JP2005336433A - Rubber-modified copolymer resin composition and method for producing the same - Google Patents
Rubber-modified copolymer resin composition and method for producing the same Download PDFInfo
- Publication number
- JP2005336433A JP2005336433A JP2004161169A JP2004161169A JP2005336433A JP 2005336433 A JP2005336433 A JP 2005336433A JP 2004161169 A JP2004161169 A JP 2004161169A JP 2004161169 A JP2004161169 A JP 2004161169A JP 2005336433 A JP2005336433 A JP 2005336433A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- copolymer resin
- modified copolymer
- mass
- meth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、生産効率に優れ、成形性と色相が良好で、かつ透明性と衝撃強度のバランスに優れたゴム変性共重合樹脂組成物および製造方法およびその成形体に関する。 The present invention relates to a rubber-modified copolymer resin composition excellent in production efficiency, good moldability and hue, and excellent in balance between transparency and impact strength, a production method thereof, and a molded article thereof.
ゴム状重合体の存在下スチレン系単量体とメチルメタクリレートを主体とした(メタ)アクリル酸エステル系単量体を共重合して得られるゴム変性共重合樹脂は、透明性と耐衝撃性のバランスに比較的優れることから、家電製品、雑貨、包装材料、光学用途を始め様々な用途に用いられている(例えば、特許文献1参照)。近年ではさらに成形性を向上させるため、スチレン系単量体と2種の(メタ)アクリル酸エステル系単量体を共重合する技術(例えば、特許文献2参照。)、さらにはテルペン系水素添加樹脂等の加工性改良剤を添加する技術(例えば、特許文献3参照。)が開示されている。 Rubber-modified copolymer resin obtained by copolymerizing styrene monomer and (meth) acrylic acid ester monomer mainly composed of methyl methacrylate in the presence of rubber-like polymer has transparency and impact resistance. Since it is relatively excellent in balance, it is used in various applications including home appliances, sundries, packaging materials, and optical applications (see, for example, Patent Document 1). In recent years, in order to further improve moldability, a technique of copolymerizing a styrene monomer and two (meth) acrylic acid ester monomers (see, for example, Patent Document 2), and further terpene hydrogenation A technique of adding a processability improving agent such as a resin (see, for example, Patent Document 3) is disclosed.
しかし、ゴム状重合体の存在下スチレン系単量体と2種の(メタ)アクリル酸エステル系単量体を共重合する場合、成形性は向上するが、成形性の異なるゴム変性共重合樹脂を得る場合には単量体の組成を変えて共重合をする必要があるため生産性が効率的でなく、また、溶液重合における回収溶剤の精製に多額のコストがかかり、経済性に劣る等の課題があった。
また、テルペン系水素添加樹脂等の加工性改良剤を添加する技術は、成形性の改良効果が十分でなく、色相が低下したり、透明性と耐衝撃性のバランスが十分でない等の課題があった。
However, when copolymerizing a styrene monomer and two (meth) acrylic acid ester monomers in the presence of a rubbery polymer, the moldability is improved, but the rubber-modified copolymer resins having different moldability In order to obtain a polymer, it is necessary to carry out copolymerization by changing the monomer composition, and the productivity is not efficient. In addition, the cost of refining the recovered solvent in solution polymerization is high, and the economy is inferior. There was a problem.
Moreover, the technology of adding a processability improver such as a terpene-based hydrogenated resin has problems such as insufficient effect of improving moldability, a decrease in hue, and insufficient balance between transparency and impact resistance. there were.
本発明は、2種の(メタ)アクリル酸エステル系単量体を共重合する必要がなく生産効率に優れ、また成形性と色相が良好で、かつ透明性と衝撃強度のバランスに優れたゴム変性共重合樹脂組成物および製造方法に関する。 The present invention does not require copolymerization of two (meth) acrylic acid ester monomers, has excellent production efficiency, good moldability and hue, and excellent balance between transparency and impact strength The present invention relates to a modified copolymer resin composition and a production method.
本発明者らは、かかる課題を解決すべく鋭意研究を重ねた結果、ゴム状重合体の存在下スチレン系単量体およびメタクリル酸エステル系単量体を共重合して得られるゴム変性共重合樹脂とガラス転移温度(Tg)が0℃以下の(メタ)アクリル酸エステル系オリゴマーからなり、JIS K7206に基づき測定されたビカット軟化温度(VST)が80℃以上、n−ヘキサン抽出分が10質量%以下であることを特徴とするゴム変性共重合樹脂組成物が、成形性と色相が良好で、かつ透明性と衝撃強度のバランスに優れることを見出し、本発明に至った。 As a result of intensive studies to solve such problems, the present inventors have obtained a rubber-modified copolymer obtained by copolymerizing a styrene monomer and a methacrylate ester monomer in the presence of a rubber-like polymer. It consists of a resin and a (meth) acrylate oligomer having a glass transition temperature (Tg) of 0 ° C. or less, a Vicat softening temperature (VST) measured in accordance with JIS K7206 is 80 ° C. or more, and an n-hexane extract is 10 mass. The rubber-modified copolymer resin composition characterized by being no more than% has been found to have good moldability and hue, and excellent balance between transparency and impact strength, and has led to the present invention.
また、ガラス転移温度(Tg)が0℃以下の(メタ)アクリル酸エステル系オリゴマーを共重合時添加することを特徴とするゴム変性共重合樹脂組成物の製造方法が、生産効率に優れ、成形性と色相が良好で、かつ透明性と衝撃強度のバランスに優れることを見出し、本発明に至った。 In addition, a method for producing a rubber-modified copolymer resin composition characterized by adding a (meth) acrylic acid ester oligomer having a glass transition temperature (Tg) of 0 ° C. or less during copolymerization is excellent in production efficiency and molding. The present invention has been found out that the property and hue are excellent and the balance between transparency and impact strength is excellent.
さらに、共重合が溶液重合であることを特徴とするゴム変性共重合樹脂組成物の製造方法が、生産効率に優れ、成形性と色相が良好で、かつ透明性と衝撃強度のバランスに優れることを見出し、本発明に至った。 Furthermore, the method for producing a rubber-modified copolymer resin composition characterized in that the copolymerization is solution polymerization has excellent production efficiency, good moldability and hue, and excellent balance between transparency and impact strength. And found the present invention.
即ち本発明は、ゴム状重合体の存在下スチレン系単量体およびメタクリル酸エステル系単量体を共重合して得られるゴム変性共重合樹脂とガラス転移温度(Tg)が0℃以下の(メタ)アクリル酸エステル系オリゴマーからなり、JIS K7206に基づき測定されたビカット軟化温度(VST)が80℃以上、n−ヘキサン抽出分が10質量%以下であることを特徴とするゴム変性共重合樹脂組成物である。
また、(メタ)アクリル酸エステル系オリゴマーの重量平均分子量が200〜8000であることを特徴とする上記のゴム変性共重合樹脂組成物であり、ゴム変性共重合樹脂と(メタ)アクリル酸エステル系オリゴマーの割合が90〜99.5質量部:10〜0.5質量部であることを特徴とする上記のゴム変性共重合樹脂組成物であり、さらにメルトマスフローレイトが2g/10分以上であることを特徴とする上記のゴム変性共重合樹脂組成物である。そして、ガラス転移温度(Tg)が0℃以下の(メタ)アクリル酸エステル系オリゴマーを共重合時添加することを特徴とする上記のゴム変性共重合樹脂組成物の製造方法、共重合が溶液重合であることを特徴とする上記のゴム変性共重合樹脂組成物の製造方法でもあり、それらの製造方法で得られたゴム変性共重合樹脂組成物を成形して成る成形体に関する。
That is, the present invention relates to a rubber-modified copolymer resin obtained by copolymerizing a styrene monomer and a methacrylic acid ester monomer in the presence of a rubber-like polymer and a glass transition temperature (Tg) of 0 ° C. or less ( A rubber-modified copolymer resin comprising a (meth) acrylate ester-based oligomer, having a Vicat softening temperature (VST) measured in accordance with JIS K7206 of 80 ° C. or more and an n-hexane extract of 10% by mass or less. It is a composition.
Further, the rubber-modified copolymer resin composition is characterized in that the weight average molecular weight of the (meth) acrylate oligomer is 200 to 8000, and the rubber-modified copolymer resin and the (meth) acrylate ester The rubber-modified copolymer resin composition is characterized in that the ratio of the oligomer is 90 to 99.5 parts by mass: 10 to 0.5 parts by mass, and the melt mass flow rate is 2 g / 10 min or more. The rubber-modified copolymer resin composition described above. A method for producing the rubber-modified copolymer resin composition described above, wherein a (meth) acrylic acid ester oligomer having a glass transition temperature (Tg) of 0 ° C. or less is added during copolymerization, and the copolymerization is solution polymerization. It is also a manufacturing method of said rubber-modified copolymer resin composition characterized by being, It is related with the molded object formed by shape | molding the rubber-modified copolymer resin composition obtained by those manufacturing methods.
ゴム変性共重合樹脂組成物および製造方法は、生産効率に優れ、成形性と色相が良好で、かつ透明性と衝撃強度のバランスに優れるため、家電製品、包装材料、光学用途を始め様々な用途に広く用いることができる。 The rubber-modified copolymer resin composition and manufacturing method have excellent production efficiency, good moldability and hue, and excellent balance between transparency and impact strength, so it can be used in various applications including home appliances, packaging materials, and optical applications. Can be widely used.
以下に本発明を詳細に説明する。
スチレン系単量体は、スチレン、α−メチルスチレン、p−メチルスチレン、p−t−ブチルスチレン等をあげることができるが、好ましくはスチレンをスチレン系単量体100質量%に対し、90質量%以上使用する。
The present invention is described in detail below.
Examples of the styrene monomer include styrene, α-methyl styrene, p-methyl styrene, pt-butyl styrene and the like. Preferably, styrene is 90% by mass with respect to 100% by mass of the styrene monomer. % Or more.
(メタ)アクリル酸エステル系単量体は、メチルメタクリレート、エチルメタクリレート、メチルアクリレート、エチルアクリレート、n−ブチルアクリレート、2−メチルヘキシルアクリレート、2−エチルヘキシルアクリレート、オクチルアクリレート等があげることができるが、好ましくはメチルメタクリレートを(メタ)アクリル酸エステル系単量体100質量%に対し、90質量%以上使用する。 Examples of the (meth) acrylic acid ester monomer include methyl methacrylate, ethyl methacrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, Preferably, 90% by mass or more of methyl methacrylate is used with respect to 100% by mass of the (meth) acrylic acid ester monomer.
スチレン系単量体および(メタ)アクリル酸エステル系単量体の割合は、好ましくはスチレン系単量体:(メタ)アクリル酸エステル系単量体=5〜95質量部:95〜5質量部、さらに好ましくはスチレン系単量体:(メタ)アクリル酸エステル系単量体=10〜90質量部:90〜10質量部である。但しスチレン系単量体、(メタ)アクリル酸エステル系単量体の合計を100質量部とする。 The ratio of the styrene monomer and the (meth) acrylate monomer is preferably a styrene monomer: (meth) acrylate monomer = 5 to 95 parts by mass: 95 to 5 parts by mass. More preferably, it is styrene monomer: (meth) acrylic acid ester monomer = 10 to 90 parts by mass: 90 to 10 parts by mass. However, the total of the styrene monomer and the (meth) acrylic acid ester monomer is 100 parts by mass.
スチレン系単量体、(メタ)アクリル酸エステル系単量体以外の共重合可能な単量体、例えばアクリロニトリル、無水マレイン酸、(メタ)アクリル酸、N−フェニルマレイミド等もスチレン系単量体および(メタ)アクリル酸エステル系単量体の合計100質量部に対し、50質量部未満であれば含有させることができる。 Copolymerizable monomers other than styrene monomers and (meth) acrylic acid ester monomers, such as acrylonitrile, maleic anhydride, (meth) acrylic acid, N-phenylmaleimide, etc. And it can be contained if it is less than 50 mass parts with respect to a total of 100 mass parts of (meth) acrylic acid ester monomer.
ゴム状重合体は、ポリブタジエン、スチレン−ブタジエンゴム、スチレン−ブタジエンブロックゴム、部分水添ポリブタジエン、部分水添スチレン−ブタジエンゴム、部分水添スチレン−ブタジエンブロックゴム等があげられるが、好ましくはスチレン含量が10〜50質量%、さらに好ましくはスチレン含量が15〜45質量%のスチレン−ブタジエンブロックゴムである。また、温度25℃における5質量%スチレン溶液粘度が、好ましくは15〜200mPa・s、さらに好ましくは20〜60mPa・sである。ブタジエンに基づく不飽和結合のうちの1,2−ビニル結合の割合は、好ましくは8〜25モル%、さらに好ましくは10〜16モル%である。
ゴム状重合体以外の重合体もゴム状重合体100質量部に対し、50質量部未満であれば含有させることができる。
Examples of the rubber-like polymer include polybutadiene, styrene-butadiene rubber, styrene-butadiene block rubber, partially hydrogenated polybutadiene, partially hydrogenated styrene-butadiene rubber, and partially hydrogenated styrene-butadiene block rubber. Is a styrene-butadiene block rubber having a styrene content of 15 to 45% by mass, more preferably 10 to 50% by mass. Moreover, the 5 mass% styrene solution viscosity in 25 degreeC of temperature becomes like this. Preferably it is 15-200 mPa * s, More preferably, it is 20-60 mPa * s. The proportion of 1,2-vinyl bonds in the unsaturated bonds based on butadiene is preferably 8 to 25 mol%, more preferably 10 to 16 mol%.
A polymer other than the rubber-like polymer can be contained as long as it is less than 50 parts by mass with respect to 100 parts by mass of the rubber-like polymer.
ゴム状重合体の割合は、スチレン系単量体および(メタ)アクリル酸エステル系単量体の合計100質量部に対し、好ましくは0.1〜30質量部、さらに好ましくは3〜15質量部である。 The ratio of the rubber-like polymer is preferably 0.1 to 30 parts by mass, more preferably 3 to 15 parts by mass with respect to 100 parts by mass in total of the styrene monomer and the (meth) acrylate monomer. It is.
ゴム変性共重合樹脂は、ゴム状重合体の存在下スチレン系単量体および(メタ)アクリル酸エステル系単量体を共重合して得られる。ゴム状重合体は、スチレン系単量体および(メタ)アクリル酸エステル系単量体に溶解した後共重合に供する。 The rubber-modified copolymer resin is obtained by copolymerizing a styrene monomer and a (meth) acrylate monomer in the presence of a rubbery polymer. The rubbery polymer is dissolved in a styrene monomer and a (meth) acrylate monomer and then used for copolymerization.
共重合は公知の手法が採用できるが、エチルベンゼン、トルエン等の公知の溶剤を添加した溶液重合であることが好ましい。溶剤はスチレン系単量体および(メタ)アクリル酸エステル系単量体の合計100質量部に対して好ましくは25質量部以下、さらに好ましくは2〜20質量部使用する。溶剤の使用により共重合時の粘度が下がり、重合制御性が向上する場合がある。さらに、溶液重合において本発明の製造方法は、回収溶剤の精製コストを下げることができ、経済性が良好である。
共重合の様式は、連続重合様式が好ましい。反応装置としては特に制限はないが、完全混合型反応器、塔式プラグフロー型反応器、脱揮槽等を組み合わせて用いることが好ましい。
共重合温度は、好ましくは80〜170℃、さらに好ましくは100〜160℃である。
Copolymerization can be carried out by a known method, but is preferably solution polymerization with addition of a known solvent such as ethylbenzene or toluene. The solvent is preferably used in an amount of 25 parts by mass or less, more preferably 2 to 20 parts by mass with respect to a total of 100 parts by mass of the styrene monomer and the (meth) acrylic acid ester monomer. Use of a solvent may lower the viscosity during copolymerization and improve polymerization controllability. Furthermore, in the solution polymerization, the production method of the present invention can reduce the purification cost of the recovered solvent, and is economical.
The copolymerization mode is preferably a continuous polymerization mode. Although there is no restriction | limiting in particular as a reaction apparatus, It is preferable to use combining a complete mixing type reactor, a column type plug flow type reactor, a devolatilization tank, etc.
The copolymerization temperature is preferably 80 to 170 ° C, more preferably 100 to 160 ° C.
共重合時、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシ−2−エチルヘキサノエート、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−シクロヘキサン、2,2−ビス(4,4−ジ−ブチルパーオキシシクロヘキシル)プロパン、t−ブチルパーオキシイソプロピルモノカーボネート、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、エチル−3,3−ジ−(t−ブチルパーオキシ)ブチレート等の公知の重合開始剤や、4−メチル−2,4−ジフェニルペンテン−1、t−ドデシルメルカプタン、n−ドデシルメルカプタン等の公知の分子量調整剤を添加することが好ましい。
重合開始剤、分子量調整剤の添加量は、スチレン系単量体および(メタ)アクリル酸エステル系単量体の合計100質量部に対し、好ましくは0.005〜5質量部、さらに好ましくは0.01〜1質量部である。
At the time of copolymerization, t-butylperoxybenzoate, t-butylperoxy-2-ethylhexanoate, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1- Bis (t-butylperoxy) -cyclohexane, 2,2-bis (4,4-di-butylperoxycyclohexyl) propane, t-butylperoxyisopropyl monocarbonate, di-t-butyl peroxide, dicumylper Known polymerization initiators such as oxide, ethyl-3,3-di- (t-butylperoxy) butyrate, 4-methyl-2,4-diphenylpentene-1, t-dodecyl mercaptan, n-dodecyl mercaptan, etc. It is preferable to add a known molecular weight regulator.
The addition amount of the polymerization initiator and the molecular weight modifier is preferably 0.005 to 5 parts by mass, more preferably 0 with respect to 100 parts by mass in total of the styrene monomer and the (meth) acrylate monomer. 0.01 to 1 part by mass.
また共重合時、ジビニルベンゼン等の公知の架橋剤、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート等の公知の酸化防止剤等を添加しても差し支えない。 In addition, a known crosslinking agent such as divinylbenzene and a known antioxidant such as octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate may be added during copolymerization. .
ゴム変性共重合樹脂中にはゴム粒子が分散してなる。ゴム粒子はゴム状重合体の存在下スチレン系単量体およびメタクリル酸エステル系単量体を共重合する際、重合の進行に伴い形成する。
ゴム粒子の体積平均粒子径(dv)は特に制限はないが、好ましくは0.4〜1.6μm、さらに好ましくは0.5〜1.2μmである。本発明の体積平均粒子径(dv)とは、樹脂の超薄切片法透過型電子顕微鏡写真より、写真中のゴム粒子約3000個の粒子径Di(円相当径)を測定し、次式[数1]により得られる平均粒子径とする。
The volume average particle diameter (dv) of the rubber particles is not particularly limited, but is preferably 0.4 to 1.6 μm, more preferably 0.5 to 1.2 μm. The volume average particle diameter (dv) of the present invention is determined by measuring the particle diameter Di (equivalent circle diameter) of about 3000 rubber particles in the photograph from an ultra-thin section transmission electron micrograph of the resin. It is set as the average particle diameter obtained by Formula 1.
ゴム変性共重合樹脂組成物は、ゴム変性共重合樹脂とガラス転移温度(Tg)が0℃以下、好ましくは−10℃以下、さらに好ましくは−20℃以下の(メタ)アクリル酸エステル系オリゴマーからなる。
ガラス転移温度(Tg)が0℃以下の(メタ)アクリル酸エステル系オリゴマーは、単量体単位として、エチルアクリレート(ホモポリマーのTg=−24℃)、n−ブチルアクリレート(ホモポリマーのTg=−54℃)、ヘキシルアクリレート(ホモポリマーのTg=−57℃)、オクチルアクリレート(ホモポリマーのTg=−65℃)、ヘキシルメタクリレート(ホモポリマーのTg=−5℃)等を主体としたオリゴマーをあげることができる。また、単量体単位として、スチレンやアクリロニトリル、無水マレイン酸、(メタ)アクリル酸、N−フェニルマレイミド等が含まれたオリゴマーであっても差し支えないが、好ましくはn−ブチルアクリレートのオリゴマーである。ガラス転移温度(Tg)が0℃以下の(メタ)アクリル酸エステル系オリゴマーを用いない場合は、成形性や透明性と衝撃強度のバランスが悪いものとなる。(メタ)アクリル酸エステル系オリゴマーは公知の手法で得たものであっても、市場で入手し得るもの(例えば東亜合成社製ARUFON)でも差し支えない。また、(メタ)アクリル酸エステル系オリゴマーのガラス転移温度(Tg)は組成や分子量にて調整することができる。
ガラス転移温度(Tg)が0℃以下の(メタ)アクリル酸エステル系オリゴマーの重量平均分子量は好ましくは200〜8000、さらに好ましくは300〜2000である。重量平均分子量(Mw)が該範囲外の場合は成形性や透明性と衝撃強度のバランスが悪いものとなる場合がある。重量平均分子量(Mw)は(メタ)アクリル酸エステル系オリゴマー重合時に使用する開始剤や連鎖移動剤、重合温度条件等で調整することができる。
なお、本発明の(メタ)アクリル酸エステル系オリゴマー重量平均分子量(Mw)はGPCにて測定されるポリスチレン換算の重量平均分子量(Mw)であり、下記記載の測定条件で測定した。
装置名:GPC−8020(東ソー社製)
カラム:KF404−HQ(Shodex社製) 4本
温度:40℃
検出:示差屈折率
溶媒:テトラハイドロフラン
濃度:0.3質量%
検量線:標準ポリスチレン(PS)(PL社製)を用いて作製し、重量平均分子量はPS換算値で表した。
The rubber-modified copolymer resin composition comprises a rubber-modified copolymer resin and a (meth) acrylic acid ester oligomer having a glass transition temperature (Tg) of 0 ° C. or lower, preferably −10 ° C. or lower, more preferably −20 ° C. or lower. Become.
A (meth) acrylic acid ester oligomer having a glass transition temperature (Tg) of 0 ° C. or lower has, as monomer units, ethyl acrylate (homopolymer Tg = −24 ° C.), n-butyl acrylate (homopolymer Tg = Oligomers mainly composed of hexyl acrylate (homopolymer Tg = −57 ° C.), octyl acrylate (homopolymer Tg = −65 ° C.), hexyl methacrylate (homopolymer Tg = −5 ° C.), etc. I can give you. The monomer unit may be an oligomer containing styrene, acrylonitrile, maleic anhydride, (meth) acrylic acid, N-phenylmaleimide or the like, but is preferably an n-butyl acrylate oligomer. . When a (meth) acrylic acid ester oligomer having a glass transition temperature (Tg) of 0 ° C. or lower is not used, the balance between moldability, transparency and impact strength is poor. The (meth) acrylic acid ester oligomer may be obtained by a known method or commercially available (for example, ARUFON manufactured by Toa Gosei Co., Ltd.). The glass transition temperature (Tg) of the (meth) acrylic acid ester oligomer can be adjusted by the composition and molecular weight.
The weight average molecular weight of the (meth) acrylic acid ester oligomer having a glass transition temperature (Tg) of 0 ° C. or lower is preferably 200 to 8000, more preferably 300 to 2000. When the weight average molecular weight (Mw) is outside this range, the balance between moldability, transparency and impact strength may be poor. The weight average molecular weight (Mw) can be adjusted by an initiator, a chain transfer agent, a polymerization temperature condition, etc. used at the time of (meth) acrylate oligomer polymerization.
In addition, the (meth) acrylic acid ester oligomer weight average molecular weight (Mw) of the present invention is a polystyrene equivalent weight average molecular weight (Mw) measured by GPC, and was measured under the measurement conditions described below.
Device name: GPC-8020 (manufactured by Tosoh Corporation)
Column: 4 KF404-HQ (manufactured by Shodex) Temperature: 40 ° C
Detection: Differential refractive index Solvent: Tetrahydrofuran Concentration: 0.3% by mass
Calibration curve: produced using standard polystyrene (PS) (manufactured by PL), and the weight average molecular weight was expressed in terms of PS.
ゴム変性共重合樹脂とガラス転移温度(Tg)が0℃以下の(メタ)アクリル酸エステル系オリゴマーの割合は、好ましくは、ゴム変性共重合樹脂:ガラス転移温度(Tg)が0℃以下の(メタ)アクリル酸エステル系オリゴマー=90〜99.5質量部:10〜0.5質量部、さらに好ましくはゴム変性共重合樹脂:ガラス転移温度(Tg)が0℃以下の(メタ)アクリル酸エステル系オリゴマー=95〜99質量部:5〜1質量部である。但し、ゴム変性共重合樹脂とガラス転移温度(Tg)が0℃以下の(メタ)アクリル酸エステル系オリゴマーの合計を100質量部とする。該範囲外の場合は、成形性や透明性と衝撃強度のバランス、さらには色相が悪いものとなる場合がある。 The ratio of the rubber-modified copolymer resin and the (meth) acrylic acid ester oligomer having a glass transition temperature (Tg) of 0 ° C. or lower is preferably rubber-modified copolymer resin: glass transition temperature (Tg) of 0 ° C. or lower ( (Meth) acrylate ester oligomer = 90-99.5 parts by mass: 10-0.5 parts by mass, more preferably rubber-modified copolymer resin: (meth) acrylate having a glass transition temperature (Tg) of 0 ° C. or less System oligomer = 95 to 99 parts by mass: 5 to 1 part by mass. However, the total of the rubber-modified copolymer resin and the (meth) acrylic acid ester oligomer having a glass transition temperature (Tg) of 0 ° C. or less is 100 parts by mass. If it is out of this range, the balance between moldability, transparency and impact strength, and the hue may be poor.
ゴム変性共重合樹脂とガラス転移温度(Tg)が0℃以下の(メタ)アクリル酸エステル系オリゴマーを混合する際、ガラス転移温度(Tg)が0℃以下の(メタ)アクリル酸エステル系オリゴマーを共重合時添加することが好ましい。また、ガラス転移温度(Tg)が0℃以下の(メタ)アクリル酸エステル系オリゴマーを共重合時、ゴム粒子を形成した後に添加することがさらに好ましい。共重合時添加することにより、成形性や透明性と衝撃強度のバランスがさらに良好なものとなる場合がある。 When mixing a rubber-modified copolymer resin and a (meth) acrylate oligomer having a glass transition temperature (Tg) of 0 ° C. or less, a (meth) acrylate ester oligomer having a glass transition temperature (Tg) of 0 ° C. or less is used. It is preferable to add at the time of copolymerization. Further, it is more preferable to add a (meth) acrylic acid ester oligomer having a glass transition temperature (Tg) of 0 ° C. or less after the rubber particles are formed during copolymerization. By adding at the time of copolymerization, the balance between moldability, transparency and impact strength may be further improved.
ゴム変性共重合樹脂組成物は、JIS K7206に基づき測定されたビカット軟化温度(VST)は80℃以上、好ましくは81℃以上、さらに好ましくは82〜98℃である。ビカット軟化温度(VST)が低い場合は色相が低下したり、透明性と耐衝撃性のバランスが低下したり、耐熱性が低いため使用に制限が発生する。ビカット軟化温度(VST)の調整は(メタ)アクリル酸エステル(C)の種類や量、(メタ)アクリル酸エステル系オリゴマーの種類や添加量、重合時に使用する開始剤量等で調整することができる。なお、ビカット軟化温度(VST)は50法(荷重50N、昇温速度50℃/時間)で試験片は10mm×10mm、厚さ4mmのものを用いて測定するものとする。 The rubber-modified copolymer resin composition has a Vicat softening temperature (VST) measured based on JIS K7206 of 80 ° C. or higher, preferably 81 ° C. or higher, more preferably 82 to 98 ° C. When the Vicat softening temperature (VST) is low, the hue is lowered, the balance between transparency and impact resistance is lowered, and use is limited because of low heat resistance. The Vicat softening temperature (VST) can be adjusted by adjusting the type and amount of (meth) acrylic acid ester (C), the type and amount of (meth) acrylic acid ester oligomer, the amount of initiator used during polymerization, and the like. it can. The Vicat softening temperature (VST) is 50 methods (load 50 N, temperature rising rate 50 ° C./hour), and the test piece is 10 mm × 10 mm and 4 mm thick.
ゴム変性共重合樹脂組成物は、n−ヘキサン抽出分が10質量%以下、好ましくは1〜8質量%以下、さらに好ましくは2〜6質量%である。n−ヘキサン抽出分が10質量%を越える場合は耐熱性と透明性、色相が低下する。n−ヘキサン抽出分の調整は(メタ)アクリル酸エステル系オリゴマーの添加量等で調整することができる。
なお、本発明のn−ヘキサン抽出分は、凍結粉砕したサンプル(Agとする)を、ソックスレー等の抽出器を用いてn−ヘキサンを6時間以上還流させるることにより得た抽出液を、蒸発乾固させることにより抽出物(Bgとする)を得、次式[数2]により算出する。
The n-hexane extract of the present invention is obtained by evaporating an extract obtained by refluxing a freeze-pulverized sample (assumed to be Ag) for 6 hours or more using an extractor such as Soxhlet. An extract (referred to as Bg) is obtained by drying and is calculated by the following formula [Equation 2].
ゴム変性共重合樹脂組成物は、JIS K7210に基づき測定されたメルトマスフローレイト(MFR)が好ましくは、2g/10分以上、さらに好ましくは3〜10g/10分である。メルトマスフローレイト(MFR)が該範囲外の場合は、射出成形において複雑形状の成形品が得られなかったり、透明性と耐衝撃性のバランスが悪い場合がある。メルトマスフローレイト(MFR)の調整は(メタ)アクリル酸エステル系オリゴマーの種類や量、重合時に使用する開始剤や連鎖移動剤等で調整することができる。なお、メルトマスフローレイト(MFR)は温度200℃、荷重49Nで樹脂ペレットを用いて測定するものとする。 The rubber-modified copolymer resin composition preferably has a melt mass flow rate (MFR) measured based on JIS K7210 of 2 g / 10 minutes or more, more preferably 3 to 10 g / 10 minutes. When the melt mass flow rate (MFR) is outside this range, a molded product having a complicated shape may not be obtained in injection molding, or the balance between transparency and impact resistance may be poor. The melt mass flow rate (MFR) can be adjusted with the type and amount of the (meth) acrylic acid ester oligomer, the initiator used during the polymerization, the chain transfer agent, and the like. The melt mass flow rate (MFR) is measured using resin pellets at a temperature of 200 ° C. and a load of 49 N.
ゴム変性共重合樹脂組成物のゲル分は特に制限はないが、好ましくは10〜30質量%、さらに好ましくは12〜25質量%である。ゲル分が該範囲外の場合は透明性と耐衝撃性のバランスが悪い場合がある。ゲル分の調整は、ゴム状重合体(A)の添加量や、重合時の撹拌条件、重合開始剤や分子量調整剤の種類や添加量等で調整できる。
なお、本発明におけるゲル分は以下の様に測定する。
試料0.35gを精秤(a)しメチルエチルケトン(MEK)35mlに温度25℃で24時間かけて溶解させた後、溶解液を事前に質量(b)を測定した容量50mlの遠心管に移し、最大遠心半径10.7cmのローターを用いて、温度10℃以下、24000rpmで40分間遠心分離し、非沈殿分をデカンテーションにより取り除き、温度70℃の真空乾燥器で24時間乾燥させ、乾燥後の遠心管の質量(c)を測定し、下式[数3]によりゲル分を算出する。
The gel content in the present invention is measured as follows.
A sample of 0.35 g was precisely weighed (a) and dissolved in 35 ml of methyl ethyl ketone (MEK) at a temperature of 25 ° C. for 24 hours, and then the lysate was transferred to a 50 ml centrifuge tube whose mass (b) was measured in advance. Using a rotor with a maximum centrifugal radius of 10.7 cm, centrifuge at 24,000 rpm for 40 minutes at a temperature of 10 ° C. or less, remove the non-precipitated matter by decantation, and dry it in a vacuum dryer at a temperature of 70 ° C. for 24 hours. The mass (c) of the centrifuge tube is measured, and the gel content is calculated by the following formula [Equation 3].
ゴム変性共重合樹脂組成物の膨潤指数は特に制限はないが、好ましくは7〜17、さらに好ましくは9〜14である。膨潤指数が該範囲外の場合は透明性と耐衝撃性のバランスが悪い場合がある。ゴム変性共重合樹脂の膨潤指数は、酸化防止剤の添加や、脱揮槽内の加熱条件等で調整できる。
なお、膨潤指数は以下の様に測定する。試料約0.35gをトルエン35mlに温度25℃で24時間かけて溶解させた後、溶解液を事前に質量(d)を測定した50mlの遠心管に移し、最大遠心半径10.7cmのローターを用いて、温度10℃以下、15000rpmで60分間遠心分離し、非沈殿物をデカンテーションにより取り除いた後、乾燥前の遠心管の質量(e)を測定する。温度70℃の真空乾燥器で24時間乾燥させ、乾燥後の遠心管の質量(f)を測定し、下式[数4]により膨潤指数を算出する。
The swelling index is measured as follows. After about 0.35 g of sample was dissolved in 35 ml of toluene at a temperature of 25 ° C. for 24 hours, the lysate was transferred to a 50 ml centrifuge tube whose mass (d) was measured in advance, and a rotor with a maximum centrifugal radius of 10.7 cm was placed. Use, centrifuge at 15000 rpm for 60 minutes at a temperature of 10 ° C. or less, remove the non-precipitate by decantation, and then measure the mass (e) of the centrifuge tube before drying. It is dried in a vacuum dryer at a temperature of 70 ° C. for 24 hours, the mass (f) of the centrifuge tube after drying is measured, and the swelling index is calculated by the following equation [Equation 4].
ゴム変性共重合樹脂組成物は、必要に応じて酸化防止剤、耐候剤、滑剤、着色剤、帯電防止剤、鉱油、難燃剤等の添加剤や、MS樹脂、乳化グラフト共重合体等を添加することができ、製造時任意の段階で添加することができる。添加する方法については特に規定はないが、たとえば、重合時添加する方法や押出機にて溶融混練する方法等があげられる。 The rubber-modified copolymer resin composition may be added with additives such as antioxidants, weathering agents, lubricants, colorants, antistatic agents, mineral oil, flame retardants, MS resins, emulsion graft copolymers, etc. as necessary. And can be added at any stage during manufacture. The method of adding is not particularly limited, and examples thereof include a method of adding at the time of polymerization and a method of melt kneading with an extruder.
ゴム変性共重合樹脂組成物は、射出成形、押出成形、圧縮成形、真空成形等の公知の方法により各種成形体に加工され実用に供される。 The rubber-modified copolymer resin composition is processed into various molded articles by a known method such as injection molding, extrusion molding, compression molding, vacuum molding, etc., and is put to practical use.
次に実施例をもって本発明をさら説明するが、本発明はこれらの例によって限定されるものではない。 EXAMPLES Next, although an Example demonstrates this invention further, this invention is not limited by these examples.
参考例1
ホットオイルによる加熱装置を備えた容量500mlの加圧式撹拌槽型反応器を、3−エトキシプロピオン酸エチルで満たした。反応器内温度は250℃に設定した。反応器圧力は圧力調節器を使用して予想される蒸気圧以上に設定した。次いで反応器の圧力を一定に保ちながら、n−ブチルアクリレート100質量部、ジ−t−ブチルパーオキサイド0.1質量部、2,4−ジフェニル−4−メチル−1−ペンテン10質量部を秤量して原料液を調整し、それを原料タンクに貯蔵した。反応器内の圧力を一定に保ちながら、原料液を原料タンクから反応器に連続的に供給した。このとき、原料液の反応器内での平均滞留時間が12分になるように供給速度を設定した。原料液の供給量に相当する反応液を反応器の出口から連続的に抜き出した。原料液の連続供給中、反応器内温度を250℃に維持した。得られた反応液は薄膜蒸発器に導入して、235℃、40kPaの減圧下、未反応単量体を除去し、(メタ)アクリル酸エステル系オリゴマーを得た。得られた(メタ)アクリル酸エステル系オリゴマーのガラス転移温度(Tg)は−71℃、重量平均分子量(Mw)は2400であった。
参考例2
反応器内温度を270℃に設定した以外は参考例1と同様に行った。得られた(メタ)アクリル酸エステル系オリゴマーのガラス転移温度(Tg)は−78℃、重量平均分子量(Mw)は1500であった。
参考例3
反応器内温度を270℃に設定した以外は参考例1と同様に行った。得られた(メタ)アクリル酸エステル系オリゴマーのガラス転移温度(Tg)は−58℃、重量平均分子量(Mw)は10000であった。
Reference example 1
A 500 ml pressurized stirred tank reactor equipped with a hot oil heating device was filled with ethyl 3-ethoxypropionate. The temperature in the reactor was set to 250 ° C. The reactor pressure was set above the expected vapor pressure using a pressure regulator. Next, while maintaining the reactor pressure constant, 100 parts by mass of n-butyl acrylate, 0.1 part by mass of di-t-butyl peroxide and 10 parts by mass of 2,4-diphenyl-4-methyl-1-pentene were weighed. The raw material liquid was prepared and stored in the raw material tank. The raw material liquid was continuously supplied from the raw material tank to the reactor while keeping the pressure in the reactor constant. At this time, the feed rate was set so that the average residence time of the raw material liquid in the reactor was 12 minutes. A reaction liquid corresponding to the feed amount of the raw material liquid was continuously extracted from the outlet of the reactor. During the continuous supply of the raw material liquid, the temperature in the reactor was maintained at 250 ° C. The obtained reaction solution was introduced into a thin film evaporator, and unreacted monomers were removed under reduced pressure at 235 ° C. and 40 kPa to obtain a (meth) acrylate oligomer. The obtained (meth) acrylic acid ester oligomer had a glass transition temperature (Tg) of −71 ° C. and a weight average molecular weight (Mw) of 2400.
Reference example 2
The same operation as in Reference Example 1 was performed except that the temperature in the reactor was set to 270 ° C. The obtained (meth) acrylic acid ester oligomer had a glass transition temperature (Tg) of −78 ° C. and a weight average molecular weight (Mw) of 1500.
Reference example 3
The same operation as in Reference Example 1 was performed except that the temperature in the reactor was set to 270 ° C. The obtained (meth) acrylic acid ester oligomer had a glass transition temperature (Tg) of −58 ° C. and a weight average molecular weight (Mw) of 10,000.
参考例4
n−ブチルアクリレート10質量部、スチレン90質量部とした以外は参考例1と同様に行った。得られた(メタ)アクリル酸エステル系オリゴマーのガラス転移温度(Tg)は40℃、重量平均分子量(Mw)は3500であった。
Reference example 4
The same procedure as in Reference Example 1 was conducted except that 10 parts by mass of n-butyl acrylate and 90 parts by mass of styrene were used. The obtained (meth) acrylic acid ester oligomer had a glass transition temperature (Tg) of 40 ° C. and a weight average molecular weight (Mw) of 3,500.
参考例5
n−ブチルアクリレート55質量部、スチレン45質量部とした以外は参考例1と同様に行った。得られた(メタ)アクリル酸エステル系オリゴマーのガラス転移温度(Tg)は−15℃、重量平均分子量(Mw)は2900であった。
Reference Example 5
The same procedure as in Reference Example 1 was conducted except that 55 parts by mass of n-butyl acrylate and 45 parts by mass of styrene were used. The obtained (meth) acrylic acid ester oligomer had a glass transition temperature (Tg) of −15 ° C. and a weight average molecular weight (Mw) of 2900.
実施例1
撹拌機を付した容積約5Lの第1完全混合型反応器、撹拌機を付した容積約15Lの第2完全混合型反応器、容積約40Lの塔式プラグフロー型反応器、予熱器を付した脱揮槽を直列に接続して構成した。ゴム状重合体として旭化成社製アサプレン670A(スチレン−ブタジエンゴム、スチレン含量が40質量%、温度25℃における5質量%スチレン溶液粘度33mPa・s、1,2−ビニル結合の割合13.9モル%)9.3質量部を、スチレン52質量部、メチルメタクリレート(以下MMA)48質量部、エチルベンゼン15質量部で構成される混合溶液に溶解し、さらに1,1−ビス(t−ブチルパーオキシ)−シクロヘキサン0.03質量部、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートを0.05質量部を混合し原料溶液とした。この原料溶液を毎時7kgで温度115℃に制御した第1完全混合型反応器に導入した。第1完全混合型反応器より反応液を連続的に抜き出し、この反応液にn−ドデシルメルカプタンを毎時3.0g加えた後、温度130℃に制御した第2完全混合型反応器に導入した。なお、第2完全混合型反応器の撹拌数は150rpmで実施しゴム粒子を形成させた。次いで第2完全混合型反応器より反応液を連続的に抜き出し、この反応液にn−ドデシルメルカプタンを毎時4.0gと参考例1で得た(メタ)アクリル酸エステル系オリゴマーを毎時160g加えた後、流れの方向に向かって温度130℃から150℃の勾配がつくように調整した塔式プラグフロー型反応器に導入した。塔式プラグフロー型反応器より抜き出した反応液を予熱器で加温しながら、温度230℃で圧力1.3kPaに制御した脱揮槽に導入し、エチルベンゼンや単量体等の揮発分を除去した。この樹脂液をギアポンプで抜き出し、ストランド状に押出し切断することによりペレット形状の樹脂を得た。表1に物性評価結果を示した。
Example 1
A first fully mixed reactor of about 5 L with a stirrer, a second fully mixed reactor of about 15 L with a stirrer, a column type plug flow reactor with a volume of about 40 L, and a preheater are attached. The devolatilization tanks were connected in series. Asaprene 670A manufactured by Asahi Kasei Co., Ltd. as a rubbery polymer (styrene-butadiene rubber, styrene content 40% by mass, 5% by mass styrene solution viscosity at 25 ° C. 33 mPa · s, 1,2-vinyl bond ratio 13.9 mol% 9.3 parts by mass in a mixed solution composed of 52 parts by mass of styrene, 48 parts by mass of methyl methacrylate (hereinafter referred to as MMA) and 15 parts by mass of ethylbenzene, and further 1,1-bis (t-butylperoxy) -0.03 part by mass of cyclohexane and 0.05 part by mass of octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate were mixed to obtain a raw material solution. This raw material solution was introduced into a first complete mixing reactor controlled at a temperature of 115 ° C. at 7 kg / hour. The reaction solution was continuously withdrawn from the first complete mixing reactor, and 3.0 g of n-dodecyl mercaptan was added to the reaction solution per hour, and then introduced into the second complete mixing reactor controlled at a temperature of 130 ° C. The number of stirrings in the second complete mixing type reactor was 150 rpm to form rubber particles. Next, the reaction solution was continuously withdrawn from the second complete mixing reactor, and 4.0 g of n-dodecyl mercaptan per hour and 160 g of the (meth) acrylate oligomer obtained in Reference Example 1 were added to the reaction solution. Then, it was introduced into a column type plug flow reactor adjusted so as to have a temperature gradient of 130 ° C. to 150 ° C. in the direction of flow. While the reaction liquid extracted from the tower-type plug flow reactor is heated by a preheater, it is introduced into a devolatilization tank controlled at a temperature of 230 ° C and a pressure of 1.3 kPa to remove volatile components such as ethylbenzene and monomers. did. The resin liquid was extracted with a gear pump and extruded and cut into a strand shape to obtain a pellet-shaped resin. Table 1 shows the physical property evaluation results.
実施例2
参考例1で得た(メタ)アクリル酸エステル系オリゴマーを毎時320gとした以外は実施例1と同様に行った。表1に物性評価結果を示した。
Example 2
The same operation as in Example 1 was conducted except that the amount of the (meth) acrylic acid ester oligomer obtained in Reference Example 1 was changed to 320 g / hour. Table 1 shows the physical property evaluation results.
実施例3
参考例2で得た(メタ)アクリル酸エステル系オリゴマーを使用した以外は実施例1と同様に行った。表1に物性評価結果を示した。
Example 3
The same procedure as in Example 1 was performed except that the (meth) acrylic acid ester oligomer obtained in Reference Example 2 was used. Table 1 shows the physical property evaluation results.
比較例1
(メタ)アクリル酸エステル系オリゴマーを添加しなかった以外は実施例1と同様に行った。表1に物性評価結果を示した。
Comparative Example 1
The same procedure as in Example 1 was performed except that the (meth) acrylate ester oligomer was not added. Table 1 shows the physical property evaluation results.
比較例2
参考例1で得た(メタ)アクリル酸エステル系オリゴマーを毎時1600gとした以外は実施例1と同様に行った。表1に物性評価結果を示した。
Comparative Example 2
The same procedure as in Example 1 was conducted except that the (meth) acrylic acid ester oligomer obtained in Reference Example 1 was changed to 1600 g per hour. Table 1 shows the physical property evaluation results.
比較例3
参考例4で得た(メタ)アクリル酸エステル系オリゴマーを使用した以外は実施例1と同様に行った。表1に物性評価結果を示した。
Comparative Example 3
The same operation as in Example 1 was performed except that the (meth) acrylic acid ester oligomer obtained in Reference Example 4 was used. Table 1 shows the physical property evaluation results.
実施例4
比較例1で得た樹脂100質量部と参考例1で得た(メタ)アクリル酸エステル系オリゴマーを3質量部を、2軸押出機を用い230℃にて押出しを実施した。表1に物性評価結果を示した。
Example 4
100 parts by mass of the resin obtained in Comparative Example 1 and 3 parts by mass of the (meth) acrylic acid ester oligomer obtained in Reference Example 1 were extruded at 230 ° C. using a twin-screw extruder. Table 1 shows the physical property evaluation results.
実施例5
参考例5で得た(メタ)アクリル酸エステル系オリゴマーを使用した以外は実施例1と同様に行った。表1に物性評価結果を示した。
Example 5
The same procedure as in Example 1 was performed except that the (meth) acrylic acid ester oligomer obtained in Reference Example 5 was used. Table 1 shows the physical property evaluation results.
実施例6
参考例3で得た(メタ)アクリル酸エステル系オリゴマーを使用した以外は実施例1と同様に行った。表1に物性評価結果を示した。
Example 6
The same procedure as in Example 1 was performed except that the (meth) acrylic acid ester oligomer obtained in Reference Example 3 was used. Table 1 shows the physical property evaluation results.
比較例4
スチレン52質量部、MMA38質量部、n−ブチルアクリレート10質量部、エチルベンゼン15質量部で構成される混合溶液とした以外は実施例1と同様に行った。表1に物性評価結果を示した。
Comparative Example 4
The same procedure as in Example 1 was performed except that the mixed solution was composed of 52 parts by mass of styrene, 38 parts by mass of MMA, 10 parts by mass of n-butyl acrylate, and 15 parts by mass of ethylbenzene. Table 1 shows the physical property evaluation results.
比較例5
参考例4で得た(メタ)アクリル酸エステル系オリゴマーを使用した以外は比較例2と同様に行った。表1に物性評価結果を示した。
Comparative Example 5
The same procedure as in Comparative Example 2 was performed except that the (meth) acrylic acid ester oligomer obtained in Reference Example 4 was used. Table 1 shows the physical property evaluation results.
本発明のゴム変性共重合樹脂組成物に係わる実施例は、何れも、成形性と色相が良好で、透明性と耐衝撃性のバランスに優れ、本発明の条件に合わない比較例では、成形性と色相が良好で、透明性と耐衝撃性のバランスのうちいずれかの物性において劣るものであった。 Examples relating to the rubber-modified copolymer resin composition of the present invention are all good in moldability and hue, excellent in balance between transparency and impact resistance, and in comparative examples that do not meet the conditions of the present invention, molding The property and hue were good, and any of the physical properties of the balance between transparency and impact resistance was inferior.
なお、評価は下記の方法によった。
(1)ビカット軟化温度(VST)
ビカット軟化温度(VST)はJIS K7206に基づき、50法(荷重50N、昇温速度50℃/時間)で試験片は10mm×10mm、厚さ4mmのものを用いて測定する。なお、測定機は東洋精機製作所社製HDT&VSPT試験装置を使用した。
(2)n−ヘキサン抽出分
n−ヘキサン抽出分は前掲した方法で測定した。
The evaluation was based on the following method.
(1) Vicat softening temperature (VST)
The Vicat softening temperature (VST) is measured based on JIS K7206 using 50 samples (load 50 N, temperature rising rate 50 ° C./hour) with a test piece of 10 mm × 10 mm and a thickness of 4 mm. In addition, the measuring machine used the Toyo Seiki Seisakusho HDT & VSPT test apparatus.
(2) n-hexane extract The n-hexane extract was measured by the method described above.
(3)ガラス転移温度(Tg)
EXSTAR6000 DSC(セイコーインスツルメンツ社製)を用い、昇温速度10℃/分の条件で測定した。
(4)重量平均分子量(Mw)
(メタ)アクリル酸エステル系オリゴマーの重量平均分子量(Mw)は前掲した方法で測定した。
(3) Glass transition temperature (Tg)
Measurement was performed using EXSTAR6000 DSC (manufactured by Seiko Instruments Inc.) at a temperature increase rate of 10 ° C./min.
(4) Weight average molecular weight (Mw)
The weight average molecular weight (Mw) of the (meth) acrylic acid ester oligomer was measured by the method described above.
(5)メルトマスフローレイト(MFR)
メルトマスフローレイト(MFR)はJIS K7210に基づき、温度200℃、荷重49Nで樹脂ペレットを用いて測定した。なお、測定機は東洋精機製作所社製メルトインデックサ(F−F01)を使用した。
(5) Melt mass flow rate (MFR)
Melt mass flow rate (MFR) was measured using resin pellets at a temperature of 200 ° C. and a load of 49 N based on JIS K7210. The measuring machine used was a melt indexer (F-F01) manufactured by Toyo Seiki Seisakusho.
(6)透明性
東芝機械(株)社製射出成形機(IS−50EPN)を用いて、金型温度40℃、シリンダー温度230℃で厚さ2mmのプレートを成形した。この成形品を用い、透明性の尺度としてJIS K7105に準拠し、日本電色工業社製HAZEメーター(NDH−1001DP型)を用いて曇価を測定した(単位:%)。なお、曇価が3%以下を合格とした。
(7)シャルピー衝撃強度
耐衝撃性の尺度として、JIS K7111に基づき、ノッチタイプAを有するタイプ1試験片を用い、打撃方向はエッジワイズを採用してシャルピー衝撃強さを測定した(単位:kJ/m2)。なお、測定機は東洋精機製作所社製デジタル衝撃試験機を使用した。シャルピー衝撃強さ7kJ/m2以上を合格とした。
(8)色相
東芝機械(株)社製射出成形機(IS−50EPN)を用いて、金型温度40℃、シリンダー温度230℃で厚さ2mmのプレートを成形した。この成形品を用い、色差の尺度としてJIS K7105に準拠して、日本電色工業社製色差計(Σ80)を用いてb値を測定した(単位:−)。b値が3以下を合格とした。
(6) Transparency Using a Toshiba Machine Co., Ltd. injection molding machine (IS-50EPN), a plate having a thickness of 2 mm was molded at a mold temperature of 40 ° C and a cylinder temperature of 230 ° C. Using this molded product, the haze value was measured using a HAZE meter (NDH-1001DP type) manufactured by Nippon Denshoku Industries Co., Ltd. (unit:%) in accordance with JIS K7105 as a measure of transparency. A haze value of 3% or less was accepted.
(7) Charpy impact strength As a measure of impact resistance, based on JIS K7111, a type 1 test piece having a notch type A was used, and the impact direction was measured using edgewise to measure the Charpy impact strength (unit: kJ / M2). The measuring machine used was a digital impact tester manufactured by Toyo Seiki Seisakusho. Charpy impact strength of 7 kJ / m2 or more was accepted.
(8) Hue Using a Toshiba Machine Co., Ltd. injection molding machine (IS-50EPN), a plate having a thickness of 2 mm was molded at a mold temperature of 40 ° C and a cylinder temperature of 230 ° C. Using this molded product, the b value was measured using a color difference meter (Σ80) manufactured by Nippon Denshoku Industries Co., Ltd. as a measure of color difference in accordance with JIS K7105 (unit: −). The b value was 3 or less.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004161169A JP2005336433A (en) | 2004-05-31 | 2004-05-31 | Rubber-modified copolymer resin composition and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004161169A JP2005336433A (en) | 2004-05-31 | 2004-05-31 | Rubber-modified copolymer resin composition and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005336433A true JP2005336433A (en) | 2005-12-08 |
Family
ID=35490344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004161169A Pending JP2005336433A (en) | 2004-05-31 | 2004-05-31 | Rubber-modified copolymer resin composition and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005336433A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52130855A (en) * | 1976-04-27 | 1977-11-02 | Adeka Argus Chem Co Ltd | Rubber-modified styrene resin compositions |
JPH05171001A (en) * | 1991-12-24 | 1993-07-09 | Asahi Chem Ind Co Ltd | New rubber-modified styrene resin composition |
JPH0827336A (en) * | 1994-07-11 | 1996-01-30 | Kanegafuchi Chem Ind Co Ltd | Thermoplastic resin composition |
WO2001083619A1 (en) * | 2000-04-28 | 2001-11-08 | Toagosei Co., Ltd. | Plasticizer |
JP2002294016A (en) * | 2001-03-30 | 2002-10-09 | Nippon A & L Kk | Thermoplastic resin composition with low bend whitening tendency |
JP2004010739A (en) * | 2002-06-06 | 2004-01-15 | Denki Kagaku Kogyo Kk | Rubber-modified styrenic resin composition and molded product thereof |
-
2004
- 2004-05-31 JP JP2004161169A patent/JP2005336433A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52130855A (en) * | 1976-04-27 | 1977-11-02 | Adeka Argus Chem Co Ltd | Rubber-modified styrene resin compositions |
JPH05171001A (en) * | 1991-12-24 | 1993-07-09 | Asahi Chem Ind Co Ltd | New rubber-modified styrene resin composition |
JPH0827336A (en) * | 1994-07-11 | 1996-01-30 | Kanegafuchi Chem Ind Co Ltd | Thermoplastic resin composition |
WO2001083619A1 (en) * | 2000-04-28 | 2001-11-08 | Toagosei Co., Ltd. | Plasticizer |
JP2002294016A (en) * | 2001-03-30 | 2002-10-09 | Nippon A & L Kk | Thermoplastic resin composition with low bend whitening tendency |
JP2004010739A (en) * | 2002-06-06 | 2004-01-15 | Denki Kagaku Kogyo Kk | Rubber-modified styrenic resin composition and molded product thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2021014582A (en) | Heat-resistant resin composition, and production method thereof | |
JP6228126B2 (en) | Aromatic vinyl-vinyl cyanide resin Copolymer for improving heat resistance | |
TW202219153A (en) | Maleimide copolymer, and chlorine-containing polymer resin composition including maleimide copolymer and chlorine-containing polymer | |
CN115443294A (en) | Maleimide copolymer, and chlorine-containing polymer resin composition containing maleimide copolymer and chlorine-containing polymer | |
WO2016186142A1 (en) | Copolymer for use as polymer blend compatibilizer, and resin composition | |
JP4340421B2 (en) | Rubber-modified styrenic resin composition and molded product thereof | |
JP7245334B2 (en) | Maleimide-based copolymer, method for producing the same, and resin composition using the same | |
JPH1072512A (en) | Rubber-modified copolymer resin composition and its preparation | |
JP2003335827A (en) | Rubber-reinforced thermoplastic resin and rubber- reinforced thermoplastic resin composition | |
JP5046446B2 (en) | Copolymer resin and method for producing the same | |
TWI848071B (en) | Thermoplastic resin composition and molded product thereof | |
JP3972526B2 (en) | Styrenic resin composition and method for producing the same | |
JP4101175B2 (en) | Transparent rubber-modified copolymer resin and resin composition thereof | |
JP2012207074A (en) | Transparency styrene-based thermoplastic resin composition | |
JP2005336433A (en) | Rubber-modified copolymer resin composition and method for producing the same | |
JP4776148B2 (en) | Rubber-modified copolymer resin and molded article thereof | |
JP4386772B2 (en) | Rubber-modified copolymer resin and production method | |
JP4727116B2 (en) | Rubber-modified copolymer resin composition | |
JP6801827B1 (en) | Transparent thermoplastic resin composition and its molded product | |
JP2004318021A (en) | Heat-resistant light guide plate | |
JP4458931B2 (en) | Transparent rubber-modified copolymer resin composition, molded product obtained therefrom, and method for producing the composition | |
WO2021014735A1 (en) | Transparent thermoplastic resin composition and article molded thereof | |
JP5177466B2 (en) | Method for producing rubber-modified copolymer resin | |
JP2004339357A (en) | Transparent rubber-modified polystyrene resin | |
JP3947419B2 (en) | Aromatic vinyl compound resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070521 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100217 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100406 |