている。
[Means for Solving the Problems] In order to solve the above problems, an infrared sensor according to the present invention includes a thin film having thermistor characteristics, and detects infrared rays by increasing the temperature of the thin film due to infrared absorption. The thin film is an amorphous semiconductor thin film, and electrodes are laminated on each of its front and back surfaces.

【0009】この発明の赤外線センサ(赤外線素子)の
場合、通常、絶縁膜の上に裏面側電極を形成し、ついで
非晶質半導体薄膜を積層し、その後で表面側電極を形成
して、最後に赤外線吸収膜を積層形成した積層構成とな
る。絶縁膜としては、シリコン基板の堀り込み空間に掛
け渡された絶縁膜が適切なものとして挙げられる。この
場合、絶縁膜上のセンサ部分は絶縁膜によりシリコン基
板と熱絶縁・電気絶縁されることになる。シリコン基板
と絶縁膜の接触部分が僅かなためシリコン基板と絶縁膜
の間が十分に熱遮断され、その他の部分は空間が熱遮断
の役割を果たす。そのため、赤外線吸収熱が外に放散す
ることなくセンサ部の温度上昇に有効に使われる。
In the case of the infrared sensor (infrared element) of the present invention, a back side electrode is usually formed on an insulating film, then an amorphous semiconductor thin film is laminated, then a front side electrode is formed, and finally the back side electrode is formed on the insulating film. It has a laminated structure in which an infrared absorbing film is laminated on top. An appropriate example of the insulating film is an insulating film spanning the trenched space of the silicon substrate. In this case, the sensor portion on the insulating film is thermally and electrically insulated from the silicon substrate by the insulating film. Since the contact area between the silicon substrate and the insulating film is small, there is sufficient heat isolation between the silicon substrate and the insulating film, and in other parts, the space plays the role of heat isolation. Therefore, the infrared absorbed heat is effectively used to raise the temperature of the sensor section without being dissipated to the outside.

【0010】絶縁膜は、シリコン酸化膜やシリコン窒化
膜を積層した多層膜が好ましい。引っ張り・圧縮特性を
もつ薄膜を適当に組み合わせることで反りの軽減が図れ
るからである。しかし、絶縁膜がシリコン酸化膜の単一
膜やシリコン窒化膜の単一膜であってもよいことは言う
までもない。絶縁膜の表面に設ける裏面側電極は、Al
やCr等の金属薄膜電極であってもよいが、熱絶縁性の
良いNiCrの金属薄膜電極が望ましい。
[0010] The insulating film is preferably a multilayer film in which silicon oxide films and silicon nitride films are laminated. This is because warpage can be reduced by appropriately combining thin films with tensile and compressive properties. However, it goes without saying that the insulating film may be a single silicon oxide film or a single silicon nitride film. The back side electrode provided on the surface of the insulating film is made of Al
Although a metal thin film electrode such as NiCr or Cr may be used, a NiCr metal thin film electrode with good thermal insulation properties is preferable.

【0011】サーミスタ特性を有する非晶質半導体薄膜
としては、アモルファスシリコン系材料、具体的には、
アモルファスシリコンやSiC、SiN等のアモルファ
スシリコン合金で形成されたものが適当なものとして例
示される。非晶質半導体薄膜の上に設ける表面側電極も
、AlやCrあるいはNiCr等の金属薄膜電極が用い
られる。
[0011] As the amorphous semiconductor thin film having thermistor characteristics, an amorphous silicon-based material, specifically,
Suitable examples include amorphous silicon and amorphous silicon alloys such as SiC and SiN. The surface-side electrode provided on the amorphous semiconductor thin film is also a metal thin film electrode made of Al, Cr, NiCr, or the like.

【0012】赤外線吸収膜には、例えば、金ブラック(
金黒)が用いられる。なお、他の膜、例えば電極用薄膜
自体に赤外線吸収膜機能がある場合には格別に赤外線吸
収膜を設けなくてもよい。
For example, gold black (
Gold and black) are used. Note that if another film, for example, the electrode thin film itself has an infrared absorbing film function, there is no need to provide an infrared absorbing film.

【0013】[0013]

【作用】この発明の赤外線センサでは、サーミスタ特性
を有する薄膜が非晶質半導体薄膜であるため、薄膜の表
面と裏面それぞれに電極を形成したサンドイッチ型電極
構造が採れる。非晶質半導体薄膜は300℃程度の低温
で形成できるため、電極用金属薄膜の上に形成しても下
からの金属拡散等による汚染を受けない。サンドイッチ
型電極構造は低抵抗値が容易に採れる構造であり、その
結果、実現が容易な現実的範囲において、高感度と低抵
抗値を両立させることができるだけでなく、電極の間の
薄膜部分全部が抵抗体であるため殆どロスがなく、過剰
雑音が少なくなる。
[Operation] In the infrared sensor of the present invention, since the thin film having thermistor characteristics is an amorphous semiconductor thin film, a sandwich type electrode structure can be adopted in which electrodes are formed on each of the front and back surfaces of the thin film. Since an amorphous semiconductor thin film can be formed at a low temperature of about 300° C., even if it is formed on a metal thin film for an electrode, it will not be contaminated by metal diffusion from below. The sandwich type electrode structure is a structure that can easily achieve a low resistance value, and as a result, it is not only possible to achieve both high sensitivity and low resistance value within a practical range that is easy to realize, but also to completely eliminate the thin film between the electrodes. Since it is a resistor, there is almost no loss and excess noise is reduced.

【0014】このように、この発明の赤外線センサは、
高感度で低雑音であるため微弱な席外線の検出が可能で
あり、しかも、低抵抗であるため信号処理回路との整合
性もよくて使い易く、しかも実現が容易であるから、非
常に実用性が高い。
[0014] Thus, the infrared sensor of the present invention has
It is highly sensitive and has low noise, making it possible to detect weak outside lines.Moreover, its low resistance makes it compatible with signal processing circuits, making it easy to use and easy to implement, making it extremely practical. Highly sexual.

【0015】[0015]

【実施例】以下、この発明の赤外線センサの実施例を、
図面を参照しながら詳しく説明する。もちろん、この発
明は下記の実施例に限らない。図1は、実施例にかかる
サンドイッチ型電極構造の赤外線センサの要部断面をあ
らわし、図2は、実施例にかかる赤外線センサの要部を
斜め上方からみた状態をあらわす(但し、赤外線吸収膜
の図示を省略している)。
[Example] Hereinafter, an example of an infrared sensor of the present invention will be described.
This will be explained in detail with reference to the drawings. Of course, the present invention is not limited to the following embodiments. FIG. 1 shows a cross section of a main part of an infrared sensor with a sandwich-type electrode structure according to an example, and FIG. (not shown).

【0016】実施例の赤外線センサ1は、シリコン基板
2の堀り込み空間2aに掛け渡された絶縁膜3の上に薄
型のセンサ部が設けられている。シリコン基板2の堀り
込み空間2aは、HF−HNO3 系あるいはKOH系
等のエッチング液を用いて裏面から表面に向けてエッチ
ングすることで形成されたものである。絶縁膜3はシリ
コン酸化膜とシリコン窒化膜が交互に積層された5層構
成であり、熱絶縁および電気絶縁の役割を果たしている
。 なお、絶縁膜3には熱絶縁性をより向上させるために、
スリット3aを設けてシリコン基板側との接触部分を少
なくしている。
In the infrared sensor 1 of the embodiment, a thin sensor section is provided on an insulating film 3 that spans a digging space 2a of a silicon substrate 2. The dug space 2a of the silicon substrate 2 is formed by etching from the back surface toward the front surface using an HF-HNO3 or KOH-based etching solution. The insulating film 3 has a five-layer structure in which silicon oxide films and silicon nitride films are alternately laminated, and plays the role of thermal insulation and electrical insulation. In addition, in order to further improve thermal insulation properties of the insulating film 3,
The slit 3a is provided to reduce the contact area with the silicon substrate side.

【0017】一方、センサ部は、裏面側薄膜電極5、非
晶質半導体薄膜6、表面側薄膜電極7および赤外線吸収
膜(薄膜)8が順に積層形成されており、絶縁膜3によ
り必要な熱絶縁と電気絶縁が確保されている。センサ部
に入射した赤外線は吸収膜8で熱に換わってから放散す
ることなく非晶質半導体薄膜6の温度を上昇させる。こ
の発明のセンサは、例えば、赤外線放射体(例えば、人
間)の検知に使うことができる。
On the other hand, the sensor section is formed by laminating a back side thin film electrode 5, an amorphous semiconductor thin film 6, a front side thin film electrode 7, and an infrared absorbing film (thin film) 8 in this order, and the insulating film 3 absorbs the necessary heat. Insulation and electrical insulation are ensured. The infrared rays incident on the sensor section are converted into heat in the absorption film 8 and then increase the temperature of the amorphous semiconductor thin film 6 without being dissipated. The sensor of the present invention can be used, for example, to detect infrared emitters (eg, humans).

【0018】実施例の構成で暗導電率10−9(Ω/c
m)−1でB定数8000の厚み1μmのノンドープ薄
膜6に面積1mm2の電極とし、約1MΩの抵抗値のも
のが実現できることを確認した。また、実際に赤外線を
入射させて、良好なS/N比を有する低い雑音レベルに
あることも確認した。
The configuration of the embodiment has a dark conductivity of 10-9 (Ω/c
It was confirmed that an electrode with an area of 1 mm 2 was formed on a 1 μm thick non-doped thin film 6 with a B constant of 8000 and a resistance value of about 1 MΩ. Furthermore, by actually injecting infrared rays, it was confirmed that the noise level was low and had a good S/N ratio.

【0019】[0019]

【発明の効果】以上に述べたように、この発明の赤外線
センサは、サーミスタ特性を有する非晶質半導体薄膜の
表面と裏面それぞれに電極を形成した構成を採っていて
、実現が容易な現実的範囲において、高感度かつ低雑音
で微弱な赤外線が検出可能であり、しかも、低抵抗で信
号処理回路との整合性がよくて使い易く、非常に実用性
のあるものとなっている。
[Effects of the Invention] As described above, the infrared sensor of the present invention has a configuration in which electrodes are formed on each of the front and back surfaces of an amorphous semiconductor thin film having thermistor characteristics, and is easy to realize and practical. It is capable of detecting weak infrared rays with high sensitivity and low noise within a certain range, and has low resistance and good compatibility with signal processing circuits, making it easy to use and extremely practical.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例にかかる赤外線センサの要部構成をあら
わす部分断面図である。
FIG. 1 is a partial cross-sectional view showing the main part configuration of an infrared sensor according to an embodiment.

【図2】実施例にかかる赤外線センサの要部構成を一部
分破断してあらわす斜視図である。
FIG. 2 is a partially cutaway perspective view showing the main structure of the infrared sensor according to the embodiment.

【図3】従来の赤外線センサの要部構成をあらわす断面
図である。
FIG. 3 is a sectional view showing the main part configuration of a conventional infrared sensor.

【図4】半導体における常温暗電導率のドーピングレベ
ル依存性をあらわすグラフである。
FIG. 4 is a graph showing the doping level dependence of dark conductivity at room temperature in a semiconductor.

【図5】半導体における暗電導率の活性化エネルギーの
ドーピングレベル依存性をあらわすグラフである。
FIG. 5 is a graph showing the doping level dependence of activation energy of dark conductivity in a semiconductor.

【符号の説明】[Explanation of symbols]

1  赤外線センサ 2  シリコン基板 3  絶縁膜 5  裏面側薄膜電極 6  非晶質半導体薄膜 7  表面側薄膜電極 8  赤外線吸収膜 1 Infrared sensor 2 Silicon substrate 3 Insulating film 5 Back side thin film electrode 6 Amorphous semiconductor thin film 7 Surface side thin film electrode 8 Infrared absorption film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  サーミスタ特性を有する薄膜を備え、
赤外線吸収による前記薄膜の温度上昇で赤外線の検出を
行う赤外線センサにおいて、前記薄膜が、非晶質半導体
薄膜であって、その表面と裏面それぞれに電極が積層形
成されていることを特徴とする赤外線センサ。
[Claim 1] A thin film having thermistor characteristics,
An infrared sensor that detects infrared rays by increasing the temperature of the thin film due to infrared absorption, wherein the thin film is an amorphous semiconductor thin film, and electrodes are laminated on each of the front and back surfaces of the infrared sensor. sensor.
【請求項2】  非晶質半導体薄膜が、アモルファスシ
リコン系材料で形成されている請求項1記載の赤外線セ
ンサ。
2. The infrared sensor according to claim 1, wherein the amorphous semiconductor thin film is formed of an amorphous silicon-based material.
JP3121173A 1991-05-27 1991-05-27 Infrared ray sensor Pending JPH04356979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3121173A JPH04356979A (en) 1991-05-27 1991-05-27 Infrared ray sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3121173A JPH04356979A (en) 1991-05-27 1991-05-27 Infrared ray sensor

Publications (1)

Publication Number Publication Date
JPH04356979A true JPH04356979A (en) 1992-12-10

Family

ID=14804661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3121173A Pending JPH04356979A (en) 1991-05-27 1991-05-27 Infrared ray sensor

Country Status (1)

Country Link
JP (1) JPH04356979A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288813A (en) * 2007-05-16 2008-11-27 Hitachi Ltd Semiconductor device
WO2010010940A1 (en) * 2008-07-25 2010-01-28 パナソニック電工株式会社 Method for manufacturing infrared image sensor and infrared image sensor
CN117174777A (en) * 2023-10-26 2023-12-05 北京北方高业科技有限公司 Absorption plate structure of amorphous silicon infrared detector and process method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288813A (en) * 2007-05-16 2008-11-27 Hitachi Ltd Semiconductor device
WO2010010940A1 (en) * 2008-07-25 2010-01-28 パナソニック電工株式会社 Method for manufacturing infrared image sensor and infrared image sensor
CN117174777A (en) * 2023-10-26 2023-12-05 北京北方高业科技有限公司 Absorption plate structure of amorphous silicon infrared detector and process method

Similar Documents

Publication Publication Date Title
JP3399399B2 (en) Infrared sensor and method of manufacturing the same
CN101375140B (en) Infrared absorber and thermal infrared detector
KR100254611B1 (en) Manufacturing method and structure of thin-film infrared sensor
JPH04356979A (en) Infrared ray sensor
JPH05335618A (en) Optical position detecting semiconductor device
JPH05164605A (en) Infrared-ray sensor
JP3715886B2 (en) Manufacturing method and structure of thermal infrared solid-state imaging device
JP3775830B2 (en) Infrared detector
JPH0712658A (en) Combination sensor comprising silicon
JP2665116B2 (en) Semiconductor thin film thermistor
JP3195441B2 (en) Infrared detector
JPH08166284A (en) Infrared detecting element
JP3195443B2 (en) Infrared detector
JP3180323B2 (en) Semiconductor thin film thermistor and infrared detector
JP3637665B2 (en) Pyroelectric infrared detector
JP3435997B2 (en) Infrared detector
JPH04360588A (en) Composite infrared ray detector
JPH01183165A (en) Semiconductor pressure sensor
JP2772776B2 (en) Thermopile
JP3422150B2 (en) Infrared detector
KR970006040B1 (en) Sensor manufacturing method
JPH08125127A (en) Resistance element and temperature sensor
JPH07297412A (en) Piezoelectric resistance element
JPH0394401A (en) Thermosensitive sensor
JPH06103218B2 (en) Optical sensor