JP4346008B2 - Method for maintaining object surface size by calculation and photographing apparatus - Google Patents

Method for maintaining object surface size by calculation and photographing apparatus Download PDF

Info

Publication number
JP4346008B2
JP4346008B2 JP2002294278A JP2002294278A JP4346008B2 JP 4346008 B2 JP4346008 B2 JP 4346008B2 JP 2002294278 A JP2002294278 A JP 2002294278A JP 2002294278 A JP2002294278 A JP 2002294278A JP 4346008 B2 JP4346008 B2 JP 4346008B2
Authority
JP
Japan
Prior art keywords
distance
subject
imaging
principal
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002294278A
Other languages
Japanese (ja)
Other versions
JP2004096700A (en
Inventor
元祐 高
Original Assignee
元祐 高
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 元祐 高 filed Critical 元祐 高
Priority to JP2002294278A priority Critical patent/JP4346008B2/en
Publication of JP2004096700A publication Critical patent/JP2004096700A/en
Application granted granted Critical
Publication of JP4346008B2 publication Critical patent/JP4346008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Lens Barrels (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明はレンズを使用する装置に関するものである。
【0002】
【従来の技術】
従来は、主に前後に移動する被写体に対して大きさとその大きさが占める画像内での占有率からなる構図を自動的に維持しながら撮影する方法として、すべての被写体に対して任意の部分に焦点の合った状態で
01) 人物を撮影すると仮定し、バストショット、フルショット等の被写体に対しての構図を決める
02) 画角調整リングをワイド端へ移動
03) 01)で決めた構図が撮影可能な位置に撮影装置を設置する
04) 画角調整リングをテレ端まで稼動させながら03)で決めた構図が維持できるよう被写体から撮影装置を離して行くか該被写体を遠ざけて行く
05) 04)での画角調整リングの角度位置を該被写体から離れる距離毎に記録しておく
06) 01)の構図毎に、02)、03)、04)の工程で記録しておく
07) 02)、03)、04)への工程以外に、テレ端で前記構図になる位置から該構図を維持しながら被写体に近づきつつワイド端へと調整しても該被写体との距離毎の画角調整リングの角度位置のデータは同じである
08) 撮影装置に被写体との距離が認識できる機能を具備し
09) 被写体との距離毎の画角調整リングの角度位置のデータを各々の構図毎に記憶できるよう記憶装置を設ける
10) 01)でのバストショットかフルショットの構図が選択できるよう各構図を指定する選択スイッチを設け
11) 指定されたスイッチのON状態で、08)で認識している被写体間からの距離データを元に、09)の記憶装置から、該指定された構図と同じ構図の画角調整リングの角度位置データを呼び出し、呼び出したデータと同じ角度位置になるよう画角調整リングを稼動させる装置を具備する
以上によりバストショット、フルショット等の構図を選択するスイッチをON状態にすると、10)で得られた目的の被写体間との距離データを元に11)の作用により画角調整リングが自動で調整され、被写体の前後の移動に関係なく、選択した構図を維持した画像が、該撮影装置で画角調整可能な範囲の被写体間の距離内で得られる。
12) 02)、03)、04)で得たデータを元に焦点調整リングから得る被写体との距離に応じて希望の構図が得られるよう該焦点調整リングと画角調整リングに計算されたカムを関連付けることにより、前後に移動する被写体に対して焦点を合わせて追跡すると、焦点調整リングの稼動にともない、カムにより連結された画角調整リングが自動調整され、被写体の前後の移動に関係なく、選択した構図を維持した画像が、該撮影装置で画角調整可能な範囲の被写体間の距離内で得られる。
13) 従来は前後左右等に移動する被写体に対して自動追跡して撮影するよう、該被写体に発信部を具備させ、該発信部の方向を自動追跡する方向探知機に撮影装置が該発信部に正対するよう設置することにより被写体を自動追跡して撮影していた。
【0003】
【発明が解決しようとする課題】
0002の05)は被写体との距離ごとに画角調整リングの角度位置のデータを記憶装置のメモリに記録するが、該距離の設定をメートル、センチ、ミリ、マクロ等設定方法により無限に近いメモリが必要になり又、大きい人、子供等の小さい人のバストショットでは、同じ距離で同じ画角調整リングの角度位置では画像上での被写体の占有率が違い適切なバストショットとは言えず、画面上で被写体の占有率が選択できるようスイッチを複数設定しなければ理想のバストショットを得ることができない、フルショット撮影も同様で各々適切な映像を得るには無限のメモリと、大きさを指定する無数のスイッチが必要で、カムを利用した方法も同様に一つの構図に対して一つのカムが必要で、無数にある構図毎に該カムが必要であり、各々実用には不向きであった。
【0004】
0002の13)の前後移動では目的の被写体が遠く離れれば小さく写り、近づきすぎれば拡大映像になり、どちらも見づらいので遠隔操作で画角を調整して希望する構図を得ていた。
【0005】
【課題を解決するための手段】
01) 実像が主点を経過し反転した状態で投影される像の関係で、実像と実像から主点までの距離と、投影像と投影像から主点までの距離は比例することから、実像と投影像の幅なら幅、高さなら高さ、対角なら対角と同じ方向の寸法を抜粋し 実像寸法÷実像主点間距離=投影像寸法÷投影像主点間距離のように式を定義する。
02) 図1のXは01)の投影像に相当し35ミリフイルムの結像面で35ミリの結像面寸法(X)になり、各Y1、Y2、Y3が実像に相当し、結像面と平行する面を持つ35センチ四方の板で、各主点のP1、P2、P3を経過し結像面の35ミリ寸法幅一杯に映っている、そこに映っている実像である被写体の面を被写体面とし35センチ幅なので350ミリの被写体面寸法(Y)となり、35ミリの結像面に350ミリ分の被写体面が映っていることになり、01)で定義した 実像寸法÷実像主点間距離=投影像寸法÷投影像主点間距離の式を 被写体面寸法(Y)÷被写体主点間距離(W)=結像面寸法(X)÷結像主点間距離(b)に置き換え Y÷W=X÷bの式を導いた。
03) 図1の光軸(Z)線上に被写体となる各板のY1、Y2、Y3に焦点の合った中心点があり、各中心点から結像面との距離が各被写体間距離(T)になり、T1が1155ミリ、T2が770ミリ、T3が308ミリで、各被写体間距離(T)は各結像主点間距離(b)と各被写体主点間距離(W)の合計で T=W+bの式になる。
04) 仮に、図1の各Y1、Y2、Y3の板が1メートル四方の板と入れ替わったとしても、結像面寸法(X)も変わらず、各主点のP1、P2、P3の位置も変わらない場合、結像面に映し出される映像は、同じ350ミリ寸法分の板面部分で、被写体面の寸法は変わらず、1000ミリ四方の板面内の350ミリ寸法の被写体面寸法(Y)を映していることに変わりはない。
05) 04)に続き、各Y1、Y2、Y3の板が20センチ四方の板と入れ替わったとしても、結像面寸法(X)も変わらず、各主点のP1、P2、P3の位置も変わらない場合、結像面に映し出される映像は、光軸(Z)線上に焦点の合った200ミリ四方の板が結像面の20ミリ分に映っていて、残った端面に焦点の合っていない背景が15ミリ分の結像面に映っていて、結像面の20ミリ寸法分に映っている200ミリ四方の板が200ミリ分の被写体面寸法(Y)になり、残り端面の15ミリ寸法分の結像面に映っている背景が150ミリ分相当の被写体面寸法(Y)で、合計で350ミリになることから、350ミリ寸法の被写体面寸法(Y)を映していることに変わりはない。
06) 04)05)により解ることは、寸法の決まった結像面から主点までの距離が決まっている時、結像面に映し出される被写体面寸法(Y)の大きさは被写体間距離(T)で決まることから、撮りたいと思う被写体の大きさである被写体面寸法(Y)と被写体間距離(T)が決まっていれば、主点(P)の位置は一点だけなので、主点(P)位置を決める結像主点間距離(b)を02)と03)に記載の Y÷W=X÷bと T=W+bを条件式にして、 b=T÷((1÷(X÷Y))+1)の式を導いた。
07) 被写体として、人物の肩から上350ミリを映すことを目的に、06)のb=T÷((1÷(X÷Y))+1)の式で03)で明記されているT3の被写体間距離(T)308ミリから308÷((1÷(35÷350))+1)=28を割り出し、画角調整機能付35ミリフイルムカメラの主点(P)を28ミリの位置に移動し縦に構え、被写体に対して光軸(Z)上で焦点が合うよう308ミリの被写体間距離(T)で写すと、証明写真のような構図の写真が撮れる。
08) 07)と同じように03)で明記されたT1の1155mmとT2の770mmから1155÷((1÷(35÷350))+1)=105と770÷((1÷(35÷350))+1)=70を導き、実行することで0002の02)、03)、04)と同様、08)と同じ構図の写真が撮れる。
09) 図2はG、H、I、J、K、Lの被写体面寸法(Y)を得るための被写体間距離(T)と結像主点間距離(b)の関係を b=T÷((1÷(X÷Y))+1)の式により得て、表にした図である。
以上のことから結像面と並行し、光軸(Z)から一番近い焦点を基準にした面を被写体面とし、結像面と該被写体面の同方向の長さを抜粋し、抜粋した被写体面寸法(Y)を指定することでその寸法を維持するための主点(P)位置が、計算により導かれ、導かれた数値を基に主点(P)を移動することで自動的に同じ構図の被写体が撮影可能になる。
【0006】
ビデオカメラ(1)は電動で稼動するズーム機能とそれを操作するリモコンのジャックが有り35mmのワイド端から105mmのテレ端へとボタン操作が出来、オートフォーカスとマニュアル機能の切替えが出来る。
【0007】
ビデオカメラ(1)の焦点調整リング(2)は回転稼動することにより焦点レンズを移動させ、焦点レンズの位置毎にピントの合う被写体間距離(T)が決まっているので被写体間距離(T)の最至近距離50cmから無限大までの被写体に対してピントを合わせる事が出来る。
【0008】
ビデオカメラ(1)の倍率調整リング(3)は回転稼動することにより、結像主点間距離(b)の35mmのワイド端から105mmのテレ端の間をズームレンズと一緒に主点を移動させ、結像主点間距離(b)毎に倍率が決まっているので結像面上の映像倍率を変化させる。
【0009】
図5の選択ボタン(4)はOFFの記号とcmの単位で35,50,100,200,400,800の被写体面寸法(Y)の各数値が記入されていて、OFFの位置にスイッチ(5A)がON状態になるよう設置してあり、指標(5)を目標に回転する事によりスイッチ(5A)が本機能の待機状態で35cmから8mの順に希望の被写体面寸法(Y)数値が選択できる。
【0010】
焦点調整リング(2)にセンサ(2A)が設置されていて、焦点調整リング(2)の最至近距離から無限大間を調整する時の各回転稼動量をセンサ(2A)が探知し、その情報を信号としてCPU(10)へ送信する。
【0011】
倍率調整リング(3)にセンサ(3A)が設置されていて、倍率調整リング(3)の35mmのワイド端から105mmのテレ端を調整する時の各回転稼動量をセンサ(3A)が探知し、その情報を信号としてCPU(10)へ送信する。
【0012】
選択ボタン(4)にはセンサ(4A)とスイッチ(5A)が設置されていて、選択ボタン(4)のOFFが指標(5)の位置にあるときはスイッチ(5A)がCPU(10)にON情報を送信していて、35から800間を選択する時の各回転量をセンサ(4A)が探知し、その情報を信号としてCPU(10)へ送信する。
【0013】
CPU(10)は0005の決まっている35mmの結像面寸法(X)を数値として記憶している。
【0014】
CPU(10)はセンサ(2A)の信号を0007の焦点調整リング(2)の回転量に合わせた50cmから無限大の順に被写体間距離(T)数値に変換され記憶していて、焦点調整リング(2)の稼動毎にCPU(10)は被写体間距離(T)数値が認識できる。
【0015】
CPU(10)はセンサ(3A)の信号を0008の倍率調整リング(3)の回転量に合わせた35mmから105mmの順に結像主点間距離(b)数値に変換され記憶していて、倍率調整リング(3)の稼動毎にCPU(10)は結像主点間距離(b)数値が認識できる。
【0016】
CPU(10)はセンサ(4A)の信号を0009の選択ボタン(4)の回転量に合わせたOFFが待機状態で35cmから8mの順に被写体面寸法(Y)数値に変換され記憶していて、選択ボタン(4)の稼動毎にCPU(10)は待機状態と被写体面寸法(Y)数値が認識できる。
【0017】
CPU(10)はスイッチ(5A)の信号で待機状態になり、スイッチ(5A)の信号がなくなると、センサ(4A)からの受信を優先しセンサ(2A)とセンサ(3A)の受信を待っている。
【0018】
CPU(10)は0016の被写体面寸法(Y)数値相当の信号を受け、結像面寸法(X)の35mmと0014の被写体間距離(T)数値とを基にB=T÷((1÷(X÷Y))+1)を演算し、Bを主点選択距離(B)に置き換え認識している。
【0019】
CPU(10)は0015の結像主点間距離(b)の数値が変わらず0017の主点選択距離(B)が少なければ拡大スイッチ(11)へ信号を送り、結像主点間距離(b)の数値に対して主点選択距離(B)数値が同じになるかそれ以上になった時、拡大スイッチ(11)への送信を停止する。
【0020】
CPU(10)は0015の結像主点間距離(b)の数値が変わらず0017の主点選択距離(B)が多ければ縮小スイッチ(12)へ信号を送り、結像主点間距離(b)の数値に対して主点選択距離(B)数値が同じになるかそれ以下になった時、拡大スイッチ(11)への送信を停止する。
【0021】
拡大スイッチ(11)は間接スイッチでCPU(10)からの受信で接続になり、出力ジャック(7)とケーブル(8)を経由し、リモコンジャック(9)へとつながり0006でのリモコン操作のワイド端ボタンの代わりをする。
【0022】
縮小スイッチ(12)は間接スイッチでCPU(10)からの受信で接続になり、出力ジャック(7)とケーブル(8)を経由し、リモコンジャック(9)へとつながり0006でのリモコン操作のテレ端ボタンの代わりをする。
【0023】
【発明の実施の形態】
図1の35mmの結像面寸法(X)から正対した350mmの同じ寸法の面を持つY1、Y2、Y3の各被写体面の間が T1の1155mm、T2の770mm、T3の308mmの各被写体間距離(Tn)で、その中に同じ光軸(Z)を共有している。
【0024】
0023の各被写体間距離(Tn)内の P1、P2、P3の各主点(Pn)を境に、b1の105mm、b2の70mm、b3の28mmの各結像主点間距離(bn)と W1の1050mm、W2の700mm、W3の280mmの各被写体主点間距離(Wn)が含まれている。
【0025】
図1の移動した350mm寸法面の各被写体面寸法(Yn)が各主点(Pn)の移動により結像面に投影された時、同じ350mm寸法の映像面が維持され写されている。
【0026】
0023と0024の数値で
Y1:W1=X:b1は350mm:1050mm=35mm:105mm
Y2:W2=X:b2は350mm: 700mm=35mm: 70mm
Y3:W3=X:b3は350mm: 280mm=35mm: 28mm
以上で Yn:Wn=X:bnの比例式になり
T1=W1+b1,T2=W2+b2,T3=W3+b3が
Tn=Wn+bnになり
主点選択距離(B)=T÷((1÷(X÷Y))+1)
T=((1÷(X÷Y))+1)×b
Xn=Y÷((T÷b)−1)
以上の式が成立する。
【0027】
図2は縦軸bが結像主点間距離(b)で35mmから105mmまでの範囲で表し、横軸Tが被写体間距離(T)で50cmから1000cmまでの範囲で表し、35cmの被写体面線(G),50cmの被写体面線(H),1mの被写体面線(I),2mの被写体面線(J),4mの被写体面線(K),8mの被写体面線(L)で示し、各被写体面寸法(Y)を線で表したグラフ表。
【0028】
0014で焦点調整リング(2)が稼動し、センサ(2A)が探知しステップを刻み送信し、CPU(10)は受信したステップの数毎に被写体間距離(T)数値に変換され認識する。
【0029】
0015で倍率調整リング(3)が稼動、センサ(2A)が探知しステップを刻み送信し、CPU(10)は受信したステップの数毎に結像主点間距離(b)数値に変換され認識する。
【0030】
0016で選択ボタン(4)が稼動、センサ(4A)が探知しステップを刻み送信し、CPU(10)は受信したステップの数毎に被写体面寸法(Y)の数値に変換され認識する。
【0031】
初期設定として選択ボタン(4)のOFFを指標(5)の位置に設定、切替スイッチ(6)をマニュアル状態にして、焦点調整リング(2)を最至近距離50cmに設定、倍率調整リング(3)はワイド端の35mmに設定する。
【0032】
0031で選択ボタン(4)のOFFでスイッチ(5A)がONになりCPU(10)へ送信し、CPU(10)はスイッチ(5A)の受信によりリセット状態になり、センサ(2A)、センサ(3A)、センサ(4A)の各情報をリセットし、スイッチ(5A)からの信号解除を待つ。
【0033】
選択ボタン(4)のOFFの位置から回転させ、希望の 被写体面寸法(Y)を指定すると、CPU(10)はスイッチ(5A)の信号が途絶えたことで機能し、次にセンサ(4A)からの信号を確認し、被写体面寸法(Y)の数値を割り出す。
【0034】
センサ(2A)は0031の初期設定で最少のステップゼロから始まるので最至近距離500mmと認識している。
【0035】
センサ(3A)は0031の初期設定で最少のステップゼロから始まるので結像主点間距離(b)がワイド端の35mmと認識している。
【0036】
センサ(4A)は0031の初期設定で最少のステップゼロから始まるので被写体面寸法(Y)が最小の350mmと認識される。
【0037】
CPU(10)は0034の被写体間距離(T)500mm、0036の被写体面寸法(Y)35mm、0005でのビデオカメラ(1)の結像面寸法(X)35mmの数値を基に0026の主点選択距離(B)=T÷((1÷(X÷Y))+1)式により計算する。
【0038】
CPU(10)は0019のように0035の結像主点間距離(b)35mmを基準に0037の結果の主点選択距離(B)数値が少なくて数値が変わらない間、拡大スイッチ(11)へ送信し続け、結像主点間距離(b)より主点選択距離(B)が多くなるか同じに成れば送信を止める。
結像主点間距離(b)>主点選択距離(B)→送信 拡大スイッチ(11)
結像主点間距離(b)≦主点選択距離(B)→停止 拡大スイッチ(11)
【0039】
CPU(10)は0019のように0035の結像主点間距離(b)35mmを基準に0037の結果の主点選択距離(B)数値が多くて数値が変わらない間、縮小スイッチ(12)へ送信し続け、結像主点間距離(b)より主点選択距離(B)が少なくなるか同じに成れば送信を止める。
結像主点間距離(b)<主点選択距離(B)→送信 縮小スイッチ(12)
結像主点間距離(b)≧主点選択距離(B)→停止 縮小スイッチ(12)
【0040】
0033の被写体面寸法(Y)の指定が35cmなら、
0039から初期設定で結像主点間距離(b)は35mmだから、
T500÷((1÷(X35÷Y350))+1) =主点選択距離(B)約45.45で
結像主点間距離35<主点選択距離45.45→送信 縮小スイッチ(12)
【0041】
縮小スイッチ(12)はONになり、0022によりビデオカメラ(1)のテレ端の方にズームのリモコンがONになり倍率調整リング(3)が稼動する。
【0042】
0041によりテレ端の結像主点間距離(b)105mm方向に移動するので0040の結像主点間距離35mmの数値が増え主点選択距離(B)の45.45に近づき0039の結像主点間距離45.45≧主点選択距離45.45→停止 縮小スイッチ(12)で倍率調整リング(3)の稼動が止まり、被写体間距離(T)50cmにピンとの合う被写体面寸法(Y)は35cmに成る。
【0043】
0033の被写体面寸法(Y)の指定が8mなら、
0039から初期設定で結像主点間距離(b)は35mmだから、
T500÷((1÷(X35÷Y8000))+1)≒主点選択距離(B)2.18で、
結像主点間距離35>主点選択距離2.18→送信 拡大スイッチ(11)
【0044】
拡大スイッチ(11)はONになり、0021によりビデオカメラ(1)のワイド端の方にズームのリモコンがONになり倍率調整リング(3)を稼動させようとする。
【0045】
0044によりワイド端の結像主点間距離(b)35mm方向に移動しようとするがこれ以下の結像主点間距離は無いので変わらず、0040の結像主点間距離35mmの数値も変わらず主点選択距離(B)の2.18に近づけず拡大スイッチ(11)はそのままで、被写体面寸法多重指定スイッチの範囲外になる。
【0046】
0033の次に切替スイッチ(6)をオートフォーカス機能の方に移行する。
【0047】
ビデオカメラ(1)が正対した物体に対してオートフォーカスが作用し、ピントを合わせるため焦点調整リング(2)が回転稼動しピントが合って停止する。
【0048】
CPU(10)は焦点調整リング(2)の稼動で被写体間距離(T)の変化した数値と0033で変化した被写体面寸法(Y)数値で主点選択距離(B)=T÷((1÷(X÷Y))+1)を計算する。
【0049】
0038か0039と繰り返し、センサ(4A)から受信があれば優先し0033の被写体面寸法(Y)数値の割り出しから始まり、センサ(2A)とセンサ(3A)の受信を繰り返す。
【0050】
以上を繰り返す事により0047でピントが合っていて倍率調整リング(3)の稼動が止まっている時、0033で指定した被写体面寸法(Y)の映像が得られている。
【0051】
焦点調整リング(2)と倍率調整リング(3)の役割を交換することで0026のT=((1÷(X÷Y))+1)×bの式で希望の被写体面寸法(Y)の映像が得られる。
【0052】
光学ズームレンズ式でなく、デジタルズームの場合は0026の結像面選択寸法(Xn)=Y÷((T÷b)−1)の式で結像面寸法(X)を変化させ希望の被写体面寸法(Y)の映像が得られる。
【0053】
被写体に発信装置を設置しそれに正対するよう上下、左右、平行等に駆動させ発信装置を探知し追跡する機能を合致させた、自動追跡撮影方法(平1−134351)等の撮影装置に、被写体面寸法多重指定スイッチを設定。
【0054】
画面情報から被写体を追跡しながら撮影する装置に被写体面寸法指定スイッチを設定。
【0055】
【発明の効果】
被写体に対し、一人、多数、顔、バストアップ等、最初に設定すれば動く被写体に対しても焦点、あるいは倍率を調整するだけで希望の画像を得ることができるし自動焦点機能をもつ撮影装置を使えば被写体に撮影装置を向けるだけで希望の画像を得る事ができ、動く被写体も楽に追跡撮影が出来るし部品の共通性も多く倍率調整リング機能をそのまま被写体寸法多重選択スイッチに変換することで操作が簡単になる。
【0056】
サーキット競技等モータースポーツ、競技をする人、競技用の球類などの追跡撮影等簡単な操作で済み、動く被写体に対して有効に作用する。
【0057】
インターネット、テレビ電話等、焦点固定レンズを使用するカメラにも操作が簡単になり、ピントを合わす事により綺麗で鮮明な画像が写せる。
【0058】
被写体に発信装置を設置し、撮影装置に方向探知機能を付け その発信装置に正対するよう上下、左右に稼動、平行移動等駆動すれば自動的に被写体面寸法を維持しながら自動追跡撮影することになりカメラマンが不要になる、又被写体面寸法をリモコン等で操作できるようにすれば、離れた場所から他の事をしながら自在に拡大、縮小と選択でき誰にでも自在の映像が得られるし、各装置の反応精度、速度によっては発信装置を球技のボール等に組み込むことにより、通常カメラマンが目で追えない被写体でも自動的に撮影することができ発信装置が設定可能の動くに被写体に有効に作用する。
【0059】
0058の効果は0055、0056、0057にも有効で、家庭用ビデオカメラ購買の殆どの理由は子供の成長過程を撮るためで、学校での行事、レジャー等に多く利用される、しかしビデオ自体重く、目的の子供を追いながらの撮影操作が困難だったり、録画時間は充分あっても長時間撮影ばかりしていられず、良い瞬間を見逃す事が多かったが、0058式で撮影すると、簡単に出来、子供が迷子になっても簡単に探すことが出来る。
【図面の簡単な説明】
【図1】 移動しても結像面に写る350mm寸法の被写体面は変化しない説明図である。
【図2】 図1を基にした各寸法をもつ被写体面で横軸Tの被写体間距離数と縦軸bの各主点距離数を各線で示した表の説明図である。
【図3】 本願発明の全体ブロック図である。
【図4】 ビデオカメラ(1)である。
【図5】 図4の指標(5)と指定対象となる選択ボタン(4)のOFFと各寸法を表示した説明図である。
【符号の説明】
ビデオカメラ
焦点調整リング
2A 焦点調整リング(2)のセンサ
倍率調整リング
3A 倍率調整リング(3)のセンサ
オンオフの切替え兼用選択ボタン
4A 選択ボタン(4)のセンサ
選択ボタン(4)の指標
5A 選択ボタン(4)のON,OFFスイッチ
マニュアルとオートフォーカスの切替えスイッチ
11,12の情報を外部に出力する出力ジャック
ケーブル
リモコンジャック
10 CPU
11 拡大スイッチ
12 縮小スイッチ
T÷((1÷(X÷Y))+1)演算結果
主点(P)から結像面までの距離で結像主点間距離
bn 各主点(Pn)から結像面までの各距離で各結像主点間距離
主点
Pn P1,P2,P3の各主点
被写体面から結像面までの距離で被写体間距離
Tn 各被写体面から結像面までの各距離で各被写体間距離
被写体面から主点(P)までの距離で被写体主点間距離
Wn 各被写体面から各主点(Pn)までの各距離で各被写体主点間距離
結像面寸法
Xn 結像面からの投影寸法が変化した画像寸法
被写体面寸法
Yn Y1,Y2,Y3の各被写体面寸法
光軸
35cmの被写体面寸法(Y)維持を表した線
50cmの被写体面寸法(Y)維持を表した線
1mの被写体面寸法(Y)維持を表した線
2mの被写体面寸法(Y)維持を表した線
4mの被写体面寸法(Y)維持を表した線
8mの被写体面寸法(Y)維持を表した線
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to an apparatus using a lens.
[0002]
[Prior art]
Conventionally, as a method of shooting while automatically maintaining the composition of the size and the occupation ratio in the image that the size occupies mainly for the subject moving back and forth, any part of all subjects In focus
      01) Assuming that a person is to be photographed, determine the composition of the subject such as bust shot or full shot
02) Move the angle adjustment ring to the wide end
03) Install the photographing device at a position where the composition determined in 01) can be photographed.
      04) Move the view angle adjustment ring to the telephoto end while moving the imaging device away from or moving away from the subject so that the composition determined in 03) can be maintained.
      05) Record the angle position of the angle adjustment ring in 04) for each distance away from the subject.
06) Recorded in steps 02), 03), 04) for each composition of 01)
      07) In addition to the steps to 02), 03), 04), the distance from the subject at the tele end is adjusted for each distance to the subject even if the subject is adjusted to the wide end while approaching the subject while maintaining the composition. The angle position data of the angle adjustment ring is the same.
      08) The camera has a function to recognize the distance to the subject.
      09) A storage device is provided so that the angle position data of the angle-of-view adjusting ring for each distance from the subject can be stored for each composition.
      10) A selection switch is provided to specify each composition so that the bust shot or full shot composition in 01) can be selected.
        11) The angle of the angle-of-view adjustment ring having the same composition as that of the designated composition from the storage device of 09) based on the distance data from the subject recognized in 08) with the designated switch ON. There is a device that calls the position data and operates the angle-of-view adjustment ring so that the angle position is the same as the called data.
As described above, when the switch for selecting a composition such as bust shot or full shot is turned ON, the angle adjustment ring is automatically adjusted by the action of 11) based on the distance data between the target objects obtained in 10). Thus, an image maintaining the selected composition can be obtained within the distance between the subjects within the range in which the angle of view can be adjusted by the photographing apparatus regardless of the movement of the subject in the front-rear direction.
        12) Cams calculated in the focus adjustment ring and the angle adjustment ring so that a desired composition can be obtained according to the distance from the subject obtained from the focus adjustment ring based on the data obtained in 02), 03), and 04) By associating and tracking a subject that moves back and forth, the angle adjustment ring connected by the cam is automatically adjusted as the focus adjustment ring operates, regardless of whether the subject moves back and forth. The image maintaining the selected composition is obtained within the distance between the subjects within the range in which the angle of view can be adjusted by the photographing apparatus.
        13) Conventionally, the subject is provided with a transmitter so as to automatically track and shoot a subject that moves back and forth, right and left, etc., and the photographing device is provided in the direction detector that automatically tracks the direction of the transmitter. The camera was automatically tracked by setting the camera so that it faces the camera.
[0003]
[Problems to be solved by the invention]
05) of 0002 records the data of the angle position of the angle of view adjustment ring in the memory of the storage device for each distance to the subject, but the distance is set to an infinite memory by setting methods such as meters, centimeters, millimeters, and macros. In the bust shot of a large person, a small person such as a child, the occupancy rate of the subject on the image is different at the same angle and the angle position of the same angle of view adjustment ring, and it cannot be said that it is an appropriate bust shot. The ideal bust shot cannot be obtained unless multiple switches are set so that the occupancy rate of the subject can be selected on the screen. In the same way as for full shot shooting, infinite memory and size are required to obtain appropriate images. Innumerable switches to be specified are necessary, and the cam-based method also requires one cam for one composition, and this cam is necessary for each innumerable composition. It was not suitable for.
[0004]
In the forward and backward movement of 13) of 0002, when the target object is far away, it appears small, and when it is too close, it becomes an enlarged image. Both are difficult to see, so the desired angle of view is adjusted by remote control.
[0005]
[Means for Solving the Problems]
      01) The relationship between the real image and the image projected in the inverted state after passing through the principal point. Since the distance from the real image to the principal point and the distance from the projection image to the principal point are proportional, the real image If the width of the projected image is width, height is height, and if diagonal, the dimensions in the same direction as the diagonal are extracted, and the equation is as follows: Real image size ÷ Real image principal point distance = Projected image dimension ÷ Projected image principal point distance Define
      02) X in FIG. 1 corresponds to the projected image of 01), and the image plane of 35 mm film has an image plane size (X) of 35 mm, and each of Y1, Y2, and Y3 corresponds to a real image. A 35 cm square plate with a plane parallel to the plane, passing through P1, P2, and P3 of each principal point and appearing to the full 35 mm width of the image plane, the real image of the subject Since the surface is the subject surface and the width is 35 cm, the subject surface size (Y) is 350 mm, and the subject surface for 350 mm is reflected on the 35 mm imaging surface. Distance between principal points = projected image size ÷ distance between projected image principal points Subject surface dimension (Y) ÷ distance between subject principal points (W) = imaging surface dimension (X) ÷ distance between imaging principal points (b ) The formula of Y ÷ W = X ÷ b was derived.
      03) On the optical axis (Z) line in FIG. 1, there are center points focused on Y1, Y2, and Y3 of each plate as a subject, and the distance from each center point to the imaging plane is the distance between each subject (T ), T1 is 1155 mm, T2 is 770 mm, T3 is 308 mm, and the distance between each subject (T) is the sum of the distance between each imaging principal point (b) and the distance between each subject principal point (W). Then, T = W + b.
      04) Even if the Y1, Y2, and Y3 plates in FIG. 1 are replaced with 1-meter square plates, the image plane size (X) does not change, and the positions of the principal points P1, P2, and P3 are also the same. If the image does not change, the image displayed on the imaging surface is the same 350 mm size plate surface portion, the size of the object surface does not change, and the object surface size (Y) of the 350 mm size within the 1000 mm square plate surface. There is no change in reflecting.
      05) Subsequent to 04), even if each Y1, Y2, Y3 plate is replaced with a 20 cm square plate, the image plane dimension (X) does not change, and the positions of P1, P2, P3 of each principal point If the image does not change, the image projected on the image plane is a 200 mm square plate that is focused on the optical axis (Z) line and is projected on the remaining 20 mm of the image plane. A 200 mm square plate reflected on the image plane of 15 mm and a 200 mm square plate reflected on the image plane of 20 mm has a subject plane size (Y) of 200 mm, and the remaining end surface 15 The subject surface dimensions (Y) equivalent to 150 millimeters on the imaging surface for millimeter dimensions are 350 millimeters in total, so the subject surface dimensions (Y) of 350 millimeters are projected. There is no change.
      06) 04) It can be understood from 05) that when the distance from the image forming surface having a fixed dimension to the principal point is determined, the size of the object surface dimension (Y) displayed on the image forming surface is the distance between the objects ( Since the subject surface size (Y) and the distance between subjects (T), which are the size of the subject to be photographed, are determined, the position of the principal point (P) is only one point. (P) The distance between imaging principal points (b) for determining the position is set as a conditional expression of Y ÷ W = X ÷ b and T = W + b described in 02) and 03), and b = T ÷ ((1 ÷ ( The formula of X ÷ Y)) + 1) was derived.
      07) For the purpose of projecting 350mm above the person's shoulder as the subject, the T3 specified in the formula of b) = T ÷ ((1 ÷ (X ÷ Y)) + 1) in 03) 308 ÷ ((1 ÷ (35 ÷ 350)) + 1) = 28 is calculated from the distance between subjects (T) of 308 mm, and the main point (P) of the 35 mm film camera with an angle of view adjustment function is moved to the position of 28 mm. If you hold it vertically and take a subject distance (T) of 308 mm so that the subject is in focus on the optical axis (Z), you can take a picture with a composition like an ID photo.
      08) Same as 07), from 1155mm of T1 and 770mm of T2 specified in 03) to 1155 ÷ ((1 ÷ (35 ÷ 350)) + 1) = 105 and 770 ÷ ((1 ÷ (35 ÷ 350) ) +1) = 70 is derived and executed, so that a photograph with the same composition as 08) can be taken as in 02), 03), 04) of 0002.
      09) FIG. 2 shows the relationship between the subject distance (T) and the imaging principal point distance (b) for obtaining subject surface dimensions (Y) of G, H, I, J, K, and L. b = T ÷ It is the figure obtained by the formula of ((1 ÷ (X ÷ Y)) + 1) and tabulated.
Based on the above, the surface parallel to the imaging surface and based on the focal point closest to the optical axis (Z) is taken as the subject surface, and the length in the same direction of the imaging surface and the subject surface is extracted and extracted. By specifying the subject surface dimension (Y), the principal point (P) position for maintaining the dimension is derived by calculation, and the principal point (P) is automatically moved by moving based on the derived numerical value. It is possible to shoot subjects with the same composition.
[0006]
    The video camera (1) has an electrically operated zoom function and a remote control jack for operating it, and can be operated from a 35 mm wide end to a 105 mm tele end to switch between auto focus and manual functions.
[0007]
    The focus adjustment ring (2) of the video camera (1) rotates to move the focus lens, and the subject distance (T) that is in focus is determined for each position of the focus lens, so the subject distance (T) You can focus on subjects from the closest distance of 50cm to infinity.
[0008]
    The magnification adjustment ring (3) of the video camera (1) rotates to move the principal point together with the zoom lens from the 35mm wide end of the imaging main point distance (b) to the 105mm tele end. Since the magnification is determined for each distance (b) between the imaging principal points, the image magnification on the imaging surface is changed.
[0009]
The selection button (4) in FIG. 5 is filled with numerical values of the object surface dimensions (Y) of 35, 50, 100, 200, 400, and 800 in the symbol of OFF and the unit of cm, and the switch ( 5A) is set to be in the ON state, and the desired object surface dimension (Y) value is set in the order of 35 cm to 8 m in the standby state of this function by rotating the index (5) as a target. You can choose.
[0010]
    The sensor (2A) is installed on the focus adjustment ring (2), and the sensor (2A) detects each rotation operation amount when adjusting from infinity to the infinity from the closest distance of the focus adjustment ring (2). As a signal to the CPU (10).
[0011]
    A sensor (3A) is installed on the magnification adjustment ring (3), and the sensor (3A) detects each rotational operation amount when adjusting the telephoto end of 105mm from the 35mm wide end of the magnification adjustment ring (3). The information is transmitted as a signal to the CPU (10).
[0012]
    The selection button (4) is provided with a sensor (4A) and a switch (5A). When the selection button (4) is OFF at the position of the index (5), the switch (5A) is connected to the CPU (10). The sensor (4A) detects the amount of rotation when transmitting ON information and selects between 35 and 800, and transmits the information to the CPU (10) as a signal.
[0013]
      The CPU (10) stores the image plane size (X) of 35 mm determined by 0005 as a numerical value.
[0014]
    The CPU (10) converts the signal of the sensor (2A) into a numerical value between subject distances (T) from 50 cm to infinity according to the rotation amount of the focus adjustment ring (2) of 0007, and stores it. The CPU (10) can recognize the inter-subject distance (T) value every time (2) is operated.
[0015]
    The CPU (10) converts the signal of the sensor (3A) into a numerical value (b) between image forming principal points in the order of 35 mm to 105 mm in accordance with the rotation amount of the magnification adjustment ring (3) of 0008, and stores it. Each time the adjustment ring (3) is operated, the CPU (10) can recognize the numerical value (b) between the imaging principal points.
[0016]
    The CPU (10) converts the signal of the sensor (4A) into the subject surface dimension (Y) numerical value in the order from 35 cm to 8 m in the standby state when OFF corresponding to the rotation amount of the selection button (4) of 0009 is stored, and stores it. Each time the selection button (4) is operated, the CPU (10) can recognize the standby state and the subject surface dimension (Y) value.
[0017]
    The CPU (10) enters the standby state with the signal from the switch (5A). When the signal from the switch (5A) disappears, the reception from the sensor (4A) is prioritized and the reception of the sensor (2A) and the sensor (3A) is awaited. ing.
[0018]
        The CPU (10) receives a signal corresponding to the numerical value of the subject surface dimension (Y) of 0016, and B = T ÷ ((1) based on the imaging surface dimension (X) of 35 mm and the distance between subjects (T) of 0014. ÷ (X ÷ Y)) + 1) is calculated, and B is recognized by replacing it with the principal point selection distance (B).
[0019]
      The CPU (10) sends a signal to the enlargement switch (11) if the numerical value of the distance (b) between the imaging principal points of 0015 is not changed and the selection distance (B) of 0017 is small, and the distance between imaging principal points ( When the principal point selection distance (B) value is equal to or greater than the value of b), transmission to the enlargement switch (11) is stopped.
[0020]
    The CPU (10) sends a signal to the reduction switch (12) if the value of the principal point selection distance (B) of 0017 is large without changing the numerical value of the distance (b) of the imaging principal point of 0015, and the distance between imaging principal points ( When the principal point selection distance (B) value is equal to or less than the value of b), transmission to the enlargement switch (11) is stopped.
[0021]
    The enlargement switch (11) is an indirect switch that is connected upon reception from the CPU (10) and is connected to the remote control jack (9) via the output jack (7) and the cable (8). Instead of the end button.
[0022]
    The reduction switch (12) is an indirect switch that is connected upon reception from the CPU (10), and is connected to the remote control jack (9) via the output jack (7) and the cable (8). Instead of the end button.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
    Between the subject planes of Y1, Y2, and Y3 having the same dimensions of 350 mm as opposed to the image plane size (X) of 35 mm in FIG. 1, each subject of 1155 mm of T1, 770 mm of T2, and 308 mm of T3 The distance (Tn) shares the same optical axis (Z) therein.
[0024]
    With the principal points (Pn) of P1, P2, and P3 within the distances (Tn) between the individual objects 0023, the distances (bn) between the imaging principal points of 105 mm for b1, 70 mm for b2, and 28 mm for b3 The distance between the subject main points (Wn) of 1050 mm for W1, 700 mm for W2, and 280 mm for W3 is included.
[0025]
      When the subject surface dimensions (Yn) of the moved 350 mm dimension surface of FIG. 1 are projected on the imaging plane by the movement of the principal points (Pn), the same 350 mm dimension image plane is maintained and imaged.
[0026]
      With the numbers 0023 and 0024
Y1: W1 = X: b1 is 350 mm: 1050 mm = 35 mm: 105 mm
    Y2: W2 = X: b2 is 350 mm: 700 mm = 35 mm: 70 mm
    Y3: W3 = X: b3 is 350 mm: 280 mm = 35 mm: 28 mm
    With the above, the proportional expression of Yn: Wn = X: bn
    T1 = W1 + b1, T2 = W2 + b2, T3 = W3 + b3
    Tn = Wn + bn
    Principal point selection distance (B) = T ÷ ((1 ÷ (X ÷ Y)) + 1)
    T = ((1 ÷ (X ÷ Y)) + 1) × b
    Xn = Y / ((T / b) -1)
    The above equation holds.
[0027]
    In FIG. 2, the vertical axis b represents the distance (b) between the imaging principal points in the range from 35 mm to 105 mm, and the horizontal axis T represents the distance between the subjects (T) from 50 cm to 1000 cm. Line (G), 50 cm subject plane line (H), 1 m subject plane line (I), 2 m subject plane line (J), 4 m subject plane line (K), 8 m subject plane line (L) The graph which shows each object surface dimension (Y) with a line.
[0028]
      In step 0014, the focus adjustment ring (2) is activated, the sensor (2A) detects and transmits the steps in steps, and the CPU (10) converts the recognition distance into a subject distance (T) value for each received number of steps.
[0029]
      In 0015, the magnification adjustment ring (3) is activated, the sensor (2A) detects and transmits the steps in increments, and the CPU (10) converts the image forming principal point distance (b) into a numerical value for each received step and recognizes it. To do.
[0030]
      In step 0016, the selection button (4) is activated, the sensor (4A) detects and transmits the step in steps, and the CPU (10) converts the value into the numerical value of the subject surface dimension (Y) for each received step and recognizes it.
[0031]
As an initial setting, OFF of the selection button (4) is set to the position of the index (5), the changeover switch (6) is set to the manual state, the focus adjustment ring (2) is set to the closest distance 50 cm, and the magnification adjustment ring (3 ) Is set to 35mm at the wide end.
[0032]
    When the selection button (4) is turned off at 0031, the switch (5A) is turned on and transmitted to the CPU (10), and the CPU (10) is reset by the reception of the switch (5A), and the sensor (2A), sensor ( 3A), each information of the sensor (4A) is reset, and the signal release from the switch (5A) is awaited.
[0033]
    When the selection button (4) is rotated from the OFF position and the desired subject surface dimension (Y) is designated, the CPU (10) functions when the switch (5A) signal is interrupted, and then the sensor (4A) And the numerical value of the subject surface dimension (Y) is determined.
[0034]
    Since the sensor (2A) starts from the smallest step zero at the initial setting of 0031, the closest distance is recognized as 500 mm.
[0035]
    Since the sensor (3A) starts from the minimum step zero at the initial setting of 0031, the distance (b) between the imaging principal points is recognized as 35 mm at the wide end.
[0036]
    Since the sensor (4A) starts from the minimum step zero at the initial setting of 0031, it is recognized that the subject surface dimension (Y) is the minimum 350 mm.
[0037]
    The CPU (10) is based on the values of the distance between subjects (T) of 500 mm of 0034, the subject surface dimension (Y) of 35 mm of 0036, and the imaging surface dimension (X) of 35 mm of the video camera (1) at 0005. Point selection distance (B) = T ÷ ((1 ÷ (X ÷ Y)) + 1).
[0038]
    The CPU (10), like 0019, sets the distance (b) between the imaging principal points of 0035 to 35 mm as a reference, while the principal point selection distance (B) as a result of 0037 is small and the numerical value does not change. If the principal point selection distance (B) is greater than or equal to the imaging principal point distance (b), the transmission is stopped.
Distance between imaging principal points (b)> Selected principal point distance (B) → Transmission Enlargement switch (11)
Imaging principal point distance (b) ≤ principal point selection distance (B) → stop Enlargement switch (11)
[0039]
    The CPU (10) reduces the switch (12) while the numerical value of the principal point selection distance (B) as a result of 0037 is large and the numerical value does not change with reference to the distance (b) 35mm between the imaging principal points of 0035 as in 0019 If the principal point selection distance (B) is less than or equal to the imaging principal point distance (b), the transmission is stopped.
Distance between imaging main points (b) <main point selection distance (B) → transmission reduction switch (12)
Distance between imaging main points (b) ≥ Main point selection distance (B) → Stop Reduction switch (12)
[0040]
    If the object surface dimension (Y) of 0033 is 35 cm,
Since the distance (b) between the imaging principal points is 35 mm by default from 0039,
T500 ÷ ((1 ÷ (X35 ÷ Y350)) + 1) = Principal point selection distance (B) About 45.45
Imaging principal point distance 35 <principal point selection distance 45.45-> transmission reduction switch (12)
[0041]
    The reduction switch (12) is turned on, and the zoom remote control is turned on toward the tele end of the video camera (1) by 0022, and the magnification adjustment ring (3) is operated.
[0042]
    As a result, the distance between the imaging principal points at the telephoto end (b) moves in the direction of 105 mm, so that the numerical value of the distance between the imaging principal points of 0040 increases to 45.45 as the principal point selection distance (B). Distance between main points 45.45 ≧ main point selection distance 45.45 → stop The operation of the magnification adjustment ring (3) is stopped by the reduction switch (12), and the object surface dimension (Y ) Becomes 35 cm.
[0043]
If the specification of the subject surface dimension (Y) in 0033 is 8 m,
Since the distance (b) between the imaging principal points is 35 mm by default from 0039,
T500 ÷ ((1 ÷ (X35 ÷ Y8000)) + 1) ≈Main point selection distance (B) 2.18
Distance between imaging main points 35> Main point selection distance 2.18 → Transmission Enlargement switch (11)
[0044]
    The enlargement switch (11) is turned on, and the remote controller for zooming is turned on toward the wide end of the video camera (1) by 0021 to try to operate the magnification adjustment ring (3).
[0045]
    By 0044, the distance between the imaging principal points at the wide end (b) tries to move in the direction of 35 mm. However, since there is no distance between the imaging principal points less than this, the numerical value of the distance 355 between the imaging principal points is unchanged. The enlargement switch (11) is not brought close to the main point selection distance (B) of 2.18 and is outside the range of the subject surface dimension multiple designation switch.
[0046]
    Next, the selector switch (6) is shifted to the autofocus function.
[0047]
      Autofocus is applied to the object facing the video camera (1), and the focus adjustment ring (2) is rotated to focus and stops in focus.
[0048]
    The CPU (10) calculates the principal point selection distance (B) = T ÷ ((1) by changing the distance between the subjects (T) by the operation of the focus adjustment ring (2) and changing the subject surface dimension (Y) by 0033. ÷ (X ÷ Y)) + 1) is calculated.
[0049]
    Repeat steps 0038 and 0039. If there is a reception from the sensor (4A), priority is given to the determination of the subject surface dimension (Y) value of 0033, and the reception of the sensor (2A) and the sensor (3A) is repeated.
[0050]
    By repeating the above, when the focus is adjusted at 0047 and the operation of the magnification adjustment ring (3) is stopped, an image of the subject surface dimension (Y) specified at 0033 is obtained.
[0051]
      By exchanging the roles of the focus adjustment ring (2) and the magnification adjustment ring (3), the desired object surface dimension (Y) can be obtained by the equation T = ((1 ÷ (X ÷ Y)) + 1) × b. Video is obtained.
[0052]
    In the case of digital zoom instead of the optical zoom lens type, the desired object plane is obtained by changing the imaging plane dimension (X) according to the formula 0026 imaging plane selection dimension (Xn) = Y ÷ ((T ÷ b) −1). An image having a dimension (Y) is obtained.
[0053]
A shooting device such as an automatic tracking shooting method (Japanese Patent Laid-Open No. 1-134351), in which a transmission device is installed on a subject and is driven vertically, horizontally, and parallel to face the transmission device to match the function of detecting and tracking the transmission device, Set the surface dimension multiple designation switch.
[0054]
A subject surface size specification switch is set on the device that shoots while tracking the subject from the screen information.
[0055]
【The invention's effect】
      An imaging device with an autofocus function that can obtain the desired image by adjusting the focus or magnification even if the subject is initially set, such as one, many, face, bust up, etc. Can be used to obtain the desired image simply by pointing the shooting device at the subject, moving subjects can be tracked easily, and there are many common parts so that the magnification adjustment ring function can be converted into a subject size multiple selection switch as it is. Easy operation.
[0056]
    Simple operations such as tracking sports such as motor sports such as circuit competitions, competition players, and ball for competitions, etc. are effective, and it works effectively on moving subjects.
[0057]
      Cameras that use a fixed-focus lens, such as the Internet and video phones, are easy to operate, and you can shoot beautiful and clear images by focusing.
[0058]
    A tracking device is installed on the subject, and a direction detection function is added to the photographing device. If the device is driven up and down, left and right, or moved in parallel to face the transmitting device, automatic tracking shooting is performed while maintaining the subject surface dimensions. By eliminating the need for a cameraman and allowing the subject surface dimensions to be controlled with a remote control, etc., you can freely zoom in and out while doing other things, and anyone can get free images However, depending on the response accuracy and speed of each device, it is possible to automatically shoot a subject that the cameraman cannot normally follow by incorporating the transmitter into a ball of a ball game, etc. It works effectively.
[0059]
    The effect of 0058 is also effective for 0055, 0056, and 0057, and most of the reasons for purchasing a home video camera are to capture the child's growth process and are often used for school events, leisure, etc., but the video itself is heavy , It was difficult to shoot while chasing the target child, and even if there was enough recording time, it was not possible to shoot for a long time, and often missed a good moment, but if you shoot with 0058 type, it is easy to do Even if a child gets lost, it can be easily searched.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing that a subject surface of a 350 mm size that appears on an imaging plane does not change even if it moves.
FIG. 2 is an explanatory diagram of a table in which the number of distances between subjects on the horizontal axis T and the number of principal point distances on the vertical axis b are indicated by lines on a subject surface having various dimensions based on FIG. 1;
[Fig. 3]1 is an overall block diagram of the present invention.
[Fig. 4]A video camera (1).
FIG. 5 is an explanatory diagram showing an indicator (5) in FIG. 4, OFF of a selection button (4) to be specified, and dimensions.
[Explanation of symbols]
          1Video camera
    2Focus adjustment ring
    2AFocus adjustment ring (2) sensor
    3Magnification adjustment ring
    3ASensor for magnification adjustment ring (3)
    4On / off switching selection button
    4ASelect button (4) sensor
5Indicator of selection button (4)
5ASelection button (4) ON / OFF switch
    6Manual and auto focus switch
    7Output jack to output 11, 12 information to the outside
    8cable
    9Remote control jack
          10CPU
    11Magnifying switch
    12Reduction switch
        BT ÷ ((1 ÷ (X ÷ Y)) + 1) operation result
bThe distance from the principal point (P) to the imaging plane
bnDistance between each imaging principal point at each distance from each principal point (Pn) to the imaging surface
PPrincipal point
          PnP1, P2, and P3 principal points
TDistance between subjects by distance from subject surface to image plane
          TnDistance between each subject at each distance from each subject surface to the imaging plane
WThe distance between the subject principal points by the distance from the subject surface to the principal point (P)
          WnThe distance between each subject principal point at each distance from each subject surface to each principal point (Pn)
XImaging surface dimensions
        XnImage dimensions with different projected dimensions from the image plane
          YSubject surface dimensions
          YnY1, Y2 and Y3 subject surface dimensions
Zoptical axis
          GA line representing the 35 cm subject surface dimension (Y) maintenance
          HA line representing the 50 cm subject surface dimension (Y) maintenance
          IA line representing the 1m subject surface dimension (Y) maintenance
          JLine representing 2m subject surface dimension (Y) maintenance
          KLine representing 4m subject surface dimension (Y) maintenance
          LA line representing 8m subject surface dimension (Y) maintenance

Claims (2)

同方向での結像面寸法(X)の数値と、任意の可変スイッチにより選択された被写体面寸法(Y)の数値を基準に、被写体間距離(T)の数値変化に合わせ、撮影装置の主点を b=T÷((1÷(X÷Y))+1) の式により求めた数値の結像主点間距離(b)に移動させる演算による被写体面寸法維持方法。Based on the numerical value of the imaging surface dimension (X) in the same direction and the numerical value of the subject surface dimension (Y) selected by an arbitrary variable switch, the imaging device A method of maintaining a subject surface size by an operation of moving a principal point to a distance (b) between imaging principal points obtained by a formula b = T ÷ ((1 ÷ (X ÷ Y)) + 1). 被写体間距離(T)を数値として認識する被写体間距離認識装置と、被写体面寸法(Y)の数値が可変選択可能な可変スイッチよりなる被写体面寸法(Y)可変装置と、前記被写体間距離認識装置から得た被写体間距離(T)数値と前記被写体面寸法(Y)可変装置から得た被写体面寸法(Y)数値と、結像面寸法(X)数値を認識する認識装置と該認識装置の情報を基に b=T÷((1÷(X÷Y))+1) の式により結像主点間距離(b)を求める演算装置と該演算装置からの結像主点間距離(b)に主点位置を移動することのできる主点移動装置を具備した撮影装置。Inter-subject distance recognition device that recognizes the inter-subject distance (T) as a numerical value, a subject surface dimension (Y) variable device that includes a variable switch that can variably select the numerical value of the subject surface dimension (Y), and the inter-subject distance recognition Recognizing device for recognizing the distance between subjects (T) obtained from the apparatus, the subject surface dimension (Y) obtained from the subject surface dimension (Y) variable device, and the imaging surface dimension (X) value, and the recognition device Based on the above information, an arithmetic unit for obtaining the distance (b) between the imaging principal points by the equation b = T ÷ ((1 ÷ (X ÷ Y)) + 1) and the distance between the imaging principal points from the arithmetic unit ( An imaging apparatus provided with a principal point moving device capable of moving the principal point position in b).
JP2002294278A 2002-08-30 2002-08-30 Method for maintaining object surface size by calculation and photographing apparatus Expired - Fee Related JP4346008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002294278A JP4346008B2 (en) 2002-08-30 2002-08-30 Method for maintaining object surface size by calculation and photographing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002294278A JP4346008B2 (en) 2002-08-30 2002-08-30 Method for maintaining object surface size by calculation and photographing apparatus

Publications (2)

Publication Number Publication Date
JP2004096700A JP2004096700A (en) 2004-03-25
JP4346008B2 true JP4346008B2 (en) 2009-10-14

Family

ID=32064087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002294278A Expired - Fee Related JP4346008B2 (en) 2002-08-30 2002-08-30 Method for maintaining object surface size by calculation and photographing apparatus

Country Status (1)

Country Link
JP (1) JP4346008B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006293200A (en) * 2005-04-14 2006-10-26 Nikon Corp Lens barrel of camera

Also Published As

Publication number Publication date
JP2004096700A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
JP4118322B2 (en) Imaging device, portable terminal device, imaging method, and program
JP5371686B2 (en) Imaging apparatus, imaging method, and imaging system
CN104683689A (en) Image pickup apparatus and method for controlling the apparatus
CN102645818A (en) Imaging apparatus, focus control method, and program
JP2004157456A (en) Camera and range-finding method of camera
JP4210189B2 (en) Imaging device
JP4871231B2 (en) Imaging apparatus and imaging method
JP2014107750A (en) Photographing apparatus
JP2006308813A (en) Imaging apparatus with focus bracket function
US20070058962A1 (en) Lens apparatus
US20100315537A1 (en) Zoom lens and imaging apparatus
JP6140945B2 (en) Focus adjustment device and imaging device
JP4346008B2 (en) Method for maintaining object surface size by calculation and photographing apparatus
JP2003348428A (en) Photographing system, photographing method, photographing program, and computer-readable recording medium having the photographing program recorded thereon
JP2005338614A (en) Photographing apparatus and is program
JP2001346090A (en) Electronic camera system and electronic camera
JPS62118328A (en) Automatic power varying camera
US8582016B2 (en) Photographing apparatus and focus detecting method using the same
JP3551932B2 (en) Distance measuring device and imaging device using the same
JP2015111226A (en) Subject tracking device and control method of the same, imaging device, program, and storage medium
JP2009147527A (en) Photography recorder and photography recording method
JP4289712B2 (en) Focus detection device and ranging device
CN114125256B (en) Shooting method for multi-camera module with built-in holder
JP7286294B2 (en) IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD, AND PROGRAM
JP2008111897A (en) Autofocus device and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees