JP4345304B2 - Differential - Google Patents

Differential Download PDF

Info

Publication number
JP4345304B2
JP4345304B2 JP2003001771A JP2003001771A JP4345304B2 JP 4345304 B2 JP4345304 B2 JP 4345304B2 JP 2003001771 A JP2003001771 A JP 2003001771A JP 2003001771 A JP2003001771 A JP 2003001771A JP 4345304 B2 JP4345304 B2 JP 4345304B2
Authority
JP
Japan
Prior art keywords
differential
inner ring
bearing
diameter
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003001771A
Other languages
Japanese (ja)
Other versions
JP2004211855A (en
Inventor
宏 城
基司 河村
登志郎 福田
健 岩脇
宏之 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2003001771A priority Critical patent/JP4345304B2/en
Publication of JP2004211855A publication Critical patent/JP2004211855A/en
Application granted granted Critical
Publication of JP4345304B2 publication Critical patent/JP4345304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/182Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact in tandem arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Description

【0001】
【発明の属する技術分野】
この発明は、左右の車輪に回転差をつける差動装置に関し、特に、その転がり軸受を改良した差動装置に関する。
【0002】
【従来の技術】
差動装置として、ディファレンシャル・キャリアに回転自在に支持されかつ一端部にピニオン・ギアが配設されたピニオン・シャフトと、ピニオン・ギアに噛み合わされたリング・ギアと、リング・ギアに取り付けられたディファレンシャル・ケースと、ディファレンシャル・ケースをディファレンシャル・キャリアに回転自在に支持する1対の転がり軸受とを備えたものが使用されている。
【0003】
差動装置の転がり軸受は、従来、高い剛性を得るために円錐ころ軸受とされていたが、燃費向上の観点から軸受の低トルク化が課題となっており、円錐ころ軸受より回転トルクが小さい玉軸受を使用することが提案されている。(特許文献1参照)。
【0004】
【特許文献1】
特開2000−161466号公報
【0005】
【発明が解決しようとする課題】
玉軸受を使用した差動装置では、円錐ころ軸受のものに比べて、通常、剛性が低下するため、低トルクと高剛性とを両立させるための材質変更などによって製造コストが増加することなどの新たな課題が生じ、この新たな課題を解決し、より一層の低トルク化が可能な軸受を有する差動装置が求められている。
【0006】
この発明の目的は、円錐ころ軸受に代えて低トルクの軸受を使用して、燃費向上を可能とするとともに、コスト増の問題を改良した差動装置を提供することにある。
【0007】
【課題を解決するための手段および発明の効果】
この発明による差動装置は、ディファレンシャル・キャリアに回転自在に支持されかつ一端部にピニオン・ギアが配設されたピニオン・シャフトと、ピニオン・ギアに噛み合わされたリング・ギアと、リング・ギアに取り付けられたディファレンシャル・ケースと、ディファレンシャル・ケースをディファレンシャル・キャリアに回転自在に支持する1対の転がり軸受とを備えている差動装置において、前記1対の転がり軸受のうち、少なくともピニオン・ギアとリング・ギアとの噛合位置から遠い側のものを複列の斜接玉軸受とし、複列の斜接玉軸受は、ピニオン・ギアから遠い側の内輪軌道径および外輪軌道径がピニオン・ギアに近い側の内輪軌道径および外輪軌道径よりもそれぞれ小さくなされており、該斜接玉軸受の各列の接触角を同方向とするとともに、内輪の軌道曲率を玉径の51.5%よりも小さくかつ50%より大きく、外輪の軌道曲率を玉径の52.5%よりも小さくかつ50%より大きくしたことを特徴とするものである。
【0008】
複列の斜接玉軸受は、例えば、それぞれ一体に形成された内輪および外輪と、両輪間に配置された2列の玉を有し、一方の内輪軌道径および外輪軌道径が他方の内輪軌道径および外輪軌道径よりもそれぞれ小さくなされているものとされることがあり、また、それぞれ一体に形成された内輪および外輪と、両輪間に配置された2列の玉を有し、一方の内輪軌道径および外輪軌道径と他方の内輪軌道径および外輪軌道径とがそれぞれ等しくなされているものとされることがある。
【0009】
ギア噛合位置から遠い側に配された接触角が同方向の複列の斜接玉軸受と、同近い側の転がり軸受(各列の接触角が同方向の複列の斜接玉軸受または円錐ころ軸受)とは、正面合わせで使用される。
【0010】
この発明の差動装置によると、少なくとも一方の転がり軸受を斜接玉軸受としているので、円錐ころ軸受より回転トルクが小さくなり、燃費を向上することができるようになるとともに、該斜接玉軸受の各列の接触角を同方向とすることにより、スラスト荷重の負荷能力が増大し、負荷容量および剛性の点で有利となり、低トルクと高剛性との両立が可能となる。しかも、各列の接触角が同方向の複列の斜接玉軸受自体は、公知で、容易に製造することができ、材質をセラミックに変更するなどの手段を取る必要がないので、コスト増を伴わずに低トルクと高剛性とを両立させることができる。
【0011】
斜接玉軸受の内輪の軌道曲率は、玉径の51.5%よりも小さくかつ50%より大きいことが好ましい。斜接玉軸受の内輪の軌道曲率は、従来、玉径の51.5%より大きくかつ52.5%よりも小さくされているが、これを玉径の51.5%未満とすることにより、玉と内輪との接触面圧を低下させることができ、軸受の外形寸法を小さくすることが可能となる。したがって、外形寸法減少による低トルク化の効果も得ることができる。内輪の軌道曲率のより好ましい範囲は、玉径の50.5%以上でかつ玉径の51%以下とされる。また、斜接玉軸受の外輪の軌道曲率についても、同様の理由により、従来、52.5%より大きくかつ53.5%よりも小さくされているのに対し、玉径の52.5%よりも小さくかつ50%より大きくすることが好ましく、外輪の軌道曲率のより好ましい範囲は、玉径の51.5%以上でかつ玉径の52%以下とされる。
【0012】
【発明の実施の形態】
この発明の実施の形態を、以下図面を参照して説明する。以下の説明において、左右は、図の左右をいうものとする。
【0013】
図1は、この発明による差動装置の第1実施形態を示しており、差動装置は、ディファレンシャル・キャリア(1)に回転自在に支持されかつ一端部にドライブピニオン・ギア(3)が配設されたピニオン・シャフト(2)と、ドライブピニオン・ギア(3)に噛み合わされたリング・ギア(4)と、リング・ギア(4)に取り付けられたディファレンシャル・ケース(5)と、ディファレンシャル・ケース(5)をディファレンシャル・キャリア(1)に回転自在に支持する左右1対の転がり軸受(10)(11)と、ディファレンシャル・ケース(5)から左右にのびる左右のサイドギア・シャフト(6)の内側端部にそれぞれ配設されたサイドギア(7)と、スパイダ(9)に回転可能に支持されかつサイドギア(7)に噛み合わされているデフピニオン・ギア(8)とを備えている。
【0014】
左の転がり軸受(10)すなわちドライブピニオン・ギア(3)とリング・ギア(4)との噛合位置に近い側の軸受は、ディファレンシャル・ケース(5)の左端部外周に固定された内輪(12)、内輪(12)と対向する位置においてディファレンシャル・キャリア(1)に固定された外輪(13)、両輪(12)(13)間に配置された複数の円錐ころ(14)および保持器(15)を備えた単列の円錐ころ軸受とされている。
【0015】
右の転がり軸受(11)すなわちドライブピニオン・ギア(3)とリング・ギア(4)との噛合位置から遠い側の軸受は、ディファレンシャル・ケース(5)の右端部外周に固定された内輪(16)、内輪(16)と対向する位置においてディファレンシャル・キャリア(1)に固定された外輪(17)、両輪(16)(17)間に2列に配置された複数の玉(18)および保持器(19)を備えた接触角が同方向の複列タンデム型斜接玉軸受とされている。
【0016】
複列の斜接玉軸受は、内輪(16)および外輪(17)がそれぞれ一体に形成されるとともに、一方の内輪軌道径および外輪軌道径と他方の内輪軌道径および外輪軌道径とがそれぞれ等しくなされている。そして、外輪(17)の左側(軸方向内側)にのみカウンタボア(17a)が形成され、内輪(16)の右側(軸方向外側)のみに肩おとし部(16a)が形成されている。接触角は、15°〜20°の範囲内に設定されており、また、内輪(16)の軌道曲率が玉(18)径の51%以下とされ、外輪(17)の軌道曲率が玉径の52%以下とされている。このような斜接玉軸受は、例えば、外輪(17)の右側の軌道に保持器(19)を介して玉(18)を保持させるとともに、内輪(16)の左側の軌道に保持器(19)を介して玉(18)を保持させ、次いで、外輪(17)を加熱するとともに、外輪(17)に対して内輪(16)を移動させることにより製造することができる。上記軸受の内外輪(16)(17)は軸受鋼から造られ、特に、内輪(16)に浸炭窒化処理を施してその表面硬さを玉(18)並みのHRC60〜64に上げておくのが、異物油中での寿命上の点から好ましい。
【0017】
上記第1実施形態の差動装置によると、右の転がり軸受(11)を複列の斜接玉軸受としているので、左右の転がり軸受が円錐ころ軸受のものに比べて、回転トルクが小さくなり、燃費を向上することができ、また、右の斜接玉軸受(11)において、内輪(16)の軌道曲率が玉径の51%以下にされているので、軌道接触面圧を抑えることができ、軸受の外形寸法減少が可能となる。さらに、斜接玉軸受(11)の各列の接触角が同方向とされているので、スラスト荷重の負荷能力が増大し、負荷容量および剛性の点で有利となり、低トルクと高剛性との両立が可能となっている。また、軸受の組立も従来の円錐ころ軸受と同様に行いうるので、工程の変更などが要らず、コスト上昇も避けることができる。
【0018】
図2は、この発明による差動装置の第2実施形態を示している。第1実施形態との違いは、転がり軸受が異なるだけなので、転がり軸受以外の構成には同じ符号を付して説明を省略し、以下では、転がり軸受についてのみ説明する。
【0019】
第2実施形態においては、左の転がり軸受(20)すなわちドライブピニオン・ギア(3)とリング・ギア(4)との噛合位置に近い側の軸受は、ディファレンシャル・ケース(5)の左端部外周に固定された内輪(22)、内輪(22)と対向する位置においてディファレンシャル・キャリア(1)に固定された外輪(23)、両輪(22)(23)間に配置された複数の円錐ころ(24)および保持器(25)を備えた単列の円錐ころ軸受とされている。
【0020】
そして、右の転がり軸受(21)すなわちドライブピニオン・ギア(3)とリング・ギア(4)との噛合位置から遠い側の軸受は、ディファレンシャル・ケース(5)の右端部外周に固定された内輪(26)、内輪(26)と対向する位置においてディファレンシャル・キャリア(1)に固定された外輪(27)、両輪(26)(27)間に2列に配置された複数の玉(28)および保持器(29)を備えた接触角が同方向の複列タンデム型斜接玉軸受とされている。
【0021】
複列の斜接玉軸受は、内輪(26)および外輪(27)がそれぞれ一体に形成されるとともに、右側の内輪軌道径および外輪軌道径が左側の内輪軌道径および外輪軌道径よりもそれぞれ小さくなされている。そして、外輪(27)の左側(軸方向内側)にカウンタボア(27a)が形成され、内輪(26)の右側(軸方向外側)に肩おとし部(26a)が形成されている。接触角は、15°〜20°の範囲内に設定されており、また、内輪(26)の軌道曲率が玉(28)径の51%以下とされ、外輪(27)の軌道曲率が玉径の52%以下とされている。このような斜接玉軸受は、例えば、内輪(26)および外輪(27)のいずれか一方の左側および右側の軌道にそれぞれ保持器(29)を介して玉(28)を保持させ、内輪(26)と外輪(27)とを相対移動させることにより製造することができる。上記軸受の内外輪(26)(27)は軸受鋼から造られ、特に、内輪(26)に浸炭窒化処理を施してその表面硬さを玉(28)並みのHRC60〜64に上げておくのが、異物油中での寿命上の点から好ましい。
【0022】
上記第2実施形態の差動装置によると、右の転がり軸受(21)を斜接玉軸受としているので、左右の転がり軸受が円錐ころ軸受のものに比べて、回転トルクが小さくなり、燃費を向上することができ、また、右の斜接玉軸受(21)において、内輪(26)の軌道曲率が玉径の51%以下にされているので、軌道接触面圧を抑えることができ、軸受の外形寸法減少が可能となる。さらに、斜接玉軸受(21)の各列の接触角が同方向とされているので、スラスト荷重の負荷能力が増大し、負荷容量および剛性の点で有利となり、低トルクと高剛性との両立が可能となっている。また、軸受の組立も従来の円錐ころ軸受と同様に行いうるので、工程の変更などが要らず、コスト上昇も避けることができる。
【0023】
図3は、この発明による差動装置の第3実施形態を示している。第1実施形態との違いは、転がり軸受が異なるだけなので、転がり軸受以外の構成には同じ符号を付して説明を省略し、以下では、転がり軸受についてのみ説明する。
【0024】
第3実施形態においては、左の転がり軸受(30)すなわちドライブピニオン・ギア(3)とリング・ギア(4)との噛合位置に近い側の軸受は、ディファレンシャル・ケース(5)の左端部外周に固定された内輪(32)、内輪(32)と対向する位置においてディファレンシャル・キャリア(1)に固定された外輪(33)、両輪(32)(33)間に2列に配置された複数の玉(34)および保持器(35)を備えた複列のタンデム型斜接玉軸受とされている。
【0025】
そして、右の転がり軸受(31)すなわちドライブピニオン・ギア(3)とリング・ギア(4)との噛合位置から遠い側の軸受は、ディファレンシャル・ケース(5)の右端部外周に固定された内輪(36)、内輪(36)と対向する位置においてディファレンシャル・キャリア(1)に固定された外輪(37)、両輪(36)(37)間に2列に配置された複数の玉(38)および保持器(39)を備えた複列のタンデム型斜接玉軸受とされている。
【0026】
この第3実施形態の左右の斜接玉軸受(30)(31)は、第2実施形態の右の転がり軸受として使用されている複列の斜接玉軸受(21)と同じものが正面合わせされたものであり、左の斜接玉軸受(30)は、内輪(32)および外輪(33)がそれぞれ一体に形成されるとともに、左側の内輪軌道径および外輪軌道径が右側の内輪軌道径および外輪軌道径よりもそれぞれ小さくなされており、右の斜接玉軸受(31)は、内輪(36)および外輪(37)がそれぞれ一体に形成されるとともに、右側の内輪軌道径および外輪軌道径が左側の内輪軌道径および外輪軌道径よりもそれぞれ小さくなされている。そして、左の斜接玉軸受(30)では、外輪(33)の右側(軸方向内側)にカウンタボア(33a)が、内輪(32)の左側(軸方向外側)に肩おとし部(32a)がそれぞれ形成され、右の斜接玉軸受(31)では、外輪(37)の左側(軸方向内側)にカウンタボア(37a)が、内輪(36)の右側(軸方向外側)に肩おとし部(36a)がそれぞれ形成されている。また、いずれの斜接玉軸受(30)(31)についても、接触角は15°〜20°の範囲内にされるとともに、内輪(32)(36)の軌道曲率が玉(34)(38)径の51%以下とされ、外輪(33)(37)の軌道曲率が玉(34)(38)径の52%以下とされている。
【0027】
上記第3実施形態の差動装置によると、左右の転がり軸受(30)(31)を斜接玉軸受としているので、左右の転がり軸受が円錐ころ軸受のものに比べて、回転トルクが小さくなり、燃費を向上することができ、また、左右の斜接玉軸受(30)(31)において、内輪(32)(36)の軌道曲率が玉径の51%以下にされているので、軌道接触面圧を抑えることができ、軸受の外形寸法減少が可能となる。さらに、軸受の各列の接触角が同方向とされているので、スラスト荷重の負荷能力が増大し、負荷容量および剛性の点で有利となり、低トルクと高剛性との両立が可能となっている。また、軸受の組立も従来の円錐ころ軸受と同様に行いうるので、工程の変更などが要らず、コスト上昇も避けることができる。
【図面の簡単な説明】
【図1】図1は、この発明による差動装置の第1実施形態を示す縦断面図である。
【図2】図2は、この発明による差動装置の第2実施形態を示す縦断面図である。
【図3】図3は、この発明による差動装置の第3実施形態を示す縦断面図である。
【符号の説明】
(1) ディファレンシャル・キャリア
(2) ピニオン・シャフト
(3) ピニオン・ギア
(4) リング・ギア
(5) ディファレンシャル・ケース
(10)(20)(30) 左の転がり軸受
(11)(21)(31) 右の転がり軸受
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a differential device that makes a difference in rotation between left and right wheels, and more particularly, to a differential device having an improved rolling bearing.
[0002]
[Prior art]
As a differential device, a pinion shaft rotatably supported by a differential carrier and having a pinion gear disposed at one end thereof, a ring gear meshed with the pinion gear, and a ring gear attached to the ring gear A differential case and a pair of rolling bearings that rotatably support the differential case on a differential carrier are used.
[0003]
Rolling bearings of differential devices have been conventionally tapered roller bearings in order to obtain high rigidity. However, lowering the torque of bearings has been an issue from the viewpoint of improving fuel efficiency, and rotational torque is smaller than tapered roller bearings. It has been proposed to use ball bearings. (See Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-161466
[Problems to be solved by the invention]
In a differential device using a ball bearing, the rigidity is usually lower than that of a tapered roller bearing, so that the manufacturing cost is increased by changing the material to achieve both low torque and high rigidity. A new problem arises, and there is a demand for a differential device having a bearing that can solve this new problem and can further reduce torque.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a differential device that uses a low torque bearing instead of a tapered roller bearing to improve fuel efficiency and improve the cost increase problem.
[0007]
[Means for Solving the Problems and Effects of the Invention]
The differential according to the present invention includes a pinion shaft rotatably supported on a differential carrier and having a pinion gear disposed at one end thereof, a ring gear meshed with the pinion gear, and a ring gear. A differential device comprising an attached differential case and a pair of rolling bearings rotatably supporting the differential case on a differential carrier, wherein at least a pinion gear of the pair of rolling bearings The double row oblique contact ball bearing is the one on the side farther from the meshing position with the ring gear . The double row oblique contact ball bearing has an inner ring raceway diameter and an outer ring raceway diameter on the side far from the pinion gear. It has been made smaller respectively than the inner ring raceway diameter and the outer ring raceway diameter of the side close to the contact angle of each row of oblique contact ball bearing And the inner ring raceway curvature is smaller than 51.5% and larger than 50%, and the outer ring raceway curvature is smaller than 52.5% and larger than 50%. It is what.
[0008]
The double row oblique contact ball bearing has, for example, an inner ring and an outer ring formed integrally with each other, and two rows of balls arranged between the two rings, and one inner ring raceway diameter and an outer ring raceway diameter are the other inner ring raceways. The inner ring and the outer ring may be formed smaller than the diameter and the outer ring raceway diameter, respectively, and the inner ring and the outer ring formed integrally with each other, and two rows of balls arranged between the two rings may be provided. The track diameter and outer ring track diameter may be equal to the other inner ring track diameter and outer ring track diameter.
[0009]
Double row oblique contact ball bearings with the same contact angle on the side far from the gear meshing position, and rolling bearings with the same contact side (double row oblique contact ball bearings or cones with the same contact angle on each row) Roller bearings are used face to face.
[0010]
According to the differential of the present invention, since at least one of the rolling bearings is an oblique contact ball bearing, the rotational torque is smaller than that of the tapered roller bearing, and fuel consumption can be improved. By making the contact angle of each row in the same direction, the load capacity of the thrust load increases, which is advantageous in terms of load capacity and rigidity, and it is possible to achieve both low torque and high rigidity. In addition, double row oblique contact ball bearings themselves having the same contact angle in each row are known and can be easily manufactured, and it is not necessary to take measures such as changing the material to ceramic. Without both, low torque and high rigidity can be achieved.
[0011]
The track curvature of the inner ring of the oblique contact ball bearing is preferably smaller than 51.5% and larger than 50% of the ball diameter. The raceway curvature of the inner ring of the oblique contact ball bearing has been conventionally larger than 51.5% and smaller than 52.5% of the ball diameter, but by making this less than 51.5% of the ball diameter, The contact surface pressure between the ball and the inner ring can be reduced, and the outer dimensions of the bearing can be reduced. Therefore, it is possible to obtain the effect of reducing the torque by reducing the outer dimension. A more preferable range of the raceway curvature of the inner ring is 50.5% or more of the ball diameter and 51% or less of the ball diameter. For the same reason, the raceway curvature of the outer ring of the oblique contact ball bearing is conventionally larger than 52.5% and smaller than 53.5%, but from 52.5% of the ball diameter. Is preferably smaller and larger than 50%, and a more preferable range of the raceway curvature of the outer ring is 51.5% or more of the ball diameter and 52% or less of the ball diameter.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In the following description, the left and right refer to the left and right in the figure.
[0013]
FIG. 1 shows a first embodiment of a differential device according to the present invention. The differential device is rotatably supported by a differential carrier (1) and a drive pinion gear (3) is arranged at one end. The installed pinion shaft (2), the ring gear (4) meshed with the drive pinion gear (3), the differential case (5) attached to the ring gear (4), and the differential gear A pair of left and right rolling bearings (10) and (11) that rotatably support the case (5) on the differential carrier (1), and left and right side gear shafts (6) extending from the differential case (5) to the left and right A side gear (7) disposed at each inner end portion and a differential pinion gear (8) rotatably supported by the spider (9) and meshed with the side gear (7) are provided.
[0014]
The left rolling bearing (10), that is, the bearing close to the meshing position of the drive pinion gear (3) and the ring gear (4) is an inner ring (12) fixed to the outer periphery of the left end of the differential case (5). ), An outer ring (13) fixed to the differential carrier (1) at a position facing the inner ring (12), a plurality of tapered rollers (14) disposed between the two rings (12) (13), and a cage (15 ) With single row tapered roller bearings.
[0015]
The right rolling bearing (11), that is, the bearing far from the meshing position of the drive pinion gear (3) and the ring gear (4) is an inner ring (16) fixed to the outer periphery of the right end of the differential case (5). ), An outer ring (17) fixed to the differential carrier (1) at a position facing the inner ring (16), a plurality of balls (18) arranged in two rows between both wheels (16) and (17), and a cage A double-row tandem oblique contact ball bearing with the contact angle (19) having the same direction is provided.
[0016]
In the double row oblique contact ball bearing, the inner ring (16) and the outer ring (17) are integrally formed, and one inner ring raceway diameter and outer ring raceway diameter are equal to the other inner ring raceway diameter and outer ring raceway diameter. Has been made. A counter bore (17a) is formed only on the left side (axially inner side) of the outer ring (17), and a shoulder pad (16a) is formed only on the right side (axially outer side) of the inner ring (16). The contact angle is set within a range of 15 ° to 20 °, the orbital curvature of the inner ring (16) is 51% or less of the ball (18) diameter, and the orbital curvature of the outer ring (17) is the ball diameter. Of 52% or less. Such an oblique contact ball bearing, for example, holds the ball (18) on the track on the right side of the outer ring (17) via the cage (19) and holds the cage (19 on the track on the left side of the inner ring (16). ), The ball (18) is held, and then the outer ring (17) is heated and the inner ring (16) is moved relative to the outer ring (17). The inner and outer rings (16) and (17) of the bearing are made of bearing steel, and in particular, the inner ring (16) is subjected to carbonitriding to raise its surface hardness to HRC 60 to 64 which is the same as that of the ball (18). Is preferable from the viewpoint of life in foreign oil.
[0017]
According to the differential of the first embodiment, since the right rolling bearing (11) is a double row oblique contact ball bearing, the rotational torque of the left and right rolling bearings is smaller than that of the tapered roller bearing. The fuel consumption can be improved, and in the right contact ball bearing (11), the raceway curvature of the inner ring (16) is 51% or less of the ball diameter, so that the raceway contact pressure can be suppressed. It is possible to reduce the outer dimension of the bearing. Furthermore, since the contact angle of each row of the oblique contact ball bearing (11) is the same direction, the load capacity of the thrust load is increased, which is advantageous in terms of load capacity and rigidity, and low torque and high rigidity. Both are possible. Further, since the assembly of the bearing can be performed in the same manner as a conventional tapered roller bearing, there is no need to change the process, and an increase in cost can be avoided.
[0018]
FIG. 2 shows a second embodiment of the differential according to the present invention. Since the difference from the first embodiment is only the rolling bearing, the configuration other than the rolling bearing is denoted by the same reference numeral and the description thereof is omitted, and only the rolling bearing will be described below.
[0019]
In the second embodiment, the left rolling bearing (20), that is, the bearing closer to the meshing position of the drive pinion gear (3) and the ring gear (4) is the outer periphery of the left end of the differential case (5). The inner ring (22) fixed to the inner ring (22), the outer ring (23) fixed to the differential carrier (1) at a position facing the inner ring (22), and a plurality of tapered rollers arranged between both wheels (22) (23) ( 24) and a single row tapered roller bearing provided with a cage (25).
[0020]
And the right rolling bearing (21), that is, the bearing far from the meshing position of the drive pinion gear (3) and the ring gear (4) is the inner ring fixed to the outer periphery of the right end of the differential case (5). (26), an outer ring (27) fixed to the differential carrier (1) at a position facing the inner ring (26), a plurality of balls (28) arranged in two rows between the two wheels (26) and (27), and A double row tandem type oblique contact ball bearing having a cage (29) having the same contact angle is used.
[0021]
In the double row oblique contact ball bearing, the inner ring (26) and the outer ring (27) are integrally formed, and the inner ring raceway diameter and the outer ring raceway diameter on the right side are smaller than the inner ring raceway diameter and the outer ring raceway diameter on the left side, respectively. Has been made. A counter bore (27a) is formed on the left side (axially inner side) of the outer ring (27), and a shoulder pad (26a) is formed on the right side (axially outer side) of the inner ring (26). The contact angle is set in the range of 15 ° to 20 °, the orbital curvature of the inner ring (26) is 51% or less of the ball (28) diameter, and the orbital curvature of the outer ring (27) is the ball diameter. Of 52% or less. Such an oblique contact ball bearing, for example, holds the ball (28) on the left and right raceways of either the inner ring (26) and the outer ring (27) via the cage (29), and the inner ring ( 26) and the outer ring (27) can be manufactured by relative movement. The inner and outer rings (26) and (27) of the bearing are made of bearing steel, and in particular, the inner ring (26) is subjected to carbonitriding to raise its surface hardness to HRC 60 to 64 which is the same as that of the ball (28). Is preferable from the viewpoint of life in foreign oil.
[0022]
According to the differential device of the second embodiment, since the right rolling bearing (21) is an oblique contact ball bearing, the left and right rolling bearings are smaller in torque than the tapered roller bearing, and the fuel consumption is reduced. Further, in the right oblique contact ball bearing (21), the raceway curvature of the inner ring (26) is 51% or less of the ball diameter. The outer dimension can be reduced. Furthermore, since the contact angle of each row of the oblique contact ball bearing (21) is the same direction, the load capacity of the thrust load is increased, which is advantageous in terms of load capacity and rigidity, and low torque and high rigidity. Both are possible. Further, since the assembly of the bearing can be performed in the same manner as a conventional tapered roller bearing, there is no need to change the process, and an increase in cost can be avoided.
[0023]
FIG. 3 shows a third embodiment of the differential according to the present invention. Since the difference from the first embodiment is only the rolling bearing, the configuration other than the rolling bearing is denoted by the same reference numeral and the description thereof is omitted, and only the rolling bearing will be described below.
[0024]
In the third embodiment, the left rolling bearing (30), that is, the bearing close to the meshing position of the drive pinion gear (3) and the ring gear (4) is the outer periphery of the left end portion of the differential case (5). The inner ring (32) fixed to the inner ring (32), the outer ring (33) fixed to the differential carrier (1) at a position facing the inner ring (32), and a plurality of rows arranged in two rows between both wheels (32) (33) A double-row tandem oblique contact ball bearing provided with a ball (34) and a cage (35) is provided.
[0025]
The right rolling bearing (31), that is, the bearing far from the meshing position of the drive pinion gear (3) and the ring gear (4) is an inner ring fixed to the outer periphery of the right end of the differential case (5). (36), an outer ring (37) fixed to the differential carrier (1) at a position facing the inner ring (36), a plurality of balls (38) arranged in two rows between both wheels (36) and (37), and A double-row tandem oblique contact ball bearing provided with a cage (39) is provided.
[0026]
The right and left oblique contact ball bearings (30) and (31) of the third embodiment are the same as the double row oblique contact ball bearing (21) used as the right rolling bearing of the second embodiment. The left oblique contact ball bearing (30) has an inner ring (32) and an outer ring (33) that are integrally formed, and the inner ring raceway diameter on the left side and the outer ring raceway diameter on the right side are the inner ring raceway diameters on the right side. The right bevel contact ball bearing (31) is formed integrally with the inner ring (36) and the outer ring (37), and the right inner ring raceway diameter and outer ring raceway diameter. Are smaller than the inner ring raceway diameter and the outer ring raceway diameter on the left side. In the left contact ball bearing (30), the counter bore (33a) is on the right side (axially inside) of the outer ring (33), and the shoulder shoulder (32a) is on the left side (axially outside) of the inner ring (32). In the right oblique contact ball bearing (31), the counter bore (37a) is on the left side (axially inner side) of the outer ring (37), and the shoulder is on the right side (axially outer side) of the inner ring (36). (36a) are formed. Further, in any of the oblique contact ball bearings (30) (31), the contact angle is set within a range of 15 ° to 20 °, and the raceway curvature of the inner rings (32) (36) is the ball (34) (38). ) 51% or less of the diameter, and the raceway curvature of the outer rings (33) and (37) is 52% or less of the diameter of the balls (34) and (38).
[0027]
According to the differential device of the third embodiment, since the left and right rolling bearings (30) and (31) are oblique contact ball bearings, the rotational torque of the left and right rolling bearings is smaller than that of the tapered roller bearing. The fuel consumption can be improved, and the track curvature of the inner ring (32) (36) is 51% or less of the ball diameter in the left and right oblique contact ball bearings (30) (31). The surface pressure can be suppressed, and the outer dimensions of the bearing can be reduced. Furthermore, since the contact angle of each row of bearings is the same direction, the load capacity of thrust load increases, which is advantageous in terms of load capacity and rigidity, and it is possible to achieve both low torque and high rigidity. Yes. Further, since the assembly of the bearing can be performed in the same manner as a conventional tapered roller bearing, there is no need to change the process, and an increase in cost can be avoided.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a first embodiment of a differential according to the present invention.
FIG. 2 is a longitudinal sectional view showing a second embodiment of the differential according to the present invention.
FIG. 3 is a longitudinal sectional view showing a third embodiment of the differential according to the present invention.
[Explanation of symbols]
(1) Differential carrier
(2) Pinion shaft
(3) Pinion gear
(4) Ring gear
(5) Differential case
(10) (20) (30) Left rolling bearing
(11) (21) (31) Right rolling bearing

Claims (2)

ディファレンシャル・キャリアに回転自在に支持されかつ一端部にピニオン・ギアが配設されたピニオン・シャフトと、ピニオン・ギアに噛み合わされたリング・ギアと、リング・ギアに取り付けられたディファレンシャル・ケースと、ディファレンシャル・ケースをディファレンシャル・キャリアに回転自在に支持する1対の転がり軸受とを備えている差動装置において、
前記1対の転がり軸受のうち、少なくともピニオン・ギアとリング・ギアとの噛合位置から遠い側のものを複列の斜接玉軸受とし、複列の斜接玉軸受は、ピニオン・ギアから遠い側の内輪軌道径および外輪軌道径がピニオン・ギアに近い側の内輪軌道径および外輪軌道径よりもそれぞれ小さくなされており、該斜接玉軸受の各列の接触角を同方向とするとともに、内輪の軌道曲率を玉径の51.5%よりも小さくかつ50%より大きく、外輪の軌道曲率を玉径の52.5%よりも小さくかつ50%より大きくしたことを特徴とする差動装置。
A pinion shaft rotatably supported by a differential carrier and having a pinion gear disposed at one end thereof, a ring gear meshed with the pinion gear, and a differential case attached to the ring gear; In a differential having a pair of rolling bearings that rotatably support a differential case on a differential carrier,
Of the pair of rolling bearings, at least the one far from the meshing position of the pinion gear and the ring gear is a double row oblique contact ball bearing, and the double row oblique contact ball bearing is formed from the pinion gear. The inner ring raceway diameter and the outer ring raceway diameter on the far side are made smaller than the inner ring raceway diameter and the outer ring raceway diameter on the side close to the pinion gear, respectively, and the contact angle of each row of the oblique contact ball bearings is the same direction. A differential characterized in that the track curvature of the inner ring is smaller than 51.5% and greater than 50% of the ball diameter, and the track curvature of the outer ring is smaller than 52.5% and greater than 50% of the ball diameter. apparatus.
前記接触角を15°〜20°の範囲内に設定したことを特徴とする請求項1の差動装置。  The differential device according to claim 1, wherein the contact angle is set in a range of 15 ° to 20 °.
JP2003001771A 2003-01-08 2003-01-08 Differential Expired - Fee Related JP4345304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003001771A JP4345304B2 (en) 2003-01-08 2003-01-08 Differential

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003001771A JP4345304B2 (en) 2003-01-08 2003-01-08 Differential

Publications (2)

Publication Number Publication Date
JP2004211855A JP2004211855A (en) 2004-07-29
JP4345304B2 true JP4345304B2 (en) 2009-10-14

Family

ID=32819704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003001771A Expired - Fee Related JP4345304B2 (en) 2003-01-08 2003-01-08 Differential

Country Status (1)

Country Link
JP (1) JP4345304B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402081B2 (en) * 2009-02-25 2014-01-29 日本精工株式会社 Bearing device
EP3660342A4 (en) * 2017-07-24 2021-04-21 Nachi-Fujikoshi Corp. Differential for motor vehicle and transmission for motor vehicle

Also Published As

Publication number Publication date
JP2004211855A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP5375969B2 (en) Rotation support device for pinion shaft
JP6268711B2 (en) Multi-point contact ball bearing and manufacturing method thereof
US8794843B2 (en) Rotation support device for pinion shaft
JP2008106869A (en) Ball bearing
JP2016109253A (en) Rolling bearing
JP2009036348A (en) Tandem type double-row angular contact ball bearing and bearing device for pinion shaft
JP4345304B2 (en) Differential
JP2012202453A (en) Self-aligning roller bearing
JP2011027213A (en) Double-row roller bearing
KR20210098633A (en) A Rolling Bearing Having Variable Rated Capacity And Roller For Rolling Bearing
EP1471271A2 (en) Tapered roller bearing and final reduction gear
JP5862162B2 (en) Tandem angular contact ball bearings
JP2011085153A (en) Rolling bearing
JP2004211856A (en) Differential gear
JP4419388B2 (en) Differential
JP2000213545A5 (en) Cage for roller bearings and roller bearings
JP2011226583A (en) Decelerating device
JP2009180235A (en) Automatic self-aligning roller bearing
JP4221961B2 (en) Rolling bearing device
JPWO2019021555A1 (en) Automotive differentials and automotive transmissions
JP4228178B2 (en) Water pump bearing
JP2009068530A (en) Automatically aligning roller bearing
JP5778517B2 (en) Thrust bearing
JP2009216112A (en) Radial needle roller bearing
JP2018168991A (en) Double-row cylindrical roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees