JP4152245B2 - Heat-resistant light guide plate - Google Patents

Heat-resistant light guide plate Download PDF

Info

Publication number
JP4152245B2
JP4152245B2 JP2003115455A JP2003115455A JP4152245B2 JP 4152245 B2 JP4152245 B2 JP 4152245B2 JP 2003115455 A JP2003115455 A JP 2003115455A JP 2003115455 A JP2003115455 A JP 2003115455A JP 4152245 B2 JP4152245 B2 JP 4152245B2
Authority
JP
Japan
Prior art keywords
styrene
mass
parts
light guide
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003115455A
Other languages
Japanese (ja)
Other versions
JP2004318021A (en
Inventor
邦彦 小西
毅 山田
進 大岡
和義 江部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003115455A priority Critical patent/JP4152245B2/en
Publication of JP2004318021A publication Critical patent/JP2004318021A/en
Application granted granted Critical
Publication of JP4152245B2 publication Critical patent/JP4152245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、パーソナルコンピュータ等のOA機器や、画像信号の各種モニター等に用いられる液晶表示装置等のバックライトに用いられる導光板、特に耐熱性導光板に関するものである。
【0002】
【従来の技術】
最近、照明ランプを備えた液晶表示装置のバックライト用導光体が使用されている。バックライトの方式としては、導光体を光源と液晶ユニットの間に挟んだ、いわゆる直下式と、光源を導光板のエッジに取り付けるエッジライト方式の2種が通常用いられている。光源を導光体の側面に配置し、光源から導光体に入射した光が発光面に対向する底面部で散乱する、エッジライト方式が主流となっている。こうした技術はこれまでに多数開示されている。
【0003】
例えば、光源から遠ざかるにつれて光散乱量が増大するように凹凸を設けた導光体を使用する技術が開示されている(例えば、特許文献1〜4参照。)。また、光源からの光が効率よく観察側に出射できるよう形状を工夫した溝を導光体の発光面に対向する底面部に形成し、光源から遠ざかるほど溝の間隔を広く、かつ深溝にすることによって光散乱量を増大させる技術が開示されている(例えば、特許文献5参照。)。
更に、光を散乱させる溝形状を導光体の発光面に対向する底面部に形成させるとともに、導光体の形状を光源から遠ざかるほど厚みが減少する、楔形とすることによって、薄肉軽量化と高輝度化を達成しようとする技術が開示されている(例えば、特許文献6参照。)。
【0004】
【特許文献1】
実開昭61−157986号公報
【特許文献2】
実開昭62−87315号公報
【特許文献3】
実開昭63−43186号公報
【特許文献4】
実開平5−47922号公報
【特許文献5】
特開平2−165504号公報
【特許文献6】
実開昭60−94605号公報
【発明が解決しようとする課題】
このように、導光体に関する様々な技術が開示されているが、導光板に用いられている樹脂としては、ポリスチレンやアクリル樹脂、その中でもアクリル樹脂が主に検討されたが、アクリル樹脂は、吸湿性が高く、そのため導光板の寸法が変化しやすいという課題や、耐熱性が低く車載用の導光板に使用出来ないなどの課題があった。
【0005】
本発明者らは、前記課題を解消すべく種々検討した結果、特定の割合のスチレン系単量体、(メタ)アクリル酸エステル系単量体、及びこれらの単量体と共重合可能なビニル系単量体からなるスチレン−(メタ)アクリル酸エステル系共重合樹脂(A)と特定の割合のスチレン系単量体、無水マレイン酸、及びこれらの単量体と共重合可能なビニル単量体からなるスチレン−無水マレイン酸系共重合体(B)とを所定量配合し、且つ該スチレン−(メタ)アクリル酸エステル系共重合樹脂(A)と該スチレン−無水マレイン酸系共重合体(B)の重量平均分子量を特定の範囲に制御した樹脂が、吸湿性が小さく、強度が高く、透明性が高く耐熱性が高く、導光板に好適であるという知見を得て本発明を完成するに至った。
【0006】
【課題を解決するための手段】
すなわち本発明は(1)スチレン50〜20質量%、メタクリル酸チル50〜80質量%からなるスチレン−メタクリル酸チル共重合樹脂(A)20〜80質量部とスチレン70〜90質量%、無水マレイン酸10〜30質量%からなるスチレン−無水マレイン酸共重合体(B)80〜20質量部からなり、スチレン−メタクリル酸チル共重合樹脂(A)の重量平均分子量(Mw)が60,000〜170,000であり、スチレン−無水マレイン酸共重合体(B)の重量平均分子量(Mw)が80,000〜150,000であることを特徴とする耐熱性導光板である。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明のスチレン−(メタ)アクリル酸エステル系共重樹脂(A)用いられるスチレン系単量体としては、スチレン、α−メチルスチレン、p−メチルスチレン、o−メチルスチレン、m−メチルスチレン、エチルスチレン、p−t−ブチルスチレン等を挙げることができるが、好ましくはスチレンである。これらのスチレン系単量体は、単独でもよいが二種以上を併用してもよい。
【0008】
本発明のスチレン−(メタ)アクリル酸エステル系共重樹脂(A)に用いられる(メタ)アクリル酸エステル系単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレートのメタクリル酸エステル、メチルアクリレート、エチルアクリレート、n−ブチルアクリレート、2−メチルヘキシルアクリレート、2−エチルヘキシルアクリレート、デシルアクリレート等のアクリル酸エステルが挙げられるが、好ましくはメチル(メタ)アクリレート、またはn−ブチルアクリレート、特に好ましくはメチル(メタ)アクリレートである。これらの(メタ)アクリル酸エステル系単量体は単独で用いてもよいが二種以上を併用してもよい。
【0009】
さらに、必要に応じてこれらの単量体と共重合可能なビニル系単量体としては、アクリル酸、メタクリル酸、アクリロニトリル、メタアクリロニトリル、N−フェニルマレイミド、N−シクロヘキシルマレイミド等が挙げられる。
【0010】
本発明で用いスチレン−(メタ)アクリル酸エステル共重樹脂(A)の製造方法については特に制限はなく、例えば乳化重合法、懸濁重合法、塊状重合法、溶液重合法等の重合方法が採用できる。
【0011】
本発明で用いられるスチレン−(メタ)アクリル酸エステル系共重合樹脂のスチレン系単量体、(メタ)アクリル酸エステル系単量体、及びこれらの単量体と共重合可能なビニル系単量体は、スチレン系単量体50〜20質量%、(メタ)アクリル酸エステル系単量体50〜80質量%、及びこれらの単量体と共重合可能なビニル系単量体0〜10質量%(但し、スチレン系単量体、(メタ)アクリル酸エステル系単量体、及びこれらの単量体と共重合可能なビニル系単量体の合計を100質量%とする)であることが好ましい。特に、(メタ)アクリル酸エステル系単量体が50質量%未満では、曲げ強度及び全光線透過率が低下するので好ましくなく、(メタ)アクリル酸エステル系単量体が80質量%を超えると吸湿性と比重が大きくなるので好ましくない。
【0012】
本発明で用いられるスチレン−(メタ)アクリル酸エステル系共重合樹脂の重量平均分子量(Mw)は、60,000〜170,000であることが好ましい。重量平均分子量(Mw)が60,000未満では、曲げ強度が低下するので好ましくなく、170,000を超えるとフローが低下するので好ましくない。
【0013】
本発明で用いられるスチレン−(メタ)アクリル酸エステル系共重合樹脂の残存モノマー量は、3000ppm以下であることが好ましい。残存モノマー量が3000ppmを超えると成形不良や耐熱性低下を生じるので好ましくない。
【0014】
本発明で用いられるスチレン−(メタ)アクリル酸エステル系共重合樹脂のオリゴマー量は2%以下であることが好ましい。オリゴマー量が2%を超えると耐熱性が低下するので好ましくない。
尚、本発明では、オリゴマー量は、凍結粉砕したサンプル(Xgとする)をソックスレー等の抽出器を用いてn−ヘキサンを6時間以上還流させることにより得た抽出液を、蒸発乾固させることにより抽出物(Ygとする)を得て、次式により算出する。
オリゴマー量(%)=Y/X×100
上記のことから、オリゴマー量(%)は、n−ヘキサン抽出分(%)と同等であるといえる。
【0015】
更に、本発明で用いられるスチレン−(メタ)アクリル酸エステル系共重合樹脂は、アルカリ土類金属塩を分散剤として懸濁重合することができるが、共重合樹脂中に残存するアルカリ土類金属が更に透明性を良好とするために10ppm以下であることが好ましい。
【0016】
次に、本発明の(B)成分のスチレン−不飽和ジカルボン酸無水物系共重合体について説明する。
【0017】
不飽和ジカルボン酸無水物としては、マレイン酸、イタコン酸、シトラコン酸、アコニット酸等の無水物が挙げられ、マレイン酸無水物が特に好ましい。
【0018】
これらと共重合可能なビニル単量体としては、アクリロニトリル、メタクリロニトリル等のシアン化ビニル単量体、メチルアクリル酸エステル、エチルアクリル酸エステル、ブチルアクリル酸エステル等のアクリル酸エステル単量体,メチルメタクリル酸エステル、エチルメタクリル酸エステル等のメタクリル酸エステル単量体、アクリル酸、メタクリル酸等のビニルカルボン酸単量体、アクリル酸アミド、メタクリル酸アミド、およびN−ビニルカルバゾール等が挙げられる。これらの中でアクリロニトリル、アクリル酸エステル、メタクリル酸エステル、アクリル酸、メタクリル酸等の単量体が特に好ましい。
【0019】
(B)成分を製造するにあたって、スチレンモノマー、不飽和ジカルボン酸無水物単量体およびこれらと共重合可能なビニル単量体混合物を塊状−懸濁重合、溶液重合、塊状重合等公知の重合方法を用いることができる。
【0020】
)成分に用いられるスチレンは70〜90質量%であり、好ましくは75〜85質量%が好適である。70重量%未満では成形性が低下し、90質量%を越えると耐熱性が低下してしまうので好ましくない。不飽和ジカルボン酸無水物単量体は10〜30質量%であり、好ましくは15〜25質量%が好ましい。10質量%未満では耐熱性が向上せず、30質量%を越えると成形性が低下するので好ましくない。
【0021】
本発明の耐熱性導光板には、本発明の目的を損なわない範囲で、その他の成分として架橋アクリル系粒子、架橋スチレン系粒子等の有機系光拡散剤、硫酸バリウム、炭酸カルシウム、酸化チタン等の無機系光拡散剤、着色剤、熱安定剤、酸化防止剤、紫外線吸収剤等を配合することができる。
【0022】
本発明の耐熱性導光板を得る方法は、特に限定されない。必要があれば本発明の目的を損なわない範囲の任意の添加剤をヘンシェルミキサーやブレンダーで混合した後、シート成形押出機で押出すことによりシート状成形体を得る方法や加熱プレス成形機、あるいは射出成形機等で型枠あるいは金型内に樹脂を充填することにより、任意の形状の成形体を得る方法を用いることができる。
【0023】
【実施例】
以下、詳細な内容について実施例を用いて説明するが、本発明は以下の実施例に限定されるものではない。
【0024】
(評価方法)
▲1▼MFR JIS K−6874に準じて200℃、5kg荷重にて測定した。
▲2▼VSP JIS K−7206に準じて5kg荷重にて測定した。
▲3▼曲げ強度 ASTM D790に準じて測定した。
▲4▼Haze ASTM D1003に準じて測定した。
【0025】
(重量平均分子量の測定方法)
試料ペレットを下記のGPC測定条件で測定した。
装置名:SYSTEM−21 Shodex(昭和電工社製)
カラム:PL gel MIXED−Bを3本直列
温度:40℃
検出:示差屈折率
溶媒:テトラハイドロフラン
濃度:2質量%
検量線:標準ポリスチレン(PS)(PL社製)を用いて作成し、重量平均分子量はPS換算値で表した。
【0026】
(ポリマー組成)
試料ペレットを重クロロホルムに溶解して2%溶液とし、これを試料溶液として、FT−NMR(日本電子社製FX−90Q型)を用いて、13Cを測定しピーク面積比からモノマー構成比を求めた。
【0027】
製造例1(A成分の製造)
容積約15リットルの完全混合型反応器、容積約40リットルの塔式プラグフロー型反応器、予熱器を付した第1脱揮槽、スタティックミキサー、予熱器を付した第2脱揮槽を直列に接続して構成した。スチレン20質量部、メタクリル酸メチル80質量部で構成する単量体溶液に対し、エチルベンゼン15質量部、t−ブチルパーオキシイソプロピルモノカーボネート(1時間半減期温度:118℃)0.03質量部、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート(酸化防止剤)を0.1質量部、t−ドデシルメルカプタン0.05質量部を混合し原料溶液とした。この原料溶液を毎時6.9kgで温度120℃に制御した完全混合型反応器に供給した。さらにこの重合液を流れの方向に向かって120℃から150℃の勾配がつくように調整した塔式プラグフロー型反応器に導入した。この重合液を予熱器で加温しながら、10.6kPaに減圧した第1脱揮槽に導入し、第1脱揮槽内温度230℃にて未反応単量体の一部を除去した。さらにこの液をギアポンプで抜き出しながら、スタティックミキサーに水を毎時18g(単量体の合計100質量部に対し0.3質量部)添加して混合し、次に予熱器で加温しながら、1.3kPaに減圧した第2脱揮槽に導入し、第2脱揮槽内温度230℃にて未反応単量体を除去した。これをギアポンプで抜き出し、ストランド状に押出し切断することによりペレット形状の共重合樹脂を得た。これを共重合樹脂MS(1)とした。
【0028】
製造例2(A成分の製造)
スチレン20質量部を50質量部に、メタクリル酸メチル80質量部を50質量部に替えた以外は製造例1と同様に行った。得られた共重合樹脂をMS(2)とした。
【0029】
製造例3(A成分の製造)
t−ドデシルメルカプタンを0.05質量部から0.2質量部に替えた以外は製造例1と同様に行った。得られた共重合樹脂をMS(3)とした。
【0030】
製造例4(A成分の製造)
スチレン20質量部を60質量部に、メタクリル酸メチル80質量部を40質量部に替えた以外は製造例1と同様に行った。得られた共重合樹脂をMS(4)とした。
【0031】
製造例5(A成分の製造)
スチレン20質量部を5質量部に、メタクリル酸メチル80質量部を95質量部に替えた以外は製造例1と同様に行った。得られた共重合樹脂をMS(5)とした。
【0032】
製造例6(B成分の製造)
撹拌機を備えたオートクレーブ中にスチレン80質量部、メチルエチルケトン100質量部を仕込み、系内を窒素ガスで置換した後温度を85℃に昇温し、無水マレイン酸20質量部とベンゾイルパーオキサイド0.15質量部をメチルエチルケトン200質量部に溶解した溶液を8時間で連続的に添加した。添加後更に3時間温度を85℃に保った。ここで得られた共重合体溶液をベント付き2軸押出機に供給し、脱揮してスチレン−不飽和ジカルボン酸無水物系共重合体B−1を得た。B−1の無水マレイン酸含有量を赤外線スペクトルで測定したところ、19質量%であり、重量平均分子量は12万であった。
【0033】
製造例7(B成分の製造)
スチレンを60質量部に、無水マレイン酸を40質量部に替えた以外は製造例6と同様に行い、スチレン−不飽和ジカルボン酸系共重合体B−2を得た。
B−2の無水マレイン酸含有量は39質量%であり、重量平均分子量は13万であった。
【0034】
製造例8(B成分の製造)
スチレンを95質量部に、無水マレイン酸を5質量部に替えた以外は製造例6と同様に行い、スチレン−不飽和ジカルボン酸系共重合体B−3を得た。
B−3の無水マレイン酸含有量は4.5質量%であり、重量平均分子量は14万であった。
【0035】
製造例9(B成分の製造)
スチレン80質量部にt−ドデシルメルカプタン0.5質量部を添加した以外は製造例6と同様に行い、スチレン−不飽和ジカルボン酸系共重合体B−4を得た。B−4の無水マレイン酸含有量は19質量%であり、重量平均分子量は5万であった。製造例1〜9で得られた共重合体の物性を表1に示す。
【0036】
【表1】

Figure 0004152245
【0037】
実施例1〜4及び比較例1〜7
次に、このMS(1)〜MS(5)とB−1〜B−4とを表2配合比でブレンドし、30mm2軸押出機を用いて230℃の温度でペレット化した。次いで得られたペレットを日本製鋼所製電動射出成形機J350ELIIIにより、成形温度270℃で縦292.5mm、横220mm、厚さ2mmの導光板を得た。次いで、得られた導光板の特性評価を行った。その結果を表2に示す。
【0038】
【表2】
Figure 0004152245
【0039】
表2より、実験No.1〜4は、曲げ強度、全光線透過率、HaZe、寸法の変化等の導光板としての優れた特性を有しているが、実験No.5〜10は、実験No.1〜4に比べ、導光板としての特性が劣っていることがわかる。
【0040】
【発明の効果】
本発明により、吸湿性が小さく、強度が高く、透明性が高く、更に耐熱性の高い導光板を提供することができる。
また、本発明により、製造コストを低減でき、更に外観良好な導光板を容易に得ることができるため、工業上極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light guide plate, particularly a heat-resistant light guide plate, used for backlights of liquid crystal display devices used for OA equipment such as personal computers and various monitors of image signals.
[0002]
[Prior art]
Recently, a light guide for a backlight of a liquid crystal display device provided with an illumination lamp has been used. Two types of backlights are commonly used: a so-called direct type in which a light guide is sandwiched between a light source and a liquid crystal unit, and an edge light type in which the light source is attached to the edge of the light guide plate. An edge light system in which a light source is disposed on a side surface of a light guide and light incident on the light guide from the light source is scattered on the bottom surface facing the light emitting surface is the mainstream. Many such techniques have been disclosed so far.
[0003]
For example, a technique is disclosed that uses a light guide provided with unevenness so that the amount of light scattering increases as the distance from the light source increases (see, for example, Patent Documents 1 to 4). Also, a groove whose shape is devised so that the light from the light source can be efficiently emitted to the observation side is formed on the bottom surface portion facing the light emitting surface of the light guide, and the distance between the grooves becomes wider and deeper as the distance from the light source increases. Thus, a technique for increasing the amount of light scattering is disclosed (for example, see Patent Document 5).
In addition, a groove shape that scatters light is formed on the bottom surface portion facing the light emitting surface of the light guide, and the thickness of the light guide decreases as the distance from the light source decreases. A technique for achieving high brightness is disclosed (for example, see Patent Document 6).
[0004]
[Patent Document 1]
Japanese Utility Model Publication No. 61-157986 [Patent Document 2]
Japanese Utility Model Publication No. 62-87315 [Patent Document 3]
Japanese Utility Model Publication No. 63-43186 [Patent Document 4]
Japanese Utility Model Publication No. 5-47922 [Patent Document 5]
JP-A-2-165504 [Patent Document 6]
Japanese Utility Model Publication No. 60-94605 [Problem to be Solved by the Invention]
As described above, various techniques related to the light guide are disclosed, but as the resin used for the light guide plate, polystyrene and acrylic resin, among which acrylic resin was mainly studied. There are problems such as high hygroscopicity, so that the dimensions of the light guide plate are likely to change, and problems such as low heat resistance and inability to be used for an in-vehicle light guide plate.
[0005]
As a result of various studies to solve the above problems, the present inventors have found that a specific proportion of styrene monomer, (meth) acrylate monomer, and vinyl copolymerizable with these monomers. Styrene- (meth) acrylic acid ester copolymer resin (A) composed of a monomer and a specific proportion of styrene monomer, maleic anhydride, and vinyl monomer copolymerizable with these monomers A predetermined amount of a styrene-maleic anhydride copolymer (B) made of a polymer, and the styrene- (meth) acrylic ester copolymer resin (A) and the styrene-maleic anhydride copolymer The present invention was completed by obtaining the knowledge that the resin having the weight average molecular weight of (B) controlled within a specific range has low hygroscopicity, high strength, high transparency and high heat resistance, and is suitable for a light guide plate. It came to do.
[0006]
[Means for Solving the Problems]
That is, the present invention is (1) Styrene 50 to 20 wt%, consisting of methacrylic acid methylation 50-80 wt% styrene - methacrylic acid methyltransferase copolymer resin (A) 20 to 80 parts by weight of styrene 70 to 90% by weight, styrene comprising 10 to 30 wt% of maleic anhydride - Ri Do maleic anhydride copolymer (B) 80 to 20 parts by weight of styrene - weight average molecular weight of methacrylic acid methylation copolymer resin (a) (Mw) is It is 60,000-170,000, The weight average molecular weight (Mw) of a styrene- maleic anhydride copolymer (B) is 80,000-150,000, It is a heat resistant light-guide plate characterized by the above-mentioned.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Examples of the styrene monomer used in the styrene- (meth) acrylic acid ester copolymer heavy resin (A) of the present invention include styrene, α-methylstyrene, p-methylstyrene, o-methylstyrene, m-methylstyrene, Examples thereof include ethyl styrene and pt-butyl styrene, and styrene is preferred. These styrenic monomers may be used alone or in combination of two or more.
[0008]
Examples of the (meth) acrylate monomer used in the styrene- (meth) acrylate copolymer heavy resin (A) of the present invention include methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth). Acrylate esters such as acrylate, methacrylic acid ester of 2-ethylhexyl (meth) acrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, etc. are preferable, Methyl (meth) acrylate or n-butyl acrylate, particularly preferably methyl (meth) acrylate. These (meth) acrylic acid ester monomers may be used alone or in combination of two or more.
[0009]
Furthermore, examples of vinyl monomers copolymerizable with these monomers as required include acrylic acid, methacrylic acid, acrylonitrile, methacrylonitrile, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
[0010]
There is no restriction | limiting in particular about the manufacturing method of styrene- (meth) acrylic acid ester copolymer resin (A) used by this invention, For example, polymerization methods, such as an emulsion polymerization method, suspension polymerization method, block polymerization method, and solution polymerization method, are used. Can be adopted.
[0011]
Styrene monomer of styrene- (meth) acrylic acid ester copolymer resin used in the present invention, (meth) acrylic acid ester monomer, and vinyl monomer copolymerizable with these monomers The body is 50 to 20% by mass of a styrene monomer, 50 to 80% by mass of a (meth) acrylic acid ester monomer, and 0 to 10 mass of a vinyl monomer copolymerizable with these monomers. % (However, the total of styrene monomer, (meth) acrylic acid ester monomer, and vinyl monomer copolymerizable with these monomers is 100% by mass). preferable. In particular, if the (meth) acrylic acid ester monomer is less than 50% by mass, the bending strength and the total light transmittance decrease, which is not preferable. If the (meth) acrylic acid ester monomer exceeds 80% by mass, Since hygroscopicity and specific gravity increase, it is not preferable.
[0012]
The weight average molecular weight (Mw) of the styrene- (meth) acrylate copolymer resin used in the present invention is preferably 60,000 to 170,000. If the weight average molecular weight (Mw) is less than 60,000, the bending strength decreases, which is not preferable. If it exceeds 170,000, the flow decreases, which is not preferable.
[0013]
The amount of residual monomer of the styrene- (meth) acrylic ester copolymer resin used in the present invention is preferably 3000 ppm or less. If the amount of residual monomer exceeds 3000 ppm, it is not preferable because molding defects and heat resistance decrease occur.
[0014]
The amount of oligomer of the styrene- (meth) acrylic ester copolymer resin used in the present invention is preferably 2% or less. If the oligomer amount exceeds 2%, the heat resistance is lowered, which is not preferable.
In the present invention, the amount of oligomer is determined by evaporating and drying the extract obtained by refluxing n-hexane for 6 hours or more with an extractor such as Soxhlet using a freeze-ground sample (Xg). To obtain an extract (referred to as Yg), which is calculated by the following equation.
Oligomer amount (%) = Y / X × 100
From the above, it can be said that the oligomer amount (%) is equivalent to the n-hexane extract (%).
[0015]
Furthermore, the styrene- (meth) acrylic acid ester copolymer resin used in the present invention can be subjected to suspension polymerization using an alkaline earth metal salt as a dispersant, but the alkaline earth metal remaining in the copolymer resin. Is more preferably 10 ppm or less in order to further improve the transparency.
[0016]
Next, the styrene-unsaturated dicarboxylic anhydride copolymer of the component (B) of the present invention will be described.
[0017]
Examples of the unsaturated dicarboxylic acid anhydride include maleic acid, itaconic acid, citraconic acid, aconitic acid and the like, and maleic anhydride is particularly preferable.
[0018]
Examples of vinyl monomers copolymerizable with these include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, acrylate monomers such as methyl acrylate, ethyl acrylate, and butyl acrylate, Examples thereof include methacrylic acid ester monomers such as methyl methacrylic acid ester and ethyl methacrylic acid ester, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, acrylic acid amides, methacrylic acid amides, and N-vinylcarbazole. Among these, monomers such as acrylonitrile, acrylic acid ester, methacrylic acid ester, acrylic acid and methacrylic acid are particularly preferable.
[0019]
In producing the component (B), a known polymerization method such as bulk-suspension polymerization, solution polymerization, bulk polymerization of a styrene monomer, an unsaturated dicarboxylic acid anhydride monomer, and a vinyl monomer mixture copolymerizable therewith. Can be used.
[0020]
Styrene used for the component ( B ) is 70 to 90% by mass, preferably 75 to 85% by mass. If it is less than 70% by weight, the moldability is lowered, and if it exceeds 90% by weight, the heat resistance is lowered. The unsaturated dicarboxylic acid anhydride monomer is 10 to 30% by mass, preferably 15 to 25% by mass. If it is less than 10% by mass, the heat resistance will not be improved, and if it exceeds 30% by mass, the moldability will be reduced.
[0021]
In the heat-resistant light guide plate of the present invention, as long as the object of the present invention is not impaired, organic light diffusing agents such as crosslinked acrylic particles and crosslinked styrene particles, barium sulfate, calcium carbonate, titanium oxide and the like as other components Inorganic light diffusing agents, colorants, heat stabilizers, antioxidants, ultraviolet absorbers and the like can be blended.
[0022]
The method for obtaining the heat-resistant light guide plate of the present invention is not particularly limited. If necessary, a method of obtaining a sheet-like molded article by mixing with an Henschel mixer or blender any additive within the range that does not impair the object of the present invention, and extruding with a sheet molding extruder, or a hot press molding machine, or A method of obtaining a molded body having an arbitrary shape by filling a mold or mold with a resin with an injection molding machine or the like can be used.
[0023]
【Example】
Hereinafter, although detailed content is demonstrated using an Example, this invention is not limited to a following example.
[0024]
(Evaluation methods)
(1) MFR Measured according to JIS K-6874 at 200 ° C. and 5 kg load.
(2) VSP Measured with a 5 kg load according to JIS K-7206.
(3) Bending strength Measured according to ASTM D790.
(4) Measured according to Haze ASTM D1003.
[0025]
(Measurement method of weight average molecular weight)
The sample pellet was measured under the following GPC measurement conditions.
Device name: SYSTEM-21 Shodex (manufactured by Showa Denko)
Column: 3 PL gel MIXED-B in series Temperature: 40 ° C
Detection: Differential refractive index Solvent: Tetrahydrofuran Concentration: 2% by mass
Calibration curve: Prepared using standard polystyrene (PS) (manufactured by PL), and the weight average molecular weight was expressed in terms of PS.
[0026]
(Polymer composition)
Dissolve the sample pellet in deuterated chloroform to make a 2% solution. Using this as the sample solution, FT-NMR (FX-90Q type manufactured by JEOL Ltd.) is used to measure 13 C, and the monomer composition ratio is determined from the peak area ratio. Asked.
[0027]
Production Example 1 (Production of component A)
A series mixing reactor with a capacity of about 15 liters, a column type plug flow reactor with a capacity of about 40 liters, a first devolatilization tank with a preheater, a static mixer, and a second devolatilization tank with a preheater are connected in series. Connected to and configured. For a monomer solution composed of 20 parts by mass of styrene and 80 parts by mass of methyl methacrylate, 15 parts by mass of ethylbenzene, 0.03 parts by mass of t-butylperoxyisopropyl monocarbonate (1 hour half-life temperature: 118 ° C.), 0.1 parts by mass of octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (antioxidant) and 0.05 parts by mass of t-dodecyl mercaptan were mixed to obtain a raw material solution. This raw material solution was supplied to a fully mixed reactor controlled at a temperature of 120 ° C. at 6.9 kg / hour. Further, this polymerization solution was introduced into a column type plug flow reactor adjusted so as to have a gradient of 120 ° C. to 150 ° C. in the flow direction. The polymerization solution was introduced into a first devolatilization tank whose pressure was reduced to 10.6 kPa while heating with a preheater, and a part of the unreacted monomer was removed at a temperature in the first devolatilization tank of 230 ° C. Further, while extracting this liquid with a gear pump, 18 g of water per hour (0.3 parts by mass with respect to a total of 100 parts by mass of the monomer) was added to and mixed with the static mixer, and then heated with a preheater. It introduce | transduced into the 2nd devolatilization tank pressure-reduced to 0.3 kPa, and the unreacted monomer was removed at the temperature in the 2nd devolatilization tank at 230 degreeC. This was extracted with a gear pump and extruded into a strand shape to obtain a pellet-shaped copolymer resin. This was designated as copolymer resin MS (1).
[0028]
Production Example 2 (Production of component A)
The same procedure as in Production Example 1 was conducted except that 20 parts by mass of styrene was changed to 50 parts by mass and 80 parts by mass of methyl methacrylate was changed to 50 parts by mass. The obtained copolymer resin was designated as MS (2).
[0029]
Production Example 3 (Production of component A)
It carried out similarly to manufacture example 1 except having changed t-dodecyl mercaptan from 0.05 mass part to 0.2 mass part. The obtained copolymer resin was designated as MS (3).
[0030]
Production Example 4 (Production of component A)
The same procedure as in Production Example 1 was conducted except that 20 parts by mass of styrene was changed to 60 parts by mass and 80 parts by mass of methyl methacrylate was changed to 40 parts by mass. The obtained copolymer resin was designated as MS (4).
[0031]
Production Example 5 (Production of component A)
The same procedure as in Production Example 1 was conducted except that 20 parts by mass of styrene was changed to 5 parts by mass and 80 parts by mass of methyl methacrylate was changed to 95 parts by mass. The obtained copolymer resin was designated as MS (5).
[0032]
Production Example 6 (Production of component B)
In an autoclave equipped with a stirrer, 80 parts by mass of styrene and 100 parts by mass of methyl ethyl ketone were charged, the inside of the system was replaced with nitrogen gas, the temperature was raised to 85 ° C., 20 parts by mass of maleic anhydride and 0. A solution prepared by dissolving 15 parts by mass in 200 parts by mass of methyl ethyl ketone was continuously added in 8 hours. The temperature was kept at 85 ° C. for an additional 3 hours after the addition. The copolymer solution obtained here was supplied to a twin-screw extruder with a vent and devolatilized to obtain a styrene-unsaturated dicarboxylic anhydride copolymer B-1. It was 19 mass% when the maleic anhydride content of B-1 was measured by the infrared spectrum, and the weight average molecular weight was 120,000.
[0033]
Production Example 7 (Production of B component)
A styrene-unsaturated dicarboxylic acid copolymer B-2 was obtained in the same manner as in Production Example 6 except that styrene was changed to 60 parts by mass and maleic anhydride was changed to 40 parts by mass.
The maleic anhydride content of B-2 was 39% by mass, and the weight average molecular weight was 130,000.
[0034]
Production Example 8 (Production of component B)
A styrene-unsaturated dicarboxylic acid copolymer B-3 was obtained in the same manner as in Production Example 6 except that 95 parts by mass of styrene and 5 parts by mass of maleic anhydride were changed.
B-3 had a maleic anhydride content of 4.5 mass% and a weight average molecular weight of 140,000.
[0035]
Production Example 9 (Production of component B)
Except having added 0.5 mass part of t-dodecyl mercaptan to 80 mass parts of styrene, it carried out similarly to manufacture example 6, and obtained the styrene- unsaturated dicarboxylic acid type | system | group copolymer B-4. The maleic anhydride content of B-4 was 19% by mass, and the weight average molecular weight was 50,000. Table 1 shows the physical properties of the copolymers obtained in Production Examples 1 to 9.
[0036]
[Table 1]
Figure 0004152245
[0037]
Examples 1-4 and Comparative Examples 1-7
Next, the MS (1) to MS (5) and B-1 to B-4 were blended at a blending ratio of Table 2, and pelletized at a temperature of 230 ° C. using a 30 mm twin screw extruder. Next, the obtained pellets were obtained with an electric injection molding machine J350ELIII manufactured by Nippon Steel, Ltd., and a light guide plate having a molding temperature of 270 ° C. and a length of 292.5 mm, a width of 220 mm, and a thickness of 2 mm was obtained. Subsequently, the characteristic evaluation of the obtained light-guide plate was performed. The results are shown in Table 2.
[0038]
[Table 2]
Figure 0004152245
[0039]
From Table 2, Experiment No. Nos. 1 to 4 have excellent properties as light guide plates such as bending strength, total light transmittance, HaZe, and changes in dimensions. 5-10 are the experiment No.5. It turns out that the characteristic as a light-guide plate is inferior compared with 1-4.
[0040]
【The invention's effect】
According to the present invention, a light guide plate having low hygroscopicity, high strength, high transparency, and high heat resistance can be provided.
Further, according to the present invention, the manufacturing cost can be reduced, and a light guide plate having a better appearance can be easily obtained, which is extremely useful industrially.

Claims (1)

スチレン50〜20質量%、メタクリル酸チル50〜80質量%からなるスチレン−メタクリル酸チル共重合樹脂(A)20〜80質量部とスチレン70〜90質量%、無水マレイン酸10〜30質量%からなるスチレン−無水マレイン酸共重合体(B)80〜20質量部からなり、スチレン−メタクリル酸チル共重合樹脂(A)の重量平均分子量(Mw)が60,000〜170,000であり、スチレン−無水マレイン酸共重合体(B)の重量平均分子量(Mw)が80,000〜150,000であることを特徴とする耐熱性導光板。Styrene 50 to 20% by weight of styrene consisting of methacrylic acid methylation 50-80% by weight - methacrylic acid methyltransferase copolymer resin (A) 20 to 80 parts by weight of styrene 70 to 90 wt%, maleic 10-30 mass anhydride styrene consisting% - Ri Do maleic anhydride copolymer (B) 80~20 parts by weight of styrene - weight-average molecular weight of methacrylic acid methylation copolymer resin (a) (Mw) is 60,000~170,000 A styrene- maleic anhydride copolymer (B) having a weight average molecular weight (Mw) of 80,000 to 150,000.
JP2003115455A 2003-04-21 2003-04-21 Heat-resistant light guide plate Expired - Fee Related JP4152245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003115455A JP4152245B2 (en) 2003-04-21 2003-04-21 Heat-resistant light guide plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003115455A JP4152245B2 (en) 2003-04-21 2003-04-21 Heat-resistant light guide plate

Publications (2)

Publication Number Publication Date
JP2004318021A JP2004318021A (en) 2004-11-11
JP4152245B2 true JP4152245B2 (en) 2008-09-17

Family

ID=33474652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003115455A Expired - Fee Related JP4152245B2 (en) 2003-04-21 2003-04-21 Heat-resistant light guide plate

Country Status (1)

Country Link
JP (1) JP4152245B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050536A (en) * 2006-08-28 2008-03-06 Denki Kagaku Kogyo Kk Resin composition and optical molded product
JP5415788B2 (en) * 2009-03-09 2014-02-12 東洋スチレン株式会社 Light guide plate
JP6058420B2 (en) * 2013-02-20 2017-01-11 デンカ株式会社 Light guide plate
JP6305038B2 (en) * 2013-12-02 2018-04-04 三菱瓦斯化学株式会社 Resin composition
KR101842858B1 (en) 2016-11-03 2018-05-14 엘지엠엠에이 주식회사 Methacrylate copolymer for light guide plate and light guide plate using thereof

Also Published As

Publication number Publication date
JP2004318021A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP2010096919A (en) Optical film
JP2003075648A (en) Light guide plate
WO2014065129A1 (en) Copolymer for improving heat resistance of aromatic vinyl-vinyl cyanide resin
JP4340421B2 (en) Rubber-modified styrenic resin composition and molded product thereof
TW200940633A (en) Light dispersion plate and resin combination thereof
JP4152245B2 (en) Heat-resistant light guide plate
JP2007204536A (en) Light guide plate
TW200840843A (en) Resin composition for light-diffusing plate and light-diffusing plate
JP4767565B2 (en) Transparent resin composition excellent in surface hardness and transparent resin molded product formed by molding the resin composition
JPH08198976A (en) Light-diffusive methacrylic resin plate
JP6058420B2 (en) Light guide plate
JP2007204535A (en) Light-diffusing styrene-based resin composition and molding
JP5046446B2 (en) Copolymer resin and method for producing the same
JP2005326761A (en) Light guide with excellent optical characteristics
KR20180028906A (en) Transparent thermoplastic resin and method for preparing the same
JP4846228B2 (en) Styrenic resin composition and molded article thereof
JP5894381B2 (en) Resin composition, optical plate using the resin composition, and method for producing the same
JP4723824B2 (en) Styrenic resin composition and molded article thereof
JP2012207074A (en) Transparency styrene-based thermoplastic resin composition
KR20080105477A (en) Resin composition for light diffusion plate and light diffusion plate
JP2006022257A (en) Sheet formed out of rubber-modified copolymer resin, and molded product for packaging
JP5016199B2 (en) Transparent resin composition excellent in surface hardness and transparent resin molded product formed by molding the resin composition
JP4386772B2 (en) Rubber-modified copolymer resin and production method
WO2017115800A1 (en) Resin film
WO2023095445A1 (en) Thermoplastic resin composition and molded article using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080701

R150 Certificate of patent or registration of utility model

Ref document number: 4152245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees