JPH09138164A - Infrared detection element - Google Patents

Infrared detection element

Info

Publication number
JPH09138164A
JPH09138164A JP7298262A JP29826295A JPH09138164A JP H09138164 A JPH09138164 A JP H09138164A JP 7298262 A JP7298262 A JP 7298262A JP 29826295 A JP29826295 A JP 29826295A JP H09138164 A JPH09138164 A JP H09138164A
Authority
JP
Japan
Prior art keywords
membrane
thermopile
vicinity
contact
thermal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7298262A
Other languages
Japanese (ja)
Other versions
JP3422150B2 (en
Inventor
Masaki Hirota
正樹 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP29826295A priority Critical patent/JP3422150B2/en
Publication of JPH09138164A publication Critical patent/JPH09138164A/en
Application granted granted Critical
Publication of JP3422150B2 publication Critical patent/JP3422150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an infrared detection element in which both sensitivity and response are enhanced. SOLUTION: The part of a thermopile 1 for varying the thermal resistance is provided not at the end of a membrane 10 but extremely closely to the pole of a cold junction 14 provided on a silicon substrate 5 so that the thermal resistance in the vicinity of cold junction 14 is higher than that in the vicinity of a hot junction 13. Thermal resistance can be varied by varying not only the width of thermopile 1, as being employed in conventional element, but also the thickness and thermal conductivity thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は、サーモパイル型
赤外線検知素子の応答速度向上に関する。
TECHNICAL FIELD The present invention relates to improving the response speed of a thermopile type infrared detecting element.

【0002】[0002]

【従来の技術】 従来のサーモパイル型赤外線検知素子
は、図6(特開平3−276772号公報より)に示す
ようなものであった。金属、半導体、及び絶縁物からな
るサーモパイル1を支持し、かつ、シリコンエッチング
液に対し耐腐食性を持ちストッパーとして働く窒化膜2
と、前記サーモパイル1をシリコンエッチング液から保
護する酸化膜3と、前記薄膜を周囲から支持しているシ
リコン基板5からなるメンブレン構造を有する。薄膜の
上面で対角線状に開いている細長いスリット状の一本の
孔20は、シリコン基板5をエッチングして空洞を作る
ために必要な孔で、エッチング液を浸入させるためのも
のである。前記サーモパイル1は2種類のポリシリコン
6,7をアルミ等の金属からなる接点部8を介し、交互
に接続したものである。ポリシリコン6,7は上記の薄
膜とシリコン基板5との境界で細くなっており、サーモ
パイル1の熱伝導を低く抑えて、薄膜からシリコン基板
5への熱の逃げを少なくしている。
2. Description of the Related Art A conventional thermopile type infrared detecting element is as shown in FIG. 6 (from Japanese Patent Laid-Open No. 3-276772). A nitride film 2 that supports a thermopile 1 made of a metal, a semiconductor, and an insulator, and has corrosion resistance to a silicon etching solution and acts as a stopper.
And a membrane structure composed of an oxide film 3 for protecting the thermopile 1 from a silicon etching solution and a silicon substrate 5 supporting the thin film from the surroundings. One elongated slit-shaped hole 20 that is opened diagonally on the upper surface of the thin film is a hole necessary for etching the silicon substrate 5 to form a cavity, and is for allowing the etching solution to enter. The thermopile 1 is formed by alternately connecting two types of polysilicon 6 and 7 through a contact portion 8 made of a metal such as aluminum. The polysilicons 6 and 7 are thin at the boundary between the thin film and the silicon substrate 5 and suppress the heat conduction of the thermopile 1 to a low level to reduce the escape of heat from the thin film to the silicon substrate 5.

【0003】[0003]

【発明が解決しようとする課題】 上述した従来の赤外
線検知素子は、温接点近傍と冷接点近傍のサーモパイル
幅が同一でメンブレン端でサーモパイル幅が最も細い構
造のために、幅が均一なサーモパイルに比べると素子全
体の熱抵抗は大きくなり感度は増加するが応答速度は低
下する。逆に、幅が均一なサーモパイルと全熱抵抗が同
じになるように形成した場合、即ち感度が同じになるよ
うに設計した場合において、従来例では応答速度はほと
んど改善されない。つまり、応答速度と感度は相反する
要素であり従来例では応答速度を犠牲にして感度を大き
くしているのであって、感度を上昇させる方法を示して
はいるが、素子特性の本質的な改善にはなっていない。
The conventional infrared detecting element described above has a structure in which the thermopile widths near the hot junction and the cold junction are the same and the thermopile width is the thinnest at the membrane end, so that the thermopile has a uniform width. Compared with this, the thermal resistance of the entire device increases and the sensitivity increases, but the response speed decreases. On the contrary, when the thermopile having a uniform width is formed to have the same total thermal resistance, that is, when the sensitivity is designed to be the same, the response speed is hardly improved in the conventional example. In other words, the response speed and the sensitivity are contradictory factors, and the sensitivity is increased at the sacrifice of the response speed in the conventional example. Although the method of increasing the sensitivity is shown, the essential improvement of the device characteristics is shown. It's not.

【0004】[0004]

【課題を解決するための手段】 本発明では、応答速度
を犠牲にすることなく感度の向上を図る、言い換えると
同じ感度の素子で応答速度を向上させることを可能とし
ている。
According to the present invention, it is possible to improve the sensitivity without sacrificing the response speed, in other words, to improve the response speed with an element having the same sensitivity.

【0005】具体的には、サーモパイルの熱抵抗を変化
させる部位をメンブレン端ではなく、シリコン基板上に
設けられた冷接点の極近傍に設け、冷接点近傍の熱抵抗
をメンブレン上にある温接点近傍の熱抵抗よりも大きく
する。熱抵抗を変化させるには、従来例で用いられてい
るサーモパイルの幅を変化させるばかりではなくサーモ
パイルの厚み及び熱伝導率を変えることによっても達成
できる。本発明の効果を最大限に生かすためには熱抵抗
を温接点近傍から冷接点近傍への単調増加にするとよ
い。
Specifically, the portion for changing the thermal resistance of the thermopile is provided not at the end of the membrane but in the vicinity of the cold junction provided on the silicon substrate, and the thermal resistance in the vicinity of the cold junction is at the hot junction on the membrane. It should be larger than the thermal resistance in the vicinity. The thermal resistance can be changed not only by changing the width of the thermopile used in the conventional example but also by changing the thickness and thermal conductivity of the thermopile. In order to maximize the effects of the present invention, it is preferable that the thermal resistance be monotonically increased from near the hot junction to near the cold junction.

【0006】[0006]

【発明の実施の形態】 まず、発明の作用について説明
する。本発明の赤外線検知素子に赤外線が入射すると、
この赤外線はメンブレンの上の赤外線吸収膜によって吸
収される。この時、メンブレンの厚さが薄いので熱抵抗
が高くメンブレンの中心部を頂点とする温度勾配が生じ
る。そして、メンブレン上に設けられた温接点とシリコ
ン基板上の冷接点との間に温度差が生じ、ゼーベック効
果によって起電力が生じる。本発明では、サーモパイル
にp型及びn型のポリシリコンを用い、それらを直列接
続して熱起電力の総和を出力としているので高感度な検
出が可能となっている。
First, the operation of the invention will be described. When infrared rays are incident on the infrared detection element of the present invention,
This infrared ray is absorbed by the infrared absorbing film on the membrane. At this time, since the thickness of the membrane is thin, the thermal resistance is high and a temperature gradient is formed with the center of the membrane as the apex. Then, a temperature difference occurs between the hot junction provided on the membrane and the cold junction on the silicon substrate, and an electromotive force is generated by the Seebeck effect. In the present invention, p-type and n-type polysilicon are used for the thermopile, and they are connected in series to output the total of the thermoelectromotive force, so that highly sensitive detection is possible.

【0007】素子の感度Rは、次の式のよって決定され
る。
The sensitivity R of the element is determined by the following equation.

【0008】[0008]

【式1】 (Equation 1)

【0009】ここで、S:信号出力、Pd :入射エネル
ギー、n:対数、α:ゼーベック係数、Rth:熱抵抗、
P:実効エネルギーである。この式は、感度は熱抵抗に
比例することを示している。一方、応答速度は熱時定数
Tの逆数であり次の式で表される。
Here, S: signal output, P d : incident energy, n: logarithm, α: Seebeck coefficient, R th : thermal resistance,
P: Effective energy. This equation shows that sensitivity is proportional to thermal resistance. On the other hand, the response speed is the reciprocal of the thermal time constant T and is represented by the following equation.

【0010】[0010]

【式2】 (Equation 2)

【0011】ここで、Cth:熱容量である。感度を向上
させるために熱抵抗を大きくするのにしたがって応答速
度は低下し両立は難しい。
Here, C th is the heat capacity. As the thermal resistance is increased to improve the sensitivity, the response speed decreases and it is difficult to satisfy both requirements.

【0012】図5に通常の方法、従来例及び本発明の方
法の(A)に示す熱等価回路モデルによるステップ応答
の比較計算を行った結果を(B)に示す。同一感度で比
較するために全体の熱抵抗はすべて同じにした。
FIG. 5B shows the result of comparison calculation of the step response by the thermal equivalent circuit model shown in FIG. 5A of the conventional method, the conventional example and the method of the present invention. All thermal resistances were the same for comparison with the same sensitivity.

【0013】熱容量は、熱抵抗の大きい即ち断面積が小
さいところでは小さく、熱抵抗の小さい即ち断面積が大
きいところでは大きく設定している。ここで、通常の方
法とは、サーモパイルの熱抵抗を場所によらず均一に設
計、即ちサーモパイルの幅及び厚みを一定にする方法を
いい、本発明の方法は熱抵抗を温接点から冷接点への単
調増加にしている。従来例が通常の方法とほぼ等しい応
答速度であるのに対して本発明の方法によると熱時定数
を大きく向上させることが可能となる。また、この例か
らも明らかなように熱抵抗が温接点から冷接点への単調
増加とする方法が最も効果が大きい。
The heat capacity is set small when the heat resistance is large, that is, the cross-sectional area is small, and is set large when the heat resistance is small, that is, the cross-sectional area is large. Here, the normal method refers to a method of uniformly designing the thermal resistance of the thermopile regardless of location, that is, a method of making the width and thickness of the thermopile constant, and the method of the present invention changes the thermal resistance from the hot junction to the cold junction. Is increasing monotonically. While the conventional example has a response speed almost equal to that of the conventional method, the method of the present invention can greatly improve the thermal time constant. Further, as is apparent from this example, the method in which the thermal resistance is monotonically increased from the hot junction to the cold junction is most effective.

【0014】次に、実施の形態について説明する。 a)実施の形態1(サーモパイルの幅のみを変化させる方
法) 図1に本発明にかかる赤外線検知素子の実施の形態1を
示す。同図(A)は平面図、(B)は断面図である。実
施の形態1の赤外線検知素子はシリコン(100)基板
5の主平面上にメンブレン膜となる厚さ100nm〜3
00nm程度の窒化膜2を被覆形成している。
Next, an embodiment will be described. a) First embodiment (method of changing only width of thermopile) FIG. 1 shows a first embodiment of an infrared detection element according to the present invention. FIG. 1A is a plan view and FIG. 1B is a sectional view. The infrared detecting element according to the first embodiment has a thickness of 100 nm to 3 serving as a membrane film on the main plane of the silicon (100) substrate 5.
A nitride film 2 having a thickness of about 00 nm is formed by coating.

【0015】この上には、p型ポリシリコン6とn型ポ
リシリコン7からなるサーモパイル1が形成されてい
る。さらに、表面を保護するために酸化膜3が形成され
るが、温接点13及び冷接点14の部分ではp型ポリシ
リコン6とn型ポリシリコン7を相互に接続するために
コンタクトホールが形成される。このコンタクトホール
を介してアルミ8によって順次接続され全体として一つ
のサーモパイルとなる。再度酸化膜8で被覆保護し、そ
の上の温接点13より中心部に吸収膜4が形成される。
A thermopile 1 composed of p-type polysilicon 6 and n-type polysilicon 7 is formed on this. Further, the oxide film 3 is formed to protect the surface, but contact holes are formed at the hot junction 13 and the cold junction 14 to connect the p-type polysilicon 6 and the n-type polysilicon 7 to each other. It Aluminum 8 is sequentially connected through the contact holes to form one thermopile as a whole. The oxide film 8 is again covered and protected, and the absorption film 4 is formed in the central portion from the hot junction 13 thereon.

【0016】このp型ポリシリコン6及びn型ポリシリ
コン7は、温接点13から冷接点14に向かってだんだ
んと幅が狭くなっているので冷接点14近傍の熱抵抗が
温接点13近傍に比べて大きくなっている。
Since the widths of the p-type polysilicon 6 and the n-type polysilicon 7 are gradually narrowed from the hot junction 13 to the cold junction 14, the thermal resistance near the cold junction 14 is smaller than that near the hot junction 13. Is getting bigger.

【0017】以上の部分を形成した後にメンブレンとな
るべき窒化膜2にはサーモパイル1の存在しない部分に
エッチング孔12を形成する。このエッチング孔12
は、ドライエッチング法によってシリコン基板5表面が
露出する深さにしておく。この状態でヒドラジン等の異
方性エッチング液によりエッチングを行う。メンブレン
10になる部分の窒化膜2と基板5の間にはあらかじめ
ポリシリコン犠牲層が形成されているために図のごとく
所望のメンブレンのパターンが形成される。なお、この
プロセスについては特許公開公報:昭62−76784
に詳しく記載されている。この異方性エッチングによっ
て基板が(111)面を側面とする四角錐を逆さまにし
た形状の熱分離領域11が完成する。
After forming the above-mentioned portion, an etching hole 12 is formed in the portion where the thermopile 1 does not exist in the nitride film 2 to be a membrane. This etching hole 12
Is set to a depth such that the surface of the silicon substrate 5 is exposed by a dry etching method. In this state, etching is performed with an anisotropic etching solution such as hydrazine. Since a polysilicon sacrificial layer is previously formed between the portion of the nitride film 2 that becomes the membrane 10 and the substrate 5, a desired membrane pattern is formed as shown in the figure. Regarding this process, the patent publication: Sho 62-76784.
Is described in detail. By this anisotropic etching, the substrate is completed as a thermal isolation region 11 having a shape in which a quadrangular pyramid whose side surface is the (111) plane is inverted.

【0018】このようにして形成された赤外線検知素子
のメンブレン10の中心部にある吸収膜4に赤外線が入
射されると光吸収によって吸収膜4の温度が上昇する。
この熱は、熱伝導によって酸化膜3を介して温接点13
のポリシリコン6,7の温度を上昇させる。温接点13
下部には熱分離領域11が形成されているために温接点
13の熱はメンブレンのポリシリコン6,7や酸化膜1
3、窒化膜2のみを通じて伝わっていく。しかし、これ
らは薄いので熱抵抗が大きく冷接点14にはなかなか伝
わらず両者の間には温度差が生じ、その結果ゼーベック
効果により起電力が生じる。p型ポリシリコン6とn型
ポリシリコン7は交互に直列接続されているので出力端
子16には熱起電力の総和が表れる。この出力電圧の大
小によって入射赤外線の強さを測定することができる。
When infrared rays are incident on the absorption film 4 at the center of the membrane 10 of the infrared detecting element thus formed, the temperature of the absorption film 4 rises due to light absorption.
This heat is transferred to the hot junction 13 via the oxide film 3 by heat conduction.
The temperature of the polysilicon 6 and 7 is increased. Hot junction 13
Since the heat separation region 11 is formed in the lower portion, the heat of the hot junction 13 is applied to the polysilicon 6 and 7 of the membrane and the oxide film 1.
3. It is transmitted only through the nitride film 2. However, since they are thin, they have a large thermal resistance and are not easily transmitted to the cold junction 14, resulting in a temperature difference between them, resulting in an electromotive force due to the Seebeck effect. Since the p-type polysilicon 6 and the n-type polysilicon 7 are alternately connected in series, the sum of thermoelectromotive force appears at the output terminal 16. The intensity of the incident infrared ray can be measured based on the magnitude of the output voltage.

【0019】b)実施の形態2(サーモパイルの厚さのみ
を変化させる方法) 図2に示す実施の形態2は、サーモパイルの幅を一定に
して厚みによって熱抵抗を変化させる例である。(A)
は平面図、(B)は断面図である。各部の要素、製造方
法及び効果の同一な部分の説明は省略する。この例で
は、サーモパイル幅を変化させる必要がないのでポリシ
リコン6,7やメンブレン10の幅を最小限にすること
が可能である。従って、実施の形態1に比べて感度と応
答速度のより高いレベルでの両立が可能となる。ただ
し、厚みを変化させるためにポリシリコンをデポするプ
ロセスが複数回必要となるので工程数が増加する。
B) Second Embodiment (Method of Changing Only Thickness of Thermopile) The second embodiment shown in FIG. 2 is an example in which the width of the thermopile is kept constant and the thermal resistance is changed depending on the thickness. (A)
Is a plan view, and (B) is a sectional view. Description of elements having the same elements, manufacturing methods, and effects will be omitted. In this example, since it is not necessary to change the thermopile width, it is possible to minimize the width of the polysilicon 6, 7 and the membrane 10. Therefore, it is possible to achieve both higher sensitivity and higher response speed than in the first embodiment. However, since the process of depositing polysilicon to change the thickness is required a plurality of times, the number of steps is increased.

【0020】c)実施の形態3(サーモパイルとメンブレ
ンの幅のみを変化させる方法) 図3に示す実施の形態3は、サーモパイルのみならずメ
ンブレンの幅も変化させる例である。(A)は平面図、
(B)は断面図である。各部の要素、製造方法並びに効
果の同一な部分の説明は省略する。熱は、サーモパイル
1のポリシリコン6,7ばかりを通じて流れるのではな
く酸化膜3や窒化膜2も流れる。サーモパイル1の熱抵
抗が高くこれらの構成部位を通じて流れる熱を無視する
ことができない場合にはメンブレン10の幅も変化させ
て効果をより確実にする必要がある。メンブレン10の
幅は、エッチング孔12の形状によって決まるので図3
のごとく中心部でメンブレンの幅を広く、冷接点14側
で狭くする。
C) Third Embodiment (Method of Changing Only Width of Thermopile and Membrane) The third embodiment shown in FIG. 3 is an example of changing not only the thermopile but also the width of the membrane. (A) is a plan view,
(B) is a sectional view. The description of the elements having the same elements, manufacturing methods, and effects will be omitted. The heat not only flows through the polysilicon 6 and 7 of the thermopile 1, but also through the oxide film 3 and the nitride film 2. When the thermal resistance of the thermopile 1 is high and the heat flowing through these components cannot be ignored, it is necessary to change the width of the membrane 10 to make the effect more reliable. Since the width of the membrane 10 is determined by the shape of the etching hole 12, FIG.
As shown, the width of the membrane is wide at the center and narrow on the cold junction 14 side.

【0021】d)実施の形態4(サーモパイルの熱伝導率
を変化させる方法) 図4に示す実施の形態4は、サーモパイルの熱伝導率を
変化させる例である。(A)は平面図、(B)は断面図
である。各部の要素、製造方法並びに効果の同一な部分
の説明は省略する。熱抵抗を変化させるには形状を変化
させるのではなく熱伝導率を変化させる方法も可能であ
る。熱伝導率を変化させるには、ポリシリコン6,7の
グレインサイズを変化させる方法が最も効果がある。グ
レインサイズが大きくなるにつれて熱伝導率が大きくな
るので、温接点13に近い部位ではグレインサイズを大
きく、冷接点14近傍ではグレインサイズを小さくす
る。場所によってグレインサイズを変化させるには温接
点13に種結晶を形成しておき、温接点13から冷接点
14へ向けて固相成長させる方法がよい。種結晶からの
距離が大きくなるにつれて種結晶の結晶性が反映されに
くくなり、冷接点14の近傍ではグレインサイズが小さ
くなる。ただし、この方法では熱抵抗は場所によって変
化していくが熱容量はほとんど変化しないので応答速度
が向上する割合はこれまでの実施例の形態に比べて小さ
くなる。
D) Fourth Embodiment (Method of Changing Thermal Conductivity of Thermopile) The fourth embodiment shown in FIG. 4 is an example of changing the thermal conductivity of the thermopile. (A) is a plan view and (B) is a sectional view. The description of the elements having the same elements, manufacturing methods, and effects will be omitted. To change the thermal resistance, it is possible to use a method of changing the thermal conductivity instead of changing the shape. The method of changing the grain size of polysilicon 6 and 7 is most effective for changing the thermal conductivity. Since the thermal conductivity increases as the grain size increases, the grain size is increased near the hot junction 13 and decreased near the cold junction 14. In order to change the grain size depending on the location, it is preferable to form a seed crystal on the hot junction 13 and perform solid phase growth from the hot junction 13 to the cold junction 14. As the distance from the seed crystal increases, the crystallinity of the seed crystal is less likely to be reflected, and the grain size becomes smaller near the cold junction 14. However, in this method, the thermal resistance changes depending on the place, but the heat capacity hardly changes, so that the rate of improvement in the response speed is smaller than that in the embodiments described above.

【0022】[0022]

【発明の効果】 以上説明してきたように本発明によれ
ば従来不可能であった感度と応答速度の両立が可能とな
った。
As described above, according to the present invention, both sensitivity and response speed, which have hitherto been impossible, can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1を示す図である。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】本発明の実施の形態2を示す図である。FIG. 2 is a diagram showing a second embodiment of the present invention.

【図3】本発明の実施の形態3を示す図である。FIG. 3 is a diagram showing Embodiment 3 of the present invention.

【図4】本発明の実施の形態4を示す図である。FIG. 4 is a diagram showing a fourth embodiment of the present invention.

【図5】本発明の作用の説明図である。FIG. 5 is an explanatory diagram of the operation of the present invention.

【図6】本発明の従来例を示す図である。FIG. 6 is a diagram showing a conventional example of the present invention.

【符号の説明】[Explanation of symbols]

1 サーモパイル 2 窒化膜1 3 酸化膜 4 吸収層 5 シリコン基板 6 p型ポリシリコン 7 n型ポリシリコン 8 アルミ 10 メンブレン 11 熱分離領域 12 エッチング孔 13 温接点 14 冷接点 1 Thermopile 2 Nitride Film 1 3 Oxide Film 4 Absorption Layer 5 Silicon Substrate 6 p-type Polysilicon 7 n-type Polysilicon 8 Aluminum 10 Membrane 11 Thermal Separation Area 12 Etching Hole 13 Hot Junction 14 Cold Junction

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上と、 該半導体基板の主平面上に形成されたメンブレンと、 該メンブレン下部の半導体基板の一部を除去して形成さ
れた熱分離領域と、 該メンブレン上に少なくとも一つの接点Aと該半導体基
板上に少なくとも一つの接点Bを有するサーモパイルを
具備し該接点Aと該接点Bの温度差によって赤外線入射
量を検知する赤外線検知素子において、 メンブレン上の該接点A近傍の熱抵抗がもう一方の該接
点B近傍に比べて低いことを特徴とする赤外線検知素
子。
1. A semiconductor substrate, a membrane formed on a main plane of the semiconductor substrate, a heat separation region formed by removing a part of the semiconductor substrate below the membrane, and at least a membrane on the membrane. An infrared detecting element comprising a thermopile having one contact point A and at least one contact point B on the semiconductor substrate, and detecting an infrared ray incident amount by a temperature difference between the contact point A and the contact point B, in the vicinity of the contact point A on the membrane. The infrared detecting element is characterized in that its thermal resistance is lower than that in the vicinity of the other contact B.
【請求項2】 請求項1記載のの赤外線検知素子におい
て、 サーモパイルの熱抵抗またはメンブレンなどの構造体の
熱抵抗あるいはその両方についてメンブレン上の前記接
点A近傍がもう一方の前記接点B近傍に比べて低いこと
を特徴とする赤外線検知素子。
2. The infrared detecting element according to claim 1, wherein the thermal resistance of the thermopile and / or the thermal resistance of a structure such as a membrane is greater in the vicinity of the contact A than in the vicinity of the other contact B on the membrane. Infrared detection element characterized by low temperature.
【請求項3】 単位長さあたりの熱抵抗が場所によって
変化し、前記接点Aから前記接点Bへ単調増加になって
いることを特徴とする請求項1記載の赤外線検知素子。
3. The infrared detecting element according to claim 1, wherein the thermal resistance per unit length changes depending on the location and increases monotonically from the contact point A to the contact point B.
【請求項4】 請求項1記載の赤外線検知素子におい
て、 メンブレン上の前記接点A近傍のサーモパイルの断面積
がもう一方の接点B近傍に比べて大きいことを特徴とす
る赤外線検知素子。
4. The infrared detecting element according to claim 1, wherein the cross sectional area of the thermopile near the contact A on the membrane is larger than that near the other contact B.
【請求項5】 請求項1記載のの赤外線検知素子におい
て、 メンブレン上の断面積が接点A近傍からもう一方の接点
B近傍への単調減少になっていることを特徴とする赤外
線検知素子。
5. The infrared detecting element according to claim 1, wherein the cross-sectional area on the membrane is monotonically decreasing from the vicinity of the contact A to the vicinity of the other contact B.
【請求項6】 請求項1記載のの赤外線検知素子におい
て、 メンブレン上の接点A近傍のサーモパイルの熱伝導率が
もう一方の接点B近傍に比べて大きいことを特徴とする
赤外線検知素子。
6. The infrared detecting element according to claim 1, wherein the thermopile in the vicinity of the contact point A on the membrane has a higher thermal conductivity than that in the vicinity of the other contact point B.
JP29826295A 1995-11-16 1995-11-16 Infrared detector Expired - Lifetime JP3422150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29826295A JP3422150B2 (en) 1995-11-16 1995-11-16 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29826295A JP3422150B2 (en) 1995-11-16 1995-11-16 Infrared detector

Publications (2)

Publication Number Publication Date
JPH09138164A true JPH09138164A (en) 1997-05-27
JP3422150B2 JP3422150B2 (en) 2003-06-30

Family

ID=17857358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29826295A Expired - Lifetime JP3422150B2 (en) 1995-11-16 1995-11-16 Infrared detector

Country Status (1)

Country Link
JP (1) JP3422150B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191644A (en) * 1997-12-26 1999-07-13 Nissan Motor Co Ltd Infrared sensing element
JP2002162291A (en) * 2000-11-22 2002-06-07 Ihi Aerospace Co Ltd Infrared ray detection element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191644A (en) * 1997-12-26 1999-07-13 Nissan Motor Co Ltd Infrared sensing element
JP2002162291A (en) * 2000-11-22 2002-06-07 Ihi Aerospace Co Ltd Infrared ray detection element

Also Published As

Publication number Publication date
JP3422150B2 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
EP0715359B1 (en) Infrared radiation sensor
JPH09166497A (en) Infrared detector and manufacture thereof
JP3196823B2 (en) Semiconductor device
JPH02205729A (en) Infrared-ray sensor
US6292089B1 (en) Structures for temperature sensors and infrared detectors
JP3859479B2 (en) Bolometer type infrared detector
JP3186415B2 (en) Manufacturing method of infrared detecting element
US6579740B2 (en) Method of making a thin film sensor
JPH0590646A (en) Thermopile type infrared sensor and its manufacture
JP2003329515A (en) Bolometric infrared solid-state image sensor
JP3422150B2 (en) Infrared detector
JP2811709B2 (en) Infrared sensor
WO2000037906A1 (en) Infrared bolometer and method for the manufacture thereof
JP2000131147A (en) Infrared sensor
JPH06137943A (en) Thermal infrared sensor
JPH0743216A (en) Infrared sensor and its manufacture
JP2884679B2 (en) Thermopile type infrared sensor
JP3775830B2 (en) Infrared detector
JPH0799346A (en) Semiconductor infrared beam sensor and manufacture thereof
JP3435997B2 (en) Infrared detector
JP3249174B2 (en) Infrared sensor and method of manufacturing the same
JPH046424A (en) Infrared sensor
JPH0755557A (en) Thermal type infrared sensor
JP2772776B2 (en) Thermopile
JP2000065637A (en) Infrared-detecting element and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 11

EXPY Cancellation because of completion of term