JP4352502B2 - Acidity measuring device and acidity measuring method - Google Patents

Acidity measuring device and acidity measuring method Download PDF

Info

Publication number
JP4352502B2
JP4352502B2 JP09967399A JP9967399A JP4352502B2 JP 4352502 B2 JP4352502 B2 JP 4352502B2 JP 09967399 A JP09967399 A JP 09967399A JP 9967399 A JP9967399 A JP 9967399A JP 4352502 B2 JP4352502 B2 JP 4352502B2
Authority
JP
Japan
Prior art keywords
acidity
measurement
measured
solution
calibration curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09967399A
Other languages
Japanese (ja)
Other versions
JP2000292412A (en
Inventor
哲 宮西
哲也 西尾
一芳 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP09967399A priority Critical patent/JP4352502B2/en
Publication of JP2000292412A publication Critical patent/JP2000292412A/en
Application granted granted Critical
Publication of JP4352502B2 publication Critical patent/JP4352502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、作用電極と対極と比較電極もしくは作用電極と対極を有し、試料を電気化学的に測定する測定器であって、主に食用油に含まれる遊離脂肪酸、果実飲料に含まれるリンゴ酸や酒石酸、アルコール飲料に含まれる酸、またはコーヒー中のコーヒー酸等の酸度を測定する酸度測定装置および酸度測定方法に関するものである。
【0002】
【従来の技術】
近年、物質中の成分を調べることでその物質の特性を把握して、種々の展開に役立てるようになってきている。例えば、水中の溶存酸素量や化学的酸素供給量は水の汚染量を示しており、土中の硝酸や各種金属、有機物の量も土の汚染量を示している。その中でも食品は、健康や安全面から一定の水準以上の品質が要求されるようになってきており、中でも食品中に含有された酸は食品の品質に大きな影響を与えるものである。この酸について詳細に説明すると、食品の酸度としては、食用油,ジュース等の果実飲料,ウィスキーや酒、ワイン等のアルコール飲料,コーヒーなどがあり、その酸の測定として従来は主に中和滴定法を使用していた。
【0003】
この中和測定方法には様々なものがあり、一例を上げると、基準油脂分析法,日本農林規格,JIS,日本薬局方油脂試験法,衛生試験法飲食物試験法,上水試験方法などで定められた方法があるが、いずれもその測定の基本はフェノールフタレインを指示薬としたものである。この中和滴定方法の詳細な説明は当業者に広く知られたものであるから割愛する。
【0004】
ところで、酸を測定する方法としては、このような中和滴定法によらず、ボルタンメトリーによって酸度を測定する方法がある。これは特開平5−264503号公報で開示されたもので、遊離脂肪酸とナフトキノン誘導体が共存する共存電解液を電位規制法によるボルタンメトリーによって測定するものである。ナフトキノン誘導体の還元前置波電流値の大きさが、蟻酸のような低級脂肪酸からオレイン酸やリノール酸のような高級脂肪酸まで全ての脂肪酸について、遊離脂肪酸の濃度に比例し、各脂肪酸の電流値を重ね合わせた値が脂肪酸の総濃度に対応することを利用している。すなわち、ナフトキノン誘導体の還元前置波電流値の大きさを測ることにより酸濃度を測定するものである。この測定を行うボルタンメトリーによる酸度測定装置は、共存電解液に電極を浸漬するタイプがあり、作用電極と対極と比較電極の3電極、もしくは作用電極と対極、または比較電極と作用電極の2電極を有し、測定溶媒を含む溶液に被測定試料を注入して測定するものである。なお、特開平5−264503号公報で開示されているのは脂肪酸の酸度であるが、有機酸であればこの酸度測定装置で測定が可能である。
【0005】
【発明が解決しようとする課題】
このように従来の酸度測定装置を用いて被測定溶液中に含まれる酸の測定を行うときには、測定を行なう還元前置波電流値が共存電解液中の酸の濃度に比例することを利用して酸度を測定している。このため、同じ被測定溶液の酸度を測定するのであっても、測定電解液と被測定溶液の混合比率が異なると、これらが混合した共存電解液では還元前置波電流値が異なる値になってしまい、正しい被測定溶液の酸度を算出することが出来ないものであった。そこで、従来は測定に際して必ず測定電解液と被測定溶液の混合比率を正確に設定し直し、条件を整える必要があった。従って、繰り返して酸度を測定する場合には、酸度測定毎に共存電解液の入れ替えや洗浄を行う必要があり、その手間は測定者泣かせであった。
【0006】
このように従来の酸度測定装置を用いての測定は、測定毎に各溶液の定量採取・混合、測定済み共存電解液の廃棄、容器の洗浄などに非常に手間がかかってしまうし、測定毎に溶液の入れ替えを行うことから、測定のランニングコストが高くなるものであった。
【0007】
そこで本発明は、測定毎に溶液の入れ替えや洗浄が必要なく、ランニングコストを下げることができる酸度測定装置を提供することを目的とする。
【0008】
また本発明は、測定毎に溶液の入れ替えや洗浄を行う必要がない酸度測定方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
この目的を達成するために本発明の酸度測定装置は、記憶部には繰り返して行う測定回数ごとに対応する検量線がそれぞれ記憶され、酸度算出手段が前記検量線から1つを選択して酸度を算出することを特徴とする。
【0012】
これにより、測定毎に溶液の入れ替えや洗浄を行う必要がない。
【0017】
【発明の実施の形態】
本発明の請求項に記載された発明は、プロトン受容物質含有の測定電解液に1回目の被測定溶液を加えた共存電解液の1回目のボルタンメトリーを行い、検出された還元前置波電流値と第1の検量線を用いて酸度を算出し、さらに1回目の測定後の共存電解液に2回目の被測定液を加えて2回目のボルタンメトリーを行い、検出された還元前置波電流値と第2の検量線を用いて酸度を算出することを特徴とするボルタンメトリー測定方法であるから、測定1回分の測定電解液で2回繰り返して測定できる。
【0018】
本発明の請求項に記載された発明は、測定後の共存電解液にさらに被測定液を加えてボルタンメトリーし、検出された還元前置波電流値と測定回数に対応した検量線を用いて酸度を算出する測定操作を繰り返すことを特徴とする請求項記載のボルタンメトリー測定方法であるから、測定1回分の測定電解液でさらに繰り返して酸度を測定できる。
【0019】
本発明の請求項に記載された発明は、プロトン受容物質含有の測定電解液に1回目の被測定溶液を加えて測定回数に対応した混合比率の共存電解液を作成して1回目のボルタンメトリーを行い、検出された還元前置波電流値と検量線を用いて酸度を算出し、さらに1回目の測定後の共存電解液に2回目の被測定液を加えて2回目のボルタンメトリーを行い、検出された還元前置波電流値と前記検量線を用いて酸度の近似値を算出することを特徴とするボルタンメトリー測定方法であるから、測定1回分の測定電解液で再度繰り返して測定でき、検量線も1つですむから簡単に酸度を得ることができる。
【0020】
本発明の請求項に記載された発明は、測定後の共存電解液にさらに被測定液を加えてボルタンメトリーし、検出された還元前置波電流値と前記検量線を用いて酸度の近似値を算出するという測定操作を繰り返すことを特徴とする請求項記載のボルタンメトリー測定方法であるから、測定1回分の測定電解液で繰り返して測定でき、検量線も1つですむから簡単に酸度を得ることができる。
【0021】
以下、本発明の実施の形態について図1〜図8を用いて説明する。
【0022】
(実施の形態1)
まず本発明の一実施の形態の酸度測定装置について、図面に基づいて詳細に説明する。図1は本発明の一実施の形態における酸度測定装置の概略外観図である。図1において、1は測定部をカバーする上蓋、2は上蓋1を開放するためのボタン、3は測定酸度を表示する表示手段であるところのLCD、4は酸度の大きさによって領域を切り替えるためのボタン、5は測定を開始するためのスタート・ストップボタン、6は本装置の電源をON,OFFする電源ボタンである。
【0023】
次に図2は本発明の一実施の形態における酸度測定装置の上蓋1を開放した概略外観図、図3は本発明の一実施の形態における酸度測定装置の制御回路図である。図1に記載した上蓋1をスライドさせると、図2に示したように上蓋1が開放された状態となり、酸度測定装置の内部空間に後述する測定容器を測定のためにセットすることが可能となる。この測定容器は構造的にも電気的にも酸度測定装置本体から取り外し自在な構成となっている。
【0024】
図2において、7はオルトベンゾキノン誘導体,有機溶媒,電解質及び被測定溶液を混合した共存電解液を収容する容器、8は対極、9は作用電極、10は比較電極であり炭素もしくはグラッシーカーボンと呼ばれるガラス状炭素や、PFCと呼ばれるプラスチックフォームを1000℃〜2000℃で燒結した炭素を素材としている。前記の測定容器は、容器7内にこの共存電解液を収容するとともに、対極8,作用電極9,比較電極10を取り付けた容器カバーをこの共存電解液に各電極を浸漬した状態で容器7に装着したものである。なお、オルトベンゾキノン誘導体に代えてパラベンゾキノン誘導体でも後記する同様の作用効果を期待できる。
【0025】
続いて測定容器7に収容する共存電解液関係のことについて説明する。この実施の形態の酸度測定用共存電解液は、溶媒としてエタノールにイソプロピルアルコールと水を、エタノール60wt%、イソプロピルアルコール20wt%、水20wt%の割合で混合して5mLとし、オルトベンゾキノン誘動体20mモル、塩化ナトリウム150mモルを溶解させたもので、この溶媒に被測定液0.1mLを混合して用いている。この溶媒は測定する酸の種類で割合を変えるのが適当で、上記の溶媒は果汁の酸度や酒類の酸度を測定するときに最も適当な溶媒である。なお、オルトベンゾキノン誘導体やパラベンゾキノン誘動体は、電極での還元反応でアニオンラジカル化されてアルコールや水等のプロトン性の溶媒からプロトンを引き抜いて還元される(本格的な還元電流が流れる)前に、脂肪酸や有機酸から遊離したプロトンがあるとプロトン付加体を形成し、これをヒドロキノン等にまで還元することにより酸度に比例した還元前置波電流を流すことができるプロトン受容物質である。
【0026】
11は測定容器を載せる設置台であり、内部に回転磁界を発生するためのコイルが設けられており、あわせてスターラー11を形成している。スターラー11は後記するスターラ駆動回路27により容器7内の溶液中に浸漬した後記する攪拌子を回転させることができる。12は共存電解液中にある磁気極性をもった攪拌子で、回動自在になっており溶液中でスターラー11による回転磁界に従って回転し、共存電解液を効果的にかき混ぜて攪拌することができる。後記する制御部15からの指示で攪拌することにより、作用電極9と比較電極10間の電位差である自然電位を早く安定した値にすることができるものである。従って、迅速な測定が可能になり、2回目以降の測定開始を必要以上に待たなくてよく、測定時間の短縮が図れるものである。
【0027】
次に、本発明の一実施の形態の酸度測定装置の制御を行う制御回路について説明する。 図3は本発明の一実施の形態における酸度測定装置の制御回路図である。 図3において、3は前述したLCD表示部、5’はスタート・ストップボタン5によって動作するスタート・ストップスイッチ、6'は電源ボタン6を押すと動作する電源ON−OFFスイッチ、15はマイクロコンピューター等から構成される制御部、16は発信子、17は分周回路、18はタイマ手段、19はD/Aコンバーター、20はオペアンプ、21はモニタリング回路、22は抵抗器、23は作動アンプ、24はA/Dコンバーター、25は酸度算出手段、26は記憶手段、27はスイッチング素子からなるスターラ駆動回路である。
【0028】
図1の電源ボタン6を押すとLCD3が動作可能となる。次にスタート・ストップボタン5を押すと、制御部15は発振子9により発生される信号を基に分周回路17によって内部でクロックを作り、そのクロックをカウントしてタイマー18が計時を開始する。このタイマー18は1秒単位で計時を行う。タイマー18に同期して制御部15はD/Aコンバータ19へ所定の電圧のデジタル信号(パルス)を送る。D/Aコンバーター19はそのデジタル信号をアナログ信号に変換し、オペアンプ20へ出力する。 図4は本発明の一実施の形態における酸度測定装置のオペアンプからの出力図、図5は本発明の一実施の形態における酸度測定装置の積分回路からの出力図である。図4に示したように、横軸に時間、縦軸に電圧をとった場合、時間が1秒,2秒,3秒,・・・と計時される毎に、電圧が5mV,10mV,15mV,・・・と変化していく。そしてオペアンプ20から出力される信号はRC積分回路を通ることにより積分され、 図5に示したアナログ信号となり、モニタリング回路21に入力される。モニタリング回路21においては、モニタリング回路21を構成するオペアンプを利用して、出力端側の対極8の電圧をアナログ信号に従って制御し、−入力端側の比較電極10の電位がアナログ信号と同じになるようにする。これにより比較電極10と作用電極9との間の電位差は所定の値0mV〜−1000mVの範囲となる。一方、対極8に流れる電流は、抵抗器22の両端の電圧を差動アンプ23を通すことにより電圧へ変換され、A/Dコンバーター24を介してアナログ信号からデジタル信号へ変換されて、さらに制御部15へ入力される。ここで制御部15は、図5に示すように所定の掃引速度で掃引される電圧に対して、入力された電流をそれぞれ比較することにより、 図6の点線部分で表したプレピークを与える還元前置波電流値を検出する。この還元前置波電流値を基に酸度算出手段25で酸度を計算し、その値をLCD3で表示する。また比較電極10の電位はA/Dコンバーター24にも直接入力しており、A/Dコンバーター24の入力ソースを切り換えることでに比較電極10の電位をデジタル信号として制御部15に取り込むことができる。これにより作用電極9の固定電位との差を算出することで、制御部15において測定前の自然電位のモニターが可能となり、高精度な測定を行なうための測定開始条件である自然電位0mV〜−5mVを確認できたらすぐに次の測定を開始できるため、複数回の測定を連続的に行なう際に測定時間の短縮が図れることとなる。
【0029】
ところで、図6は本発明の一実施の形態における酸度測定装置の電圧掃引に対する還元電流の関係図であり、電圧Eは作用電極9と比較電極10間の電位差、電流Iは作用電極8に流れる電流となっており、図7は本発明の一実施の形態における酸度測定装置の酸度と還元電流の第1関係図である。この図6の波形においてAで示した還元前置波電流値を与える電流値Iと、被測定溶液に混入した酸の酸度θは図7に示すように比例の関係にある。測定した電流値Iを酸度に変換するためには、予め酸度が分かっている標準試薬を作成し、例えば酸度1,2,3に対する電流は何μAで、このとき比例定数はいくらといった具合に記憶手段26に電流値Iと酸度θの関係を示す酸度算出用の一次関数データ(以後、検量線と記す)を記憶設定しておけばよい。このように検量線を記憶しておけば、任意の酸度を測定したい場合、マイクロコンピューターから構成される酸度算出手段25によって測定電流値Iを酸度θに変換することができる。なお標準試薬の酸度以外の酸度の場合は、対応する電流値Iと検量線をそれぞれ補完処理して酸度を算出するのが望ましい。
【0030】
次に、本発明の一実施の形態における酸度測定方法について説明する。図8は本発明の一実施の形態における酸度測定装置の酸度と還元電流の第2関係図である。本発明の酸度測定は、被測定液を測定後の共存電解液に注ぎ足したときの検量線が、前回測定した時に用いた検量線と一義的に定まる所定の関係を有すことに依拠している。すなわち、測定済の共存電解液に再び被測定液が加えられるため含有物質濃度は薄められることになり、所定の混合比率から次第にずれていくことになる。そこで、測定のための操作の内容を所定のものに定めてやれば、次の測定では検量線の勾配と切片が所定の割合で下方へシフトする。本発明はこのような知見に立脚してなされたものである。
【0031】
従って、本実施の形態1では繰り返して何度か測定する場合、測定回数分だけの検量線を予め記憶手段26の中に記憶しておき、各測定ごとに対応した検量線を酸度算出手段25が選択して記憶手段26から読み出し、酸度を算出するものである。これにより、測定1回分の測定電解液を繰り返して用い、検量線を変えることで2回以上測定することができることになる。
【0032】
図8を用いてさらに詳細に説明すると、図8の酸度Q1である1回目測定の被測定溶液、酸度Q2―Q1である2回目測定の被測定溶液の酸度測定を行なうとする。まず、1回目の被測定溶液を加えた共存電解液をボルタンメトリーすると、図8のプレピーク電流値IP1が得られ、1回目の測定であるから酸度算出手段25が記憶手段26に記憶された検量線Lを選択し、被測定溶液の酸度Q1を算出し、酸度算出手段25はこの測定が何回目であるか自動的にカウントし記憶する。次に、2回目測定の被測定溶液を1回目測定した共存電解液に注ぎ足して同じくボルタンメトリーを行い、図8のプレピーク電流値IP2を得る。ここで、本来ならば1回目測定の被測定溶液に2回目測定の被測定溶液を加えた酸度は図3の酸度Q2であるから検量線Lを用いると、算出できるプレピーク電流値IP2’が得られるはずである。しかし、1回目測定の被測定溶液を混合済みの共存電解液に、さらに2回目測定の被測定溶液を注ぎ足してあるため共存電解液の混合比率が変化していることによりプレピーク電流値IP2が得られることになる。従って、プレピーク電流値IP2より検量線Lを用いて酸度を算出すると、正しい値である酸度Q2とは異なった酸度Q2’を得ることになってしまう。
【0033】
ここで、この酸度算出誤差を生んでしまう前記混合比率の変化を考慮して測定回数2回目の混合比率に対応した検量線Mを予め別に用意しておくことにより、プレピーク電流値IP2より第1の被測定溶液の酸度と第2の被測定溶液の酸度を加えた正しい値である酸度Q2を得ることができる。
【0034】
さらに3回目以降の測定を繰り返す場合には、同様に予め測定回数に対応した複数の検量線を用意しておき、各測定ごとに対応した検量線を選択すればよい。これによって測定1回分の測定電解液で被測定溶液を注ぎ足していくことにより、複数回の測定が可能となる。
【0035】
ところで、以上説明した実施の形態1では測定回数に応じた検量線を予め記憶手段26に複数本記憶しておき、酸度算出手段25が測定回数をカウントしながら記憶し、次回の測定では記憶手段26から新しい検量線を読み出して酸度を算出した。しかしながら、検量線そのものを記憶手段26にすべて記憶しておくのではなく、記憶手段26に記憶しておくのは前回の検量線を構成するデータと、次の検量線への換算を行う補正係数であってもよい。この場合、各測定回数ごとに酸度算出手段25はカウントした測定回数からこの補正係数を読み出し、この時点でリアルタイムに検量線を演算・構成し、この演算した検量線を利用して酸度を算出する。すべての検量線を予め記憶しておくのと基本的に同様の作用効果が期待できる。
【0036】
(実施の形態2)
実施の形態2の酸度測定装置は、基本的に実施の形態1の酸度測定装置と同様の構成を備えているが、被測定溶液に対する測定電解液の混合比率が測定回数の多さに対応して高い比率を有するような比率で両者を混合している。そして、以下の理由から2回以上繰り返して測定するときには、酸度算出手段25が記憶手段26に記憶されている唯一の検量線で酸度の近似値を算出するものである。すなわち、前回測定した後の共存電解液にさらに所定量の被測定液を加えてボルタンメトリーし、検出された還元前置波電流値と記憶している唯一の検量線を用いて酸度の近似値を算出する一連の測定操作を、必要回数繰り返すものである。
【0037】
実施の形態1に示した前記混合比率を測定電解液量を被測定溶液量に対して十分多い混合比率としておくことで、被測定溶液を複数回追加しても混合比率変化が小さくなり、図8の還元前置波電流値IP2とIP2´の差が無視できるような値となる。これにより実施の形態1のように複数の検量線を記憶しておく必要はなく、また各測定回数ごとに補正係数を用いて演算する必要もなくなって、1本の検量線だけを用いて複数回測定する酸度をそれぞれ近似的に求めることが可能となる。この実施の形態2によれば、繰り返して酸度を測定する場合に、1本の検量線で2回目以降の測定で酸度の近似値を簡単に求めることができる。測定電解液量を被測定溶液量に対して測定回数を考慮して十分多い混合比率とすればよい。例えば、1%以下の混合比率であれば、3〜4回の測定を行う場合にかなりの精度の近似値を得ることができる。混合比率は繰り返して行う測定回数を多くすればするほど上げる必要がある。
【0038】
さらに、所定回数測定した後、共存電解液にさらに被測定液を加えてボルタンメトリーし、検出された還元前置波電流値と記憶している検量線を用いて酸度の近似値を算出する測定操作を繰り返せば、測定1回分の測定電解液でさらに多くの回数測定でき、検量線も1つですむから酸度測定装置を簡単なものにすることができる。
【0039】
【発明の効果】
以上のように本発明によれば、測定1回分の測定電解液で被測定溶液の酸度測定を精度良く複数回測定可能となり、測定毎に測定溶液を入れ替える必要がなくなることで、手間が省け、ランニングコストも押さえることができる。また、測定溶液・洗浄液等の廃液を減らすこともできるという有利な効果が得られる。
【0040】
測定電解液を被測定溶液に対して十分多い混合比率で混合すれば、検量線を1つ記憶しておくだけで酸度の精度の高い近似値を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態における酸度測定装置の概略外観図
【図2】本発明の一実施の形態における酸度測定装置の上蓋を開放した概略外観図
【図3】本発明の一実施の形態における酸度測定装置の制御回路図
【図4】本発明の一実施の形態における酸度測定装置のオペアンプからの出力図
【図5】本発明の一実施の形態における酸度測定装置の積分回路からの出力図
【図6】本発明の一実施の形態における酸度測定装置の電圧掃引に対する還元電流の関係図
【図7】本発明の一実施の形態における酸度測定装置の酸度と還元電流の第1関係図
【図8】本発明の一実施の形態における酸度測定装置の酸度と還元電流の第2関係図
【符号の説明】
1 上蓋
2 開放ボタン
3 LCD
4 レンジ切り換えボタン
5 スタート・ストップボタン
5’ スタート・ストップスイッチ
6 電源ON・OFFボタン
6’ 電源ON−OFFスイッチ
7 測定容器
8 対極
9 作用電極
10 比較電極
11 スターラー
12 攪拌子
15 マイクロコンピューター等から構成される制御部
16 発振子
17 分周回路
18 タイマ手段
19 D/Aコンバーター
20 オペアンプ
21 モニタリング回路
22 抵抗器
23 差動アンプ
24 A/Dコンバーター
25 酸度算出手段
26 記憶手段
27 スターラ駆動回路
[0001]
BACKGROUND OF THE INVENTION
The present invention is a measuring instrument that has a working electrode and a counter electrode and a comparison electrode or a working electrode and a counter electrode, and that electrochemically measures a sample, and is mainly a free fatty acid contained in edible oil and an apple contained in a fruit drink The present invention relates to an acidity measuring device and an acidity measuring method for measuring the acidity of acids, tartaric acid, acids contained in alcoholic beverages, or coffee acids in coffee.
[0002]
[Prior art]
In recent years, by investigating the components in a substance, the characteristics of the substance have been grasped and have been used for various developments. For example, the amount of dissolved oxygen and the amount of chemical oxygen supplied in water indicate the amount of water contamination, and the amounts of nitric acid, various metals and organic substances in the soil also indicate the amount of soil contamination. Among them, foods are required to have a certain level of quality from the viewpoint of health and safety, and among them, acids contained in foods greatly affect the quality of foods. This acid will be explained in detail. Food acidity includes edible oil, fruit drinks such as juice, alcoholic drinks such as whiskey, liquor, wine, coffee, etc. Was using the law.
[0003]
There are various methods for measuring this neutralization. For example, the standard oil analysis method, Japan Agricultural Standards, JIS, Japanese Pharmacopoeia oil test method, hygiene test method food test method, water test method, etc. Although there are defined methods, the basis of the measurement of all is phenolphthalein as an indicator. A detailed description of this neutralization titration method is well known to those skilled in the art, and is therefore omitted.
[0004]
By the way, as a method for measuring the acid, there is a method of measuring the acidity by voltammetry regardless of the neutralization titration method. This is disclosed in Japanese Patent Application Laid-Open No. 5-264503, in which a coexisting electrolytic solution in which a free fatty acid and a naphthoquinone derivative coexist is measured by voltammetry using a potential regulating method. The magnitude of the pre-reduction wave current value of the naphthoquinone derivative is proportional to the free fatty acid concentration for all fatty acids from lower fatty acids such as formic acid to higher fatty acids such as oleic acid and linoleic acid, and the current value of each fatty acid. Is utilized that corresponds to the total concentration of fatty acids. That is, the acid concentration is measured by measuring the magnitude of the pre-reduction wave current value of the naphthoquinone derivative. The voltammetric acidity measuring apparatus that performs this measurement has a type in which an electrode is immersed in a coexisting electrolyte, and includes a working electrode, a counter electrode, and a reference electrode, or a working electrode and a counter electrode, or a comparative electrode and a working electrode. The sample to be measured is injected into a solution containing a measurement solvent. In addition, although what is disclosed by Unexamined-Japanese-Patent No. 5-264503 is the acidity of a fatty acid, if it is an organic acid, it can measure with this acidity measuring apparatus.
[0005]
[Problems to be solved by the invention]
As described above, when the acid contained in the solution to be measured is measured using the conventional acidity measuring apparatus, it is utilized that the reduction pre-wave current value to be measured is proportional to the acid concentration in the coexisting electrolyte. The acidity is measured. For this reason, even if the acidity of the same solution to be measured is measured, if the mixing ratio of the measurement electrolyte and the solution to be measured is different, the coexisting electrolyte in which they are mixed will have different values of the pre-reduction wave current. As a result, the correct acidity of the solution to be measured cannot be calculated. Therefore, in the past, it was necessary to accurately set the mixing ratio of the measurement electrolyte solution to the solution to be measured and adjust the conditions during measurement. Therefore, when the acidity is measured repeatedly, it is necessary to replace the coexisting electrolyte and to wash each time the acidity is measured.
[0006]
As described above, the measurement using the conventional acidity measuring apparatus takes a lot of time and effort to quantitatively collect and mix each solution, discard the measured coexisting electrolyte, and clean the container for each measurement. Since the solution was replaced, the running cost of the measurement was high.
[0007]
Therefore, an object of the present invention is to provide an acidity measuring device that does not require replacement or washing of the solution for each measurement and can reduce the running cost.
[0008]
Another object of the present invention is to provide an acidity measurement method that does not require replacement or washing of the solution for each measurement.
[0011]
[Means for Solving the Problems]
In order to achieve this object, in the acidity measuring apparatus of the present invention, a calibration curve corresponding to each repeated measurement is stored in the storage unit, and the acidity calculation means selects one from the calibration curve and selects the acidity. Is calculated.
[0012]
Thereby, it is not necessary to replace or wash the solution for each measurement.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The invention described in claim 1 of the present invention performs a first first voltammetric coexistence electrolyte plus the measured solution into the measurement electrolyte proton receptive material containing, detected before reduction置波current The acidity is calculated using the value and the first calibration curve. Further, the second measured solution is added to the coexisting electrolyte after the first measurement, and the second voltammetry is performed. Since the acidity is calculated using the value and the second calibration curve, the voltammetric measurement method is characterized in that the measurement can be repeated twice with the measurement electrolyte solution for one measurement.
[0018]
In the invention described in claim 2 of the present invention, the solution to be measured is further added to the coexisting electrolytic solution after the measurement, and the voltammetry is performed, and the detected pre-reduction wave current value and the calibration curve corresponding to the number of measurements are used. since a voltammetric measurement method of claim 1, wherein repeating the measurement operation of calculating the acidity can be measured further repeated acidity measured batch of measurement electrolyte.
[0019]
According to the third aspect of the present invention, a co-electrolyte having a mixing ratio corresponding to the number of times of measurement is prepared by adding the first solution to be measured to the proton-accepting substance-containing measurement electrolyte, and the first voltammetry. The acidity is calculated using the detected pre-reduction wave current value and the calibration curve, and the second measured solution is added to the coexisting electrolyte after the first measurement, and the second voltammetry is performed. Since it is a voltammetric measurement method characterized in that an approximate value of acidity is calculated using the detected pre-reduction wave current value and the calibration curve, the measurement can be repeated again with the measurement electrolyte solution for one measurement. Since only one line is required, acidity can be easily obtained.
[0020]
In the invention described in claim 4 of the present invention, the solution to be measured is further added to the coexisting electrolyte solution after the measurement, and the voltammetry is performed, and the approximate value of the acidity is calculated using the detected pre-reduction wave current value and the calibration curve. 4. The voltammetric measurement method according to claim 3 , characterized in that the measurement operation is calculated repeatedly, so that the measurement can be repeated with a measurement electrolyte for one measurement, and only one calibration curve is required. Obtainable.
[0021]
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0022]
(Embodiment 1)
First, an acidity measuring apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic external view of an acidity measuring apparatus according to an embodiment of the present invention. In FIG. 1, 1 is an upper cover that covers the measurement unit, 2 is a button for opening the upper cover 1, 3 is an LCD that is a display means for displaying the measured acidity, and 4 is for switching the region depending on the size of the acidity. , 5 is a start / stop button for starting measurement, and 6 is a power button for turning on / off the power of the apparatus.
[0023]
Next, FIG. 2 is a schematic external view in which the upper lid 1 of the acidity measuring apparatus according to the embodiment of the present invention is opened, and FIG. 3 is a control circuit diagram of the acidity measuring apparatus according to the embodiment of the present invention. When the upper lid 1 shown in FIG. 1 is slid, the upper lid 1 is opened as shown in FIG. 2, and a later-described measurement container can be set for measurement in the internal space of the acidity measuring device. Become. This measuring container is configured to be removable from the acidity measuring device main body structurally and electrically.
[0024]
In FIG. 2, 7 is a container for storing a coexisting electrolyte obtained by mixing an orthobenzoquinone derivative, an organic solvent, an electrolyte and a solution to be measured, 8 is a counter electrode, 9 is a working electrode, 10 is a reference electrode, and is called carbon or glassy carbon. The material is glassy carbon or carbon obtained by sintering a plastic foam called PFC at 1000 ° C to 2000 ° C. The measurement container accommodates the coexisting electrolyte in the container 7, and the container cover with the counter electrode 8, the working electrode 9 and the comparison electrode 10 is immersed in the coexisting electrolyte in the container 7 It is what was attached. In addition, it replaces with an ortho benzoquinone derivative, and the same effect mentioned later can be anticipated also with a para benzoquinone derivative.
[0025]
Next, the relation of the coexisting electrolyte stored in the measurement container 7 will be described. The coexisting electrolyte for acidity measurement of this embodiment is a mixture of ethanol and isopropyl alcohol and water at a ratio of 60 wt% ethanol, 20 wt% isopropyl alcohol and 20 wt% water to make 5 mL, and 20 mmol of orthobenzoquinone inducer. In this solution, 150 mmol of sodium chloride is dissolved, and 0.1 mL of the liquid to be measured is mixed with this solvent. It is appropriate to change the ratio of this solvent depending on the kind of acid to be measured, and the above-mentioned solvent is the most suitable solvent for measuring the acidity of fruit juice and the acidity of alcohol. In addition, orthobenzoquinone derivatives and parabenzoquinone inducers are converted into anion radicals by reduction reaction at the electrode and reduced by extracting protons from protic solvents such as alcohol and water (full reduction current flows). In addition, when there is a proton liberated from a fatty acid or an organic acid, it is a proton acceptor that can form a proton adduct, and reduce it to hydroquinone or the like, thereby allowing a pre-reduction wave current proportional to acidity to flow.
[0026]
Reference numeral 11 denotes an installation table on which the measurement container is placed, and a coil for generating a rotating magnetic field is provided inside, and a stirrer 11 is formed together. The stirrer 11 can rotate a stirrer described later after being immersed in a solution in the container 7 by a stirrer driving circuit 27 described later. A stirrer 12 having a magnetic polarity in the coexisting electrolyte is rotatable and rotates in the solution according to the rotating magnetic field by the stirrer 11 so that the coexisting electrolyte can be effectively stirred and stirred. . By stirring according to an instruction from the control unit 15 to be described later, the natural potential that is a potential difference between the working electrode 9 and the comparison electrode 10 can be quickly and stably set. Therefore, quick measurement is possible, and it is not necessary to wait for the start of the second and subsequent measurements more than necessary, and the measurement time can be shortened.
[0027]
Next, a control circuit for controlling the acidity measuring apparatus according to the embodiment of the present invention will be described. FIG. 3 is a control circuit diagram of the acidity measuring device according to one embodiment of the present invention. In FIG. 3, 3 is the above-mentioned LCD display section, 5 ' is a start / stop switch operated by the start / stop button 5, 6' is a power ON-OFF switch that operates when the power button 6 is pressed, and 15 is a microcomputer or the like. 16 is a transmitter, 17 is a frequency divider, 18 is a timer means, 19 is a D / A converter, 20 is an operational amplifier, 21 is a monitoring circuit, 22 is a resistor, 23 is an operational amplifier, 24 Is an A / D converter, 25 is an acidity calculating means, 26 is a storage means, and 27 is a stirrer driving circuit comprising switching elements.
[0028]
When the power button 6 in FIG. 1 is pressed, the LCD 3 becomes operable. Next, when the start / stop button 5 is pressed, the control unit 15 generates a clock internally by the frequency dividing circuit 17 based on the signal generated by the oscillator 9, counts the clock, and the timer 18 starts measuring time. . The timer 18 measures time in units of 1 second. In synchronization with the timer 18, the control unit 15 sends a digital signal (pulse) having a predetermined voltage to the D / A converter 19. The D / A converter 19 converts the digital signal into an analog signal and outputs it to the operational amplifier 20. FIG. 4 is an output diagram from the operational amplifier of the acidity measuring device in one embodiment of the present invention, and FIG. 5 is an output diagram from the integrating circuit of the acidity measuring device in one embodiment of the present invention. As shown in FIG. 4, when time is taken on the horizontal axis and voltage is taken on the vertical axis, the voltage is 5 mV, 10 mV, 15 mV each time the time is counted as 1 second, 2 seconds, 3 seconds,. , ... and will change. The signal output from the operational amplifier 20 is integrated by passing through the RC integration circuit, becomes an analog signal shown in FIG. In the monitoring circuit 21, the operational amplifier constituting the monitoring circuit 21 is used to control the voltage of the counter electrode 8 on the output end side according to the analog signal, and the potential of the comparison electrode 10 on the −input end side becomes the same as the analog signal. Like that. As a result, the potential difference between the comparison electrode 10 and the working electrode 9 falls within a predetermined value range of 0 mV to −1000 mV. On the other hand, the current flowing through the counter electrode 8 is converted into a voltage by passing the voltage across the resistor 22 through the differential amplifier 23, converted from an analog signal to a digital signal via the A / D converter 24, and further controlled. Input to the unit 15. Here, the control unit 15 compares the input current with the voltage swept at a predetermined sweep speed as shown in FIG. 5, thereby giving a pre-peak represented by a dotted line portion in FIG. The standing wave current value is detected. The acidity calculation means 25 calculates the acidity based on the pre-reduction wave current value, and the value is displayed on the LCD 3. The potential of the comparison electrode 10 is also directly input to the A / D converter 24. By switching the input source of the A / D converter 24, the potential of the comparison electrode 10 can be taken into the control unit 15 as a digital signal. . Thus, by calculating the difference from the fixed potential of the working electrode 9, the control unit 15 can monitor the natural potential before measurement, and the natural potential 0 mV to −− which is a measurement start condition for performing highly accurate measurement. Since the next measurement can be started as soon as 5 mV is confirmed, the measurement time can be shortened when performing a plurality of measurements continuously.
[0029]
FIG. 6 is a relational diagram of the reduction current with respect to the voltage sweep of the acidity measuring apparatus according to the embodiment of the present invention. The voltage E is a potential difference between the working electrode 9 and the comparison electrode 10, and the current I flows to the working electrode 8. FIG. 7 is a first relationship diagram between the acidity and the reduction current of the acidity measuring apparatus according to one embodiment of the present invention. In the waveform of FIG. 6, the current value I that gives the pre-reduction wave current value indicated by A and the acidity θ of the acid mixed in the solution to be measured are in a proportional relationship as shown in FIG. In order to convert the measured current value I into acidity, a standard reagent whose acidity is known in advance is prepared, for example, what is the current for acidity 1, 2, 3 and how much the proportionality constant is stored at this time. The means 26 may store and set linear function data (hereinafter referred to as a calibration curve) for calculating acidity indicating the relationship between the current value I and the acidity θ. If the calibration curve is stored in this way, when it is desired to measure an arbitrary acidity, the measured current value I can be converted into the acidity θ by the acidity calculating means 25 constituted by a microcomputer. When the acidity is other than the acidity of the standard reagent, it is desirable to calculate the acidity by complementing the corresponding current value I and the calibration curve.
[0030]
Next, the acidity measuring method in one embodiment of the present invention will be described. FIG. 8 is a second relationship diagram between the acidity and the reduction current of the acidity measuring apparatus according to the embodiment of the present invention. The acidity measurement of the present invention is based on the fact that the calibration curve when the measured solution is added to the coexisting electrolyte after measurement has a predetermined relationship that is uniquely determined from the calibration curve used at the previous measurement. ing. That is, since the liquid to be measured is added again to the measured coexisting electrolyte, the concentration of the contained substance is diluted, and gradually deviates from a predetermined mixing ratio. Therefore, if the content of the operation for measurement is set to a predetermined value, the slope and intercept of the calibration curve are shifted downward at a predetermined rate in the next measurement. The present invention has been made based on such knowledge.
[0031]
Therefore, in the first embodiment, when the measurement is repeated several times, a calibration curve corresponding to the number of times of measurement is stored in the storage means 26 in advance, and a calibration curve corresponding to each measurement is obtained as the acidity calculation means 25. Is selected and read out from the storage means 26, and the acidity is calculated. Thereby, it is possible to measure twice or more by repeatedly using the measurement electrolyte solution for one measurement and changing the calibration curve.
[0032]
Describing in more detail with reference to FIG. 8, it is assumed that the acidity measurement is performed on the solution to be measured for the first measurement having the acidity Q1 and the solution to be measured for the second measurement having the acidity Q2-Q1 in FIG. First, when the coexisting electrolyte solution to which the first solution to be measured is added is voltammetrically obtained, the pre-peak current value IP1 in FIG. 8 is obtained, and since this is the first measurement, the calibration curve stored in the storage means 26 by the acidity calculating means 25. L is selected, the acidity Q1 of the solution to be measured is calculated, and the acidity calculation means 25 automatically counts and stores the number of times this measurement is performed. Next, the solution to be measured in the second measurement is added to the coexisting electrolyte measured in the first time, and the same voltammetry is performed to obtain the pre-peak current value IP2 in FIG. Here, since the acidity obtained by adding the solution to be measured in the second measurement to the solution to be measured in the first measurement is the acidity Q2 in FIG. 3, the pre-peak current value IP2 ′ that can be calculated is obtained by using the calibration curve L. Should be. However, since the solution to be measured for the second measurement is further added to the coexisting electrolyte that has been mixed with the solution to be measured for the first measurement, the pre-peak current value IP2 is changed due to the change in the mixing ratio of the coexisting electrolyte. Will be obtained. Therefore, when the acidity is calculated from the pre-peak current value IP2 using the calibration curve L, an acidity Q2 'different from the correct acidity Q2 is obtained.
[0033]
Here, by taking into account the change in the mixing ratio that causes the acidity calculation error, a calibration curve M corresponding to the mixing ratio for the second measurement is prepared in advance, so that the first peak from the pre-peak current value IP2 is obtained. The acidity Q2 which is a correct value obtained by adding the acidity of the second solution to be measured and the acidity of the second solution to be measured can be obtained.
[0034]
Furthermore, when repeating the measurement after the 3rd time, the several calibration curve corresponding to the frequency | count of a measurement should be similarly prepared previously, and the calibration curve corresponding to each measurement should be selected. Thus, by adding the solution to be measured with the measurement electrolyte for one measurement, a plurality of measurements can be performed.
[0035]
By the way, in the first embodiment described above, a plurality of calibration curves corresponding to the number of measurements are stored in advance in the storage means 26, and the acidity calculation means 25 stores them while counting the number of measurements, and the storage means in the next measurement. 26, a new calibration curve was read out, and the acidity was calculated. However, not all the calibration curve itself is stored in the storage means 26, but what is stored in the storage means 26 is the data constituting the previous calibration curve and the correction coefficient for conversion to the next calibration curve. It may be. In this case, the acidity calculation means 25 reads out the correction coefficient from the counted number of measurements for each number of measurements, calculates and configures a calibration curve in real time at this time, and calculates the acidity using the calculated calibration curve. . Basically the same effect can be expected when all the calibration curves are stored in advance.
[0036]
(Embodiment 2)
The acidity measuring apparatus according to the second embodiment basically has the same configuration as the acidity measuring apparatus according to the first embodiment, but the mixing ratio of the measurement electrolyte solution to the solution to be measured corresponds to the number of times of measurement. Both are mixed in such a ratio that has a high ratio. When the measurement is repeated twice or more for the following reasons, the acidity calculation means 25 calculates the approximate value of the acidity using the only calibration curve stored in the storage means 26. That is, a predetermined amount of the solution to be measured is added to the coexisting electrolyte after the previous measurement and voltammetric, and the approximate value of acidity is calculated using the detected pre-reduction wave current value and the stored calibration curve. A series of measurement operations to be calculated is repeated as many times as necessary.
[0037]
By setting the mixing ratio shown in Embodiment 1 to a sufficiently high mixing ratio with respect to the amount of the solution to be measured, the change in the mixing ratio is reduced even if the solution to be measured is added a plurality of times. The difference between the pre-reduction wave current values IP2 and IP2 ′ of 8 is a value that can be ignored. As a result, it is not necessary to store a plurality of calibration curves as in the first embodiment, and it is not necessary to calculate using a correction coefficient for each number of measurements, and a plurality of calibration curves can be used using only one calibration curve. The acidity to be measured once can be approximately determined. According to the second embodiment, when the acidity is repeatedly measured, an approximate value of the acidity can be easily obtained by the second and subsequent measurements using a single calibration curve. The amount of the measured electrolytic solution may be set to a sufficiently large mixing ratio in consideration of the number of times of measurement with respect to the amount of the solution to be measured. For example, if the mixing ratio is 1% or less, an approximate value with considerable accuracy can be obtained when 3 to 4 measurements are performed. The mixing ratio needs to be increased as the number of repeated measurements is increased.
[0038]
Further, after a predetermined number of measurements, a measurement operation is performed in which the solution to be measured is further added to the coexisting electrolyte and voltammetric, and an approximate value of acidity is calculated using the detected pre-reduction wave current value and the stored calibration curve By repeating the above, it is possible to measure more times with a measurement electrolyte solution for one measurement, and only one calibration curve is required, so that the acidity measuring device can be simplified.
[0039]
【The invention's effect】
As described above, according to the present invention, it is possible to measure the acidity of a solution to be measured multiple times with a measurement electrolyte solution for one measurement with high accuracy, and it is not necessary to replace the measurement solution for each measurement. Running costs can also be reduced. Moreover, the advantageous effect that waste liquids, such as a measurement solution and a washing | cleaning liquid, can also be reduced is acquired.
[0040]
If the measurement electrolyte is mixed at a sufficiently high mixing ratio with respect to the solution to be measured, an approximate value with high acidity accuracy can be obtained by storing only one calibration curve.
[Brief description of the drawings]
FIG. 1 is a schematic external view of an acidity measuring apparatus according to an embodiment of the present invention. FIG. 2 is a schematic external view of an acidity measuring apparatus according to an embodiment of the present invention with an upper lid opened. FIG. 4 is a control circuit diagram of the acidity measuring apparatus according to the embodiment. FIG. 4 is an output diagram from the operational amplifier of the acidity measuring apparatus according to the embodiment of the invention. FIG. 5 is an integrating circuit of the acidity measuring apparatus according to the embodiment of the invention. FIG. 6 is a relationship diagram of the reduction current with respect to the voltage sweep of the acidity measuring device in one embodiment of the present invention. FIG. 7 is a diagram of the acidity and reducing current of the acidity measuring device in one embodiment of the present invention. FIG. 8 is a second relationship diagram between the acidity and the reduction current of the acidity measuring apparatus according to the embodiment of the present invention.
1 Upper lid 2 Open button 3 LCD
4 Range switching button 5 Start / stop button 5 ′ Start / stop switch 6 Power ON / OFF button 6 ′ Power ON / OFF switch 7 Measuring vessel 8 Counter electrode 9 Working electrode 10 Reference electrode 11 Stirrer 12 Stirrer 15 Consists of a microcomputer, etc. Control unit 16 Oscillator 17 Frequency dividing circuit 18 Timer means 19 D / A converter 20 Operational amplifier 21 Monitoring circuit 22 Resistor 23 Differential amplifier 24 A / D converter 25 Acidity calculation means 26 Storage means 27 Stirrer drive circuit

Claims (4)

プロトン受容物質含有の測定電解液に1回目の被測定溶液を加えた共存電解液の1回目のボルタンメトリーを行い、検出された還元前置波電流値と第1の検量線を用いて酸度を算出し、さらに1回目の測定後の共存電解液に2回目の被測定液を加えて2回目のボルタンメトリーを行い、検出された還元前置波電流値と第2の検量線を用いて酸度を算出することを特徴とするボルタンメトリー測定方法。Perform the first voltammetry of the coexisting electrolyte obtained by adding the solution to be measured to the measurement electrolyte containing the proton-accepting substance, and calculate the acidity using the detected pre-reduction wave current value and the first calibration curve. In addition, the second measured solution is added to the coexisting electrolyte after the first measurement, the second voltammetry is performed, and the acidity is calculated using the detected pre-reduction wave current value and the second calibration curve. A voltammetric measurement method characterized by: 測定後の共存電解液にさらに被測定液を加えてボルタンメトリーし、検出された還元前置波電流値と測定回数に対応した検量線を用いて酸度を算出する測定操作を繰り返すことを特徴とする請求項記載のボルタンメトリー測定方法。It is characterized by repeating the measurement operation of calculating the acidity using a calibration curve corresponding to the detected pre-reduction wave current value and the number of times of measurement by adding the solution to be measured to the coexisting electrolyte after measurement and voltammetrically. The voltammetric measurement method according to claim 1 . プロトン受容物質含有の測定電解液に1回目の被測定溶液を加えて測定回数に対応した混合比率の共存電解液を作成して1回目のボルタンメトリーを行い、検出された還元前置波電流値と検量線を用いて酸度を算出し、さらに1回目の測定後の共存電解液に2回目の被測定液を加えて2回目のボルタンメトリーを行い、検出された還元前置波電流値と前記検量線を用いて酸度の近似値を算出することを特徴とするボルタンメトリー測定方法。The first solution to be measured is added to the measurement electrolyte containing the proton-accepting substance, a coexisting electrolyte having a mixing ratio corresponding to the number of measurements is prepared, and the first voltammetry is performed. The acidity is calculated using a calibration curve, and the second measured solution is added to the coexisting electrolyte after the first measurement, and the second voltammetry is performed. The detected pre-reduction wave current value and the calibration curve A voltammetric measurement method, wherein an approximate value of acidity is calculated using 測定後の共存電解液にさらに被測定液を加えてボルタンメトリーし、検出された還元前置波電流値と前記検量線を用いて酸度の近似値を算出するという測定操作を繰り返すことを特徴とする請求項記載のボルタンメトリー測定方法。It is characterized by repeating the measurement operation of adding the solution to be measured to the coexisting electrolyte after the measurement and voltammetry, and calculating the approximate value of the acidity using the detected pre-reduction wave current value and the calibration curve The voltammetric measurement method according to claim 3 .
JP09967399A 1999-04-07 1999-04-07 Acidity measuring device and acidity measuring method Expired - Fee Related JP4352502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09967399A JP4352502B2 (en) 1999-04-07 1999-04-07 Acidity measuring device and acidity measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09967399A JP4352502B2 (en) 1999-04-07 1999-04-07 Acidity measuring device and acidity measuring method

Publications (2)

Publication Number Publication Date
JP2000292412A JP2000292412A (en) 2000-10-20
JP4352502B2 true JP4352502B2 (en) 2009-10-28

Family

ID=14253561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09967399A Expired - Fee Related JP4352502B2 (en) 1999-04-07 1999-04-07 Acidity measuring device and acidity measuring method

Country Status (1)

Country Link
JP (1) JP4352502B2 (en)

Also Published As

Publication number Publication date
JP2000292412A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
US5762769A (en) Method of measuring concentration of nonelectrolyte in electrolyte solution, method of preparing mixed solution containing electrolytes and nonelectrolytes and apparatus for preparing the solution
JPS649572B2 (en)
US20030175983A1 (en) System and method for sensing and controlling the concentration of a chemical agent in a solution
CN102323305A (en) Simultaneous determination of L-tyrosine and L-tryptophan in compound amino acid by using chemical oscillation reaction
JP4352502B2 (en) Acidity measuring device and acidity measuring method
AU701838B2 (en) Apparatus and method for measuring acidity
CN104458836B (en) Examination of glucose concentration device and detection method
JP3577391B2 (en) Negative pressure can headspace gas analysis method
JPH11101768A (en) Measuring container and acidity measuring apparatus having the same attached thereto
EA019684B1 (en) Cation exchange capacity titration unit
JP4207286B2 (en) Acidity measuring device and acidity measuring method
JPH1183801A (en) Acidity measuring apparatus
JP2000241387A (en) Apparatus for measuring acidity
JP3633237B2 (en) Measuring container, voltammetry measuring device and acidity measuring device
KR20100052905A (en) Method measuring the dergee of rice's freshness and device thereof
JP4207276B2 (en) Acidity measuring device
JP2000171441A (en) Apparatus and method for voltammetry
CN109828088A (en) The device of alcohol content in a kind of quick detection food
JPH1183800A (en) Method and apparatus for measuring acidity
TW200928356A (en) Automatic leaching test system with constant pH control
CN211927598U (en) Rapid acid value measuring device with magnetic stirring function
CN104458837B (en) A kind of examination of glucose concentration device and detection method
JP4482993B2 (en) Electrochemical measurement method
JPS632465B2 (en)
JP2003215097A (en) Method and apparatus for measuring freshness of food

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees