JP4345803B2 - 内燃機関の筒内流入排気ガス量算出装置、および、吸気通路内流入排気ガス量算出装置 - Google Patents
内燃機関の筒内流入排気ガス量算出装置、および、吸気通路内流入排気ガス量算出装置 Download PDFInfo
- Publication number
- JP4345803B2 JP4345803B2 JP2006306668A JP2006306668A JP4345803B2 JP 4345803 B2 JP4345803 B2 JP 4345803B2 JP 2006306668 A JP2006306668 A JP 2006306668A JP 2006306668 A JP2006306668 A JP 2006306668A JP 4345803 B2 JP4345803 B2 JP 4345803B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- cylinder
- egr
- passage
- intake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Exhaust-Gas Circulating Devices (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Description
このように気筒内に排気ガスを再循環させる内燃機関では、例えば、空燃比が目標空燃比となるように燃料噴射量を決定するために、気筒内に充填されているガス量に対して排気ガスが占める割合(いわゆる、EGR率)を算出している。
具体的には、排気ガス流量制御弁を通過する排気ガスの量を通過ガス量と称すると、排気ガス流量制御弁の目標の開度に関連して求まる通過ガス量に対する排気ガス流量制御弁の実際の開度に関連して求まる通過ガス量の比を、定常運転時におけるEGR率に乗じることによって、過渡運転時におけるEGR率を求めるようにしている。
また、特許文献1では、排気ガス流量制御弁の開度を変更する命令が発せられてから、実際に、排気ガス流量制御弁の開度が目標の開度になるまでには、幾分かの遅れがあることに注目し、過渡運転時におけるEGR率として、この遅れ分だけ前に算出された過渡運転時におけるEGR率を利用するようにしている。
さらに、排気ガス流量制御弁の応答性にバラツキがある場合もあり、この場合には、排気ガス流量制御弁を通過するガス量自体の算出精度が低くなってしまう。
本発明の目的は、内燃機関の気筒内に流入する排気ガスの量を正確に算出することにある。
上記課題を解決するために、2番目の発明では、吸気通路と排気通路とを排気ガス再循環通路を介して接続すると共に前記排気ガス再循環通路内を流れる排気ガスの流量を制御する排気ガス流量制御弁を排気ガス再循環通路内に配置した内燃機関において、前記排気ガス流量制御弁を通過する排気ガスの量である通過排気ガス量を、該通過排気ガス量を変化させるパラメータを利用して算出し、該算出された通過排気ガス量を利用して、内燃機関の気筒内に流入する排気ガスの量である筒内流入排気ガス量を算出する筒内流入排気ガス量算出装置において、前記パラメータの値を読み込み、該読込値に、前記排気ガス流量制御弁を通過した排気ガスが気筒に到達するのにかかる時間に相当する無駄時間と、前記通過排気ガス量の変化に対する筒内流入排気ガス量の変化の追従遅れとを反映させ、該無駄時間と追従遅れが反映された読込値を利用して通過排気ガス量を算出する筒内流入排気ガス量算出装置において、吸気枝管内に配置されると共に機関運転状態に応じて制御されて吸気通路の流路断面積を変更することによって吸気通路へ開口する排気ガス再循環通路の開口近傍のガスの流速を変更せしめる手段を更に具備し、前記ガスの流速に応じて上記追従遅れの設定値および無駄時間の設定値が変更される。
3番目の発明では、1または2番目の発明において、内燃機関が複数個の気筒を備えており、上記算出された筒内流入排気ガス量に対する各気筒における実際の筒内流入排気ガス量の比を分配係数として予め求めておき、上記算出された筒内流入排気ガス量に該分配係数を乗ずることによって各気筒における筒内流入排気ガス量を算出する。
4番目の発明では、1〜3番目の発明のいずれか1つにおいて、内燃機関が複数個の気筒を備えており、上記追従遅れと無駄時間とが各気筒毎に設定されている。
5番目の発明では、1〜4番目の発明のいずれか1つにおいて、上記追従遅れが一次遅れであり、該一次遅れの時定数と上記無駄時間とが機関回転数に応じて変更され、該無駄時間は機関回転数が高くなるほど小さくせしめられる。
6番目の発明では、上記通過排気ガス量を吸気通路内の圧力と該吸気通路内の圧力以外のパラメータとの関数でもって表された関数式を予め求めて記憶しておき、該関数式を利用して吸気通路内の圧力から通過排気ガス量を算出する1番目の発明において、前記ガスの流速に応じて上記吸気通路内の圧力以外のパラメータを変更する。
上記課題を解決するために、8番目の発明では、吸気通路と排気通路とを排気ガス再循環通路を介して接続すると共に上記排気ガス再循環通路内を流れる排気ガスの流量を制御する排気ガス流量制御弁を排気ガス再循環通路内に配置した内燃機関において、前記排気ガス流量制御弁を通過する排気ガスの量である通過排気ガス量を、該通過排気ガス量を変化させるパラメータを利用して算出し、該算出された通過排気ガス量を利用して、吸気通路内に流入する排気ガスの量である吸気通路内流入排気ガス量を算出する吸気通路内流入排気ガス量算出装置において、前記パラメータの値を読み込み、該読込値に、前記排気ガス流量制御弁を通過した排気ガスが吸気通路に到達するのにかかる時間に相当する無駄時間と、前記通過排気ガス量の変化に対する吸気通路内流入排気ガス量の変化の追従遅れとを反映させ、該無駄時間と追従遅れが反映された読込値を利用して通過排気ガス量を算出する吸気通路内流入排気ガス量算出装置において、吸気枝管内に配置されると共に機関運転状態に応じて制御されて吸気通路の流路断面積を変更することによって吸気通路へ開口する排気ガス再循環通路の開口近傍のガスの流速を変更せしめる手段を更に具備し、前記ガスの流速に応じて上記追従遅れの設定値および無駄時間の設定値が変更される。
9番目の発明では、7または8番目の発明において、内燃機関が複数個の気筒を備えており、上記排気ガス再循環通路が各気筒にそれぞれ接続された吸気通路に接続されており、上記算出された吸気通路内流入排気ガス量に対する各気筒に接続された吸気通路への実際の吸気通路内流入排気ガス量の比を分配係数として予め求めておき、上記算出された吸気通路内流入排気ガス量に該分配係数を乗ずることによって各気筒に接続された吸気通路内への吸気通路内流入排気ガス量を算出する。
10番目の発明では、7〜9番目の発明のいずれか1つにおいて、内燃機関が複数個の気筒を備えており、上記追従遅れと無駄時間とが各気筒毎に設定されている。
11番目の発明では、7〜10番目の発明のいずれか1つにおいて、上記追従遅れが一次遅れであり、該一次遅れの時定数と上記無駄時間とが機関回転数に応じて変更され、該無駄時間は機関回転数が高くなるほど小さくせしめられる。
12番目の発明では、上記通過排気ガス量を吸気通路内の圧力と該吸気通路内の圧力以外のパラメータとの関数でもって表された関数式を予め求めて記憶しておき、該関数式を利用して吸気通路内の圧力から通過排気ガス量を算出する7番目の発明において、前記ガスの流速に応じて上記吸気通路内の圧力以外のパラメータを変更する。
また、排気ガス流量制御弁から吸気弁までの通路容積が変わったり、吸気通路の流路断面積が変更せしめられることによって吸気通路へ開口する排気ガス再循環通路の開口近傍のガス流速が変わったりすると、無駄時間および追従遅れも変わるが、1および2番目の発明によれば、こうした要素が考慮されることから、筒内流入排気ガス量の算出精度が高い。
3番目の発明によれば、気筒毎の筒内流入排気ガス量にバラツキがある場合においても、各気筒に関して筒内流入排気ガス量の算出精度が高い。
4番目の発明によれば、気筒毎の無駄時間および追従遅れにバラツキがある場合においても、各気筒に関して筒内流入排気ガス量の算出精度が高い。
5番目の発明によれば、無駄時間と時定数とは機関回転数に依存するので、筒内流入排気ガス量の算出精度がより高い。
6番目の発明によれば、通過排気ガス流量を吸気通路内の圧力と該吸気通路内の圧力以外のパラメータとの関数でもって表された関係式を利用して通過排気ガス量を算出する場合において、排気ガス流量制御弁から吸気弁までの通路容積、または、吸気通路へ開口する排気ガス再循環通路の開口近傍のガス流速に応じて、吸気通路内の圧力以外のパラメータを変更するので、上記関係式から算出される通過排気ガス量の算出精度が高い。
また、排気ガス流量制御弁から吸気弁までの通路容積が変わったり、吸気通路の流路断面積が変更せしめられることによって吸気通路へ開口する排気ガス再循環通路の開口近傍のガス流速が変わったりすると、無駄時間および追従遅れも変わるが、7および8番目の発明によれば、こうした要素が考慮されることから、吸気通路内流入排気ガス量の算出精度が高い。
9番目の発明によれば、気筒毎の吸気通路内流入排気ガス量にバラツキがある場合においても、各気筒に関して吸気通路内流入排気ガス量の算出精度が高い。
10番目の発明によれば、気筒毎の無駄時間および追従遅れにバラツキがある場合においても、各気筒に関して吸気通路内流入排気ガス量の算出精度が高い。
11番目の発明によれば、無駄時間と時定数とは機関回転数に依存するので、吸気通路内流入排気ガス量の算出精度がより高い。
12番目の発明によれば、通過排気ガス流量を吸気通路内の圧力と該吸気通路内の圧力以外のパラメータとの関数でもって表された関係式を利用して通過排気ガス量を算出する場合において、排気ガス流量制御弁から吸気弁までの通路容積、または、吸気通路へ開口する排気ガス再循環通路の開口近傍のガス流速に応じて、吸気通路内の圧力以外のパラメータを変更するので、上記関係式から算出される通過排気ガス量の算出精度が高い。
図1は本発明が適用される内燃機関の全体図である。以下で説明では、筒内噴射型火花点火式内燃機関を例にとって説明するが、本発明は別の火花点火式内燃機関や圧縮自着火式内燃機関に適用可能である。
図1において、1は機関本体、2はシリンダブロック、3はピストン、4はシリンダヘッド、5は気筒(燃焼室)、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポート、10は点火プラグ、11は燃料噴射弁、12はキャビティをそれぞれ示している。
一方、排気ポート9は排気管19に連結される。排気管19は排気浄化装置20に連結される。
吸気枝管13には、当該吸気枝管13内の圧力(以下、吸気管圧力と称す)を検出するための吸気管圧力センサ40が取り付けられる。吸気管圧力センサ40は、吸気管圧力に比例した出力電圧を発生し、この出力電圧は対応するAD変換器38を介して入力ポート36に入力される。
また、内燃機関はクランク角センサ48を具備する。クランク角センサ48は、例えば、クランクシャフトが30度回転する毎に出力パルスを発生し、この出力パルスが入力ポート36に入力される。CPU35は、クランク角センサ45の出力パルスから機関回転数を算出する。
ここで、筒内充填空気量を推定する方法としては、スロットル弁18を通過する空気の質量流量を検出するエアフローメータやその他のセンサを内燃機関に取り付けると共に、これらセンサの出力値を変数とする筒内充填空気量算出用のマップを予め用意しておき、センサの出力値とマップとから筒内充填空気量を推定する方法がある。
さらに、マップを利用して筒内充填空気量を推定する場合、内燃機関の機種ごと、あるいは、同機種の内燃機関であっても個々の内燃機関ごとに、マップを作成しなければならないので、マップの作成労力が大きくなる。
一方、筒内充填空気量をより正確に推定しようとして、マップの引数を多くすると、マップの作成労力が大幅に大きくなってしまう。
この本願出願人によって既に出願されている方法は、気筒内に排気ガスが再循環されない内燃機関に適用される方法であるので、本実施形態のEGR装置付きの内燃機関にそのまま適用することはできないが、本実施形態に適用可能な後述する方法を理解する上で参考になると思われるので、まず、この本願出願人によって既に出願されている方法について説明する。
図2に示した筒内流入ガス量モデルM20は、スロットルモデルM21と、吸気管モデルM22と、吸気弁モデルM23とからなる。
そして、この方法では、後述するように、筒内流入ガス流量mcを利用して気筒5内に流入したガスの量(以下、筒内充填ガス量と称す)Mcが算出される。
スロットルモデルM21では、大気圧Paと大気温度Taと吸気管圧力Pmとスロットル開度θtとを次式(1)に入力し、この式を解くことによって、スロットル弁通過空気流量mtが算出される。
別の云い方をすれば、式(7)において、aは比例係数であり、bは排気弁8の閉弁時に気筒5内に残存していたガスの量を表す値である。
すなわち、筒内充填ガス量Mcは、吸気弁6の閉弁時に確定し且つ吸気弁6の閉弁時の気筒5内の圧力に比例する。ここで、吸気弁6の閉弁時の気筒5内の圧力は、吸気弁6上流の空気の圧力(すなわち、吸気管圧力)Pmに等しいとみなせるので、筒内充填ガス量Mcは吸気管圧力Pmに比例すると近似できる。
このように、筒内充填ガス量Mcが吸気管圧力Pmに比例し、且つ、筒内充填ガス量Mcと筒内流入ガス流量mcとの間に、筒内流入ガス流量mcの時間積分値が筒内充填ガス量Mcであるという関係があることから、筒内流入ガス流量mcも吸気管圧力Pmに比例するとみなせる。
なお、式(7)によって算出される筒内流入ガス流量mcは、単位時間当たりに吸気管部分から流出する空気の流量の平均値であるので、筒内流入ガス流量mcに、内燃機関の1サイクルにかかる時間を気筒数で割った時間をかけることによって、各気筒5における筒内充填ガス量Mcが算出される。
図9では、横軸がクランク角度であり、縦軸が単位時間当たりに吸気管部分から気筒5に流入する空気の量である。また、図9に示した例では、吸気行程が第1気筒♯1、第3気筒♯3、第4気筒♯4、第2気筒♯2の順で行われる。このように吸気行程が行われると、吸気管部分から各気筒5に流入する空気の流量は、図9において破線で示したように変化し、その結果、吸気管部分から流出する空気の流量は、図9において実線で示したように変化することになる。
筒内充填ガス量Mcは、筒内流入ガス量モデルM20の各モデルの式(1)〜(4)および(7)から求められるが、これら5つの式は、内燃機関に実装されるときには、ECU31で処理可能なように離散化される。すなわち、時刻をtとし、計算間隔(計算周期)をΔtとすると、これら5つの式は、次式(8)〜(12)に離散化される。
さらに、吸気管モデルM22において算出された吸気管圧力Pm(t+Δt)および吸気管温度Tm(t+Δt)を吸気弁モデルM23の式(12)に入力し、この式を解くことによって、時刻(t+Δt)における筒内流入ガス流量mc(t+Δt)が算出される。
また、上述した筒内流入ガス量モデルM20において使用される大気圧Paおよび大気温度Taとして、当該モデルM20の計算が開始されたときの大気圧および大気温度を常に用いてもよいし、時刻tにおける大気圧Pa(t)および大気温度Ta(t)を用いてもよい。
気筒内に流入するガス中の空気(新気)の流量を筒内流入新気流量mc-airと称すると、筒内流入新気流量mc-airは、次式(13)から求まる。
このため、式(13)は、次式(14)に書き直せる。
そこで、第1実施形態では、筒内流入ガス流量mcを算出するための筒内流入ガス量モデルとして、図10に示したモデルM10を用いる。
図10に示した筒内流入ガス量モデルM10は、スロットルモデルM11と、吸気管モデルM12と、吸気弁モデルM13と、EGR制御弁モデルM14とからなる。
図10から分かるように、筒内流入ガス量モデルM10では、各モデルにおいて算出されるパラメータ値が別のモデルに入力されるパラメータ値として利用されるので、筒内流入ガス量モデルM10に実際に入力されるパラメータ値は、スロットル開度θt、EGR開度θe、大気圧Pa、および、大気温度Taの4つのパラメータのみである。すなわち、本実施形態によれば、これら4つのパラメータから筒内充填ガス量Mcが算出されると言える。
吸気管モデルM12では、スロットル弁通過空気流量mtと筒内流入ガス流量mcと大気温度TaとEGR制御弁通過ガス流量megrと排気温度Teとを次式(15)および(16)に入力し、これら式を解くことによって、吸気管圧力Pmおよび吸気管温度Tmが算出される。
また、Φ(Pm/Pe)は、次式(18)に示したように、Pm/Peを変数とする関数である。
すなわち、これら式(17)および(18)を導出する上での基本的な考え方は、スロットル弁通過空気流量を算出するための式(1)および(2)を導出する上での考え方と同様である。
筒内充填新気量Mc-airは、筒内流入ガス量モデルM10の各モデルの式(1)(2)(7)および(15)〜(18)から求められるが、これら7つの式は、内燃機関に実装されるときには、ECU31で処理可能なように離散化される。すなわち、時刻をtとし、計算間隔(計算周期)をΔtとすると、式(1)(2)および(7)は、それぞれ、上記式(8)(9)および(12)に離散化される。
また、式(15)〜(18)は、それぞれ、次式(19)〜(22)に離散化される。
さらに、吸気管モデルM12において算出された時刻(t+Δt)における吸気管圧力Pm(t+Δt)および吸気管温度Tm(t+Δt)を吸気弁モデルM13の式(12)に入力し、この式を解くことによって、時刻(t+Δt)における筒内流入ガス流量mc(t+Δt)が算出される。
また、時刻(t+Δt)における機関負荷率KL(t+Δt)と、同じく時刻(t+Δt)における機関回転数NEとを式(23)に入力し、この式を解くことによって、時刻(t+Δt)における排気圧Pe(t+Δt)が算出される。
こうして算出されたmc(t+Δt)、megr(t+Δt)、mt(t+Δt)は、再び、吸気管モデルM12の式(19)および(20)に入力される。
こうした計算を繰り返すことによって、任意に時刻における筒内流入新気流量mc-airが算出される。そして、こうして算出された筒内流入新気流量mc-airに、上述したように、1サイクルにかかる時間を気筒数で割った時間をかけることによって、任意の時刻における各気筒の筒内充填新気量Mc-airが算出される。
また、上述した筒内流入ガス量モデルM10において使用される大気圧Paおよび大気温度Taとして、当該モデルM10の計算が開始されたときの大気圧および大気温度を常に用いてもよいし、時刻tにおける大気圧Pa(t)および大気温度Ta(t)を用いてもよい。
さらに、本実施形態に従って算出されるEGR制御弁通過ガス流量を利用して、EGR制御弁通過ガス量が目標値になるように、EGR開度をフィードバック制御するようにしてもよい。
機関負荷率(%)とは、気筒の最大容積を標準状態において占めるガスの量(g)に対して実際に気筒に充填された空気の量(g)の比であり、次式(25)から求まる。
これによれば、排気圧を検出するためのセンサを内燃機関に設ける必要がないので、内燃機関のコストを抑えつつ、排気圧を精度良く検出することができ、引いては、EGR制御弁通過ガス流量megrを精度良く算出することができる。
もちろん、内燃機関のコストアップを問題としないのであれば、センサを用いて排気圧を検出するようにしてもよい。
EGR通路21に新たに流入する排気ガスによってもたらされる熱量を入力熱量と称し、EGR通路21から大気に放出される熱量を放熱量と称すると、EGR制御弁通過ガス流量megrが多くなると、すなわち、EGR通路21に流入する排気ガスの量が多くなると、放熱量よりも入力熱量のほうが多くなる。したがって、EGR制御弁通路ガス流量megrが多くなると、排気温度は高くなる。
また、機関回転数が高くなると、気筒から排出される排気ガスの温度自体が高くなる。
すなわち、EGR制御弁通過ガス流量megrと機関回転数NEと排気温度Teとの関係は、図14に示したようになる。
したがって、排気温度Teは、式(24)のように、EGR制御弁通過ガス流量megrと機関回転数NEとを変数とした関数f2(megr、NE)で表せる。第1実施形態では、この関数f2(megr、NE)をEGR制御弁通過ガス流量megrと機関回転数NEとを変数としてマップの形で予めROM34に記憶しておき、EGR制御弁通過ガス流量megrと機関回転数NEとこのマップとから排気温度Teを算出する。
もちろん、内燃機関のコストアップを問題にしないのであれば、センサを用いて排気温度を検出するようにしてもよい。
しかしながら、EGR制御弁モデルM14においてEGR制御弁通過ガス流量megrを算出する場合、排気温度Teとして、気筒から排出される排気ガスの温度を用いるよりも、EGR制御弁22上流の排気ガスの温度を用いたほうが、EGR制御弁通過ガス流量megrを精度良く算出することができる。
本実施形態によれば、EGR制御弁通過ガス流量megrを算出するのに用いられる排気温度Teとして、EGR制御弁22上流の排気ガスの温度を用いることになるので、EGR制御弁通過ガス流量megrを精度良く算出することができる。
したがって、過渡運転時において、上述した実施形態において算出される各パラメータ値の精度を高く維持するためには、流入排気ガス分流量や筒内流入排気ガス流量がEGR制御弁通過ガス流量の変化に遅れて変化することを考慮する必要がある。
そして、本実施形態では、時定数τ1を図16(B)に示したようなマップの形で予めROM34に記憶しておき、EGR制御弁通過ガス流量が変化したときには、機関回転数NEに基づいて時定数τ1を算出し、無駄時間Td1が経過してからこの時定数τ1でもってEGR制御弁通過ガス流量に向かって流入排気ガス分流量が変化するものとして、流入排気ガス分流量を算出する。
m’egr-k(k)=m’egr-k(k−1)+Δt/τ1・(megr(k)−m’egr-k(k−1) (26)
Idx1=Td1/Δt (27)
megr-k(k)=m’egr-k(k−Idx1) (28)
すなわち、筒内流入排気ガス流量に関する無駄時間Td2を図17(A)に示したようなマップの形で予めROM34に記憶しておき、EGR制御弁通過ガス流量が変化したときには、機関回転数NEに基づいて無駄時間Td2を算出し、この無駄時間Td2が経過してから筒内流入排気ガス流量がEGR制御弁通過ガス流量に向かって変化を開始するものとして、筒内流入排気ガス流量を算出する。
m’egr-egr(k)=m’egr-egr(k−1)+Δt/τ1・(megr(k)−m’egr-egr(k−1) (29)
Idx2=Td2/Δt (30)
megr-egr(k)=m’egr-egr(k−Idx2) (31)
図18に示したルーチンでは、始めに、ステップ10において、上述の式(17)に従ってEGR制御弁通過ガス流量megr(k)が算出される。続くステップ11において、機関回転数NEに基づいて図17(B)に示したようなマップから時定数τ2が読み込まれる。
続くステップ13では、機関回転数NEに基づいて図17(A)に示したようなマップから無駄時間Td2が読み込まれる。そして、続くステップ14において、式(30)に従って無駄ルーチン回数Idx2が算出される。
なお、上述した実施形態では、機関回転数NEを変数として無駄時間Td(Td1,Td2)および時定数τ(τ1,τ2)を算出するようにしているが、詳細には、無駄時間Tdや時定数τは、クランクシャフトが360°回転するのにかかる時間にほぼ比例するので、例えば、図19に示したように、クランクシャフトが360°回転するのにかかる時間T360°を変数として、無駄時間Tdや時定数τのマップを作成するほうが好ましい。
したがって、EGR開度θeが変化したときに、このEGR開度θe自体を無駄時間処理し且つ遅れ処理(なまし処理)し、このように処理された後のEGR開度θeを上述した式(17)に入力することによって、EGR開度θeの変化に伴うEGR制御弁通過ガス流量megrの変化に対し、無駄時間と追従遅れとを反映させた形の流入排気ガス分流量megr-k、あるいは、筒内流入排気ガス流量megr-egrが得られる。
θe’(k)={(N1−1)・θe(k−1)+θe2} (32)
Idx1=Td1/Δt (33)
θe(k)=θe’(k−Idx1) (34)
そして、このθe(k)を式(17)に入力して算出される値は、k番目の計算ルーチンが行われた時の真の流入排気ガス分流量megr-k(k)を表している。
すなわち、EGR開度θeが変化したときに、機関回転数NEに基づいて図21(A)に示したようなマップから無駄時間Td2を算出し、この無駄時間Td2が経過してからEGR開度θeを変化させ始め、そして、同じく機関回転数NEに基づいて図21(B)に示したようなマップからなまし数N2を算出し、このなまし数N2でもってEGR開度θeの変化をなまし処理し、このようになまし処理されたEGR開度θeに基づいて式(17)から筒内流入排気ガス流量megr-egrを算出するようにしてもよい。
θe’(k)={(N2−1)・θe(k−1)+θe2} (35)
Idx2=Td2/Δt (36)
θe(k)=θe’(k−Idx2) (37)
そして、このθe(k)を式(17)に入力して算出される値は、k番目の計算ルーチンが行われた時の真の筒内流入排気ガス流量megr-egr(k)を表している。
なお、上述したなまし数の代わりに、上述した時定数τ1,τ2を利用してもよい。
図22に示したルーチンでは、始めに、ステップ20において、k番目の計算ルーチンにおけるEGR開度θe(k)が読み込まれる。続くステップ21において、機関回転数NEに基づいて図21(B)に示したようなマップからなまし数N2が読み込まれる。
続くステップ23では、機関回転数NEに基づいて図21(A)に示したようなマップから無駄時間Td2が読み込まれる。そして、続くステップ24において、式(36)に従って無駄ルーチン回数Idx2が算出される。
続くステップ25において、ステップ22にて算出された追従遅れを反映させたEGR開度θ’e(k)が式(37)に従って無駄時間処理される。そして、続くステップ26において、ステップ25にて算出されたθe(k)が上述の式(17)に入力され、筒内流入排気ガス流量megr-egr(k)が算出される。
ところが、EGR制御弁22から各気筒までの流路の形状やその他、様々な要因によって、実際の筒内流入排気ガス流量megr-egrが気筒毎に異なる場合がある。したがって、空燃比がより正確に目標空燃比となるように燃料噴射量を決定するためには、筒内流入排気ガス流量megr-egrが気筒毎に異なることを考慮すべきである。
この方法を採用すれば、空燃比がより正確に目標空燃比となる。
すなわち、EGR率(筒内充填排気ガス量/筒内充填ガス量)が最も大きい運転状態において、EGR開度を一定とし且つスロットル開度を一定とした上で、各気筒において同じ量の燃料を噴射し、この時に各気筒から排出される排気ガスの空燃比を検出し、この排気ガスの空燃比の検出値に基づいて、各気筒における空燃比を推定する。
一方、空燃比がリッチであると推定された気筒に関しても、同様に考えれば、分配係数が算出可能であり、この場合、分配係数は1.0よりも大きくなる。
図23に示したルーチンでは、始めに、ステップ30において、上述の式(17)に従ってEGR制御弁通過ガス流量megr(k)が算出される。続くステップ31において、機関回転数NEに基づいて図17(B)に示したようなマップから時定数τ2が読み込まれる。
続くステップ33では、機関回転数NEに基づいて図17(A)に示したようなマップから無駄時間Td2が読み込まれる。そして、続くステップ34において、式(30)に従って無駄ルーチン回数Idx2が算出される。
そして、最後に、ステップ36において、次式(38)に従って、ステップ35にて算出された筒内流入排気ガス流量megr-egr(k)に、各気筒に関する分配係数K1〜K4が乗算され、各気筒に関する筒内流入排気ガス流量megr-egr(k)(1)〜(4)が算出される。
megr-egr(k)(1)=megr-egr(k)・K1
megr-egr(k)(2)=megr-egr(k)・K2
megr-egr(k)(3)=megr-egr(k)・K3
megr-egr(k)(4)=megr-egr(k)・K4 (38)
これによれば、より正確に、各気筒に関して、筒内流入排気ガス流量megr-egrが算出される。
図24に示したルーチンでは、始めに、ステップ40において、式(17)からEGR制御弁通過ガス流量megrが算出される。続くステップ41では、機関回転数NEに基づいて図17(B)に示したマップから時定数τ2が読み込まれる。続くステップ42では、機関回転数NEに基づいて図17(A)に示したマップから無駄時間Td2が読み込まれる。続くステップ43では、気筒の番号を示すパラメータcylに1が入力される。この場合、cyl=1となり、パラメータcylは第1気筒を示すこととなる。
τ2(cyl)=K(cyl)・τ2 (39)
ここで、K(cyl)は各気筒に関する分配係数であり、例えば、パラメータcylが1であるときには第1気筒に関する分配係数K(1)であり、パラメータcylが2であるときには第2気筒に関する分配係数K(2)である。
m’egr-egr(cyl)(k)=m’egr-egr(cyl)(k−1)+Δt/τ2(cyl)・(megr(cyl)(k)−m’egr-egr(cyl)(k−1)) (40)
ここで、ΔtはEGR制御弁通過ガス流量の計算周期である。
Idx2=K(cyl)・Td2/Δt (41)
続くステップ49では、k番目の計算ルーチンにおける対応する気筒に関する筒内流入排気ガス流量megr-egr(cyl)(k)が次式(42)から無駄時間処理された形で算出される。
megr-egr(cyl)(k)=m’egr-egr(cyl)(k−Idx2) (42)
なお、ステップ51では、パラメータcylに零が入力され、すなわち、パラメータcylがクリアされる。
なお、このルーチンは、Td2をTd1に変え、τ2をτ1に変えれば、各吸気枝管13に流入する流入排気ガス分流量megr-kを算出するためのルーチンとしても利用可能である。
吸気弁が吸気下死点以降で閉弁する場合、いったん気筒内に流入したガスの一部が気筒内のピストンによってその気筒から吸気通路へと排出される。そして、このように気筒から吸気通路へと排出されるガス(以下、吹戻しガスとも称す)の量は、吸気弁が吸気下死点以降のいずれのタイミングで閉弁するかによって異なり、吸気弁が吸気下死点以降のより遅いタイミングで閉弁するほど多くなる。
ここで、このように気筒から吸気通路へとガスが排出される場合における吸気通路内での排気ガスの拡散について考えると、吹戻しガスの量が多いほど、吸気通路内での排気ガスの拡散が抑制される傾向にある。すなわち、吹戻しガスの量が多いほど、EGR制御弁22を通過して吸気通路内に流入した排気ガスの拡散が抑制される傾向にある。
すなわち、このことは、吹戻しガスの量が多いほど、すなわち、吸気弁の閉弁タイミングが遅いほど、上述の時定数τ2が大きくなることを意味する。
すなわち、このことは、吹戻しガスの量に関わらず、すなわち、吸気弁の閉弁タイミングの如何に関わらず、上述の無駄時間Td2はさほど変化しないことを意味する。
一方、図25(B)に示されているように、ここでは、吸気弁閉弁クランク角度CAが吸気下死点BDC以降において遅い角度となるほど、時定数τ2は大きくなっている。
例えば、この場合、吸気弁の閉弁タイミングが吸気下死点であるときにおける無駄時間Td2および時定数τ2を機関回転数NEを変数として、図17(A)および(B)に示されているようなマップの形で予め求めてROM34に記憶しておく。
例えば、この場合、吸気弁閉弁タイミングが吸気下死点であるときにおける無駄時間Td1および時定数τ1を機関回転数NEを変数として、図16(A)および(B)に示されているようなマップの形で予め求めてROM34に記憶しておく。
ここで、このように吹戻しガス量がほとんど零であると、吸気弁の閉弁タイミングが吸気下死点以前において変化しても、この吸気弁の閉弁タイミングの変化は、吸気通路内での排気ガスの拡散には何ら影響しない。
すなわち、このことは、吸気弁の閉弁タイミングに関わらず、上述の時定数τ2は一定であることを意味する。
図27(A)に示されているように、吸気弁閉弁クランク角度CAが吸気下死点BDC以前において早い角度となるほど、無駄時間Td2は大きくなっている。
なお、上述したように、無駄時間Td2や時定数τ2は機関回転数NEにも依存しているので、無駄時間Td2および時定数τ2を機関回転数NEと吸気弁閉弁タイミングとの関数として決定するようにしてもよい。
例えば、この場合、吸気弁の閉弁タイミングが吸気下死点であるときにおける無駄時間Td2および時定数τ2を機関回転数NEを変数として、図17(A)および(B)に示されているようなマップの形で予め求めてROM34に記憶しておく。
例えば、この場合、吸気弁閉弁タイミングが吸気下死点であるときにおける無駄時間Td1および時定数τ1を機関回転数NEを変数として、図16(A)および(B)に示されているようなマップの形で予め求めてROM34に記憶しておく。
このように吸気下死点を跨いで吸気弁閉弁タイミングを変更可能な場合、吸気弁閉弁タイミングが吸気下死点以前で変更されるのか、あるいは、吸気下死点以降で変更されるのかによって、上述の無駄時間Td2および時定数τ2が異なってくる。
一方、図29(B)に示されているように、ここでは、吸気下死点BDC以前の領域では、吸気弁閉弁クランク角度CAに関わらず、時定数τ2は一定となっており、吸気下死点BDC以降の領域では、吸気弁閉弁クランク角度CAが遅くなるほど、時定数τ2は大きくなっている。
なお、上述したように、無駄時間Td2や時定数τ2は機関回転数NEにも依存しているので、無駄時間Td2および時定数τ2を機関回転数NEと吸気弁閉弁タイミングとの関数として決定するようにしてもよい。
なお、吸気弁閉弁タイミングが吸気下死点を跨いで変更可能となっている内燃機関では、図29(A)および(B)に示されている関係と同様な関係でもって、上述の無駄時間Td1および時定数τ1を決定するようにしてもよい。この場合、無駄時間Td1および時定数τ1は無駄時間Td2および時定数τ2よりも小さい値となる。
例えば、この場合、吸気弁閉弁タイミングが吸気下死点であるときにおける無駄時間Td1および時定数τ1を機関回転数NEを変数として、図16(A)および(B)に示されているようなマップの形で予め求めてROM34に記憶しておく。
EGRガスが供給されていないときには筒内に新気のみが充填されるので、このときの筒内充填新気量Mc-air、したがって、機関負荷率KLを吸気管圧力Pmの一次関数式で表すことができる。すなわち、機関負荷率KLを簡単に且つ正確に求めることができる。
筒内充填EGRガス量Mc-egrを吸気管圧力Pmの一次関数式で表すことができるならば、筒内充填ガス量Mcを吸気管圧力Pmの一次関数式で表すことができ、筒内充填ガス量Mcが筒内充填新気量Mc-airと筒内充填EGRガス量Mc-egrとの和であることを考えれば、EGRガスが供給されているときの筒内充填新気量Mc-air、または、機関負荷率KLを吸気管圧力Pmの一次関数式で表すことができる。
まず、上述したように、EGR制御弁通過ガス流量megr(g/sec)は式(17)により表され、関数Φ(Pm/Pe)は、式(18)により表される。
すなわち、まず、図32に示されるように、排気温度Teは吸気管圧力Pmの増大に対し、排気圧Peが増大するよりも大幅に増大し、その結果、Pe/√Teを吸気管圧力Pmの一次関数式で表すことができるのである。
そうすると、定常運転時の筒内充填EGRガス量Mc-egrを吸気管圧力Pmの一次関数式で表すことができるということになる。
KLon=e1・(Pm−d)+r …Pm≦d
KLon=e2・(Pm−d)+r …Pm>d
これらをひとまとめにして表すと次式(43)のようになる。
KLon=e・(Pm−d)+r (43)
e=e1 …Pm≦d
e=e2 …Pm>d
この式(43)の各パラメータe,d,rは次式に基づいて算出される。
e1=e1*・ktha
e2=e2*・ktha
d=d*・ktha・kpa
r=r*・ktha・kpa
ここで、e1*,e2*,d*,r*はそれぞれ、機関周囲環境状態が予め定められた基準環境状態であるときの、勾配ならびに接続点における吸気管圧力および機関負荷率である。基準環境状態にはどのような状態を用いてもよいが、本実施形態では基準環境状態として標準状態(1気圧、25℃)が用いられている。
KLoff=a1・(Pm−d)+c …Pm≦d
KLoff=a2・(Pm−d)+c …Pm>d
これらをひとまとめにして表すと次式(44)のようになる。
KLoff=a・(Pm−d)+c (44)
a=a1 …Pm≦d
a=a2 …Pm>d
この式(44)の各パラメータa,rは次式に基づいて算出される。
a1=a1*・ktha
a2=a2*・ktha
c=c*・ktha・kpa
ここで、a1*,a2*,c*はそれぞれ、機関周囲環境状態が上述した基準環境状態すなわち標準状態であるときの、勾配および接続点における機関負荷率である。
そうすると、吸気管圧力Pmを例えば圧力センサ39により検出すれば、この検出された吸気管圧力Pmから上述の式(43)または(44)を用いて機関負荷率KLonまたはKLoffを正確に且つ簡単に求めることができ、斯くして空燃比を目標空燃比に正確に且つ簡単に一致させることができることになる。
したがって、EGRガスが供給されていないときの機関負荷率KLoffから、EGRガスが供給されているときの機関負荷率KLonを差し引いた結果ΔKL(=KLoff−KLon)は、定常運転時における筒内充填EGRガス量Mc-egrを表しているということになる。
Mc-egr=kegr1・ΔKL (45)
ここで、kegr1は機関負荷率KLから筒内充填EGRガス量Mc-egrへの変換係数を、KLoff,KLonは、それぞれ、上記式(43),(44)からそれぞれ算出される機関負荷率を表している。
したがって、上述した差ΔKLは定常運転時におけるEGR制御弁通過ガス流量megrも表しているということになる。
megr=kegr2・ΔKL (46)
ここで、kegr2は機関負荷率KLからEGR制御弁通過ガス流量megrへの変換係数を表し、KLoff,KLonは、ぞれぞれ、上記式(43),(44)からそれぞれ算出される機関負荷率を表している。
すなわち、EGR制御弁通過ガス流量megrはEGR制御弁22前後の圧力差、すなわち、排気圧Peと吸気管圧力Pmとの差に大きく依存し、過渡運転時におけるEGR制御弁22上流の排気圧Peおよび排気温度Teが定常運転時における排気圧Peおよび排気温度Teとそれほど変わらないと考えれば、定常運転時であろうと過渡運転時であろうと、吸気管圧力Pmが決まればEGR制御弁通過ガス流量megrが決まるのである。
上述した差ΔKLはKLoffおよびKLonをそれぞれ表す式(44),(43)を用いて次式(47)のように表すことができる。
ΔKL=KLoff−KLon
=(a−e)・(Pm−d)+(c−r) (47)
ここで、(a−e)=h,(c−r)=iと置き換えると、式(47)は次のようになる。
ΔKL=h・(Pm−d)+i (48)
h=h1 …Pm≦d
h=h2 …Pm>d
この式(48)の各パラメータh,d,iは次式に基づいて算出される。
h1=h1*・ktha
h2=h2*・ktha
i=i*・ktha・kpa
ここで、h1*,h2*,i*はそれぞれ、機関周囲環境状態が基準環境状態であるときの、勾配および接続点CPにおける差である。これらh1*,h2*,i*は予め実験により求められており、それぞれ機関回転数NEおよびEGR開度θeの関数として図45(A),(B),(C)に示されるマップの形で予めROM34内に記憶されている。なお、パラメータdは上述の実施形態と同様であるので説明を省略する。
ここで、EGR開度θeについて簡単に説明する。上述したように、EGR開度はEGR制御弁22のステップモータのステップ数STPで表され、すなわち、ステップ数STPがゼロになるとEGR制御弁22は閉弁し、ステップ数STPが大きくなるとEGR開度も大きくなる。
また、EGR制御弁22には通常、製造誤差が含まれているので、ステップ数STPに対する実際のEGR開度θeが正規の開度からずれている恐れがある。そこで、図1に示される内燃機関では、実際のEGR開度を正規の開度に一致させるための補正係数kgを求め、この補正係数kgをステップ数STPに加算するようにしている。
θe=STP−STP0+kg
ここで、STP0は図面公差中央品においてEGR制御弁22が開弁し始めるステップ数である。本実施形態では、このようにして算出されるEGR開度θeをマップの引数として用いている。
megr=megr・kwu・krtd・kinc
ここで、kwuは暖機時補正係数を、krtdは遅角時補正係数を、kincは増量時補正係数を、それぞれ表している。
一方、遅角時補正係数krtdは点火時期の遅角補正時におけるEGR制御弁通過ガス流量megrを補正するためのものである。すなわち、遅角補正時には遅角補正が行われないときに比べて排気温度Teが高くなっており、その分だけEGR制御弁通過ガス流量megrが少なくなる。
増量時補正係数kincは、図48(C)に示されるように、増量補正分Fincがゼロのときに1.0であり、増量補正分Fincが大きくなるにつれて大きくなる。この増量時補正係数kincは図48(C)に示されるマップの形で予めROM34内に記憶されている。
このようにすると、EGR制御弁通過ガス流量megrをさらに高精度で求めることができる。
ここで、スロットル開度に基づいて吸気管圧力Pmを推定する場合には、吸気管圧力Pmを、スロットル開度θtと、機関回転数NEと、EGR開度θeとの関数として予め求められ、これがマップの形で記憶される。
また、スワール制御弁25が閉弁されると、EGR通路21の出口近傍におけるガスの流速が速くなる。特に、図51に示されているように、EGR通路21が隔壁24によって分離された領域において吸気通路13aに接続されている場合には、スワール制御弁25が閉弁されたときのEGR通路21の出口近傍におけるガス流速の上昇は大きい。
すなわち、このことは、スワール制御弁25が閉弁されると、スワール制御弁25が開弁されている場合に比べて、上述の無駄時間Td2が短くなり、且つ、上述の時定数τ2が小さくなる。
一方、スワール制御弁25が閉弁されたときには、図17(A)および(B)に示したマップから機関回転数NEに基づいて無駄時間Td2および時定数τ2を求め、これら無駄時間Td2および時定数τ2に1.0よりも小さい補正係数を乗じて算出した無駄時間Td2および時定数τ2を用いて、筒内流入排気ガス流量megr-egrを算出する。
これによれば、内燃機関がスワール制御弁を備えている場合にも、より正確に筒内流入排気ガス流量を算出することができる。
すなわち、スワール制御弁が閉弁されると、筒内に充填されるEGRガス量が多くなるので、逆に、筒内に充填される新気の量が少なくなり、したがって、機関負荷率が小さくなる。
これによれば、内燃機関がスワール制御弁を備えている場合にも、より正確に機関負荷率KLonを算出することができる。
なお、この技術思想は、より一般的に言うと、機関運転状態に応じてEGR制御弁から吸気弁までの通路容積が変更せしめられ、あるいは、機関運転状態に応じて吸気通路の流路断面積が変更せしめられることによって吸気通路へ開口するEGR通路の出口近傍のガス流速が変更せしめられるようになっている内燃機関にも、等しく適用可能である。
また、上述の式(43)および(44)において、パラメータd*は、上述の実施形態では、式(43)および(44)において同じマップから求まる値としているが、式(43)にて用いられるパラメータd*と式(44)にて用いられるパラメータd*とを別のマップから求まる値としてもよい。
なお、流量に時間をかければ量が算出されることから、上述の実施形態において流量とは、実質的に、量をも意味するものである。
5 燃焼室
6 吸気弁
7 吸気ポート
8 排気弁
11 燃料噴射弁
13 吸気管
18 スロットル弁
22 EGR制御弁
Claims (12)
- 吸気通路と排気通路とを排気ガス再循環通路を介して接続すると共に前記排気ガス再循環通路内を流れる排気ガスの流量を制御する排気ガス流量制御弁を排気ガス再循環通路内に配置した内燃機関において、該内燃機関の気筒内に流入する排気ガスの量である筒内流入排気ガス量を、前記排気ガス流量制御弁を通過する排気ガスの量である通過排気ガス量を利用して算出する筒内流入排気ガス量算出装置において、前記排気ガス流量制御弁を通過した排気ガスが気筒に到達するのにかかる時間に相当する無駄時間と、前記通過排気ガス量の変化に対する筒内流入排気ガス量の変化の追従遅れとを考慮して、筒内流入排気ガス量を算出する筒内流入排気ガス量算出装置において、
吸気枝管内に配置されると共に機関運転状態に応じて制御されて吸気通路の流路断面積を変更することによって吸気通路へ開口する排気ガス再循環通路の開口近傍のガスの流速を変更せしめる手段を更に具備し、前記ガスの流速に応じて上記追従遅れの設定値および無駄時間の設定値が変更される筒内流入排気ガス量算出装置。 - 吸気通路と排気通路とを排気ガス再循環通路を介して接続すると共に前記排気ガス再循環通路内を流れる排気ガスの流量を制御する排気ガス流量制御弁を排気ガス再循環通路内に配置した内燃機関において、前記排気ガス流量制御弁を通過する排気ガスの量である通過排気ガス量を、該通過排気ガス量を変化させるパラメータを利用して算出し、該算出された通過排気ガス量を利用して、内燃機関の気筒内に流入する排気ガスの量である筒内流入排気ガス量を算出する筒内流入排気ガス量算出装置において、前記パラメータの値を読み込み、該読込値に、前記排気ガス流量制御弁を通過した排気ガスが気筒に到達するのにかかる時間に相当する無駄時間と、前記通過排気ガス量の変化に対する筒内流入排気ガス量の変化の追従遅れとを反映させ、該無駄時間と追従遅れが反映された読込値を利用して通過排気ガス量を算出する筒内流入排気ガス量算出装置において、
吸気枝管内に配置されると共に機関運転状態に応じて制御されて吸気通路の流路断面積を変更することによって吸気通路へ開口する排気ガス再循環通路の開口近傍のガスの流速を変更せしめる手段を更に具備し、前記ガスの流速に応じて上記追従遅れの設定値および無駄時間の設定値が変更される筒内流入排気ガス量算出装置。 - 内燃機関が複数個の気筒を備えており、上記算出された筒内流入排気ガス量に対する各気筒における実際の筒内流入排気ガス量の比を分配係数として予め求めておき、上記算出された筒内流入排気ガス量に該分配係数を乗ずることによって各気筒における筒内流入排気ガス量を算出する請求項1または2に記載の筒内流入排気ガス量算出装置。
- 内燃機関が複数個の気筒を備えており、上記追従遅れと無駄時間とが各気筒毎に設定されている請求項1〜3のいずれか1つに記載の筒内流入排気ガス量算出装置。
- 上記追従遅れが一次遅れであり、該一次遅れの時定数と上記無駄時間とが機関回転数に応じて変更され、該無駄時間は機関回転数が高くなるほど小さくせしめられる請求項1〜4のいずれか1つに記載の筒内流入排気ガス量算出装置。
- 上記通過排気ガス量を吸気通路内の圧力と該吸気通路内の圧力以外のパラメータとの関数でもって表された関数式を予め求めて記憶しておき、該関数式を利用して吸気通路内の圧力から通過排気ガス量を算出する請求項1に記載の内燃機関の筒内流入排気ガス量算出装置において、前記ガスの流速に応じて上記吸気通路内の圧力以外のパラメータを変更する筒内流入排気ガス量算出装置。
- 吸気通路と排気通路とを排気ガス再循環通路を介して接続すると共に上記排気ガス再循環通路内を流れる排気ガスの流量を制御する排気ガス流量制御弁を排気ガス再循環通路内に配置した内燃機関において、吸気通路内に流入する排気ガスの量である吸気通路内流入排気ガス量を、前記排気ガス流量制御弁を通過する排気ガスの量である通過排気ガス量を利用して算出する吸気通路内流入排気ガス量算出装置において、前記排気ガス流量制御弁を通過した排気ガスが吸気通路に到達するのにかかる時間に相当する無駄時間と、前記通過排気ガス量の変化に対する吸気通路内流入排気ガス量の変化の追従遅れとを考慮して、吸気通路内流入排気ガス量を算出する吸気通路内流入排気ガス量算出装置において、
吸気枝管内に配置されると共に機関運転状態に応じて制御されて吸気通路の流路断面積を変更することによって吸気通路へ開口する排気ガス再循環通路の開口近傍のガスの流速を変更せしめる手段を更に具備し、前記ガスの流速に応じて上記追従遅れの設定値および無駄時間の設定値が変更される吸気通路内流入排気ガス量算出装置。 - 吸気通路と排気通路とを排気ガス再循環通路を介して接続すると共に上記排気ガス再循環通路内を流れる排気ガスの流量を制御する排気ガス流量制御弁を排気ガス再循環通路内に配置した内燃機関において、前記排気ガス流量制御弁を通過する排気ガスの量である通過排気ガス量を、該通過排気ガス量を変化させるパラメータを利用して算出し、該算出された通過排気ガス量を利用して、吸気通路内に流入する排気ガスの量である吸気通路内流入排気ガス量を算出する吸気通路内流入排気ガス量算出装置において、前記パラメータの値を読み込み、該読込値に、前記排気ガス流量制御弁を通過した排気ガスが吸気通路に到達するのにかかる時間に相当する無駄時間と、前記通過排気ガス量の変化に対する吸気通路内流入排気ガス量の変化の追従遅れとを反映させ、該無駄時間と追従遅れが反映された読込値を利用して通過排気ガス量を算出する吸気通路内流入排気ガス量算出装置において、
吸気枝管内に配置されると共に機関運転状態に応じて制御されて吸気通路の流路断面積を変更することによって吸気通路へ開口する排気ガス再循環通路の開口近傍のガスの流速を変更せしめる手段を更に具備し、前記ガスの流速に応じて上記追従遅れの設定値および無駄時間の設定値が変更される吸気通路内流入排気ガス量算出装置。 - 内燃機関が複数個の気筒を備えており、上記排気ガス再循環通路が各気筒にそれぞれ接続された吸気通路に接続されており、上記算出された吸気通路内流入排気ガス量に対する各気筒に接続された吸気通路への実際の吸気通路内流入排気ガス量の比を分配係数として予め求めておき、上記算出された吸気通路内流入排気ガス量に該分配係数を乗ずることによって各気筒に接続された吸気通路内への吸気通路内流入排気ガス量を算出する請求項7または8に記載の吸気通路内流入排気ガス量算出装置。
- 内燃機関が複数個の気筒を備えており、上記追従遅れと無駄時間とが各気筒毎に設定されている請求項7〜9のいずれか1つに記載の吸気通路内流入排気ガス量算出装置。
- 上記追従遅れが一次遅れであり、該一次遅れの時定数と上記無駄時間とが機関回転数に応じて変更され、該無駄時間は機関回転数が高くなるほど小さくせしめられる請求項7〜10のいずれか1つに記載の吸気通路内流入排気ガス量算出装置。
- 上記通過排気ガス量を吸気通路内の圧力と該吸気通路内の圧力以外のパラメータとの関数でもって表された関数式を予め求めて記憶しておき、該関数式を利用して吸気通路内の圧力から通過排気ガス量を算出する請求項7に記載の吸気通路内流入排気ガス量算出装置において、前記ガスの流速に応じて上記吸気通路内の圧力以外のパラメータを変更する吸気通路内流入排気ガス量算出装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006306668A JP4345803B2 (ja) | 2006-11-13 | 2006-11-13 | 内燃機関の筒内流入排気ガス量算出装置、および、吸気通路内流入排気ガス量算出装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006306668A JP4345803B2 (ja) | 2006-11-13 | 2006-11-13 | 内燃機関の筒内流入排気ガス量算出装置、および、吸気通路内流入排気ガス量算出装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002365669A Division JP3900081B2 (ja) | 2002-12-17 | 2002-12-17 | 内燃機関の筒内流入排気ガス量算出装置、および、吸気通路内流入排気ガス量算出装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007064230A JP2007064230A (ja) | 2007-03-15 |
JP4345803B2 true JP4345803B2 (ja) | 2009-10-14 |
Family
ID=37926666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006306668A Expired - Lifetime JP4345803B2 (ja) | 2006-11-13 | 2006-11-13 | 内燃機関の筒内流入排気ガス量算出装置、および、吸気通路内流入排気ガス量算出装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4345803B2 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4895884B2 (ja) * | 2007-03-27 | 2012-03-14 | Udトラックス株式会社 | 排気ブレーキ装置 |
JP5218166B2 (ja) * | 2009-03-11 | 2013-06-26 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
JP5387914B2 (ja) * | 2010-10-25 | 2014-01-15 | 株式会社デンソー | 内燃機関の筒内流入egrガス流量推定装置 |
JP5517110B2 (ja) * | 2010-10-29 | 2014-06-11 | 株式会社デンソー | 内燃機関のegr制御装置 |
JP2012241575A (ja) * | 2011-05-18 | 2012-12-10 | Daihatsu Motor Co Ltd | 内燃機関のegr量推定装置 |
EP2835519B1 (en) | 2012-04-05 | 2016-06-15 | Toyota Jidosha Kabushiki Kaisha | Control device of internal combustion engine |
JP6350230B2 (ja) * | 2014-11-13 | 2018-07-04 | 日産自動車株式会社 | 内燃機関の排気還流制御装置及び排気還流制御方法 |
JP7073843B2 (ja) * | 2018-03-28 | 2022-05-24 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
CN115234384A (zh) * | 2022-06-23 | 2022-10-25 | 中国第一汽车股份有限公司 | 一种气缸内egr流量计算方法及装置 |
-
2006
- 2006-11-13 JP JP2006306668A patent/JP4345803B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2007064230A (ja) | 2007-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3900081B2 (ja) | 内燃機関の筒内流入排気ガス量算出装置、および、吸気通路内流入排気ガス量算出装置 | |
JP4345803B2 (ja) | 内燃機関の筒内流入排気ガス量算出装置、および、吸気通路内流入排気ガス量算出装置 | |
JP4519164B2 (ja) | 内燃機関の圧力・温度算出装置 | |
EP1431546B1 (en) | Pressure/temperature calculation apparatus | |
JP4352830B2 (ja) | 内燃機関の制御装置 | |
CN108626009B (zh) | 确定在内燃机燃烧室中的空气量的方法、内燃机以及车辆 | |
JP4207718B2 (ja) | 内燃機関の制御装置 | |
US20110172898A1 (en) | Internal combustion engine system control device | |
JP3888301B2 (ja) | 内燃機関の排気ガス再循環ガス量算出装置 | |
JP4877619B2 (ja) | 内燃機関の圧力・温度算出装置 | |
JP4254389B2 (ja) | 内燃機関の制御装置 | |
JP5056807B2 (ja) | 内燃機関の制御装置 | |
JP4241560B2 (ja) | 内燃機関の吸入空気量推定装置 | |
JP4032957B2 (ja) | 吸気管内圧力算出装置及び吸気管内温度算出装置 | |
JP2008144680A (ja) | 内燃機関の空気量推定装置 | |
JP4420106B2 (ja) | スロットル弁通過空気流量算出装置 | |
JP2006077620A (ja) | 内燃機関の制御装置 | |
JP2006057516A (ja) | 内燃機関の制御装置 | |
JP3945510B2 (ja) | 内燃機関の筒内充填空気量推定装置 | |
JP2004197617A (ja) | スロットル弁通過空気流量算出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090331 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090623 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090706 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4345803 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120724 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130724 Year of fee payment: 4 |
|
EXPY | Cancellation because of completion of term |