JP2003215097A - Method and apparatus for measuring freshness of food - Google Patents

Method and apparatus for measuring freshness of food

Info

Publication number
JP2003215097A
JP2003215097A JP2002056583A JP2002056583A JP2003215097A JP 2003215097 A JP2003215097 A JP 2003215097A JP 2002056583 A JP2002056583 A JP 2002056583A JP 2002056583 A JP2002056583 A JP 2002056583A JP 2003215097 A JP2003215097 A JP 2003215097A
Authority
JP
Japan
Prior art keywords
food
orp
freshness
value
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002056583A
Other languages
Japanese (ja)
Inventor
Mitsunori Suzuki
光則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIKARI BERUKOMU KK
Original Assignee
HIKARI BERUKOMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIKARI BERUKOMU KK filed Critical HIKARI BERUKOMU KK
Priority to JP2002056583A priority Critical patent/JP2003215097A/en
Publication of JP2003215097A publication Critical patent/JP2003215097A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To increase ORP sensitivity in an ORP meter to the freshness of food to utilize the simple ORP meter as a freshness-measuring apparatus for the food, and to decrease an error in measurement. <P>SOLUTION: Perishable food surrounds a portion around a platinum pole being the sensitive electrode of an ORP meter by a gas permeation film for permeating only a multicomponent gas such as oxygen and hydrogen dissolving in a food constituent, and an ORP value of the multicomponent gas is detected, thus increasing the sensitivity of change in ORP due to deterioration in the freshness of the perishable food. Additionally, two platinum electrodes are set to be the sensitive electrode, one platinum electrode is surrounded by the gas permeation film, and the potential of the platinum electrode at an exposure side is detected with the platinum electrode that is surrounded by the permeation film as a reference voltage, thus reducing variation in the error of ORP, and further obtaining freshness information according to the change rate of the ORP value due to a factor other than a dissolved gas constituent. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は野菜食肉等の生鮮
食品の鮮度を定量的かつ階層的に判定する装置に関す
る。また本発明はヒトや動物等、一般生体細胞の活性度
を定量的に判定する装置として活用する事を得る。
TECHNICAL FIELD The present invention relates to an apparatus for quantitatively and hierarchically determining the freshness of fresh food such as vegetable meat. Further, the present invention can be utilized as an apparatus for quantitatively determining the activity of general living cells such as humans and animals.

【0002】[0002]

【従来の技術】 魚肉、畜肉等の鮮度判定は食肉として
の良否判定の基本である。客観判定が困難とされる食品
鮮度判定の一つの基準として認められているものにK値
がある。K値は食肉の筋肉成分のATP濃度と、ATP
が変化したアミノ酸濃度の比率から算出するもので、現
在最も食肉の鮮度指標に近い値として食肉処理を行う企
業や食品検査、研究機関において利用されている。しか
しK値による鮮度判定は、食品となる筋肉内に含まれる
分子成分の分光分析計測であって、装置とし大掛かりで
あり、操作に熟練を要し、設置コストの点で難点があ
る。K値計測よりやや簡易な方法として食肉内のヒスタ
ミン量や、アンモニア量をは計る方法、腐敗変性過程で
発生する気中の腐敗ガス濃度を計る方法等がある。しか
しこれらの方法も計測に要する時間が掛かることや、特
定分子成分の抽出を前提とした計測であることに変わり
なく、取扱やコストの面で問題があった。
2. Description of the Related Art Judgment of freshness of fish meat, livestock meat, etc. is the basis for judging the quality of meat. The K value is recognized as one of the criteria for food freshness determination, which is difficult to objectively determine. The K value is the ATP concentration of the muscle component of meat and the ATP concentration.
Is calculated from the ratio of changed amino acid concentrations, and is currently used by companies, food inspections, and research institutions that treat meat as a value that is closest to the freshness index of meat. However, the determination of freshness based on the K value is a spectroscopic analysis and measurement of molecular components contained in muscles that are foods, is a large-scale device, requires skill to operate, and has a difficulty in installation cost. As a method that is slightly easier than the K value measurement, there are a method of measuring the amount of histamine and ammonia in meat, a method of measuring the concentration of spoilage gas in the air generated in the spoilage denaturation process, and the like. However, these methods also have a problem in terms of handling and cost because they take a long time for measurement and the measurement is based on extraction of a specific molecular component.

【0003】 一方測定装置として安価で、操作の簡便
さから、市販の酸化還元電位計による食品の酸化還元電
位測定を鮮度判定の基準にする試みがある。例えば我が
国の公開特許公報「食品の良否の判別方法及び食品の酸
化還元電位を計る方法:特開平08−136500」に
よれば、野菜の酸化還元電位が時間と共に低下する事例
が示されている。又公開特許公報「酸化還元電位測定機
能内臓健康管理計:特開平09−327443」によれ
ば、一般生体の活性度を酸化還元電位測定によって判定
する方法と共に食品の新鮮度判定の可能性を示唆してい
る。しかしながら酸化還元電位計測は一般に試料水溶液
や外気ガスの影響を受けやすく、特に酸化活性の高い大
気中の酸素ガスの混入や消失は、測定精度に著しい悪影
響を与える。また、電気的擾乱要素によって測定誤差が
大きいため鮮度測定器としての実用の域に達していなか
った。
On the other hand, there is an attempt to use a commercially available oxidation-reduction potentiometer to measure the oxidation-reduction potential of food as a criterion for freshness because it is inexpensive as a measuring device and is easy to operate. For example, Japanese Patent Laid-Open Publication "Food quality determination method and food oxidation-reduction potential measurement method: Japanese Patent Laid-Open No. 08-136500" shows a case where the oxidation-reduction potential of vegetables decreases with time. Further, according to the published patent publication "Redox potential measuring function visceral health care analyzer: Japanese Patent Laid-Open No. 09-327443", the possibility of determining the freshness of foods as well as the method of determining the activity of a general living body by measuring the redox potential is doing. However, the oxidation-reduction potential measurement is generally susceptible to the sample aqueous solution and the outside air gas, and especially the mixing or disappearance of oxygen gas in the atmosphere having high oxidation activity has a significant adverse effect on the measurement accuracy. In addition, since the measurement error is large due to the electric disturbance element, it has not reached the practical range as a freshness measuring instrument.

【0004】[0004]

【発明が解決しようとする課題】 簡便性や低価格が特
徴である酸化還元電位計(以下ORPメータと称する)
を鮮度判定装置として利用可能とするには多くの解決す
べき問題がある。図1は魚肉を代表するマグロ肉の酸化
還元電位(以下ORPと称する)の時間変化を表す測定
値の一例である。初期値は解凍直後を示し、以後鮮度低
下を加速させる為に室温を摂氏25度に固定してある。
図1によると、マグロ肉のORP値は、新鮮時約0ミリ
ボルトから始まり、明らかに外観上腐敗状態を示す12
時間後ののマイナス350ミリボルトに至るまで、単調
減少の傾向を示す。この傾向は鮮度レベルとORP値と
の相関性を表し、ORPメータの鮮度計活用の可能性を
示唆するものである。しかしながら以下の理由によって
ORPメータによる鮮度判定は実用の域に達していない
事が理解される。
[Problems to be Solved by the Invention] Oxidation-reduction potentiometer (hereinafter referred to as ORP meter) characterized by its simplicity and low cost
There are many problems to be solved before it can be used as a freshness determination device. FIG. 1 is an example of a measured value showing a change with time of a redox potential (hereinafter referred to as ORP) of tuna meat representing fish meat. The initial value shows immediately after thawing, and thereafter the room temperature is fixed at 25 degrees Celsius in order to accelerate the deterioration of freshness.
According to FIG. 1, the ORP value of tuna meat starts from about 0 millivolt when fresh and clearly shows a spoilage state.
It shows a monotonous decreasing tendency up to minus 350 millivolts after the elapse of time. This tendency shows the correlation between the freshness level and the ORP value, and suggests the possibility of utilizing the freshness meter of the ORP meter. However, it is understood that the freshness determination by the ORP meter has not reached the practical range due to the following reasons.

【0005】 図1の測定結果において測定値に外部擾
乱的な変化がないのは、測定期間中測定プローブを測定
対象とするマグロ肉に固定しているためであって、実際
の測定ではプローブを絶えず新しい試料に装着し直すの
でプローブの測定値が安定することは無く、ある一定以
上の変動幅を示す。すなわち、一般に食品のORP測定
は、測定プローブの形状や、試料の採取方法によって測
定値間に誤差を生じ、その値はプラスマイナス20ミリ
ボルトからプラスマイナス50ミリボルト以上になるこ
とがある。またORP測定は基本的に水溶液系で行う必
要があり、表面が乾燥したり、水分の少ない食品につい
ては試料を部分的に採取して、若干の水に溶かす処置が
必要となる。このために外部の水やガスの混入によるO
RPの変化は同一の試料を対象としてもプラスマイナス
50ミリボルト以上の誤差を生じる。さらに測定対象の
食肉は異種の食肉間だけではなく同種のものの間に於い
てもORPの初期値に個体固有の相違があって、この基
本値の相違は測定誤差と区別をつけることが出来ない。
本発明者の測定によれば、新鮮状態の魚肉の対銀・塩化
銀電極電位はマイナス50ミリボルトからプラス150
ミリボルトの範囲にあり、魚種や測定部位によって約2
00ミリボルトの巾がある。同種の魚肉の個体差はプラ
スマイナス20ミリボルト程度になる。以上の誤差要因
を加算すると同種の食肉を測定対象としても、ORP測
定の固定的な測定誤差としてプラスマイナス約70ミリ
ボルトから80ミリボルトを考慮しなければならない。
一方、鮮度情報としての鮮度分類階層数を多くするに
は、センサー感度と測定誤差と比を高くする必要がある
が、この観点から見ると、図1のORP値変動幅、即ち
センサー感度を350ミリボルトとし、測定誤差をの巾
を160ミリボルトとすると、2階層以下となって殆ど
センサーとしての意味が無くなってしまう。鮮度評価方
法として魚肉を例にとると。イ、活魚として食する状
態。ロ、生食美味な状態。ハ、生食可能な状態。ニ、加
熱して美味。ホ、加熱して可食。ヘ、不可食。ト、毒
性。の計7階層が通常必要とされ、最低でも5階層は必
要であることを考えると。感度を現在の2倍以上にする
か測定誤差を半分以下にしなければならない。
In the measurement result of FIG. 1, there is no external disturbing change in the measurement value because the measurement probe is fixed to the tuna meat to be measured during the measurement period, and the probe is not actually measured. Since the probe is constantly reattached to a new sample, the measured value of the probe is not stable and shows a fluctuation range above a certain level. That is, generally, in ORP measurement of food, an error occurs between the measured values depending on the shape of the measuring probe and the sampling method of the sample, and the value may be from plus or minus 20 millivolts to plus or minus 50 millivolts or more. Further, the ORP measurement basically needs to be carried out in an aqueous solution system, and for food whose surface is dried or whose water content is low, it is necessary to partially collect a sample and dissolve it in some water. For this reason, O
A change in RP causes an error of plus or minus 50 millivolts or more even if the same sample is used. Furthermore, the meat to be measured has an individual-specific difference in the initial value of ORP not only between different kinds of meat but also between different kinds of meat, and this difference in basic value cannot be distinguished from the measurement error. .
According to the measurement by the present inventor, the electrode potential of fresh fish meat against silver / silver chloride is from -50 millivolts to +150 millivolts.
It is in the millivolt range, and it is about 2 depending on the fish species and measurement site.
There is a width of 00 millivolts. The individual difference of the same kind of fish meat is plus or minus 20 millivolts. If the above-mentioned error factors are added, even if the same type of meat is to be measured, it is necessary to consider plus or minus about 70 to 80 millivolts as a fixed measurement error in ORP measurement.
On the other hand, in order to increase the number of levels of freshness classification as freshness information, it is necessary to increase the ratio between the sensor sensitivity and the measurement error. From this point of view, the ORP value fluctuation range of FIG. If the measurement error is 160 millivolts and the width of the measurement is 160 millivolts, the number of layers becomes two or less, and the sensor has almost no meaning. Take fish meat as an example of the freshness evaluation method. B, ready to eat as live fish. B, raw food is delicious. Ha, ready to eat raw. D, heated and delicious. E, heated and edible. F, inedible. Toxicity. Considering that a total of 7 layers are usually required, and at least 5 layers are required. Sensitivity must be more than twice the current level, or measurement error must be less than half.

【0006】[0006]

【問題を解決するための手段】 プラスチック製薄膜の
なかで、非分極性高分子からなるポリエチレン、テフロ
ン(登録商標)等を基材とする薄膜は、低分子ののガス
を容易に透過させる性質がある。例えばクラーク型酸素
センサーはテフロン膜と、酸素選択性の薄膜を組み合わ
せて酸素を選択的に透過させ、外部からマイナス電圧を
印加して酸素濃度に比例する還元電流を発生させて、酸
素濃度を求める装置である。
[Means for Solving the Problem] Among plastic thin films, a thin film based on polyethylene, Teflon (registered trademark), etc., which is a non-polarizable polymer, has a property of easily passing a low-molecular gas. There is. For example, the Clark oxygen sensor combines a Teflon membrane and an oxygen-selective thin film to selectively permeate oxygen, and applies a negative voltage from the outside to generate a reducing current proportional to the oxygen concentration to determine the oxygen concentration. It is a device.

【0007】 本発明者はポリエチレンの薄膜を透過す
るガス成分がその組成比に従って固有のORP値を示す
ことから、マグロ肉の溶存ガスと拡散平衡の状態にある
透過ガスのORP値の時間変化を測定したところ、図2
のグラフの曲線B(以下B値と称す)で表される傾向を
示すことが判った。図中Aで表される曲線(以下A値と
称す)は図1のものと同一である。即ち透過膜を透過し
たと推定される酸素ガス、水素ガス、炭酸ガス、アンモ
ニアガス等の比較的低分子のガス成分を溶存する水溶液
のORP値は室温下で急速に低下し、初期値プラス12
0ミリボルトから、12時間後の腐敗状態の最終段階で
マイナス520ミリボルトに下がることが判った。この
変動幅は640ミリボルトでほぼ魚肉自体のORP値変
動幅の2倍近い値となる。特に鮮度が比較的高いと思わ
れる6時間前の期間では2倍以上の変動幅を示してい
る。この効果はセンサーとしての鮮度感度が倍増してい
ることを意味し、全域で5階層ないし6階層分類が可能
となる。特に高鮮度域において、3階層分類を可能にす
るものである。発明者の測定によれば透過ガス溶存液の
ORP感度向上はマグロ肉を含む魚肉類に限らず、鶏
肉、畜肉等殆ど全ての食肉に共通することが判った。
Since the gas component that permeates the polyethylene thin film exhibits a unique ORP value according to its composition ratio, the present inventor changes the ORP value with time of the permeated gas in a diffusion equilibrium state with the dissolved gas of tuna meat. When measured, Figure 2
It was found that there is a tendency represented by curve B (hereinafter referred to as B value) in the graph. A curve represented by A in the figure (hereinafter referred to as A value) is the same as that in FIG. That is, the ORP value of an aqueous solution in which gas components of relatively low molecular weight such as oxygen gas, hydrogen gas, carbon dioxide gas, ammonia gas, etc., which are presumed to have permeated through the permeable membrane, rapidly decrease at room temperature, and the initial value plus 12
From 0 millivolts, it turned out to drop to minus 520 millivolts at the end of the rotting state after 12 hours. This fluctuation range is 640 millivolts, which is almost twice the fluctuation range of the ORP value of the fish meat itself. Especially, the fluctuation range more than doubled in the period of 6 hours before, when the freshness seems to be relatively high. This effect means that the freshness sensitivity as a sensor is doubled, and it becomes possible to classify 5 or 6 layers in the entire area. In particular, in the high freshness region, it enables three-level classification. According to the measurement by the inventor, the improvement of the ORP sensitivity of the permeated gas-dissolved liquid is not limited to fish meat including tuna meat, but is common to almost all meats such as chicken and livestock.

【0008】 A値とB値の相違が生じる原因として以
下のように考えることができる。食品の中でも食肉に代
表される生鮮食品は溶存酸素量が多く、溶存酸素による
電位がORP値に対して支配的となるが、食肉中の還元
性成分によってORP値は低下する。即ち、食肉の新鮮
状態では溶存酸素や還元性成分の両成分が何れも活性状
態にあって、時間と共に活性度が失われていく過程にあ
っても溶存酸素による酸化電位と、還元性成分による還
元電位とが拮抗した状態下にある。それ故に、見かけ上
の電位変化はその和として現れるので、A値の時間変動
巾は小さくなる。一方B値については透過膜を透過しな
い還元性成分の寄与は無いので、溶存酸素量の減少の効
果が直接に現れて、その結果として変動巾が大きくな
る。B値の感度向上に寄与する要因として溶存酸素量の
減少以外に、水素やアンモニア等、の透過ガス成分の増
加が挙げられる。鮮度の低下と共に、還元性物質である
水素やアンモニア濃度が高くなってORP値の減少側に
働くので、感度巾がさらに大きくなる。
The cause of the difference between the A value and the B value can be considered as follows. Among foods, fresh food represented by meat has a large amount of dissolved oxygen, and the potential due to dissolved oxygen is dominant to the ORP value, but the ORP value decreases due to reducing components in the meat. That is, in the fresh state of meat, both dissolved oxygen and reducing components are in the active state, and even in the process of losing activity over time, the oxidation potential due to dissolved oxygen and the reducing component It is in a state of competing with the reduction potential. Therefore, since the apparent potential change appears as the sum thereof, the time variation width of the A value becomes small. On the other hand, regarding the B value, since the reducing component that does not permeate the permeable membrane does not contribute, the effect of reducing the dissolved oxygen amount directly appears, and as a result, the fluctuation range becomes large. As a factor contributing to the improvement of the sensitivity of the B value, in addition to the decrease of the dissolved oxygen amount, the increase of the permeation gas components such as hydrogen and ammonia can be mentioned. As the freshness decreases, the concentration of hydrogen or ammonia, which is a reducing substance, increases and acts on the side where the ORP value decreases, so that the sensitivity range further increases.

【0009】この作用機序の理解を助けるために、A値
B値の差分をとって同一グラフに記したのが図2の曲線
C(以下C値と称す)である。C値は食品全体のORP
値から食品ガス成分のORP値を引いたものであるか
ら、食品のタンパク質、ミネラル、酵素、イオン基質
等、透過膜を透過しない物質のORP値を意味し、高鮮
度時にあっては還元性物質の還元電位が優勢を示すもの
と思われる。従って図2に現れるC値の時間変化の傾向
として、初期値はマイナス200ミリボルトの還元電位
を保ち、中間期では徐々にに酸化されて上昇傾向を示
し、末期では酸化後の酸化状態のプラス150ミリボル
トで一定値を保つ。A、B、Cのそれぞれの変動傾向は
食肉の種類によらず同じ傾向を示すので、この動きを模
式的に、図3で表した。即ち鮮度の変化をもたらす自己
消化期間である熟成期、内部酸化と腐敗の開始期間であ
る変成期、微生物腐敗の進行する腐敗期となって、3つ
の層に大分類される。C値の意味は食品内部の還元物質
が有限であり、時間とともに還元物質が消失して酸化物
質に変わっていく過程を示している。
In order to facilitate understanding of this mechanism of action, the difference between the A value and the B value is plotted on the same graph as the curve C (hereinafter referred to as the C value) in FIG. C value is ORP of the whole food
Since it is the value obtained by subtracting the ORP value of the food gas component from the value, it means the ORP value of substances that do not permeate through the permeable membrane, such as food proteins, minerals, enzymes and ionic substrates, and it is a reducing substance even at the time of high freshness. It seems that the reduction potential of is dominant. Therefore, as a tendency of the C value to change with time, the initial value maintains a reduction potential of −200 millivolts, gradually increases in the intermediate stage and shows an increasing tendency, and in the final stage, the oxidation state after oxidation becomes plus 150. Keep a constant value in millivolts. Since the respective changing tendencies of A, B, and C show the same tendency regardless of the type of meat, this movement is schematically shown in FIG. That is, it is roughly classified into three layers: an aging period which is an auto-digestion period that causes a change in freshness, a metamorphosis period which is a start period of internal oxidation and spoilage, and a spoilage period in which microbial spoilage proceeds. The meaning of the C value is that the reducing substance inside the food is finite and the reducing substance disappears and changes into an oxidizing substance over time.

【0010】 図4は食品のORPと食品成分の係わる
溶存ガスORPとの関係を表す等価回路である。図4の
Aは、食品のORPを表し、ORPが基準電位Rを介し
て食品の非ガス成分Mとガス成分Gから成り立っている
ことを示している。図4のBは食品の溶存ガス成分に起
因するORPを表し、ORPが基準電位Rを介した食品
のガス成分Gだけで成り立っていることを示している。
図4のCは、回路Aと回路Bの差分を取り出している回
路を意味し、基準電位Rが不要であることを示してい
る。回路A、B、Cは、それぞれ前記のA値、B値、C
値、の測定値を与える回路に対応する。
FIG. 4 is an equivalent circuit showing the relationship between the ORP of food and the dissolved gas ORP related to food components. A of FIG. 4 represents the ORP of the food, and indicates that the ORP is composed of the non-gas component M and the gas component G of the food via the reference potential R. B of FIG. 4 represents the ORP caused by the dissolved gas component of the food, and indicates that the ORP is composed of only the gas component G of the food via the reference potential R.
C in FIG. 4 means a circuit that takes out the difference between the circuit A and the circuit B, and indicates that the reference potential R is unnecessary. The circuits A, B, and C have the above-mentioned A value, B value, and C, respectively.
Corresponds to the circuit that gives the measured value of

【0011】 図5は本発明に係わる食品の鮮度測定装
置の基本構造にかんする説明図である。図5、A は従
来の一般のORPメータの基本図であって、図4の等価
回路Aに対応する。図5、Bは本発明の請求項1に係わ
る鮮度測定装置の基本構造であって、図5の等価回路B
に対応する。図5、Cは本発明の請求項2に係わる鮮度
測定装置の基本構造であって、図5の等価回路Cに対応
する。
FIG. 5 is an explanatory diagram of the basic structure of the food freshness measuring apparatus according to the present invention. FIG. 5A is a basic diagram of a conventional general ORP meter and corresponds to the equivalent circuit A of FIG. 5 and 5B show a basic structure of the freshness measuring device according to claim 1 of the present invention, and an equivalent circuit B of FIG.
Corresponding to. 5 and C show the basic structure of the freshness measuring device according to claim 2 of the present invention, and correspond to the equivalent circuit C of FIG.

【0012】 請求項1の発明にあっては、図5、Bに
よって本発明の基本構成を示すと、1は測定対象とする
食品である。2は感応電極となる白金板である。3は、
基準電極の液絡部である。4は、感応電極、基準電極液
絡部を平行ないし同心状に保持する筐体である。5は、
食品成分に含まれる酸素、水素、アンモニア等の溶存ガ
スを選択的に透過吸収する透過膜と、これら溶存ガスを
溶質として含む水溶液を内部に具備する筐体である。6
は感応電極リード線と、基準電極、電解液及び基準電極
リード線を含み、これらを保持する円筒状筐体である。
7は、2芯のリードケーブルで電極2,3をORP表示
装置8内に具備する電圧計に接続する。
In the invention of claim 1, when the basic configuration of the present invention is shown in FIG. 5 and B, 1 is a food to be measured. 2 is a platinum plate which serves as a sensitive electrode. 3 is
It is the liquid junction of the reference electrode. Reference numeral 4 denotes a housing that holds the sensitive electrode and the reference electrode liquid junction in parallel or concentric form. 5 is
A casing is provided with a permeable membrane that selectively permeates and absorbs dissolved gases such as oxygen, hydrogen, and ammonia contained in food ingredients, and an aqueous solution containing these dissolved gases as solutes therein. 6
Is a cylindrical housing that contains the sensitive electrode lead wire, the reference electrode, the electrolytic solution, and the reference electrode lead wire, and holds them.
Reference numeral 7 is a two-core lead cable for connecting the electrodes 2 and 3 to a voltmeter included in the ORP display device 8.

【0013】 請求項2の発明にあっては、図5、Cに
よって本発明の基本構成を示すと、食品に対して直かに
接する白金板2−1と、ガス透過性膜及び水溶液を含む
筐体5に囲まれた白金板2−2、を対電極として、これ
に直接2芯のリード線7を接続して、これをORP表示
装置8内に具備する電圧計に接続する。
According to the second aspect of the present invention, when the basic configuration of the present invention is shown in FIGS. 5 and C, it includes a platinum plate 2-1 that is in direct contact with food, a gas permeable membrane and an aqueous solution. The platinum plate 2-2 surrounded by the housing 5 is used as a counter electrode, and the lead wire 7 having two cores is directly connected to the counter electrode, which is connected to a voltmeter included in the ORP display device 8.

【0014】[0014]

【発明の効果】 請求項1に記載された発明にあっては
ガス透過膜によって食品の溶存ガス成分を非選択的に抽
出し、溶存ガス成分のORP値を測定することによっ
て、鮮度低下によるORP値変動巾を増加して感度を上
げ、従来不可能とされたORPによる食品の鮮度レベル
の判定方法を可能にした。
According to the invention described in claim 1, the dissolved gas component of the food is non-selectively extracted by the gas permeable membrane, and the ORP value of the dissolved gas component is measured to obtain the ORP due to the decrease in freshness. By increasing the value fluctuation range and increasing the sensitivity, it has become possible to determine the freshness level of foods by ORP, which was previously impossible.

【0015】請求項2に記載された発明にあっては、電
解液等保守を必要とする基準電極を用いることなく、2
組の白金板と一組のガス透過膜を用いることによって、
食品の鮮度レベルを判定できる方法及び装置を実現す
る。かくして、操作が容易で安価な食品鮮度測定装置を
提供する事を可能にした。また本発明になる装置は、生
鮮食品に限らず、生体表皮に装着することによって一般
生体細胞を取り巻く体液の溶存ガス成分によるORP値
を基準として生体体液を構成する全ての成分に起因する
ORP値を相対的に観測できることから、生体体液に含
まれる、酸化活性ないし還元活性の強い酵素成分の活性
度を間接的に知ることが出来るので、一般生体細胞の活
性度や臓器機能の強度を評価する目安となる。
According to the invention described in claim 2, without using the reference electrode requiring maintenance such as the electrolytic solution,
By using a set of platinum plates and a set of gas permeable membranes,
A method and apparatus capable of determining the freshness level of food. Thus, it is possible to provide an inexpensive food freshness measuring device that is easy to operate. Further, the device according to the present invention is not limited to fresh foods, but is attached to living epidermis, and the ORP values due to all the components that make up the biological fluid based on the ORP value of the dissolved gas component of the biological fluid that surrounds general biological cells. Since it is possible to indirectly observe the activity of enzyme components having strong oxidative or reducing activity contained in biological fluids, it is possible to evaluate the activity of general living cells and the strength of organ function. It will be a guide.

【0016】[0016]

【発明の実施の形態】 以下、本発明の実施構造につい
て図面に基づいて説明する。図6は、本発明の請求項1
に係わる実施例の外観構造である。図6の1は測定対象
とする食品である。4は、感応電極、基準電極液絡部を
保持する筐体である。5は、食品成分に含まれる酸素、
水素、アンモニア等の溶存ガスを非選択的に透過吸収す
る透過膜と、これら溶存ガスを溶質として含む水溶液を
内部に具備する筐体である。6は感応電極リード線と、
基準電極、電解液及び基準電極リード線を含み、これら
を保持する円筒状筐体である。7は、2芯のリードケー
ブルで基準電極、感応電極間の電位を、液晶ORP表示
面8を出力とするORP表示装置筐体9内に具備する電
圧計に接続する。10は電源オン・オフ他、表示コント
ロールのためのスイッチである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment structure of the present invention will be described with reference to the drawings. FIG. 6 shows claim 1 of the present invention.
It is an appearance structure of an example concerning. 1 in FIG. 6 is a food to be measured. Reference numeral 4 is a housing that holds the sensitive electrode and the reference electrode liquid junction. 5 is oxygen contained in food ingredients,
The casing is provided with a permeable membrane that non-selectively permeates and absorbs dissolved gases such as hydrogen and ammonia, and an aqueous solution containing these dissolved gases as a solute. 6 is a sensitive electrode lead wire,
It is a cylindrical housing that includes a reference electrode, an electrolytic solution, and a reference electrode lead wire and holds them. Reference numeral 7 is a two-core lead cable that connects the potential between the reference electrode and the sensitive electrode to a voltmeter provided in the ORP display device housing 9 that outputs the liquid crystal ORP display surface 8. Reference numeral 10 is a switch for turning on / off the power supply and for display control.

【0017】 図7は、本発明の請求項2に係わる実施
例の外観構造である。2−1は、露出状態の白金板、2
−2はポリエチレンの被膜5で覆われた白金板で、食品
に接することによって生じる両白金電極の電位差を保持
部4内のリード線7を通じて液晶ドライバ、チップ化さ
れたマイクロプロセッサーユニットを内蔵する本体部プ
ラスチック筐体9の電位計入力端に入力する。液晶表示
部8は、ORP電位を直接に表示ないし、レベル分類し
た食品鮮度状態を表す記号として表示する。10は電
源、表示モードを設定するスイッチである。
FIG. 7 is an external structure of an embodiment according to claim 2 of the present invention. 2-1 is an exposed platinum plate, 2
Reference numeral -2 is a platinum plate covered with a polyethylene film 5, and a main body that incorporates a liquid crystal driver and a chipped microprocessor unit through a lead wire 7 in a holding portion 4 for a potential difference between both platinum electrodes caused by contact with food. Input to the electrometer input terminal of the plastic casing 9. The liquid crystal display unit 8 displays the ORP potential directly or as a symbol indicating the level of food freshness classified. Reference numeral 10 is a switch for setting a power source and a display mode.

【0018】なを、本実施例で示したガス透過膜は、比
較的耐摩耗性に乏しいポリエチレン膜であるため、透過
膜部分を着脱自由な構造にして交換可能な構造となって
いる。又、図8に示すように食品1を袋状のポリエチレ
ン膜11で覆い、その上に水溶液を添加して測定する方
法や、ガス透過膜を交換不要な耐久性の高い固体質のの
ガス透過層に置き換えることも本発明の主旨を損なわな
い。
Since the gas permeable membrane shown in this embodiment is a polyethylene membrane having relatively poor wear resistance, the permeable membrane portion is detachable and replaceable. Further, as shown in FIG. 8, the food 1 is covered with a bag-shaped polyethylene membrane 11 and an aqueous solution is added on the polyethylene membrane 11 for measurement, or the gas permeable membrane is a solid gas permeation of high durability that does not require replacement. Substitution with layers does not impair the spirit of the invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】 マグロ肉の酸化還元電位の時間変化を表すグ
ラフ。
FIG. 1 is a graph showing the change over time in the redox potential of tuna meat.

【図2】 マグロ肉の溶存ガスによる酸化還元電位の時
間変化を表すグラフ。
FIG. 2 is a graph showing the change over time in the redox potential of a tuna meat due to a dissolved gas.

【図3】 食肉の酸化還元電位の時間変化を表す模式
図。
FIG. 3 is a schematic diagram showing a change with time of redox potential of meat.

【図4】 食品の酸化還元電位と溶存ガス酸化還元電位
との関係を表す等価回路。
FIG. 4 is an equivalent circuit showing the relationship between the redox potential of food and the dissolved gas redox potential.

【図5】 本発明に係わる食品の鮮度測定装置の基本構
造にかんする説明図。
FIG. 5 is an explanatory view of the basic structure of a food freshness measuring device according to the present invention.

【図6】 本発明の請求項1に係わる食品の鮮度測定装
置の実施例。
FIG. 6 is an embodiment of a food freshness measuring device according to claim 1 of the present invention.

【図7】 本発明の請求項2に係わる食品の鮮度測定装
置の実施例。
FIG. 7 is an embodiment of the freshness measuring device for food according to claim 2 of the present invention.

【図8】 本発明に係わる食品の鮮度測定装置の他の実
施例。
FIG. 8 shows another embodiment of the food freshness measuring apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 食品 2 白金板 2−2 透過膜に覆われた白金板 3 基準電極の液絡部 4 電極を保持する筐体 5 ガス透過膜と、水溶液を内部に具備する勘合筐
体 6 電解液及び基準電極リード線等を保持する筐体 7 2芯のリード線 8 液晶表示部 9 表示装置筐体 10 操作スイッチ 11 透過膜でできた袋
DESCRIPTION OF SYMBOLS 1 Food 2 Platinum plate 2-2 Platinum plate 3 covered with a permeable membrane 3 Liquid junction part 4 of a reference electrode Housing 5 holding an electrode 5 Gas permeable membrane and fitting housing 6 equipped with an aqueous solution inside 6 Electrolyte and reference Housing 7 for holding electrode lead wires, etc. 7-core lead wire 8 Liquid crystal display unit 9 Display device housing 10 Operation switch 11 Bag made of transparent film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】食品成分に含まれる酸素、水素、アンモニ
ア等の溶存ガス成分を非選択的にに透過吸収する透過膜
とこれら溶存ガスを溶質として含む水溶液を具備し、透
過膜近傍の酸素、水素、アンモニア等の食品由来の複数
の溶存ガス水溶液の酸化還元電位を測定することによっ
て食品の鮮度を判定することを特徴とする、食品鮮度測
定方法及び装置。
1. A permeable membrane that non-selectively permeates and absorbs dissolved gas components such as oxygen, hydrogen, and ammonia contained in food ingredients and an aqueous solution containing these dissolved gases as a solute, and oxygen near the permeable membrane, A method and an apparatus for measuring food freshness, characterized in that the freshness of food is determined by measuring the oxidation-reduction potential of a plurality of dissolved gas aqueous solutions derived from foods such as hydrogen and ammonia.
【請求項2】食品成分の全部の要素に起因する酸化還元
電位と、食品成分に含まれる酸素、水素アンモニア等の
複数の溶存ガスに起因する酸化還元電位とを独立に検知
し、両電位の差分情報から食品の鮮度を判定することを
特徴とする、食品鮮度測定方法及び装置。
2. An oxidation-reduction potential caused by all the elements of a food ingredient and an oxidation-reduction potential caused by a plurality of dissolved gases such as oxygen and hydrogen ammonia contained in the food ingredient are independently detected to detect both potentials. A method and apparatus for measuring food freshness, characterized by determining the freshness of food from difference information.
JP2002056583A 2002-01-28 2002-01-28 Method and apparatus for measuring freshness of food Pending JP2003215097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002056583A JP2003215097A (en) 2002-01-28 2002-01-28 Method and apparatus for measuring freshness of food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002056583A JP2003215097A (en) 2002-01-28 2002-01-28 Method and apparatus for measuring freshness of food

Publications (1)

Publication Number Publication Date
JP2003215097A true JP2003215097A (en) 2003-07-30

Family

ID=27655585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002056583A Pending JP2003215097A (en) 2002-01-28 2002-01-28 Method and apparatus for measuring freshness of food

Country Status (1)

Country Link
JP (1) JP2003215097A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071402A1 (en) * 2004-01-13 2005-08-04 The Charles Stark Draper Laboratory, Inc. Food and beverage quality sensor
CN105911237A (en) * 2016-06-28 2016-08-31 广东美的厨房电器制造有限公司 Cooking method and cooking device
KR101734415B1 (en) * 2015-06-30 2017-05-24 동국대학교 산학협력단 Composition for measuring freshness
JP2021113764A (en) * 2020-01-20 2021-08-05 国立大学法人東海国立大学機構 Hydrogen sensor and computation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071402A1 (en) * 2004-01-13 2005-08-04 The Charles Stark Draper Laboratory, Inc. Food and beverage quality sensor
JP2007518102A (en) * 2004-01-13 2007-07-05 ザ・チャールズ・スターク・ドレイパー・ラボラトリー・インコーポレイテッド Food and beverage quality sensor
KR101734415B1 (en) * 2015-06-30 2017-05-24 동국대학교 산학협력단 Composition for measuring freshness
CN105911237A (en) * 2016-06-28 2016-08-31 广东美的厨房电器制造有限公司 Cooking method and cooking device
JP2021113764A (en) * 2020-01-20 2021-08-05 国立大学法人東海国立大学機構 Hydrogen sensor and computation device
JP7457317B2 (en) 2020-01-20 2024-03-28 国立大学法人東海国立大学機構 hydrogen sensor

Similar Documents

Publication Publication Date Title
Carritt et al. Electrode system for measuring dissolved oxygen
Schweizer-Berberich et al. Characterisation of food freshness with sensor arrays
Winquist et al. Monitoring of freshness of milk by an electronic tongue on the basis of voltammetry
Guth et al. Recent developments in electrochemical sensor application and technology—a review
Karastogianni et al. pH: principles and measurement
US5542284A (en) Method and instrument for measuring differential oxygen concentration between two flowing gas streams
Zhang et al. Electronic nose with an air sensor matrix for detecting beef freshness
KR20080003419A (en) Method and apparatus for detection of abnormal traces during electrochemical analyte detection
WO2005022143B1 (en) Method and apparatus for assay of electrochemical properties
CA2337475A1 (en) Cardio-health-meter
JP2004520577A (en) Electronic tongue as an ozone detector
JP2003215097A (en) Method and apparatus for measuring freshness of food
CN110249219B (en) Risk factor monitoring
Larsen et al. Blood values of juvenile northern elephant seals (Mirounga angustirostris) obtained using a portable clinical analyzer
Winquist et al. A miniaturized voltammetric electronic tongue
WO2011162635A1 (en) Method for non-invasive potentiometric determination of the oxidant/antioxidant activity of biological tissues and device for implementing same
Kulkarni et al. Replacement of conventional reference electrode with platinum electrode for electronic tongue based analysis of dairy products
Li et al. Voltammetry in sheep's blood: Membrane-free amperometric measurement of O2 concentration
Selvakumar et al. Correlation of Bacteria Growth and Electrical Impedance Spectroscopy in Stored Raw Ground Water
CN106770534A (en) It is a kind of with temperature sensor based on the two poles of the earth system water quality detection system
Koronczi et al. Medical diagnosis with the gradient microarray of the KAMINA
US5921922A (en) Measuring of bloodgases
CA2200953C (en) A method and instrument for measuring differential oxygen concentration between two flowing gas streams
JP4322555B2 (en) Residual chlorine concentration measuring method and residual chlorine concentration measuring device
WO2010001432A1 (en) System (best-integrated toxicity (bio) sensor&#39;s system for hazard analysis and management in the food chain and the environment) for environment diagnostic and monitoring and self-control of food chain, including primary production, and relevant method for quick management of hazard