JP4353057B2 - 縦型ホール素子およびその製造方法 - Google Patents

縦型ホール素子およびその製造方法 Download PDF

Info

Publication number
JP4353057B2
JP4353057B2 JP2004295729A JP2004295729A JP4353057B2 JP 4353057 B2 JP4353057 B2 JP 4353057B2 JP 2004295729 A JP2004295729 A JP 2004295729A JP 2004295729 A JP2004295729 A JP 2004295729A JP 4353057 B2 JP4353057 B2 JP 4353057B2
Authority
JP
Japan
Prior art keywords
magnetic detection
detection unit
semiconductor substrate
hall element
partitioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004295729A
Other languages
English (en)
Other versions
JP2006108528A (ja
Inventor
俊隆 金丸
秀哉 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004295729A priority Critical patent/JP4353057B2/ja
Publication of JP2006108528A publication Critical patent/JP2006108528A/ja
Application granted granted Critical
Publication of JP4353057B2 publication Critical patent/JP4353057B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Element Separation (AREA)
  • Hall/Mr Elements (AREA)

Description

この発明は、半導体基板内の磁気検出部となる所定領域を電気的に区画する分離壁を有し、基板表面(チップ面)に平行な磁界成分がその磁気検出部に印加されたとき、その磁界成分に応じたホール電圧を発生させる縦型ホール素子およびその製造方法に関する。
周知のように、ホール素子は、非接触での角度検出が可能であることから、いわゆるホールIC等に搭載されて例えば磁気センサとして車載内燃機関のスロットル弁開度センサ等の角度検出センサに用いられる。現在、ホール素子として実用化されているものの多くは、基板表面(チップ面)に垂直な磁界成分を検出する横型ホール素子であるが、近年、これに加え、基板表面(チップ面)に水平な磁界成分を検出する縦型ホール素子も研究されている。縦型ホール素子は、異なる位相(角度)を検出する2つの素子を1チップに集積化できるという特長をもつため、2つの縦型ホール素子を「90°」の角度をなすように配置することで、「0°〜360°」の角度範囲でリニアな出力(電圧信号)が得られる回転センサ等も実現可能になる。従来、こうした縦型ホール素子としては、例えば非特許文献1に記載されたものがある。以下、図10を参照して、この縦型ホール素子の概要について説明する。なお、図10(a)はこのホール素子の平面図、図10(b)は図10(a)のA−A’線に沿った断面図である。
同図10(a)および(b)に示されるように、このホール素子は、大きくは、例えばP型のシリコンからなる半導体層(P-sub)21と、この表面にN型の導電型不純物が導入されるかたちで形成された埋込層BLと、さらにこの上に例えばエピタキシャル成長にて形成されたN型のシリコンからなる半導体領域22とを有して構成されている。なお、上記埋込層BLは、いわば下部電極として機能するものであり、その不純物濃度は上記半導体領域22よりも高い濃度に設定される。
そしてこのホール素子において、上記半導体領域22には、当該ホール素子を他の素子と素子分離すべく、半導体層21に接続されるような例えばP型の拡散層(P型拡散分離壁)24が形成されている。また、同半導体領域22の表面には、同表面の不純物濃度(N型)が選択的に高められるかたちでコンタクト領域23a〜23eが形成され、これらコンタクト領域23a〜23eとそこに配設される電極(配線)との間に良好なオーミックコンタクトが形成されるようになっている。そして、そのオーミックコンタクトを形成した各電極(配線)を介して、コンタクト領域23aは電源Pに接続されて電源電位に、コンタクト領域23bおよび23cはグランド電位にそれぞれ固定され、またコンタクト領域23dおよび23eはそれぞれホール電圧検出用の端子V1およびV2と電気的に接続される。
また、図10(a)に示されるように、上記拡散層24に囲まれた領域(活性領域)においては、上記半導体領域22が、各拡散層によるpn接合分離を通じて、P型の拡散層(P型拡散分離壁)24aおよび24bを互いに隔てた領域22a〜22cに分割されている。またここで、拡散層24aおよび24bは、基板表面に垂直な方向へ延設されている。そして通常、これら拡散層24aおよび24bの幅は、同拡散層の形成過程を通じて基板表面から内部へ向けて漸次狭くなる。また、上記領域22a〜22cは、図10(b)に示されるように、基板内部においてもこれら拡散層24aおよび24bにより、電気的に区画された領域(空間)を形成している。また、これら領域のうちの、領域22aに上記コンタクト領域23bが、領域22bに上記コンタクト領域23cが、領域(素子領域)22cに上記コンタクト領域23aおよび23dおよび23eがそれぞれ形成されている。ここで、これらコンタクト領域23a〜23eは、コンタクト領域23bおよび23cとこれらに直交するコンタクト領域23dおよび23eとの双方にコンタクト領域23aが挟まれるかたちの配置をとる。すなわち、同コンタクト領域23aは、上記拡散層24aおよび24bを隔ててコンタクト領域23bおよび23cにそれぞれ対向するかたちで配置されることになる。
そして、このホール素子においては、上記領域22cの基板内部に電気的に区画される領域(空間)にあって上記コンタクト領域23dおよび23eにて挟まれる領域(空間)が、いわゆる磁気検出部(ホールプレート)HPとなる。すなわち、このホール素子では、ここに印加される磁界に応じたホール電圧が発生することになる。
そして、このホール素子においては、図10(b)中に示す電源Pにより基板内の磁気検出部HPに対し一定の駆動電流が供給される。このとき、その電流は、同図10(b)中に矢印で示されるように、基板表面に形成されたコンタクト領域23aから上記磁気検出部HPを通じて、埋込層BL、そしてコンタクト領域23bおよび23cへとそれぞれ流れることとなる。すなわち、この駆動電流は、少なくとも磁気検出部HPにおいては基板表面(チップ面)に垂直な成分を主に含む電流となる。そのため、この駆動電流を流した状態で、基板表面(チップ面)に平行な成分を含む磁界が磁気検出部HPに印加されると、周知のホール効果によって上記端子V1と端子V2との間にその磁界に応じたホール電圧が発生することになる。したがって、それら端子V1およびV2を通じてその発生したホール電圧を検出することで、周知の関係式「VH=(RHIB/d)cosθ」に基づき検出対象とする磁界成分が、すなわち当該ホール素子に用いられる基板の表面(チップ面)に平行な磁界成分が求められることとなる。なお、上記関係式において、VHはホール電圧、RHはホール係数、Iは駆動電流、Bは磁束密度、dは磁気検出部(ホールプレート)の厚さ、θは当該ホール素子と磁界とのなす角度をそれぞれ示している。また、このホール素子においては、図10(a)中に示す領域(素子領域)22cの幅寸法dが磁気検出部(ホールプレート)の厚さ(上記関係式中の「d」)に相当する。また、このホール素子において駆動電流を流す方向は任意であり、駆動電流の向きを反対にして磁界(磁気)の検出を行うこともできる。
また従来、この種の縦型ホール素子としては、他にも、例えば図11に示されるように、上記拡散層(P型拡散分離壁)24aおよび24bに代えて、分離壁としてトレンチT34aおよびT34bに埋設された絶縁膜34aおよび34bを用いるようにしたものなどが提案されている。なお、これら絶縁膜34aおよび34bも、基板表面に垂直な方向へ延設されたものである。
前中一介、外3名,「縦型ホール素子の特性と高感度化」,電気学会論文誌 E,平成9年,第117巻,第7号,p364−370
このように、上記図10に例示した縦型ホール素子によれば、磁気検出部HPに印加される磁界成分、より正確には基板表面(チップ面)に平行な磁界成分を検出することは確かに可能になる。しかし、この縦型ホール素子においても、磁界(磁気)を検出する際の感度についてはいまだ十分といえず改善の余地を残すものとなっている。
すなわち、基板表面に設けられたコンタクト領域23aから磁気検出部HPに対し駆動電流が供給されると、磁気検出部HPにおいてその電流は、基板内部に向かうにつれて横方向(基板表面に平行な方向)への拡散が大きくなり、それに伴って電流密度が低下する。そして、電流密度が低下することによって、上記磁気検出部HPに印加される磁界(磁気)の強度に対し発生するホール電圧が小さくなり、ひいては磁気検出素子としての感度が低下することになる。また、上記「VH=(RHIB/d)cosθ」なる関係式からもわかるように、このホール素子の感度を高めるためには、磁気検出部(ホールプレート)HPの厚さ、すなわち図10(a)中に示す領域(素子領域)22cの幅寸法dを小さく(狭く)すればよい。しかしながら、この領域22cには、コンタクト領域23aを形成するスペースを確保する必要があるため、この幅寸法dを小さくすることにも限界がある。また、この幅寸法dを小さくすると、製造過程(リソグラフィ工程)においてマスク合わせ誤差等に起因するコンタクト領域23aの位置ずれ(アライメントずれ)が生じたときに、その位置ずれに伴う素子内部の電位分布の変動が大きくなり、素子内部の電位分布に大きなアンバランス(不平衡)が生じることになる。そしてこれにより、磁界が印加されていないにもかかわらず生じるホール電圧(出力電圧)、いわゆるオフセット電圧(不平衡電圧)が大きくなり、正確な磁界検出が妨げられるようになる。
なお、図11に示した縦型ホール素子においても、こうした課題は同様に生じる。しかも、このホール素子においては、トレンチアイソレーションを採用しているため、例えば形成時のエッチング等により同トレンチの内壁部分に結晶欠陥が生じやすく、そこに駆動電流のキャリアがトラップ(捕獲)されて感度の低下を招くことも懸念されるようになる。そして、こうしたキャリアのトラップは上記幅寸法dが小さく(狭く)なるほど発生頻度が高くなるため、この幅寸法dを小さくしたときには、上述した感度を高める効果が低減されてしまうこととなる。ただし、このホール素子における分離壁(絶縁膜34aおよび34b)は、トレンチT34aおよびT34bに埋設されるかたちで形成されており、基板表面から内部かけて一定の幅をもつ。そのため、駆動電流の横方向(基板表面に平行な方向)への拡散は、図10に示した先の縦型ホール素子と比べると、幾らか抑制されることとなる。
なお、駆動電流の向きを反対にしてホール電圧の検出を行う場合も、上記実情は概ね共通したものとなっている。
この発明は、こうした実情に鑑みてなされたものであり、半導体基板内に電気的に区画された磁気検出部に印加される磁界(磁気)の強度に対し発生するホール電圧を増大させて、磁気検出素子としての感度を高めることのできる縦型ホール素子およびその製造方法を提供することを目的とする。
こうした目的を達成すべく、請求項1に記載の発明では、半導体基板内の特定領域を囲むことによって該領域を他の素子と素子分離する分離壁と、この素子分離用の分離壁によって囲まれた領域内であって且つ、磁気検出部となる所定領域を挟むかたちに形成されて該磁気検出部を電気的に区画する磁気検出部区画用の分離壁を有し、前記半導体基板の表面に垂直な成分を含む電流が前記磁気検出部に供給された状態で、同基板の表面に平行な磁界成分が前記磁気検出部に印加されたとき、その磁界成分に応じたホール電圧を発生させるとともに、この発生したホール電圧が、前記磁気検出部となる前記半導体基板の表面に形成されたコンタクト領域に接続されたホール電圧検出用端子を通じて検出される縦型ホール素子として、前記磁気検出部区画用の分離壁を、前記半導体基板の表面から内部へ向けて前記磁気検出部となる所定領域を順次狭める態様で形成することとする。
前述したように、上記従来の縦型ホール素子において、駆動電流が磁気検出部を基板表面から内部へ向かって流れるとき、その電流は、基板内部に向かうにつれて横方向(基板表面に平行な方向)への拡散が大きくなる。そしてこれが、同電流の電流密度の低下、ひいては磁気検出素子としての感度の低下を招いていた。この点、上記構造によれば、上記磁気検出部区画用の分離壁により電気的に区画され、駆動電流の電流経路となる上記磁気検出部が基板表面から内部へ向けて順次狭められることになる。このため、この磁気検出部を駆動電流が基板表面から内部へ向かって流れる場合、基板内部へ進むしたがって大きくなる拡散量に対応して、その電流が基板内部へ進むほど大きく同電流の横方向への拡散が抑制されるようになる。そして、横方向への拡散がこのように抑制されることで、そこに流れる電流の電流密度も高められることとなり、その結果、磁気検出部に印加される磁界(磁気)の強度に対し発生するホール電圧が増大することとなる。すなわち、こうした縦型ホール素子によれば、磁気検出素子としての感度が高められ、高い感度をもって磁界の検出を行うことが可能になる。なお、電流の向きを反対にした場合も、すなわち駆動電流が磁気検出部を基板内部から表面へ向かって流れる場合も同様の効果が奏されることとなる。
また、前記磁気検出部区画用の分離壁としては、例えば請求項2に記載のように、
・台形状の断面をもつもの。
あるいは請求項3に記載のように、
・V字状に配設された平板状のもの。
等々の形状を有するものを採用して特に有効である。こうした形状を採用することで、基
板表面から内部へ向けて磁気検出部が順次狭められた上記構造も好適に実現されるようになる。なお、上記台形状の断面をもつ分離壁に関しては、少なくとも磁気検出部側の辺に傾斜のつけられた台形状とすることで足りる。
また、上記請求項1〜3のいずれか一項に記載の縦型ホール素子に関して、前記磁気検出部区画用の分離壁としては、例えば請求項4に記載のように、
・前記半導体基板に導電型不純物が添加されるかたちで形成された拡散層からなるもの。あるいは請求項5に記載のように、
・絶縁膜からなるもの。
等々の分離壁を採用することがより有効である。こうした分離壁を採用することで、pn接合(例えば拡散層の場合)等を通じてポテンシャル(電位)の障壁が好適に形成されるようになり、半導体基板内に前記磁気検出部がより確実に且つ好適に区画形成されることとなる。
また、こうした縦型ホール素子を製造する方法としては、例えば請求項6に記載の発明によるように、
・前記半導体基板内の磁気検出部となる所定領域をエッチング除去して、側壁に傾斜をもつ断面逆台形状のトレンチを形成し、そのトレンチの側壁に前記磁気検出部区画用の分離壁としての拡散層を形成した後、同トレンチに再び半導体膜を埋設することによって、前記半導体基板の表面から内部へ向けて前記磁気検出部となる所定領域を順次狭める態様で前記磁気検出部区画用の分離壁を形成する方法。
あるいは請求項7に記載の発明によるように、
・前記半導体基板内の磁気検出部となる所定領域をエッチング除去して、側壁に傾斜をもつ断面逆台形状のトレンチを形成し、そのトレンチの側壁に前記磁気検出部区画用の分離壁としての絶縁膜を成膜した後、同トレンチに再び半導体膜を埋設することによって、前記半導体基板の表面から内部へ向けて前記磁気検出部となる所定領域を順次狭める態様で前記磁気検出部区画用の分離壁を形成する方法。
あるいは請求項8に記載の発明によるように、
・前記半導体基板に対し斜め方向のイオン注入を行い、そこに前記磁気検出部区画用の分離壁としての拡散層を形成することによって、前記半導体基板の表面から内部へ向けて前記磁気検出部となる所定領域を順次狭める態様で前記磁気検出部区画用の分離壁を形成する方法。
あるいは請求項9に記載の発明によるように、
・前記半導体基板を斜め方向へエッチング除去してそこに前記磁気検出部区画用の分離壁としての絶縁膜を埋設することによって、前記半導体基板の表面から内部へ向けて前記磁気検出部となる所定領域を順次狭める態様で前記磁気検出部区画用の分離壁を形成する方法。
等々の方法を採用することが有効である。これら製造方法によれば、上記構造が好適に実現されるようになる。なお、これら請求項6〜9に記載の製造方法は上記請求項3に記載の構造を実現するために採用して特に有効である。
(第1の実施の形態)
以下、この発明に係る縦型ホール素子およびその製造方法についてその第1の実施の形態を示す。
まず、図1を参照して、この実施の形態に係る縦型ホール素子の概略構造およびその動作態様について説明する。なお、この図1において、図1(a)はこのホール素子の平面構造を模式的に示す平面図、図1(b)は図1(a)のB−B’線に沿った断面図、図1(c)は図1(a)のA−A’線に沿った断面図である。
同図1(a)〜(c)に示されるように、このホール素子も、大きくは、例えばP型のシリコンからなる半導体層(P-sub)11と、この表面にN型の導電型不純物が導入されるかたちで形成された埋込層BLと、さらにこの上に例えばエピタキシャル成長にて形成されたN型のシリコンからなる半導体領域12とを有して構成されている。なお、上記埋込層BLは、いわば下部電極として機能するものであり、その不純物濃度は上記半導体領域12よりも高い濃度に設定される。また通常、シリコン等の半導体材料は、P型からなる半導体よりもN型からなる半導体のほうが大きなキャリア移動度をもっているため、この半導体領域12の材料としては、N型の半導体材料(例えばシリコン)を用いることが望ましい。しかし、製造工程や構造上の条件等に応じてP型の半導体材料(P-層)を採用することもできる。また、この半導体領域12の不純物濃度が小さく(薄く)なるほど、同領域におけるキャリア移動度は大きくなるため、ホール素子としての感度を上げる、すなわち出力電圧として大きな電圧を得るためには、同半導体領域12の不純物濃度を小さく(薄く)することがより望ましい。
そして、この半導体領域12には、当該ホール素子を他の素子と素子分離すべく、半導体層11に接続されるような例えばP型の拡散層(P型拡散分離壁)14が形成されている。また、同半導体領域12の表面には、同表面の不純物濃度(N型)が選択的に高められるかたちでコンタクト領域13a〜13eが形成され、これらコンタクト領域13a〜13eとそこに配設される電極(配線)との間に良好なオーミックコンタクトが形成されるようになっている。そして、そのオーミックコンタクトを形成した各電極(配線)を介して、コンタクト領域13aは電源Pに接続されて電源(フォース)電位に、コンタクト領域13bおよび13cはグランド電位にそれぞれ固定され、またコンタクト領域13dおよび13eはそれぞれホール電圧検出(センス)用の端子V1およびV2と電気的に接続される。
また、図1(a)に示されるように、上記拡散層14に囲まれた領域(活性領域)においては、上記半導体領域12が、各拡散層によるpn接合分離を通じて、P型の拡散層(P型拡散分離壁)14aおよび14bを互いに隔てた領域12a〜12cに分割されている。また、上記領域12a〜12cは、図1(b)および(c)に示されるように、基板内部においてもこれら拡散層14aおよび14bにより電気的に区画された領域(空間)を形成している。また、これら領域のうちの、領域12aに上記コンタクト領域13bが、領域12bに上記コンタクト領域13cが、領域(素子領域)12cに上記コンタクト領域13aおよび13dおよび13eがそれぞれ形成されている。ここで、これらコンタクト領域13a〜13eは、コンタクト領域13bおよび13cとこれらに直交するコンタクト領域13dおよび13eとの双方にコンタクト領域13aが挟まれるかたちの配置をとる。すなわち、同コンタクト領域13aは、上記拡散層14aおよび14bを隔ててコンタクト領域13bおよび13cにそれぞれ対向するかたちで配置されることになる。
そして、このホール素子においては、上記領域12cの基板内部に電気的に区画される領域(空間)にあって上記コンタクト領域13dおよび13eにて挟まれる領域(空間)が、いわゆる磁気検出部(ホールプレート)HPとなる。すなわち、このホール素子では、ここに印加される磁界に応じたホール電圧が発生することになる。なおここでは、磁気検出部HPに電流を流すためのコンタクト領域13a〜13cを、ホール電圧を出力する部分であるコンタクト領域13dおよび13eに対して対称に設けることとした。これにより、横方向電流(基板表面に平行に流れる電流成分)に対して生じるホール電圧が打ち消され、検出対象とする磁界成分(基板表面に平行な磁界成分)を精度良く検出することができるようになる。
また、図1(c)に示されるように、この縦型ホール素子においては、上記拡散層14aおよび14bが、台形状の断面をもって、基板表面から内部へ向けて上記磁気検出部HPとなる領域(空間)を順次狭める態様で形成されている。
図2に、この縦型ホール素子の動作態様を示す。すなわち、このホール素子においては、図2(a)中に示す電源Pにより基板内の磁気検出部HPに対し一定の駆動電流が供給される。このとき、その電流は、同図2(a)中に矢印で示されるように、基板表面に形成されたコンタクト領域13aから上記磁気検出部HPを通じて、埋込層BL、そしてコンタクト領域13bおよび13cへとそれぞれ流れることとなる。すなわち、その駆動電流は、少なくとも磁気検出部HPにおいては基板表面(チップ面)に垂直な成分を主に含む電流となる。そのため、この駆動電流を流した状態で、基板表面(チップ面)に平行な成分を含む磁界が磁気検出部HPに印加されると、周知のホール効果によって上記端子V1と端子V2との間にその磁界に応じたホール電圧が発生することになる。したがって、それら端子V1およびV2を通じてその発生したホール電圧を検出することで、周知の関係式「VH=(RHIB/d)cosθ」に基づき検出対象とする磁界成分が、すなわち当該ホール素子に用いられる基板の表面(チップ面)に平行な磁界成分が求められることとなる。なお、上記関係式において、VHはホール電圧、RHはホール係数、Iは駆動電流、Bは磁束密度、dは磁気検出部(ホールプレート)の厚さ、θは当該ホール素子と磁界とのなす角度をそれぞれ示している。また、このホール素子においては、図1(a)中に示す領域(素子領域)12cの幅寸法dが磁気検出部(ホールプレート)の厚さ(上記関係式中の「d」)に相当する。
また、このホール素子において駆動電流を流す方向は任意であり、図2(b)に示すように、コンタクト領域13aをグランド電位に、コンタクト領域13bおよび13cを電源電位にそれぞれ固定することにより、駆動電流の向きを反対にして磁界(磁気)の検出を行うこともできる。そしてこの場合は、磁気検出部HP周辺の電位が固定、安定化されるようになり、磁気検出精度のさらなる向上が図られるようになる。
ところで、前述したように、上記従来の縦型ホール素子(図10および図1参照)では、駆動電流が磁気検出部HPを基板表面から内部へ向かって流れるとき、基板内部に向かうにつれてその電流の横方向(基板表面に平行な方向)への拡散が大きくなる。そしてこれが、同電流の電流密度の低下、ひいては磁気検出素子としての感度の低下を招いていた。この点、上記構造によれば、上記拡散層14aおよび14bにより基板内部が電気的に区画され、駆動電流の電流経路となる磁気検出部HPが基板表面から内部へ向けて順次狭められることになる。このため、この磁気検出部HPを駆動電流が基板表面から内部へ向かって流れる場合、基板内部へ進むしたがって大きくなる拡散量に対応して、その電流が基板内部へ進むほど大きく同電流の横方向への拡散が抑制されるようになる。そして、横方向への拡散がこのように抑制されることで、そこに流れる電流の電流密度も高められることとなり、その結果、磁気検出部に印加される磁界(磁気)の強度に対し発生するホール電圧が増大することとなる。すなわち、こうした縦型ホール素子によれば、磁気検出素子としての感度が高められ、高い感度をもって磁界の検出を行うことが可能になる。なお、電流の向きを反対にした場合も、すなわち駆動電流が磁気検出部HPを基板内部から表面へ向かって流れる場合も同様の効果が奏されることとなる。
次に、この実施の形態に係る縦型ホール素子の製造方法について説明する。なおここでは、半導体基板内に分離壁を、すなわち上記拡散層14aおよび14bを形成する方法について主に説明する。
すなわち、この分離壁を形成するにあたっては、まず、例えばフォトリソグラフィによりパターニングされた適宜のマスクを用いて、例えばイオン注入や熱拡散により、半導体基板の所望の箇所に例えば硼素(ボロン)等からなるP型不純物を添加する。その後、これに適宜の熱処理を施して、その添加したP型不純物を所望のパターン(形状)に、すなわち図1(c)に示されるような断面台形状に拡散させる。こうして、上記拡散層14aおよび14bが、基板表面から内部へ向けて磁気検出部HPを順次狭める態様で形成されることになる。
以上説明したように、この実施の形態に係る縦型ホール素子によれば、以下に記載するような優れた効果が得られるようになる。
(1)半導体基板内の磁気検出部HPとなる所定領域を電気的に区画する分離壁(拡散層14aおよび14b)について、これを、基板表面から内部へ向けて上記磁気検出部HPを順次狭める態様で形成するようにした。これにより、半導体基板内に電気的に区画された磁気検出部HPに印加される磁界(磁気)の強度に対し発生するホール電圧を増大させて、磁気検出素子としての感度を高めることができるようになる。
(2)また、このように磁気検出素子としての感度が高められることは、ホール素子の歩留り向上、低コスト化にもつながり、ひいては省エネルギー化が図られるようにもなる。
(3)また前述したように、磁気検出素子としての感度を高めることは、領域(素子領域)12cの幅寸法d(図1(a))として十分な幅を確保する上でも有効である。そして、この幅寸法dとして十分な幅を確保することで、オフセット電圧(不平衡電圧)の低減が図られるようになることも前述したとおりである。すなわち、この実施の形態に係る縦型ホール素子は、オフセット電圧(不平衡電圧)を低減する上でも有効である。
(4)上記分離壁として、図1(c)に示されるような台形状の断面を有するものを採用することとした。こうした形状とすることで、基板表面から内部へ向けて磁気検出部HPが順次狭められた上記構造も好適に実現されるようになる。
(5)また、この分離壁を、半導体基板に導電型不純物が添加されるかたちで形成された拡散層からなるものとした。こうした分離壁を採用することで、基板内部に形成されるpn接合を通じてそこにポテンシャル(電位)の障壁が好適に形成され、半導体基板内に上記磁気検出部HPがより確実に且つ好適に区画形成されることとなる。
(第2の実施の形態)
図3および図4に、この発明に係る縦型ホール素子およびその製造方法の第2の実施の形態を示す。
以下、これら図3および図4を参照して、先の第1の実施の形態との相違点を中心に、この実施の形態に係る縦型ホール素子の概略構造およびその動作態様について説明する。なお、同図3および図4は先の図1および図2にそれぞれ対応するものであり、これら図1および図2に示した要素と同一の要素には各々同一の符号を付して示し、それら要素についての重複する説明は割愛する。
同図3に示されるように、この縦型ホール素子も、基本的には、図1に例示した先の第1の実施の形態の縦型ホール素子に準じた構造を有している。ただし、この縦型ホール素子においては、上記領域12b、並びにコンタクト領域13c(図1参照)等が割愛された構造となっている。このため、先の図1に示した縦型ホール素子と比較して約「1/3」の面積が縮小され、大幅な小型化が図られることになる。なおここでは、素子設計の都合上、上記台形状の断面をもつ拡散層(分離壁)14aおよび14bについてはこれを、上記磁気検出部HP側のみに傾斜のつけられた台形状としている。
また、この縦型ホール素子の動作態様も、基本的に、図1に例示した先の縦型ホール素子と同様である。すなわち、例えば図4(a)に示すように、コンタクト領域13aを電源(フォース)電位に、コンタクト領域13bをグランド電位にそれぞれ固定して、同図4(a)中に矢印で示されるように、磁気検出部HPに対し駆動電流を基板表面から内部へ向けて流すことで、磁気検出部HPに印加される磁界(磁気)を検出することが可能になる。また、図4(b)に示すように、コンタクト領域13aをグランド電位に、コンタクト領域13bを電源電位にそれぞれ固定することにより、駆動電流の向きを反対にして磁界(磁気)の検出を行うこともできる。そしてこの場合、磁気検出精度のさらなる向上が図られることは前述したとおりである。
以上説明したように、この実施の形態に係る縦型ホール素子によれば、先の第1の実施の形態による前記(1)〜(5)の効果と同様の効果もしくはそれに準じた効果に加え、さらに次のような効果が得られるようになる。
(6)上記領域12b、並びにコンタクト領域13c(図1参照)等が割愛された構造とした。これにより、先の図1に示した縦型ホール素子と比較して約「1/3」の面積が縮小されることになり、大幅な小型化が図られるようになる。
(第3の実施の形態)
図5および図6に、この発明に係る縦型ホール素子およびその製造方法の第3の実施の形態を示す。
はじめに、これら図5および図6を参照して、先の第1の実施の形態との相違点を中心に、この実施の形態に係る縦型ホール素子の概略構造およびその動作態様について説明する。なお、同図5および図6は先の図1および図2にそれぞれ対応するものであり、これら図1および図2に示した要素と同一の要素には各々同一の符号を付して示し、それら要素についての重複する説明は割愛する。
同図5に示されるように、この縦型ホール素子も、基本的には、図1に例示した先の第1の実施の形態の縦型ホール素子と略同様の構造を有している。ただし、この縦型ホール素子では、上記拡散層14aおよび14bに代えて、例えば酸化シリコン等からなる絶縁膜15aおよび15bを分離壁として用いるようにしている。そして、この分離壁は、V字状に配設された平板状に形成されることにより、基板内部に磁気検出部HPを電気的に区画形成している。
また、この縦型ホール素子の動作態様も、基本的に、図1に例示した先の縦型ホール素子と同様である。すなわち、例えば図6(a)に示すように、コンタクト領域13aを電源(フォース)電位に、コンタクト領域13bをグランド電位にそれぞれ固定して、同図6(a)中に矢印で示されるように、磁気検出部HPに対し駆動電流を基板表面から内部へ向けて流すことで、磁気検出部HPに印加される磁界(磁気)を検出することが可能になる。また、図6(b)に示すように、コンタクト領域13aをグランド電位に、コンタクト領域13bを電源電位にそれぞれ固定することにより、駆動電流の向きを反対にして磁界(磁気)の検出を行うこともできる。そしてこの場合、磁気検出精度のさらなる向上が図られることは前述したとおりである。
次に、この実施の形態に係る縦型ホール素子の製造方法について説明する。なおここでは、半導体基板内に分離壁を、すなわち上記絶縁膜15aおよび15bを形成する方法について主に説明する。
すなわち、この分離壁を形成するにあたっては、まず、半導体基板内の磁気検出部HPとなる所定領域をエッチング除去して、側壁に傾斜をもつ断面逆台形状のトレンチを形成する。そして、そのトレンチの側壁に例えば熱酸化やCVD(化学気相成長)等により上記絶縁膜15aおよび15bを形成した後、同トレンチに再び例えばシリコンからなる半導体膜E12を例えばエピタキシャル成長にて埋設する。こうして、上記絶縁膜15aおよび15bが、基板表面から内部へ向けて磁気検出部HPを順次狭める態様で形成されることになる。
以上説明したように、この実施の形態に係る縦型ホール素子およびその製造方法によれば、先の第1の実施の形態による前記(1)〜(5)の効果と同様の効果もしくはそれに準じた効果に加え、さらに次のような効果が得られるようになる。
(7)上記分離壁を形成するにあたって、半導体基板内の磁気検出部HPとなる所定領域をエッチング除去して、側壁に傾斜をもつ断面逆台形状のトレンチを形成し、そのトレンチの側壁に絶縁膜15aおよび15bを成膜した後、同トレンチに再び半導体膜E12を埋設することとした。こうした製造方法を採用することで、基板表面から内部へ向けて磁気検出部HPを順次狭めるような分離壁を好適に形成することができるようになる。
(第4の実施の形態)
図7に、この発明に係る縦型ホール素子およびその製造方法の第4の実施の形態を示す。
以下、この図7を参照して、先の第1の実施の形態との相違点を中心に、この実施の形態に係る縦型ホール素子の概略構造について説明する。なお、同図7(a)〜(c)は先の図1(a)〜(c)にそれぞれ対応するものであり、これら図1(a)〜(c)に示した要素と同一の要素には各々同一の符号を付して示し、それら要素についての重複する説明は割愛する。
同図7に示されるように、この縦型ホール素子も、基本的には、図1に例示した先の第1の実施の形態の縦型ホール素子と略同様の構造を有しており、その動作態様も前述したとおりである。ただし、この縦型ホール素子では、適宜の支持基板L1の上に、埋込層BLを有し、例えば酸化シリコン等からなる絶縁層L2と上記半導体領域12とが順に形成されて構成されるSOI(Silicon On Insulator)基板を、先の埋込層BLを備えるエピタキシャル基板に代えてその母材(基板)として用いるようにしている。こうした構造によっても、前述した効果と同様の効果もしくはそれに準じた効果が奏されることとなる。
また、図8に示すように、第3の実施の形態の縦型ホール素子に対して上記SOI基板を採用した場合も同様に、前述した効果と同様の効果もしくはそれに準じた効果が奏されることとなる。さらに図示は割愛しているが、第2の実施の形態の縦型ホール素子に対して上記SOI基板を採用した場合も同様である。
以上説明したように、この実施の形態に係る縦型ホール素子によれば、先の第1の実施の形態による前記(1)〜(5)の効果と同様の効果もしくはそれに準じた効果が得られるようになる。
(他の実施の形態)
なお、上記各実施の形態は、以下の態様をもって実施することもできる。
・上記第3の実施の形態の縦型ホール素子において、上記絶縁膜15aおよび15bに代えて、P型の拡散層を分離壁として採用することもできる。また、こうしたホール素子を製造する方法(より詳しくは分離壁を形成する方法)としても、次のような方法を採用することで、第3の実施の形態による上記(7)の効果に準じた効果を得ることはできる。すなわち、上記分離壁を形成するにあたって、半導体基板内の磁気検出部HPとなる所定領域をエッチング除去して、側壁に傾斜をもつ断面逆台形状のトレンチを形成する。そして、そのトレンチの側壁に例えばイオン注入や熱拡散等により上記P型の拡散層を形成した後、同トレンチに再び例えばシリコンからなる半導体膜E12を例えばエピタキシャル成長にて埋設する。こうして、上記分離壁(拡散層)が、基板表面から内部へ向けて磁気検出部HPを順次狭める態様で形成されることになる。また、このほかにも、
(イ)半導体基板に対し斜め方向のイオン注入を行い、そこにP型の拡散層を形成することによって、基板表面から内部へ向けて磁気検出部HPを順次狭める態様で上記分離壁(拡散層)を形成する方法。
(ロ)半導体基板を斜め方向へエッチング除去してそこに適宜の絶縁膜を埋設することによって、基板表面から内部へ向けて磁気検出部HPとなる所定領域を順次狭める態様で上記分離壁(絶縁膜)を形成する方法。
等々の方法を採用することで、上記構造に準じた構造を好適に実現することができるようになる。
・上記第3の実施の形態の縦型ホール素子において形成したトレンチの内壁部分に拡散層を設けるようにした構造とすることもできる。こうした構造とすることで、例えば形成過程等においてそのトレンチ内壁部分に生じたダメージに起因するキャリアの再結合が好適に抑制され、ひいては磁気検出素子としての高感度化が図られるようになる。
・上記各実施の形態においては、当該ホール素子の素子分離に拡散層(P型拡散分離壁)14を用いることとした。しかし、これに限られることなく、素子分離の方法は任意である。例えば、上記拡散層に代えて、トレンチアイソレーションを採用することもできる。その一例として図9に、第1の実施の形態の縦型ホール素子に対してトレンチアイソレーションを、すなわちトレンチT16に埋設された絶縁膜16を採用したホール素子を示す。なお、これら図9(a)〜(c)は、先の図1(a)〜(c)に対応するものである。
・上記各実施の形態においては、エピタキシャル基板もしくはSOI基板を採用することとした。しかし、これに限られることなく任意の基板を用いることができる。例えば、単一の導電型(例えばP型)からなる基板や、P型−N型−P型もしくはN型−P型−N型といった多重拡散層基板等も適宜採用することができる。また、上記埋込層BLも必須の構成ではない。
・さらに、上記各実施の形態において、半導体基板を構成する各要素の導電型を入れ替えた構造、すなわちP型とN型とを入れ替えた構造のホール素子に対しても、この発明は同様に適用することができる。
・上記各実施の形態においては、基板の材料としてシリコンを用いるようにしたが、製造工程や構造上の条件等に応じてその他の材料を適宜採用するようにしてもよい。例えば、GaAs、InSb、InAs、SiC等の化合物半導体材料やGe(ゲルマニウム)等の他の半導体材料も用いることができる。特に、GaAs、InAsは温度特性に優れた材料であり、当該ホール素子の高感度化を図る上で有効である。
・上記各実施の形態においては、半導体領域12としてエピタキシャル膜を用いた構造を例示したが、これを拡散層として形成した構造とすることもできる。
・上記各実施の形態においては、配線(電極)とのオーミックコンタクトを実現すべくコンタクト領域13a〜13eを設けるようにした。しかし、これは必須の構成ではなく、例えばこうしたコンタクト領域を設けずに半導体領域12の上に直に配線(電極)を設けるようにしてもよい。
・また、上記各実施の形態においては、縦型ホール素子の駆動方法の一例として定電流駆動について説明したが、この縦型ホール素子の駆動方法は任意であり、例えば定電圧駆動によって駆動することもできる。
・上記各実施の形態においては、半導体基板内の磁気検出部HPとなる所定領域を電気的に区画する分離壁として、断面台形状もしくはV字状に配設された平板状の形状をもつ拡散層もしくは絶縁膜からなるものを採用することとした。しかし、上記分離壁はこれらに限られることなく、要は、半導体基板の表面から内部へ向けて磁気検出部となる所定領域を順次狭める態様で形成されたものであれば足りる。
この発明に係る縦型ホール素子およびその製造方法の第1の実施の形態について、(a)はそのホール素子の概略構造を模式的に示す平面図、(b)は(a)のB−B’線に沿った断面図、(c)は(a)のA−A’線に沿った断面図。 (a)および(b)は、同第1の実施の形態に係る縦型ホール素子の動作態様を例示する断面図。 この発明に係る縦型ホール素子およびその製造方法の第2の実施の形態について、(a)はそのホール素子の概略構造を模式的に示す平面図、(b)は(a)のB−B’線に沿った断面図、(c)は(a)のA−A’線に沿った断面図。 (a)および(b)は、同第2の実施の形態に係る縦型ホール素子の動作態様を例示する断面図。 この発明に係る縦型ホール素子およびその製造方法の第3の実施の形態について、(a)はそのホール素子の概略構造を模式的に示す平面図、(b)は(a)のB−B’線に沿った断面図、(c)は(a)のA−A’線に沿った断面図。 (a)および(b)は、同第3の実施の形態に係る縦型ホール素子の動作態様を例示する断面図。 この発明に係る縦型ホール素子およびその製造方法の第4の実施の形態について、(a)はそのホール素子の概略構造を模式的に示す平面図、(b)は(a)のB−B’線に沿った断面図、(c)は(a)のA−A’線に沿った断面図。 (a)は同第4の実施の形態に係る縦型ホール素子の変形例を示す平面図、(b)は(a)のB−B’線に沿った断面図、(c)は(a)のA−A’線に沿った断面図。 (a)は同第4の実施の形態に係る縦型ホール素子の別の変形例を示す平面図、(b)は(a)のB−B’線に沿った断面図、(c)は(a)のA−A’線に沿った断面図。 従来の縦型ホール素子の一例について、(a)はそのホール素子の平面構造を模式的に示す平面図、(b)は(a)のA−A’線に沿った断面図。 従来の縦型ホール素子の別の例を示す断面図。
符号の説明
11…半導体層、12…半導体領域、12a〜12c…領域、13a〜13e…コンタクト領域、14、14a、14b…拡散層、15a、15b、16…絶縁膜、E12…半導体膜、HP…磁気検出部。

Claims (9)

  1. 半導体基板内の特定領域を囲むことによって該領域を他の素子と素子分離する分離壁と、この素子分離用の分離壁によって囲まれた領域内であって且つ、磁気検出部となる所定領域を挟むかたちに形成されて該磁気検出部を電気的に区画する磁気検出部区画用の分離壁を有し、前記半導体基板の表面に垂直な成分を含む電流が前記磁気検出部に供給された状態で、同基板の表面に平行な磁界成分が前記磁気検出部に印加されたとき、その磁界成分に応じたホール電圧を発生させるとともに、この発生したホール電圧が、前記磁気検出部となる前記半導体基板の表面に形成されたコンタクト領域に接続されたホール電圧検出用端子を通じて検出される縦型ホール素子において、
    前記磁気検出部区画用の分離壁は、前記半導体基板の表面から内部へ向けて前記磁気検出部となる所定領域を順次狭める態様で形成されてなる
    ことを特徴とする縦型ホール素子。
  2. 前記磁気検出部区画用の分離壁は、台形状の断面をもって形成されてなる
    請求項1に記載の縦型ホール素子。
  3. 前記磁気検出部区画用の分離壁は、V字状に配設された平板状に形成されてなる
    請求項1に記載の縦型ホール素子。
  4. 前記磁気検出部区画用の分離壁は、前記半導体基板に導電型不純物が添加されるかたちで形成された拡散層からなる
    請求項1〜3のいずれか一項に記載の縦型ホール素子。
  5. 前記磁気検出部区画用の分離壁は、絶縁膜からなる
    請求項1〜3のいずれか一項に記載の縦型ホール素子。
  6. 半導体基板内の特定領域を囲むことによって該領域を他の素子と素子分離する分離壁と、この素子分離用の分離壁によって囲まれた領域内であって且つ、磁気検出部となる所定領域を挟むかたちに形成されて該磁気検出部を電気的に区画する磁気検出部区画用の分離壁を有し、前記半導体基板の表面に垂直な成分を含む電流が前記磁気検出部に供給された
    状態で、同基板の表面に平行な磁界成分が前記磁気検出部に印加されたとき、その磁界成分に応じたホール電圧を発生させるとともに、この発生したホール電圧が、前記磁気検出部となる前記半導体基板の表面に形成されたコンタクト領域に接続されたホール電圧検出用端子を通じて検出される縦型ホール素子を製造する方法であって、
    前記半導体基板内の磁気検出部となる所定領域をエッチング除去して側壁に傾斜をもつ断面逆台形状のトレンチを形成し、そのトレンチの側壁に前記磁気検出部区画用の分離壁としての拡散層を形成した後、同トレンチに再び半導体膜を埋設することによって、前記半導体基板の表面から内部へ向けて前記磁気検出部となる所定領域を順次狭める態様で前記磁気検出部区画用の分離壁を形成する
    ことを特徴とする縦型ホール素子の製造方法。
  7. 半導体基板内の特定領域を囲むことによって該領域を他の素子と素子分離する分離壁と、この素子分離用の分離壁によって囲まれた領域内であって且つ、磁気検出部となる所定領域を挟むかたちに形成されて該磁気検出部を電気的に区画する磁気検出部区画用の分離壁を有し、前記半導体基板の表面に垂直な成分を含む電流が前記磁気検出部に供給された状態で、同基板の表面に平行な磁界成分が前記磁気検出部に印加されたとき、その磁界成分に応じたホール電圧を発生させるとともに、この発生したホール電圧が、前記磁気検出部となる前記半導体基板の表面に形成されたコンタクト領域に接続されたホール電圧検出用端子を通じて検出される縦型ホール素子を製造する方法であって、
    前記半導体基板内の磁気検出部となる所定領域をエッチング除去して側壁に傾斜をもつ断面逆台形状のトレンチを形成し、そのトレンチの側壁に前記磁気検出部区画用の分離壁としての絶縁膜を成膜した後、同トレンチに再び半導体膜を埋設することによって、前記半導体基板の表面から内部へ向けて前記磁気検出部となる所定領域を順次狭める態様で前記磁気検出部区画用の分離壁を形成する
    ことを特徴とする縦型ホール素子の製造方法。
  8. 半導体基板内の特定領域を囲むことによって該領域を他の素子と素子分離する分離壁と、この素子分離用の分離壁によって囲まれた領域内であって且つ、磁気検出部となる所定領域を挟むかたちに形成されて該磁気検出部を電気的に区画する磁気検出部区画用の分離壁を有し、前記半導体基板の表面に垂直な成分を含む電流が前記磁気検出部に供給された状態で、同基板の表面に平行な磁界成分が前記磁気検出部に印加されたとき、その磁界成分に応じたホール電圧を発生させるとともに、この発生したホール電圧が、前記磁気検出部となる前記半導体基板の表面に形成されたコンタクト領域に接続されたホール電圧検出用端子を通じて検出される縦型ホール素子を製造する方法であって、
    前記半導体基板に対し斜め方向のイオン注入を行い、そこに前記磁気検出部区画用の分離壁としての拡散層を形成することによって、前記半導体基板の表面から内部へ向けて前記磁気検出部となる所定領域を順次狭める態様で前記磁気検出部区画用の分離壁を形成する
    ことを特徴とする縦型ホール素子の製造方法。
  9. 半導体基板内の特定領域を囲むことによって該領域を他の素子と素子分離する分離壁と、この素子分離用の分離壁によって囲まれた領域内であって且つ、磁気検出部となる所定領域を挟むかたちに形成されて該磁気検出部を電気的に区画する磁気検出部区画用の分離壁を有し、前記半導体基板の表面に垂直な成分を含む電流が前記磁気検出部に供給された状態で、同基板の表面に平行な磁界成分が前記磁気検出部に印加されたとき、その磁界成分に応じたホール電圧を発生させるとともに、この発生したホール電圧が、前記磁気検出部となる前記半導体基板の表面に形成されたコンタクト領域に接続されたホール電圧検出用端子を通じて検出される縦型ホール素子を製造する方法であって、
    前記半導体基板を斜め方向へエッチング除去してそこに前記磁気検出部区画用の分離壁としての絶縁膜を埋設することによって、前記半導体基板の表面から内部へ向けて前記磁
    気検出部となる所定領域を順次狭める態様で前記磁気検出部区画用の分離壁を形成する
    ことを特徴とする縦型ホール素子の製造方法。
JP2004295729A 2004-10-08 2004-10-08 縦型ホール素子およびその製造方法 Expired - Fee Related JP4353057B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004295729A JP4353057B2 (ja) 2004-10-08 2004-10-08 縦型ホール素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004295729A JP4353057B2 (ja) 2004-10-08 2004-10-08 縦型ホール素子およびその製造方法

Publications (2)

Publication Number Publication Date
JP2006108528A JP2006108528A (ja) 2006-04-20
JP4353057B2 true JP4353057B2 (ja) 2009-10-28

Family

ID=36377865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295729A Expired - Fee Related JP4353057B2 (ja) 2004-10-08 2004-10-08 縦型ホール素子およびその製造方法

Country Status (1)

Country Link
JP (1) JP4353057B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8114684B2 (en) * 2009-03-02 2012-02-14 Robert Bosch Gmbh Vertical hall effect sensor with current focus
US11245067B2 (en) * 2019-11-01 2022-02-08 Globalfoundries Singapore Pte. Ltd. Hall sensors with a three-dimensional structure

Also Published As

Publication number Publication date
JP2006108528A (ja) 2006-04-20

Similar Documents

Publication Publication Date Title
JP4289123B2 (ja) 半導体装置
TW201820627A (zh) Ie溝渠式閘極igbt
JP5251102B2 (ja) 半導体装置
JP4784186B2 (ja) 縦型ホール素子およびその磁気検出感度調整方法
US7777316B2 (en) Semiconductor device
US8338907B2 (en) Semiconductor device and method of manufacturing the same
JP2006351985A (ja) 半導体装置
US20130075814A1 (en) Semiconductor device with a semiconductor via
TW201322448A (zh) 奈米網格通道鰭式場效電晶體及生物感測器
JP2013183143A (ja) 半導体装置を製造する方法、及び、半導体装置
US9397092B2 (en) Semiconductor device in a semiconductor substrate and method of manufacturing a semiconductor device in a semiconductor substrate
TWI590447B (zh) 具有三維電晶體之半導體結構及其製程
JP4798102B2 (ja) 縦型ホール素子
CN103972234A (zh) 集成电路、半导体器件和制造半导体器件的方法
EP3133648A1 (en) Semiconductor device and manufacturing mehtod thereof
JP6103712B2 (ja) 半導体装置およびそれを製造するための方法
JP4353057B2 (ja) 縦型ホール素子およびその製造方法
TW200910592A (en) Semiconductor device
JP2007129086A (ja) 半導体装置
JP4375550B2 (ja) 縦型ホール素子の製造方法
JP2006024647A (ja) 縦型ホール素子およびその製造方法
JP4353055B2 (ja) 縦型ホール素子
JP2008016863A (ja) 縦型ホール素子
JP2004296469A (ja) ホール素子
JP4466276B2 (ja) 縦型ホール素子およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees