JP4340421B2 - Rubber-modified styrenic resin composition and molded product thereof - Google Patents

Rubber-modified styrenic resin composition and molded product thereof Download PDF

Info

Publication number
JP4340421B2
JP4340421B2 JP2002165320A JP2002165320A JP4340421B2 JP 4340421 B2 JP4340421 B2 JP 4340421B2 JP 2002165320 A JP2002165320 A JP 2002165320A JP 2002165320 A JP2002165320 A JP 2002165320A JP 4340421 B2 JP4340421 B2 JP 4340421B2
Authority
JP
Japan
Prior art keywords
rubber
styrene
resin composition
meth
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002165320A
Other languages
Japanese (ja)
Other versions
JP2004010739A (en
Inventor
毅 山田
邦彦 小西
進 大岡
和義 江部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2002165320A priority Critical patent/JP4340421B2/en
Publication of JP2004010739A publication Critical patent/JP2004010739A/en
Application granted granted Critical
Publication of JP4340421B2 publication Critical patent/JP4340421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、透明性、衝撃強度、及び成形性に優れたゴム変性スチレン系樹脂組成物及びその成形品に関するものである。特に、成形品としては、パーソナルコンピュータ等のOA機器や、画像信号の各種モニター等に用いられる液晶表示装置等に用いられる導光板に関するものである。
【0002】
【従来の技術】
最近、照明ランプを備えた液晶表示装置のバックライト用導光体が使用されている。バックライトの方式としては、導光体を光源と液晶ユニットの間に挟んだ、いわゆる直下式と、光源を導光板のエッジに取り付けるエッジライト方式の2種が通常用いられている。光源を導光体の側面に配置し、光源から導光体に入射した光が発光面に対向する底面部で散乱する、エッジライト方式が主流となっている。こうした技術はこれまでに多数開示されている。
【0003】
例えば、実開昭61−157986号公報、実開昭62−87315号公報、実開昭63−43186号公報、実開平5−47922号公報等では、光源から遠ざかるにつれて光散乱量が増大するように凹凸を設けた導光体を使用する技術が開示されている。特開平2−165504号公報等では、光源からの光が効率よく観察側に出射できるよう形状を工夫した溝を導光体の発光面に対向する底面部に形成し、光源から遠ざかるほど溝の間隔を広く、かつ深溝にすることによって光散乱量を増大させる技術が開示されている。
更に、実開昭60−94605号公報では、光を散乱させる溝形状を導光体の発光面に対向する底面部に形成させると伴に、導光体の形状を、光源から遠ざかるほど厚みが減少する、楔形とすることによって、薄肉軽量化と高輝度化を達成しようとする技術が開示されている。
【0004】
【発明が解決しようとする課題】
このように、導光体に関する様々な技術が開示されているが、導光板に用いられている樹脂としては、ポリスチレンやアクリル樹脂、その中でもアクリル樹脂が主に検討されたが、アクリル樹脂は、吸湿性が高く、そのため導光板の寸法が変化しやすいという課題や、最近のOA機器の超軽量化のための要求には十分に応じられないという課題があった。
また、アクリル樹脂は射出成形する際、溶融時の粘度が高いため射出時間が長くなり、生産性が劣り経済性においても課題があった。溶融粘度を低下させ射出時間を短縮するために、成形温度を高めるとアクリル樹脂が分解し、成形品表面にシルバーストリークが発生し、商品価値を低下させるという課題も有していた。
【0005】
本発明者らは、前記課題を解消すべく種々検討した結果、特定割合のスチレン系単量体、(メタ)アクリル酸エステル系単量体、及びこれらの単量体と共重合可能なビニル系単量体からなる特定範囲の重量平均分子量(Mw)を有するスチレン−(メタ)アクリル酸エステル系共重合樹脂と、ジエン系ゴム状弾性体、スチレン系単量体、(メタ)アクリル酸エステル系単量体、及びこれらの単量体と共重合可能なビニル単量体からなる特定のゴム粒子径を有するグラフト共重合体とを主成分とするゴム変性スチレン系樹脂組成物であって、該ゴム変性スチレン系樹脂組成物中の残存モノマー量、及びオリゴマー量を特定の範囲に制御した樹脂が、吸湿性が小さく、強度が高く、透明性が高く、軽く、更に成形サイクルの短縮化が図れる成形品、特に導光板に好適であるという知見を得て本発明を完成するに至った。
【0006】
【課題を解決するための手段】
即ち、本発明は、(1)スチレン系単量体および(メタ)アクリル酸エステル系単量体からなり、塊状重合法、溶液重合法、懸濁重合法、および塊状−懸濁重合法のいずれかの重合法により製造されたスチレン−(メタ)アクリル酸エステル系共重合体と、ジエン系ゴム状弾性体、スチレン系単量体、(メタ)アクリル酸エステル系単量体、及びこれらの単量体と共重合可能なビニル単量体からなり、乳化重合法により製造されたグラフト共重合体溶融混合させることにより得られるゴム変性スチレン系樹脂組成物であって、該ゴム変性スチレン系樹脂組成物のTHF(テトラヒドロフラン)可溶分の重量平均分子量(Mw)が、60,000〜130,000であり、該可溶分のスチレン系単量体単位が20〜80質量%、(メタ)アクリル酸エステル系単量体単位が80〜20質量%、及びその他のビニル系単量体単位が0〜10質量%であり、ゴムの含有量が2〜15%であり、数平均ゴム粒子径が0.1〜0.5μmであり、残存モノマー量が100〜3000ppmであり、更にオリゴマー量が0.05〜2%であることを特徴とする導光板用ゴム変性スチレン系樹脂組成物、(2)アルカリ土類金属の含有量が10ppm以下であることを特徴とする(1)記載の導光板用ゴム変性スチレン系樹脂組成物、(3)(1)又は(2)記載のゴム変性スチレン系樹脂組成物を射出成形してなる導光板である。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明で用いられるスチレン系単量体としては、スチレン、α−メチルスチレン、p−メチルスチレン、o−メチルスチレン、m−メチルスチレン、エチルスチレン、p−t−ブチルスチレン等を挙げることができるが、好ましくはスチレンである。これらのスチレン系単量体は、単独でもよいが二種以上を併用してもよい。
【0008】
本発明で用いられる(メタ)アクリル酸エステル系単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレートのメタクリル酸エステル、メチルアクリレート、エチルアクリレート、n−ブチルアクリレート、2−メチルヘキシルアクリレート、2−エチルヘキシルアクリレート、デシルアクリレート等のアクリル酸エステルが挙げられるが、好ましくはメチル(メタ)アクリレート、又はn−ブチルアクリレート、特に好ましくはメチル(メタ)アクリレートである。これらの(メタ)アクリル酸エステル系単量体は単独で用いてもよいが二種以上を併用してもよい。
【0009】
更に、必要に応じてこれらの単量体と共重合可能なビニル系単量体としては、アクリル酸、メタクリル酸、アクリロニトリル、メタアクリロニトリル、N−フェニルマレイミド、N−シクロヘキシルマレイミド等が挙げられる。
【0010】
本発明で用いられるジエン系ゴム状弾性体としては、ポリブタジエン、スチレン−ブタジエンブロック共重合体、およびスチレン−ブタジエンランダム共重合体等が挙げられる。
【0011】
本発明でいうTHF(テトラヒドロフラン)可溶分とは、スチレン−(メタ)アクリル酸エステル系共重合体が主成分となる、それ以外のTHFに可溶な成分は全て含まれる。
【0012】
また、THF不溶分とは、グラフト共重合体が主成分となるが、それ以外のTHFに不溶な成分は全て含まれる。
【0013】
また、本発明のゴム変性スチレン系樹脂組成物は、スチレン−(メタ)アクリル酸エステル系共重合体とグラフト共重合体との屈折率の差が近似していることが良好な透明性を得るために好ましい。
【0014】
なお、スチレン−(メタ)アクリル酸エステル系共重合体を構成する各単量体の割合は、特に限定されるものではないが、好ましくはスチレン系単量体単位20〜80質量%、(メタ)アクリル酸エステル系単量体単位20〜80質量%、および必要に応じて用いられるこれらの単量体と共重合可能なビニル系単量体単位0〜10質量%であり、その範囲内でグラフト共重合体との屈折率の差が近似するような単量体比であることがさらに好ましい。
【0015】
また、グラフト共重合体を構成するゴム状弾性体及び各単量体の量は、特に限定されるものではないが、好ましくはゴム状弾性体30〜80質量部に、スチレン系単量体単位20〜80質量%、(メタ)アクリル酸エステル系単量体単位20〜80質量%、および必要に応じて用いられるこれらの単量体と共重合可能なビニル系単量体単位0〜10質量%からなるスチレン−(メタ)アクリル酸エステル系共重合体20〜70質量部がグラフトしたグラフト共重合体であり、その範囲内でグラフトしているスチレン−(メタ)アクリル酸エステル系共重合体とゴム状弾性体との屈折率の差が近似するような単量体比であることがさらに好ましい。
【0016】
本発明で用いられる該ゴム変性スチレン系樹脂組成物のTHF(テトラヒドロフラン)可溶分の重量平均分子量(Mw)は、60,000〜130,000であることが好ましい。重量平均分子量(Mw)が60,000未満では、衝撃強度が低下するので好ましくなく、130,000を超えるとフローが低下し成形サイクルが長くなり好ましくない。
【0017】
本発明で用いられる該ゴム変性スチレン系樹脂組成物のTHF(テトラヒドロフラン)可溶分のスチレン系単量体単位が20〜80質量%、(メタ)アクリル酸エステル系単量体単位が80〜20質量%、及びその他のビニル系単量体単位が0〜10質量%であることが好ましい。この範囲を外れると透明性が低下し好ましくない。
【0018】
本発明で用いられる該ゴム変性スチレン系樹脂組成物のゴム量は、2〜15%であることが好ましい。ゴム量が2%未満では衝撃強度が低下し、15%を超えると透明性が低下するので好ましくない。
【0019】
本発明で用いられる該ゴム変性スチレン系樹脂組成物のゴム粒径は、0.1〜0.5μmであることが好ましい。ゴム粒子径が0.1μm未満では衝撃強度が低下し、0.5μmを超えると透明性が低下するので好ましくない。
【0020】
本発明で用いられる該ゴム変性スチレン系樹脂組成物の残存モノマー量は、100〜3000ppmであることが好ましい。残存モノマー量が100ppm未満では成形不良を生じ、3000ppmを超えると成形不良や耐熱性低下を生じるので好ましくない。
【0021】
本発明で用いられる該ゴム変性スチレン系樹脂組成物のオリゴマー量は0.05〜2%であることが好ましい。オリゴマー量が0.05%未満では成形不良を生じ、2%を超えると耐熱性が低下するので好ましくない。
尚、本発明では、オリゴマー量は、凍結粉砕したサンプル(Xgとする)をソックスレー等の抽出器を用いてn−ヘキサンを6時間以上還流させることにより得た抽出液を、蒸発乾固させることにより抽出物(Ygとする)を得て、次式により算出する。
オリゴマー量(%)=Y/X×100
上記のことから、オリゴマー量(%)は、n−ヘキサン抽出分(%)と同等であるといえる。
【0022】
本発明で用いられるスチレン−(メタ)アクリル酸エステル系共重合体は、アルカリ土類金属塩を分散剤として懸濁重合することができるが、ゴム変性スチレン系樹脂組成物中に残存するアルカリ土類金属が更に透明性を良好とするために10ppm以下であることが好ましい。
【0023】
本発明のゴム変性スチレン系樹脂組成物は、塊状重合法、溶液重合法、懸濁重合法、塊状−懸濁重合法、乳化重合法等の公知技術により製造することができる。
また、回分式重合法、連続式重合法のいずれの方法も用いることができる。
【0024】
好ましくは、グラフト共重合体含有樹脂を乳化重合法により製造し、かつスチレン−(メタ)アクリル酸エステル系共重合体を塊状重合法、溶液重合法、懸濁重合法、および塊状−懸濁重合法のいずれかの重合法により製造し、該グラフト共重合体含有樹脂と該スチレン−(メタ)アクリル酸エステル系共重合体とを溶融混合させることにより製造することであり、耐衝撃性および透明性が優れ、特に射出成形時の成形サイクルの短縮化を図ることができるゴム変性スチレン系樹脂組成物を得ることが出来る。
【0025】
本発明のゴム変性スチレン系樹脂組成物には、公知の耐候剤、滑剤、可塑剤、着色剤、帯電防止剤、鉱油等の添加剤を、本発明のゴム変性スチレン系樹脂組成物の性能を損なわない範囲で配合してもよい。
【0026】
本発明の導光板には、本発明の目的を損なわない範囲で、その他の成分として架橋アクリル系粒子、架橋スチレン系粒子等の有機系光拡散剤、硫酸バリウム、炭酸カルシウム、酸化チタン等の無機系光拡散剤等を配合することができる。
【0027】
本発明の導光板を得る方法としては、射出成形機等で型枠あるいは金型内に樹脂を充填することにより、任意の形状の成形体を得ることができる。
【実施例】
以下、詳細な内容について実施例を用いて説明するが、本発明は以下の実施例に限定されるものではない。
【0028】
評価方法
(1)MFR JIS K−6874に準じて200℃、5kg荷重にて測定した。
(2)VSP JIS K−7206に準じて5kg荷重にて測定した。
(4)全光線透過率 ASTM D1003に準じて測定した。
(5)HaZe ASTM D1003に準じて測定した。
(6)衝撃強度 電動射出成形機(株)日本製鋼所製J350ELIIIにより、成形温度270℃、金型温度50℃で縦292.5mm、横220mm、厚さ2mmの導光板を成形し、その導光板の面に錘先端5R、錘径14mmφ、重量50gfの錘を落下させ、50%破壊高さで破壊エネルギーとして表した。
破壊エネルギーが80Kg・cm以上のものを好ましい衝撃強度とした。
(7)成形性 電動射出成形機(株)日本製鋼所製J350ELIIIにより、成形温度270℃、金型温度50℃で縦292.5mm、横220mm、厚さ2mmの導光板を1時間当たりに得られる個数を表した。60個/Hr以上得られるものを好ましい成形性とした。
【0029】
共重合樹脂A1の製造
容量250リットルのオートクレーブに、純水100kgにドデシルベンゼンスルホン酸ナトリウムを0.5g、第三リン酸カルシウム250g、スチレン40kg、メチルメタアクリレート60kgを入れ、重合開始剤としてt−ブチルパーオキシイソブチレートを100g、t−ドデシルメルカプタン420gを添加し、回転数150rpmの撹拌下に混合液を分散させた。そしてこの混合液を温度100℃で8時間、130℃で2.5時間加熱重合させた。反応終了後、洗浄、脱水後乾燥し、ビーズ状の共重合樹脂を得た。これを共重合樹脂A1とした。
【0030】
共重合樹脂A2の製造
容量250リットルのオートクレーブに、純水100kgにドデシルベンゼンスルホン酸ナトリウムを0.5g、第三リン酸カルシウム250g、スチレン40kg、メチルメタアクリレート60kgを入れ、重合開始剤としてt−ブチルパーオキシイソブチレートを100g、t−ドデシルメルカプタン180gを添加し、回転数150rpmの撹拌下に混合液を分散させた。そしてこの混合液を温度100℃で8時間、130℃で2.5時間加熱重合させた。反応終了後、洗浄、脱水後乾燥し、ビーズ状の共重合樹脂を得た。これを共重合樹脂A2とした。
【0031】
共重合樹脂A3の製造
容量250リットルのオートクレーブに、純水100kgにドデシルベンゼンスルホン酸ナトリウムを0.5g、第三リン酸カルシウム250g、スチレン40kg、メチルメタアクリレート60kgを入れ、重合開始剤としてt−ブチルパーオキシイソブチレートを100g、t−ドデシルメルカプタン220gを添加し、回転数150rpmの撹拌下に混合液を分散させた。そしてこの混合液を温度100℃で8時間、130℃で2.5時間加熱重合させた。反応終了後、洗浄、脱水後乾燥し、ビーズ状の共重合樹脂を得た。これを共重合樹脂A3とした。
【0032】
共重合樹脂A4の製造
容量250リットルのオートクレーブに、純水100kgにドデシルベンゼンスルホン酸ナトリウムを0.5g、第三リン酸カルシウム250g、スチレン40kg、メチルメタアクリレート60kgを入れ、重合開始剤としてt−ブチルパーオキシイソブチレートを100g、t−ドデシルメルカプタン840gを添加し、回転数150rpmの撹拌下に混合液を分散させた。そしてこの混合液を温度100℃で8時間、130℃で2.5時間加熱重合させた。反応終了後、洗浄、脱水後乾燥し、ビーズ状の共重合樹脂を得た。これを共重合樹脂A4とした。
【0033】
共重合樹脂A5の製造
容積約15リットルの完全混合型反応器、容積約40リットルの塔式プラグフロー型反応器、予熱器を付した第1脱揮槽、スタティックミキサー、予熱器を付した第2脱揮槽を直列に接続して構成した。スチレン40質量部、メタクリル酸メチル60質量部で構成する単量体溶液に対し、エチルベンゼン15質量部、t−ブチルパーオキシイソプロピルモノカーボネート(1時間半減期温度:118℃)0.03質量部、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート(酸化防止剤)を0.1質量部、t−ドデシルメルカプタン0.1質量部を混合し原料溶液とした。この原料溶液を毎時6.9kgで温度120℃に制御した完全混合型反応器に供給した。さらにこの重合液を流れの方向に向かって120℃から150℃の勾配がつくように調整した塔式プラグフロー型反応器に導入した。この重合液を予熱器で加温しながら、10.6kPaに減圧した第1脱揮槽に導入し、第1脱揮槽内温度230℃にて未反応単量体の一部を除去した。さらにこの液をギアポンプで抜き出しながら、スタティックミキサーに水を毎時18g(単量体の合計100質量部に対し0.3質量部)添加して混合し、次に予熱器で加温しながら、1.3kPaに減圧した第2脱揮槽に導入し、第2脱揮槽内温度230℃にて未反応単量体を除去した。これをギアポンプで抜き出し、ストランド状に押出し切断することによりペレット形状の共重合樹脂を得た。これを共重合樹脂A5とした。
【0034】
共重合樹脂A6の製造
t−ブチルパーオキシイソプロピルモノカーボネートを原料溶液に添加しなかった以外は共重合樹脂A5の製法と同様に行った。得られた共重合樹脂をA6とした。
【0035】
共重合樹脂A7の製造
容量250リットルのオートクレーブに、純水100kgにドデシルベンゼンスルホン酸ナトリウムを0.5g、第三リン酸カルシウム250g、スチレン40kg、メチルメタアクリレート60kgを入れ、重合開始剤としてt−ブチルパーオキシイソブチレートを100g、t−ドデシルメルカプタン420gを添加し、回転数150rpmの撹拌下に混合液を分散させた。そしてこの混合液を温度100℃で8時間、120℃で2.5時間加熱重合させた。反応終了後、洗浄、脱水後乾燥し、ビーズ状の共重合樹脂を得た。これを共重合樹脂A7とした。
【0036】
共重合樹脂A8の製造
共重合樹脂A1を80℃の石油エーテルにて4時間還流させ、オリゴマー分を抽出除去したものを共重合体A8とした。
【0037】
共重合樹脂A9の製造
容量250リットルのオートクレーブに、純水100kgにドデシルベンゼンスルホン酸ナトリウムを0.5g、第三リン酸カルシウム250g、スチレン40kg、メチルメタアクリレート60kgを入れ、重合開始剤としてt−ブチルパーオキシイソブチレートを100g、t−ドデシルメルカプタン420gを添加し、回転数150rpmの撹拌下に混合液を分散させた。そしてこの混合液を温度100℃で8時間、130℃で10時間加熱重合させた。反応終了後、洗浄、脱水後乾燥し、ビーズ状の共重合樹脂を得た。これを共重合樹脂A9とした。
【0038】
グラフト共重合体B1の製造
撹拌機付きオートクレーブにブタジエン49部、スチレン16部、純水150部、オレイン酸カリウム0.5部、t−ブチルハイドロパーオキサイド0.13部、ロンガリット0.03部、硫酸第一鉄0.002部、エチレンジアミンテトラ酢酸ナトリウム塩0.003部、ピロリン酸ナトリウム0.1部、t−ドデシルメルカプタン1.0部を仕込み、温度45℃にて17時間重合した。得られたスチレン−ブタジエンゴムラテックスの数平均粒子径は0.08μmであった。ラテックスに、ナトリウムスルホサクシネート0.005部を加えて安定化させた。このラテックスに、撹拌下にて、塩化水素水溶液を加えることにより、ラテックス粒子を凝集肥大化させ、数平均粒子径0.2μmのゴムラテックスを得た。このラテックスにスチレン16部、MMA17部、n−ブチルアクリレート2部、ジビニルベンゼン0.04部、t−ブチルハイドロパーオキサイド0.08部を加え、温度60℃で6時間重合した。このラテックスにt−ブチルフェノール0.5部、ジラウリルチオプロピオネート0.5部を添加した後、塩酸により共重合体を析出し、中和洗浄、脱水乾燥して、粉末状のグラフト共重合体B1を得た。このグラフト共重合体B1のゴム成分量は48.0%であった。
【0039】
グラフト共重合体B1の製造と同様の方法にて、ゴムラテックスの凝集条件のみを変化させることにより、数平均粒子径0.08μmの分散粒子を有するグラフト共重合体B2及び0.6μmの分散粒子を有するグラフト共重合体B3を得た。
【0040】
グラフト共重合体B4の製造
グラフト共重合体B1を80℃の石油エーテルにて4時間還流させ、オリゴマー分を抽出除去したものをグラフト共重合体B4とした。
【0041】
グラフト共重合体B5の製造
撹拌機付きオートクレーブにブタジエン49部、スチレン16部、純水150部、オレイン酸カリウム0.5部、t−ブチルハイドロパーオキサイド0.13部、ロンガリット0.03部、硫酸第一鉄0.002部、エチレンジアミンテトラ酢酸ナトリウム塩0.003部、ピロリン酸ナトリウム0.1部、t−ドデシルメルカプタン1.0部を仕込み、温度45℃にて17時間重合した。得られたスチレン−ブタジエンゴムラテックスの数平均粒子径は0.08μmであった。ラテックスに、ナトリウムスルホサクシネート0.005部を加えて安定化させた。このラテックスに、撹拌下にて、塩化水素水溶液を加えることにより、ラテックス粒子を凝集肥大化させ、数平均粒子径0.2μmのゴムラテックスを得た。このラテックスにスチレン16部、MMA17部、n−ブチルアクリレート2部、ジビニルベンゼン0.04部、t−ブチルハイドロパーオキサイド0.08部を加え、温度60℃で6時間、更に温度90℃で6時間重合した。このラテックスにt−ブチルフェノール0.5部、ジラウリルチオプロピオネート0.5部を添加した後、塩酸により共重合体を析出し、中和洗浄、脱水乾燥して、粉末状のグラフト共重合体B5を得た。このグラフト共重合体B5のゴム成分量は48.0%であった。
【0042】
実施例1〜3、比較例1〜10
上記で得られた共重合体A1〜A9とグラフト共重合体B1〜B5を表2に示す配合にて、東芝機械社製二軸押し機TEM35Bを用いて200℃の温度でペレット化した。次いで得られたペレットを電動射出成形機(株)日本製鋼所製J350ELIIIにより、成形温度270℃で縦292.5mm、横220mm、厚さ2mmの導光板を得た。次いで、得られた導光板の特性評価を行った。
その結果を表3に示す。
【0043】
【表1】

Figure 0004340421
【0044】
【表2】
Figure 0004340421
【0045】
【表3】
Figure 0004340421
【0046】
表3より、比較例1は共重合樹脂A3の重量平均分子量(Mw)が130,000を超えるため、得られるゴム変性スチレン系樹脂組成物のMFRが小さく成形性に劣る。
比較例2は共重合樹脂A4の重量平均分子量(Mw)が60,000未満のため、得られるゴム変性スチレン系樹脂組成物の衝撃強度が劣る。
比較例3は共重合樹脂A6のオリゴマ−量が2.3%であり、得られるゴム変性スチレン系樹脂組成物のオリゴマー量が2%を超えるためVSPが劣る。
比較例4は共重合樹脂A7の残存モノマー量が3700ppmであり、得られるゴム変性スチレン系樹脂組成物の残存モノマー量が3000ppmを超えるためVSPが劣る。
比較例5は、グラフト共重合体B1の配合量が3%のため、得られるゴム変性スチレン系樹脂組成物のゴム含有量が2%未満のため、衝撃強度が劣る。
比較例6は、グラフト共重合体B1の配合量が40%のため、得られるゴム変性スチレン系樹脂組成物のゴム含有量が15%を超えるため、全光線透過率が低下し、HaZeが大きくなり透明性に劣るものとなり、またMFRが3となり成形及び性衝撃強度が劣る。更にVSPが劣る。
比較例7は、グラフト共重合体B2の数平均粒子径が0.1μm未満のため、得られるゴム変性スチレン系樹脂組成物の衝撃強度が劣る。
比較例8は、グラフト共重合体B3の数平均ゴム粒子径が0.5μmを超えるため、全光線透過率が低下し、HaZeが大きくなり透明性に劣る。
比較例9は、ゴム変性スチレン系樹脂組成物中のオリゴマー量が、0.05%未満のため、成形不良を生じ成形品外観が劣る。
比較例10は、ゴム変性スチレン系樹脂組成物中の残存モノマー量が、100ppm未満のため、成形不良を生じ成形品外観が劣る。
【0047】
【発明の効果】
本発明により、透明性、衝撃強度、及び成形性に優れたゴム変性スチレン系樹脂組成物及びその成形品を提供することができる。特に、成形品としては、衝撃強度が強く、透明性が高く、更に成形サイクルの短縮化が可能な導光板を提供することができる。また、本発明により、製造コストを低減でき、更に外観良好な導光板を容易に得ることができるため、工業上極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rubber-modified styrenic resin composition excellent in transparency, impact strength, and moldability, and a molded product thereof. In particular, the molded article relates to a light guide plate used for OA equipment such as a personal computer, a liquid crystal display device used for various monitors of image signals, and the like.
[0002]
[Prior art]
Recently, a light guide for a backlight of a liquid crystal display device provided with an illumination lamp has been used. Two types of backlights are commonly used: a so-called direct type in which a light guide is sandwiched between a light source and a liquid crystal unit, and an edge light type in which the light source is attached to the edge of the light guide plate. An edge light system in which a light source is disposed on a side surface of a light guide and light incident on the light guide from the light source is scattered on the bottom surface facing the light emitting surface is the mainstream. Many such techniques have been disclosed so far.
[0003]
For example, in Japanese Utility Model Laid-Open Nos. 61-157986, 62-87315, 63-43186, and 5-47922, the amount of light scattering increases as the distance from the light source increases. A technique of using a light guide provided with unevenness is disclosed. In JP-A-2-165504, etc., a groove whose shape is devised so that light from the light source can be efficiently emitted to the observation side is formed on the bottom surface portion facing the light emitting surface of the light guide, and the groove is further away from the light source. A technique for increasing the amount of light scattering by widening the distance and making deep grooves is disclosed.
Furthermore, in Japanese Utility Model Laid-Open No. 60-94605, a groove shape for scattering light is formed on the bottom surface portion facing the light emitting surface of the light guide, and the thickness of the light guide is increased as the distance from the light source increases. There is disclosed a technique for achieving a reduction in thickness and weight and an increase in brightness by reducing the wedge shape.
[0004]
[Problems to be solved by the invention]
As described above, various techniques related to the light guide are disclosed, but as the resin used for the light guide plate, polystyrene and acrylic resin, among which acrylic resin was mainly studied. There is a problem that the hygroscopicity is high, and therefore the size of the light guide plate is easily changed, and the recent demand for ultra-lightweight OA equipment cannot be sufficiently met.
In addition, when an acrylic resin is injection-molded, since the viscosity at the time of melting is high, the injection time becomes long, the productivity is inferior, and there is a problem in economy. In order to reduce the melt viscosity and shorten the injection time, when the molding temperature is increased, the acrylic resin is decomposed, silver streaks are generated on the surface of the molded product, and there is a problem that the commercial value is lowered.
[0005]
As a result of various studies to solve the above problems, the present inventors have found that a specific proportion of styrene monomer, (meth) acrylic acid ester monomer, and vinyl copolymerizable with these monomers. Styrene- (meth) acrylic ester copolymer resin having a specific range of weight average molecular weight (Mw), diene rubber-like elastic body, styrene monomer, (meth) acrylic ester A rubber-modified styrenic resin composition comprising as a main component a monomer and a graft copolymer having a specific rubber particle diameter composed of a vinyl monomer copolymerizable with these monomers, Resin in which the amount of residual monomer and oligomer in the rubber-modified styrene resin composition is controlled within a specific range has low hygroscopicity, high strength, high transparency, light weight, and can shorten the molding cycle. Molding And we have completed the present invention obtained a finding that is particularly suitable in the light guide plate.
[0006]
[Means for Solving the Problems]
That is, the present invention comprises (1) a styrene monomer and a (meth) acrylic ester monomer, and is any of a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and a bulk-suspension polymerization method. Styrene- (meth) acrylic acid ester copolymers produced by such polymerization methods, diene rubber-like elastic bodies, styrene monomers, (meth) acrylic acid ester monomers, and single monomers thereof. A rubber-modified styrenic resin composition comprising a vinyl monomer copolymerizable with a monomer and obtained by melt-mixing with a graft copolymer produced by an emulsion polymerization method, The composition has a weight-average molecular weight (Mw) of THF (tetrahydrofuran) solubles of 60,000 to 130,000, 20 to 80% by mass of the styrene monomer unit of the solubles, (meta) Ak Le ester monomer units 80 to 20 mass%, and 0 to 10 wt% other vinyl-based monomer unit, 2 to 15% content of the rubber, number-average rubber particle diameter Is a rubber-modified styrenic resin composition for a light guide plate , wherein the residual monomer amount is 100 to 3000 ppm, and the oligomer amount is 0.05 to 2%, 2) The rubber-modified styrene resin composition for a light guide plate according to (1), wherein the content of alkaline earth metal is 10 ppm or less, and the rubber-modified styrene according to (3) (1) or (2) It is a light-guide plate formed by injection-molding a resin composition.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Examples of the styrene monomer used in the present invention include styrene, α-methylstyrene, p-methylstyrene, o-methylstyrene, m-methylstyrene, ethylstyrene, pt-butylstyrene, and the like. Is preferably styrene. These styrenic monomers may be used alone or in combination of two or more.
[0008]
As the (meth) acrylic acid ester monomer used in the present invention, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate methacrylate ester, methyl acrylate Acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, etc., preferably methyl (meth) acrylate or n-butyl acrylate, particularly preferably methyl (Meth) acrylate. These (meth) acrylic acid ester monomers may be used alone or in combination of two or more.
[0009]
Furthermore, examples of the vinyl monomer copolymerizable with these monomers as required include acrylic acid, methacrylic acid, acrylonitrile, methacrylonitrile, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
[0010]
Examples of the diene rubber-like elastic body used in the present invention include polybutadiene, styrene-butadiene block copolymer, and styrene-butadiene random copolymer.
[0011]
The THF (tetrahydrofuran) soluble component referred to in the present invention includes all other components soluble in THF, the main component of which is a styrene- (meth) acrylic ester copolymer.
[0012]
Further, the THF-insoluble component is mainly composed of a graft copolymer, but all other components insoluble in THF are included.
[0013]
In addition, the rubber-modified styrene resin composition of the present invention has good transparency that the difference in refractive index between the styrene- (meth) acrylate copolymer and the graft copolymer is approximate. Therefore, it is preferable.
[0014]
The ratio of each monomer constituting the styrene- (meth) acrylic acid ester copolymer is not particularly limited, but preferably 20 to 80% by mass of styrene monomer units (meta) ) 20 to 80% by mass of acrylic acid ester monomer units, and 0 to 10% by mass of vinyl monomer units copolymerizable with these monomers used as necessary, The monomer ratio is more preferably such that the difference in refractive index from the graft copolymer is approximate.
[0015]
Further, the amount of the rubber-like elastic body and each monomer constituting the graft copolymer is not particularly limited, but preferably 30 to 80 parts by mass of the rubber-like elastic body is a styrene monomer unit. 20 to 80% by mass, (meth) acrylic acid ester monomer unit 20 to 80% by mass, and vinyl monomer unit 0 to 10 mass copolymerizable with these monomers used as necessary % Styrene- (meth) acrylic acid ester copolymer 20-70 parts by mass of graft copolymer, and styrene- (meth) acrylic acid ester copolymer grafted within the range More preferably, the monomer ratio is such that the difference in refractive index between the rubbery elastic body and the rubber-like elastic body is approximate.
[0016]
The rubber-modified styrene resin composition used in the present invention preferably has a weight-average molecular weight (Mw) of THF (tetrahydrofuran) soluble component of 60,000 to 130,000. If the weight average molecular weight (Mw) is less than 60,000, the impact strength decreases, which is not preferable. If it exceeds 130,000, the flow decreases and the molding cycle becomes longer.
[0017]
The rubber-modified styrene resin composition used in the present invention has 20 to 80% by mass of styrene monomer units soluble in THF (tetrahydrofuran), and 80 to 20 (meth) acrylate monomer units. It is preferable that the mass% and other vinyl monomer units are 0 to 10 mass%. Outside this range, the transparency is lowered, which is not preferable.
[0018]
The rubber amount of the rubber-modified styrenic resin composition used in the present invention is preferably 2 to 15%. If the amount of rubber is less than 2%, the impact strength decreases, and if it exceeds 15%, the transparency decreases, which is not preferable.
[0019]
The rubber-modified styrene resin composition used in the present invention preferably has a rubber particle size of 0.1 to 0.5 μm. If the rubber particle diameter is less than 0.1 μm, the impact strength decreases, and if it exceeds 0.5 μm, the transparency decreases, which is not preferable.
[0020]
The residual monomer amount of the rubber-modified styrene resin composition used in the present invention is preferably 100 to 3000 ppm. If the residual monomer amount is less than 100 ppm, molding defects occur, and if it exceeds 3000 ppm, molding defects and heat resistance decrease are undesirable.
[0021]
The oligomer amount of the rubber-modified styrene resin composition used in the present invention is preferably 0.05 to 2%. If the amount of the oligomer is less than 0.05%, molding failure occurs, and if it exceeds 2%, the heat resistance decreases, which is not preferable.
In the present invention, the amount of oligomer is determined by evaporating and drying the extract obtained by refluxing n-hexane for 6 hours or more with an extractor such as Soxhlet using a freeze-ground sample (Xg). To obtain an extract (referred to as Yg), which is calculated by the following equation.
Oligomer amount (%) = Y / X × 100
From the above, it can be said that the oligomer amount (%) is equivalent to the n-hexane extract (%).
[0022]
The styrene- (meth) acrylic acid ester copolymer used in the present invention can be subjected to suspension polymerization using an alkaline earth metal salt as a dispersant, but remains in the rubber-modified styrene resin composition. In order to further improve the transparency of the similar metal, it is preferably 10 ppm or less.
[0023]
The rubber-modified styrenic resin composition of the present invention can be produced by known techniques such as bulk polymerization, solution polymerization, suspension polymerization, bulk-suspension polymerization, and emulsion polymerization.
In addition, any of a batch polymerization method and a continuous polymerization method can be used.
[0024]
Preferably, the graft copolymer-containing resin is produced by an emulsion polymerization method, and the styrene- (meth) acrylic ester copolymer is produced by a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and a bulk-suspension weight. It is produced by melt polymerization of the graft copolymer-containing resin and the styrene- (meth) acrylic acid ester copolymer, and is produced by any polymerization method. It is possible to obtain a rubber-modified styrenic resin composition that is excellent in properties and in particular can shorten the molding cycle during injection molding.
[0025]
The rubber-modified styrenic resin composition of the present invention is added with known weathering agents, lubricants, plasticizers, colorants, antistatic agents, mineral oils and other additives, and the performance of the rubber-modified styrene-based resin composition of the present invention. You may mix | blend in the range which does not impair.
[0026]
In the light guide plate of the present invention, other components such as cross-linked acrylic particles, cross-linked styrene particles and other organic light diffusing agents, barium sulfate, calcium carbonate, titanium oxide and the like are included within the scope of the present invention. A system light diffusing agent or the like can be blended.
[0027]
As a method for obtaining the light guide plate of the present invention, a molded body having an arbitrary shape can be obtained by filling a mold or a mold with a resin with an injection molding machine or the like.
【Example】
Hereinafter, although detailed content is demonstrated using an Example, this invention is not limited to a following example.
[0028]
Evaluation Method (1) MFR Measured according to JIS K-6874 at 200 ° C. and 5 kg load.
(2) Measured with a 5 kg load according to VSP JIS K-7206.
(4) Total light transmittance It measured according to ASTM D1003.
(5) Measured according to HaZe ASTM D1003.
(6) Impact strength A light guide plate having a molding temperature of 270 ° C. and a mold temperature of 50 ° C., having a length of 292.5 mm, a width of 220 mm, and a thickness of 2 mm was formed by using an electric injection molding machine J350ELIII. A weight tip 5R, a weight diameter of 14 mmφ, and a weight of 50 gf was dropped on the surface of the optical plate, and expressed as breaking energy at a breaking height of 50%.
A material having a fracture energy of 80 kg / cm or more was determined as a preferred impact strength.
(7) Formability Electric light injection molding machine J350ELIII manufactured by Nippon Steel Works, a light guide plate with a molding temperature of 270 ° C and a mold temperature of 50 ° C of length 292.5mm, width 220mm, and thickness 2mm was obtained per hour. The number that can be expressed. What was obtained 60 pieces / Hr or more was made into the preferable moldability.
[0029]
Copolymer resin A1 production capacity 250 liters of autoclave with a capacity of 250 liters, 0.5 g of sodium dodecylbenzenesulfonate, 250 g of tribasic calcium phosphate, 40 kg of styrene, 60 kg of methyl methacrylate are added to 100 kg of pure water. 100 g of oxyisobutyrate and 420 g of t-dodecyl mercaptan were added, and the mixed solution was dispersed with stirring at a rotational speed of 150 rpm. The mixture was subjected to heat polymerization at a temperature of 100 ° C. for 8 hours and at 130 ° C. for 2.5 hours. After completion of the reaction, washing, dehydration and drying were performed to obtain a bead-shaped copolymer resin. This was designated as copolymer resin A1.
[0030]
Copolymer resin A2 production capacity In a 250 liter autoclave, 100 g of pure water was charged with 0.5 g of sodium dodecylbenzenesulfonate, 250 g of tricalcium phosphate, 40 kg of styrene, and 60 kg of methyl methacrylate. 100 g of oxyisobutyrate and 180 g of t-dodecyl mercaptan were added, and the mixed solution was dispersed with stirring at a rotational speed of 150 rpm. The mixture was subjected to heat polymerization at a temperature of 100 ° C. for 8 hours and at 130 ° C. for 2.5 hours. After completion of the reaction, washing, dehydration and drying were performed to obtain a bead-shaped copolymer resin. This was designated as copolymer resin A2.
[0031]
Copolymer Resin A3 Production Capacity: 250 liters of autoclave, 100 g of pure water, 0.5 g of sodium dodecylbenzenesulfonate, 250 g of tribasic calcium phosphate, 40 kg of styrene, 60 kg of methyl methacrylate are added as a polymerization initiator. 100 g of oxyisobutyrate and 220 g of t-dodecyl mercaptan were added, and the mixed solution was dispersed with stirring at a rotational speed of 150 rpm. The mixture was subjected to heat polymerization at a temperature of 100 ° C. for 8 hours and at 130 ° C. for 2.5 hours. After completion of the reaction, washing, dehydration and drying were performed to obtain a bead-shaped copolymer resin. This was designated as copolymer resin A3.
[0032]
Copolymer resin A4 production capacity: 250 liters of autoclave, 100 g of pure water, 0.5 g of sodium dodecylbenzenesulfonate, 250 g of tribasic calcium phosphate, 40 kg of styrene, 60 kg of methyl methacrylate are added as a polymerization initiator. 100 g of oxyisobutyrate and 840 g of t-dodecyl mercaptan were added, and the mixed solution was dispersed with stirring at a rotational speed of 150 rpm. The mixture was subjected to heat polymerization at a temperature of 100 ° C. for 8 hours and at 130 ° C. for 2.5 hours. After completion of the reaction, washing, dehydration and drying were performed to obtain a bead-shaped copolymer resin. This was designated as copolymer resin A4.
[0033]
Production volume of copolymer resin A5: about 15 liters of fully mixed reactor, about 40 liters of tower-type plug flow reactor, first devolatilizer tank with preheater, static mixer, preheater Two devolatilization tanks were connected in series. For a monomer solution composed of 40 parts by mass of styrene and 60 parts by mass of methyl methacrylate, 15 parts by mass of ethylbenzene, 0.03 parts by mass of t-butylperoxyisopropyl monocarbonate (1 hour half-life temperature: 118 ° C.), 0.1 parts by mass of octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (antioxidant) and 0.1 parts by mass of t-dodecyl mercaptan were mixed to obtain a raw material solution. This raw material solution was supplied to a fully mixed reactor controlled at a temperature of 120 ° C. at 6.9 kg / hour. Further, this polymerization solution was introduced into a column type plug flow reactor adjusted so as to have a gradient of 120 ° C. to 150 ° C. in the flow direction. The polymerization solution was introduced into a first devolatilization tank whose pressure was reduced to 10.6 kPa while heating with a preheater, and a part of the unreacted monomer was removed at a temperature in the first devolatilization tank of 230 ° C. Further, while extracting this liquid with a gear pump, 18 g of water per hour (0.3 parts by mass with respect to a total of 100 parts by mass of the monomer) was added to and mixed with the static mixer, and then heated with a preheater. It introduce | transduced into the 2nd devolatilization tank pressure-reduced to 0.3 kPa, and the unreacted monomer was removed at the temperature in the 2nd devolatilization tank at 230 degreeC. This was extracted with a gear pump and extruded into a strand shape to obtain a pellet-shaped copolymer resin. This was designated as copolymer resin A5.
[0034]
Production of copolymer resin A6 The procedure was the same as that for copolymer resin A5 except that t-butylperoxyisopropyl monocarbonate was not added to the raw material solution. The obtained copolymer resin was designated as A6.
[0035]
Copolymer resin A7 production capacity: 250 liters of autoclave, 100 g of pure water, 0.5 g of sodium dodecylbenzenesulfonate, 250 g of tribasic calcium phosphate, 40 kg of styrene, 60 kg of methyl methacrylate are added as a polymerization initiator. 100 g of oxyisobutyrate and 420 g of t-dodecyl mercaptan were added, and the mixed solution was dispersed with stirring at a rotational speed of 150 rpm. The mixture was subjected to heat polymerization at a temperature of 100 ° C. for 8 hours and at 120 ° C. for 2.5 hours. After completion of the reaction, washing, dehydration and drying were performed to obtain a bead-shaped copolymer resin. This was designated as copolymer resin A7.
[0036]
Production of Copolymer Resin A8 Copolymer resin A1 was refluxed with petroleum ether at 80 ° C. for 4 hours, and the oligomer was extracted and removed to obtain copolymer A8.
[0037]
Copolymer A9 Production capacity of 250 liters in an autoclave with a capacity of 250 liters, 0.5 g of sodium dodecylbenzenesulfonate, 250 g of tricalcium phosphate, 40 kg of styrene and 60 kg of methyl methacrylate are added to 100 kg of pure water. 100 g of oxyisobutyrate and 420 g of t-dodecyl mercaptan were added, and the mixed solution was dispersed with stirring at a rotational speed of 150 rpm. The mixture was subjected to heat polymerization at a temperature of 100 ° C. for 8 hours and at 130 ° C. for 10 hours. After completion of the reaction, washing, dehydration and drying were performed to obtain a bead-shaped copolymer resin. This was designated as copolymer resin A9.
[0038]
Production of graft copolymer B1 In an autoclave equipped with a stirrer, 49 parts of butadiene, 16 parts of styrene, 150 parts of pure water, 0.5 part of potassium oleate, 0.13 part of t-butyl hydroperoxide, 0.03 part of Rongalite, First, 0.002 part of ferrous sulfate, 0.003 part of ethylenediaminetetraacetic acid sodium salt, 0.1 part of sodium pyrophosphate, and 1.0 part of t-dodecyl mercaptan were charged and polymerized at a temperature of 45 ° C. for 17 hours. The number average particle diameter of the obtained styrene-butadiene rubber latex was 0.08 μm. The latex was stabilized by adding 0.005 part of sodium sulfosuccinate. The latex particles were agglomerated and enlarged by adding an aqueous hydrogen chloride solution to the latex under stirring to obtain a rubber latex having a number average particle size of 0.2 μm. To this latex, 16 parts of styrene, 17 parts of MMA, 2 parts of n-butyl acrylate, 0.04 part of divinylbenzene and 0.08 part of t-butyl hydroperoxide were added and polymerized at a temperature of 60 ° C. for 6 hours. After adding 0.5 parts of t-butylphenol and 0.5 parts of dilauryl thiopropionate to this latex, the copolymer is precipitated with hydrochloric acid, neutralized and washed, dehydrated and dried to obtain a powdery graft copolymer. Combined B1 was obtained. The amount of rubber component of the graft copolymer B1 was 48.0%.
[0039]
By changing only the agglomeration conditions of the rubber latex in the same manner as in the production of the graft copolymer B1, the graft copolymer B2 having dispersed particles having a number average particle diameter of 0.08 μm and a dispersed particle having 0.6 μm Graft copolymer B3 having
[0040]
Production of Graft Copolymer B4 Graft copolymer B1 was refluxed with petroleum ether at 80 ° C. for 4 hours, and the oligomer was extracted and removed to obtain graft copolymer B4.
[0041]
Production of graft copolymer B5 In an autoclave equipped with a stirrer, 49 parts of butadiene, 16 parts of styrene, 150 parts of pure water, 0.5 part of potassium oleate, 0.13 part of t-butyl hydroperoxide, 0.03 part of Rongalite, First, 0.002 part of ferrous sulfate, 0.003 part of ethylenediaminetetraacetic acid sodium salt, 0.1 part of sodium pyrophosphate, and 1.0 part of t-dodecyl mercaptan were charged and polymerized at a temperature of 45 ° C. for 17 hours. The number average particle diameter of the obtained styrene-butadiene rubber latex was 0.08 μm. The latex was stabilized by adding 0.005 part of sodium sulfosuccinate. The latex particles were agglomerated and enlarged by adding an aqueous hydrogen chloride solution to the latex under stirring to obtain a rubber latex having a number average particle size of 0.2 μm. To this latex, 16 parts of styrene, 17 parts of MMA, 2 parts of n-butyl acrylate, 0.04 part of divinylbenzene and 0.08 part of t-butyl hydroperoxide are added, 6 hours at a temperature of 60 ° C. and 6 hours at a temperature of 90 ° C. Polymerized for hours. After adding 0.5 parts of t-butylphenol and 0.5 parts of dilauryl thiopropionate to this latex, the copolymer is precipitated with hydrochloric acid, neutralized and washed, dehydrated and dried to obtain a powdery graft copolymer. Combined B5 was obtained. The amount of rubber component of this graft copolymer B5 was 48.0%.
[0042]
Examples 1-3, Comparative Examples 1-10
Copolymers A1 to A9 and graft copolymers B1 to B5 obtained above were pelletized at a temperature of 200 ° C. using a twin-screw press TEM35B manufactured by Toshiba Machine Co., Ltd., with the formulation shown in Table 2. Next, the obtained pellets were subjected to a light guide plate of 292.5 mm length, 220 mm width, and 2 mm thickness at a molding temperature of 270 ° C. by J350ELIII manufactured by Nippon Steel Works, an electric injection molding machine. Subsequently, the characteristic evaluation of the obtained light-guide plate was performed.
The results are shown in Table 3.
[0043]
[Table 1]
Figure 0004340421
[0044]
[Table 2]
Figure 0004340421
[0045]
[Table 3]
Figure 0004340421
[0046]
From Table 3, since the weight average molecular weight (Mw) of copolymerization resin A3 exceeds 130,000 from Comparative Example 1, MFR of the rubber-modified styrene resin composition obtained is small, and it is inferior to moldability.
In Comparative Example 2, since the copolymer resin A4 has a weight average molecular weight (Mw) of less than 60,000, the resulting rubber-modified styrenic resin composition is inferior in impact strength.
In Comparative Example 3, the amount of oligomer of copolymer resin A6 is 2.3%, and the amount of oligomer of the resulting rubber-modified styrenic resin composition exceeds 2%, so VSP is inferior.
In Comparative Example 4, the amount of residual monomer in copolymer resin A7 is 3700 ppm, and the amount of residual monomer in the resulting rubber-modified styrenic resin composition exceeds 3000 ppm, resulting in poor VSP.
In Comparative Example 5, since the blending amount of the graft copolymer B1 is 3%, the rubber content of the obtained rubber-modified styrenic resin composition is less than 2%, so that the impact strength is inferior.
In Comparative Example 6, since the blending amount of the graft copolymer B1 is 40%, the rubber content of the resulting rubber-modified styrenic resin composition exceeds 15%, the total light transmittance is decreased, and the HaZe is large. Thus, the transparency is inferior, and the MFR is 3, so that the molding and property impact strength are inferior. Furthermore, VSP is inferior.
In Comparative Example 7, since the number average particle diameter of the graft copolymer B2 is less than 0.1 μm, the impact strength of the obtained rubber-modified styrene resin composition is inferior.
In Comparative Example 8, since the number average rubber particle diameter of the graft copolymer B3 exceeds 0.5 μm, the total light transmittance is lowered, the HaZe is increased, and the transparency is inferior.
In Comparative Example 9, the amount of oligomer in the rubber-modified styrenic resin composition is less than 0.05%, resulting in poor molding and poor molded product appearance.
In Comparative Example 10, since the amount of residual monomer in the rubber-modified styrene resin composition is less than 100 ppm, molding failure occurs and the appearance of the molded product is inferior.
[0047]
【The invention's effect】
According to the present invention, it is possible to provide a rubber-modified styrenic resin composition excellent in transparency, impact strength, and moldability, and a molded product thereof. In particular, as a molded product, a light guide plate having high impact strength, high transparency, and capable of shortening the molding cycle can be provided. Further, according to the present invention, the manufacturing cost can be reduced, and a light guide plate having a better appearance can be easily obtained, which is extremely useful industrially.

Claims (3)

スチレン系単量体および(メタ)アクリル酸エステル系単量体からなり、塊状重合法、溶液重合法、懸濁重合法、および塊状−懸濁重合法のいずれかの重合法により製造されたスチレン−(メタ)アクリル酸エステル系共重合体と、
ジエン系ゴム状弾性体、スチレン系単量体および(メタ)アクリル酸エステル系単量体らなり、乳化重合法により製造されたグラフト共重合体と溶融混合させることにより得られるゴム変性スチレン系樹脂組成物であって、
該ゴム変性スチレン系樹脂組成物のTHF(テトラヒドロフラン)可溶分の重量平均分子量(Mw)が、60,000〜130,000であり、
該可溶分のスチレン系単量体単位が20〜80質量%、(メタ)アクリル酸エステル系単量体単位が80〜20質量%あり、
ゴムの含有量が2〜15%であり、
数平均ゴム粒子径が0.1〜0.5μmであり、
残存モノマー量が100〜3000ppmであり、
更にオリゴマー量が0.05〜2%であることを特徴とする導光板用ゴム変性スチレン系樹脂組成物。
Styrene made of a styrene monomer and a (meth) acrylic acid ester monomer and produced by any one of a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and a bulk-suspension polymerization method -(Meth) acrylic acid ester copolymer,
Diene rubber-styrene monomer and (meth) acrylic acid ester monomer or Rannahli, rubber-modified styrene obtainable by a manufactured graft copolymer is melt-mixed by an emulsion polymerization method A resin composition comprising:
The rubber-modified styrenic resin composition has a weight average molecular weight (Mw) soluble in THF (tetrahydrofuran) of 60,000 to 130,000,
Styrene monomer units is 20 to 80% by weight of the movable matter, (meth) acrylic acid ester monomer units is 80 to 20 wt%,
The rubber content is 2-15%,
The number average rubber particle size is 0.1 to 0.5 μm,
The residual monomer amount is 100-3000 ppm,
Furthermore, the amount of oligomer is 0.05 to 2%, a rubber-modified styrene resin composition for a light guide plate.
アルカリ土類金属の含有量が10ppm以下であることを特徴とする請求項1記載の導光板用ゴム変性スチレン系樹脂組成物。  The rubber-modified styrenic resin composition for a light guide plate according to claim 1, wherein the alkaline earth metal content is 10 ppm or less. 請求項1又は2記載の導光板用ゴム変性スチレン系樹脂組成物を射出成形してなる導光板。  A light guide plate obtained by injection molding the rubber-modified styrene resin composition for a light guide plate according to claim 1 or 2.
JP2002165320A 2002-06-06 2002-06-06 Rubber-modified styrenic resin composition and molded product thereof Expired - Fee Related JP4340421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165320A JP4340421B2 (en) 2002-06-06 2002-06-06 Rubber-modified styrenic resin composition and molded product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165320A JP4340421B2 (en) 2002-06-06 2002-06-06 Rubber-modified styrenic resin composition and molded product thereof

Publications (2)

Publication Number Publication Date
JP2004010739A JP2004010739A (en) 2004-01-15
JP4340421B2 true JP4340421B2 (en) 2009-10-07

Family

ID=30433186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165320A Expired - Fee Related JP4340421B2 (en) 2002-06-06 2002-06-06 Rubber-modified styrenic resin composition and molded product thereof

Country Status (1)

Country Link
JP (1) JP4340421B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015034209A1 (en) * 2013-09-04 2015-03-12 (주) 엘지화학 Method for preparing weather resistant reinforced acrylate based resin
US9683069B2 (en) 2013-09-04 2017-06-20 Lg Chem, Ltd. Method for preparing weather resistant reinforced acrylate based resin

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336433A (en) * 2004-05-31 2005-12-08 Denki Kagaku Kogyo Kk Rubber-modified copolymer resin composition and method for producing the same
JP5016199B2 (en) * 2005-03-24 2012-09-05 日本エイアンドエル株式会社 Transparent resin composition excellent in surface hardness and transparent resin molded product formed by molding the resin composition
JP2007153920A (en) * 2005-11-30 2007-06-21 Nippon A & L Kk Transparent injection molding
US7720347B2 (en) * 2006-03-28 2010-05-18 Samsung Electronics Co., Ltd. Backlight having all-in-one type light guide plate and method of manufacturing all-in-one type light guide plate
JP2009144008A (en) * 2007-12-12 2009-07-02 Asahi Kasei Chemicals Corp Thermoplastic resin composition having excellent scratch resistance and mold staining resistance
JP2010145916A (en) * 2008-12-22 2010-07-01 Kuraray Co Ltd Optical sheet for backlight device
JP5415788B2 (en) * 2009-03-09 2014-02-12 東洋スチレン株式会社 Light guide plate
KR102126164B1 (en) * 2010-06-24 2020-06-23 도요 스티렌 가부시키가이샤 Light-guiding plate made of styrenic resin
JP7025834B2 (en) * 2015-02-25 2022-02-25 東洋スチレン株式会社 Styrene-based resin composition and molded article made of the styrene resin composition
JP5904349B1 (en) * 2015-07-31 2016-04-13 サンディック株式会社 Aromatic vinyl resin biaxially oriented sheet, method for producing molded product, and food packaging material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015034209A1 (en) * 2013-09-04 2015-03-12 (주) 엘지화학 Method for preparing weather resistant reinforced acrylate based resin
US9683069B2 (en) 2013-09-04 2017-06-20 Lg Chem, Ltd. Method for preparing weather resistant reinforced acrylate based resin

Also Published As

Publication number Publication date
JP2004010739A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP4340421B2 (en) Rubber-modified styrenic resin composition and molded product thereof
KR101743326B1 (en) Transparent Thermoplastic Resin Composition Having Improved Whitening Resistance at Low Temperature and Excellent Impact Strength
CA2907995C (en) Pmma provided with impact resistance and having improved optical properties
US10358552B2 (en) Impact-resistant molding material having an improved characteristics profile
JP2003075648A (en) Light guide plate
JP2014510181A (en) Alkyl (meth) acrylate-based thermoplastic resin composition, and thermoplastic resin with controlled scratch resistance and yellowness
JP4152245B2 (en) Heat-resistant light guide plate
KR100564816B1 (en) Method of Preparing ABS Resin Composition with Good Heat Resistance, Transparence and Natural Color
EP0381358B1 (en) Low gloss agents, process for production thereof, low gloss thermoplastic resin compositions and molded articles
KR100528779B1 (en) Thermoplastic Resin Composition Having Excellent Heat Resistance and Low Gloss
JP2012207074A (en) Transparency styrene-based thermoplastic resin composition
JP4318784B2 (en) Rubber-modified styrenic resin composition and sheet thereof
JP4101175B2 (en) Transparent rubber-modified copolymer resin and resin composition thereof
JP4727116B2 (en) Rubber-modified copolymer resin composition
JP4220273B2 (en) Transparent rubber-modified copolymer resin composition
WO2000042104A1 (en) Modifier for methacrylic resin
JP2000290463A (en) Rubber-modified styrene resin composition and its sheet
JP4776148B2 (en) Rubber-modified copolymer resin and molded article thereof
JP2996115B2 (en) Thermoplastic resin composition
JP5177466B2 (en) Method for producing rubber-modified copolymer resin
JP2000154257A (en) Molded part for electronic component packaging
JP2003242679A (en) Optical disk substrate
JP4422958B2 (en) Lens made of thermoplastic resin composition
KR100384380B1 (en) Weatherproof resin composition with excellent transparency and its manufacturing method
JPH1030047A (en) Rubber-modified styrene resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Ref document number: 4340421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees