JP4330317B2 - Fluorine or phosphorus-containing water treatment equipment - Google Patents

Fluorine or phosphorus-containing water treatment equipment Download PDF

Info

Publication number
JP4330317B2
JP4330317B2 JP2002259357A JP2002259357A JP4330317B2 JP 4330317 B2 JP4330317 B2 JP 4330317B2 JP 2002259357 A JP2002259357 A JP 2002259357A JP 2002259357 A JP2002259357 A JP 2002259357A JP 4330317 B2 JP4330317 B2 JP 4330317B2
Authority
JP
Japan
Prior art keywords
water
fluorine
phosphorus
treated
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002259357A
Other languages
Japanese (ja)
Other versions
JP2004097861A (en
Inventor
和彦 清水
理江 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2002259357A priority Critical patent/JP4330317B2/en
Publication of JP2004097861A publication Critical patent/JP2004097861A/en
Application granted granted Critical
Publication of JP4330317B2 publication Critical patent/JP4330317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内部に晶析物を流動状態で保持する反応槽を含むフッ素またはリン含有水の処理装置に関する。
【0002】
【従来の技術】
半導体や、液晶などを製造するエレクトロニクス産業においては、その製造工程において、フッ素を使用するため、エレクトロニクス産業排水にはフッ素が含有される場合が多い。このフッ素含有水から排出されるフッ素の除去方法としては、被処理水にカルシウム塩を添加して、フッ化カルシウムの微細粒子を析出させ、これらの微細粒子をAl、Fe系の無機凝集剤もしくは有機高分子凝集剤で凝集させて、沈殿分離する方法が採用されている。この方法によると処理水フッ素は、10〜20mg/lに低減できる。ところが、日本においては、2001年7月にフッ素についての排出基準値が15mg/lから8mg/lに強化され、フッ素をさらに高度に処理する必要が出てきた。
【0003】
フッ素を高度に処理する方法としては、上記凝集沈殿における凝集剤の添加量を増加させたり、上記凝集沈殿処理の後段でさらにもう一度凝集沈殿を行う方法が採用される。このような処理における凝集剤使用量は2000〜5000mg/lであり、AlやFeの水酸化物にフッ素を吸着させてフッ素除去率を上昇させている。この方法によって、処理水フッ素濃度が2〜8mg/lに低減できる。
【0004】
他の方法として、ZrやCeの含水酸化物を樹脂に担持させたり、高分子物質で造粒したフッ素吸着剤を使用して、フッ素除去率を上昇することが提案されている(特許文献1(特公平6−79665)、特許文献2(特公昭61−47134))。これらの方法により、処理水フッ素0〜1mg/lに低減できるとされている。
【0005】
ここで、上記の吸着剤は、希土類元素やTi、Zrの塩類にアルカリを添加するか加熱して加水分解して生成した含水酸化物MO・XHO(≒M(OH))で表されるような物質がPO 3−、F、SO 2−等の陰イオンと酸性側で陰イオン交換し、アルカリ側で陽イオン交換する性質を利用している(特許文献3(特公平2−17220)、特許文献4(特開昭60−172353))。なお、Mは金属、X,m,nは任意の数である。
【0006】
また、エレクトロニクス産業排水には、リンも含有される場合が多く、またリンは家庭からの排水中にも含まれている。閉鎖性水域における富栄養化防止の観点などからリン除去を行う必要があり、多くの地域でリンは上乗せ規制の対象になっている。このリンの除去には、フッ素の場合と同様に、カルシウム塩を添加してリン酸カルシウムとして凝集沈殿する処理の他、AlやFe系の無機凝集剤を用い、リン酸アルミニウムや、リン酸鉄として凝集沈殿処理されている。さらに、上述の吸着剤は、フッ素(F)だけでなくリン酸(PO 3−)も処理できる。そこで、これら吸着剤をリン除去にも利用することも可能である。
【0007】
【特許文献1】
特公平6−79665号公報
【特許文献2】
特公昭61−47134号公報
【特許文献3】
特公平2−17220号公報
【特許文献4】
特開昭60−172353号公報
【0008】
【発明が解決しようとする課題】
上記凝集沈殿法では、フッ素を低減させるためにAl、Fe系の凝集剤を数1000mg/l添加する。このような凝集汚泥は、そのフロック内部に水分子を取り込んでいるため、汚泥の脱水性が悪く、また凝集剤添加量が多いため汚泥発生量が非常に多くなる。従って、汚泥処分費が嵩むという問題がある。また、このような大量の廃棄物を生成する処理は、廃棄物量を削減するという社会的要請に逆行する技術である。
【0009】
一方、フッ素吸着剤は、汚泥の増加はないものの、吸着速度が遅く吸着剤の使用量が大きくなる。このため、処理コストが非常に高いという問題がある。また、エレクトロニクス産業廃水に含まれる過酸化水素のような酸化剤や被処理水のフッ酸により吸着剤が劣化し、母材が崩壊し流れ出してしまうという問題もある。
【0010】
本発明は、上記課題に鑑みなされたものであり、フッ素および/またはリン含有水から、フッ素および/またはリンを効率よく除去できるフッ素またはリン除去剤または除去方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、内部に晶析物を流動状態で保持する反応槽を含むフッ素またはリン含有水の処理装置であって、前記反応槽にフッ素またはリンを含有する被処理水と、希土類金属、Ti、Zr、Hf、V、Nb、Taの中の少なくとも1種の金属の水溶性化合物とを別々に導入して前記被処理水と前記水溶性化合物とを接触させ、前記フッ素またはリンと前記水溶性化合物とを反応させるとともに、フッ化物またはリン酸化合物を前記晶析物の表面に晶析させて、被処理水中のフッ素またはリンを除去することを特徴とする。
【0012】
このように、本発明によれば、フッ素またはリンと、晶析剤の金属の反応によって、金属フッ化物またはリン酸化合物が生成し、同時に反応槽内の晶析物の周りに晶析する。従って、凝集剤などを使用してフロック化した場合と異なり、生成した粒子は含水率が低く、純度が高い。従って、金属フッ化物としての再利用も可能である。また、汚泥含水率が低く、処分費が安く、かつ処理水フッ素濃度が低いという効果も得られる。
【0013】
また、前記反応槽からの処理水の一部を反応槽に循環する循環手段を設けることが好適である。これによって、反応槽内の流速を任意に制御することができる。
【0014】
また、前記被処理水を前記反応槽に上向流で通水し、処理水を反応槽上部から排出することが好適である。これによって、晶析物を反応槽内で分離でき沈殿槽などの固液分離装置を別に設ける必要がない。
【0015】
【発明の実施の形態】
以下、本発明の実施形態について、図面に基づいて説明する。図1は、実施形態に係る処理装置の全体構成を示す図である。被処理水は反応槽10に、その下部に設けられた流入部材12を介し流入される。この流入部材12は、複数の開口を有するパイプ状のもので、これによって反応槽10内の下部において被処理水が分配される。なお、反応槽10は、縦長円筒状で底部がホッパ状になっている。
【0016】
また、晶析剤貯槽14内には、被処理水中のフッ素またはリンと反応し、これらを不溶化する金属の水溶液化合物が貯留されており、これが晶析剤注入ポンプ16によって、流入部材18から反応槽10内に供給される。流入部材18は、流入部材12のやや上方に配置され、流入部材12と同様の構成を有している。
【0017】
反応槽10の上端部には、越流部20が形成されており、この越流部20を越えて流出した上澄み液が処理水として排出される。
【0018】
反応槽10では、その下部において、被処理水と晶析剤が混合される。被処理水には、フッ素またはリンが含有されており、晶析剤は、希土類金属、Ti、Zr、Hf、V、Nb、Taの中の少なくとも1種の金属の化合物の水溶液である。従って、フッ素またはリンとが反応することで、不溶性の金属フッ化物または金属リン酸化合物が生じる。反応槽10内は、流入されてくる被処理水および晶析剤により上向流となっており、晶析物は反応槽10内で流動状態に維持されている。そこで、新たに生じる不溶性の金属フッ化物または金属リン酸化合物は、槽内で流動している晶析物の表面に晶析する。なお、晶析物を流動状態に保つために、上昇流の線速度LVとして40m/h程度が適切である。
【0019】
希土類元素には、スカンジウムSc(原子番号21),イットリウムY(39)およびランタノイド(57〜71)のランタンLa,セリウムCe,プラセオジムPr,ネオジムNd,プロメチウムPm,サマリウムSm,ユウロピウムEu,ガドリニウムGd,テルビウムTb,ジスプロシウムDy,ホルミウムHo,エルビウムEr,ツリウムTm,イッテルビウムYb,ルテチウムLuがあり、これらの塩化物、硫酸塩、硝酸塩が晶析剤として利用できる。また、Ti、Zr、Hf、V、Nb、Taの塩化物、硫酸塩、硝酸塩、塩化酸化物、硫酸酸化物も晶析剤として利用される。
【0020】
また、晶析剤の種として、予め被処理水と晶析剤を反応させて生成した晶析物や、砂、炭酸カルシウム粒子、蛍石などを添加しておくとよい。
【0021】
また、反応槽10内のpHとしては、3〜7がより適しており、必要に応じて酸(例えば塩酸)またはアルカリ(例えば水酸化ナトリウム)を添加して、pHを調整することが好適である。
【0022】
さらに、被処理水中のフッ素濃度、リン濃度はあまり高いと、晶析物の生成量が多く、またカルシウム剤による凝集沈殿などに比べ高価になってしまうため、好ましくない。フッ素濃度20mg/L以下、リン濃度10mg/L以下程度の被処理水について、本実施形態の装置を適用することが好適である。高濃度の被処理水について、通常のカルシウム剤による凝集沈殿処理などを前処理として行い、その処理水を本装置で処理するとよい。
【0023】
このように、本実施形態では、被処理水と晶析剤(金属水溶性化合物)は、反応槽10に別々に注入される。このため、反応槽10内において、種となる晶析剤の表面に新たに生成されたフッ素やリンの不溶化物が効率よく晶析する。また、反応槽10内は、上向流で晶析物が流動しており、槽上部で処理水と晶析物に分離する。従って、別の沈殿槽などが不要である。
【0024】
本実施形態では、フッ素またはリンと、晶析剤の金属の反応によって、金属フッ化物またはリン酸化合物が生成し、同時に反応槽内の晶析物の周りに晶析して成長し、100〜1000μmの晶析粒子が生成する。凝集剤などを使用してフロック化した場合と異なり、生成した粒子は含水率が低く、純度が高い。従って、金属フッ化物としての再利用も可能である。また、汚泥含水率が低く、処分費が安く、かつ処理水フッ素濃度が低いという効果も得られる。
【0025】
また、処理の継続により晶析物は成長を続ける。そこで、適当な頻度で、晶析物を排出する必要がある。この場合は、底部に排出ドレインを設けておき、ここからスラリーの形で排出するとよい。また、ポンプなどで上方から排出してもよい。
【0026】
図2には、他の実施形態の構成が示されている。この装置においては、処理水槽22と、循環ポンプ24を有しており、反応槽10の上部から得られた処理水は一旦処理水槽22に貯留され、ここから放流される。そして、処理水槽22内の処理水の一部が反応槽10の底部に循環ポンプ24によって循環される。これによって、反応槽10内の上向流の線速度LVを被処理水の流量に拘わらず任意に設定することができ、反応槽10内の晶析物の流動状態を常に適切に維持することが容易になる。
【0027】
また、本発明は、フッ素とリンの両方を含有する排水にも好適に適用できる。この場合、フッ素とリンの合計量に対し当量以上のジルコニル塩を添加すればよい。
【0028】
【実施例】
「フッ素除去実験」
種晶として蛍石を約5L充填した直径=50mm、高さ=2500mmの反応槽10を用いて図1のように装置を構成し、フッ素排水模擬水を通水する実験を行った。
【0029】
実験1として、フッ化ナトリウムを20mg−F/Lとなるように希釈し、pH=5に調整したフッ素排水模擬水を79L/hで通水し、晶析剤としてジルコニウム含有率10%の塩化酸化ジルコニウム溶液を4g−Zr/hで添加した。約100時間運転して、処理水フッ素濃度を測定した。
【0030】
次に、実験2として、晶析剤としてセリウム含有率10%の塩化セリウム溶液を4g−Ce/hで添加し、その他は実験1と同様の条件で運転し、処理水フッ素濃度を測定した。
【0031】
さらに実験3として、晶析剤としてタンタル含有率10%の塩化タンタル溶液を4g−Ta/hで添加し、その他は実験1と同様の条件で運転し、処理水フッ素濃度を測定した。
【0032】
これらの実験結果を表1に示す。
【表1】

Figure 0004330317
【0033】
表1に示すとおり、上述の実験1、2、3のいずれにおいても、処理水フッ素濃度として良好な水質が得られた。また、それぞれの実験で生成した晶析物は、含水率が約10%と従来装置で得られる汚泥に比較して低かった。
【0034】
「リン除去実験」
種晶としてリン酸カルシウムを約5L充填した直径=50mm、高さ=2500mmの反応槽10を用い図1のように装置を構成し、リン排水模擬水を通水する実験を行った。
【0035】
実験4として、リン酸二水素カリウムを10mg−P/Lに希釈し、pH=5に調整したリン排水模擬水を79L/hで通水し、晶析剤としてジルコニウム含有率10%の塩化ジルコニル(ZrOCl)溶液を2g−Zr/hで添加した。約100時間運転して、処理水リン濃度を測定した。
【0036】
次に、実験5として、晶析剤としてセリウム含有率10%の塩化セリウム溶液を2g−Ce/hで添加し、その他は実験4と同様の条件で運転し、処理水リン濃度を測定した。
【0037】
さらに、実験6として、晶析剤としてタンタル含有率10%の塩化タンタル溶液を2g−Ta/hで添加し、その他は実験4と同様の条件で運転し、処理水リン濃度を測定した。
【表2】
Figure 0004330317
【0038】
このように、実験4、5、6のいずれにおいても、処理水リン濃度として良好な水質が得られた。また、それぞれの実験で生成した晶析物は、含水率が約10%と従来装置で得られる汚泥に比較して低かった。
【0039】
【発明の効果】
以上説明したように、本発明によれば、フッ素またはリンと、晶析剤の金属の反応によって、金属フッ化物またはリン酸化合物が生成し、同時に反応槽内の晶析物の周りに晶析する。従って、凝集剤などを使用してフロック化した場合と異なり、生成した粒子は含水率が低く、純度が高い。従って、金属フッ化物としての再利用も可能である。また、汚泥含水率が低く、処分費が安く、かつ処理水フッ素濃度が低いという効果も得られる。
【0040】
また、処理水の一部を反応槽に循環する循環手段を設けることで、反応槽内の流速を任意に制御することができる。
【0041】
さらに、被処理水を前記反応槽に上向流で通水し、処理水を反応槽上部から排出することで、晶析物を反応槽内で分離でき沈殿槽などの固液分離装置を別に設ける必要がない。
【図面の簡単な説明】
【図1】 実施形態に係る処理装置の全体構成を示す図である。
【図2】 他の実施形態の構成を示す図である。
【符号の説明】
10 反応槽、12,18 流入部、14 晶析剤貯槽、16 晶析剤注入ポンプ、20 越流部、22 処理水槽、24 循環ポンプ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for treating fluorine or phosphorus-containing water including a reaction tank that holds a crystallized product in a fluid state.
[0002]
[Prior art]
In the electronics industry that manufactures semiconductors, liquid crystals, and the like, fluorine is often contained in the wastewater from the electronics industry because fluorine is used in the manufacturing process. As a method for removing fluorine discharged from the fluorine-containing water, calcium salt is added to the water to be treated to precipitate calcium fluoride fine particles, and these fine particles are added to an Al, Fe-based inorganic flocculant or A method of aggregating with an organic polymer flocculant and separating by precipitation is employed. According to this method, the treated water fluorine can be reduced to 10 to 20 mg / l. However, in Japan, the emission standard value for fluorine was strengthened from 15 mg / l to 8 mg / l in July 2001, and it became necessary to treat fluorine more highly.
[0003]
As a method for highly treating fluorine, a method of increasing the addition amount of the coagulant in the coagulation precipitation or performing coagulation precipitation one more time after the coagulation precipitation treatment is employed. The amount of the flocculant used in such treatment is 2000 to 5000 mg / l, and fluorine is adsorbed on Al or Fe hydroxide to increase the fluorine removal rate. By this method, the treated water fluorine concentration can be reduced to 2 to 8 mg / l.
[0004]
As another method, it has been proposed to increase the fluorine removal rate by using a hydrous oxide of Zr or Ce on a resin or using a fluorine adsorbent granulated with a polymer substance (Patent Document 1). (Japanese Patent Publication No. 6-79665), Patent Document 2 (Japanese Patent Publication No. Sho 61-47134)). It is said that these methods can reduce the treated water fluorine to 0 to 1 mg / l.
[0005]
Here, the adsorbent is a hydrous oxide MO n · XH 2 O (≈M (OH) m ) generated by adding an alkali to a rare earth element or a salt of Ti or Zr or by heating to hydrolyze. A substance as represented utilizes the property of anion exchange on the acidic side with anions such as PO 4 3− , F , SO 4 2− , and cation exchange on the alkali side (Patent Document 3 JP-B-2-17220), Patent Document 4 (Japanese Patent Laid-Open No. 60-172353)). M is a metal, and X, m, and n are arbitrary numbers.
[0006]
Electronic industry wastewater often contains phosphorus, and phosphorus is also contained in household wastewater. It is necessary to remove phosphorus from the viewpoint of preventing eutrophication in closed waters, and in many areas phosphorus is subject to additional regulations. In the removal of phosphorus, as in the case of fluorine, in addition to the treatment of adding calcium salt to agglomerate and precipitate as calcium phosphate, Al or Fe-based inorganic aggregating agent is used to agglomerate as aluminum phosphate or iron phosphate. Precipitation has been processed. Furthermore, the above adsorbent can treat not only fluorine (F ) but also phosphoric acid (PO 4 3− ). Therefore, these adsorbents can also be used for phosphorus removal.
[0007]
[Patent Document 1]
Japanese Patent Publication No. 6-79665 [Patent Document 2]
Japanese Patent Publication No. 61-47134 [Patent Document 3]
Japanese Patent Publication No. 2-17220 [Patent Document 4]
Japanese Patent Laid-Open No. 60-172353
[Problems to be solved by the invention]
In the coagulation precipitation method, several thousand mg / l of an Al or Fe type coagulant is added to reduce fluorine. Such agglomerated sludge incorporates water molecules inside the floc, so that the dewaterability of the sludge is poor and the amount of flocculant added is large, resulting in a very large amount of sludge generated. Therefore, there is a problem that the sludge disposal cost increases. In addition, such a process for generating a large amount of waste is a technology that goes against social demands for reducing the amount of waste.
[0009]
On the other hand, although the fluorine adsorbent does not increase sludge, the adsorption rate is slow and the amount of adsorbent used is large. For this reason, there exists a problem that processing cost is very high. There is also a problem that the adsorbent deteriorates due to an oxidizing agent such as hydrogen peroxide contained in the electronics industry wastewater or hydrofluoric acid to be treated, and the base material collapses and flows out.
[0010]
This invention is made | formed in view of the said subject, and it aims at providing the fluorine or phosphorus removal agent or removal method which can remove fluorine and / or phosphorus efficiently from fluorine and / or phosphorus containing water.
[0011]
[Means for Solving the Problems]
The present invention is a treatment apparatus for fluorine- or phosphorus-containing water containing a reaction tank that holds a crystallized substance in a fluid state therein, and water to be treated containing fluorine or phosphorus in the reaction tank, rare earth metal, Ti , Zr, Hf, V, Nb and Ta are separately introduced with a water-soluble compound of at least one metal to bring the treated water into contact with the water-soluble compound, and the fluorine or phosphorus and the water-soluble compound are brought into contact with each other. And a fluorine compound or phosphoric acid compound is crystallized on the surface of the crystallized product to remove fluorine or phosphorus in the water to be treated.
[0012]
Thus, according to the present invention, a metal fluoride or a phosphoric acid compound is generated by the reaction of fluorine or phosphorus and the metal of the crystallization agent, and simultaneously crystallizes around the crystallization product in the reaction vessel. Therefore, unlike the case where the flocculant is made using a flocculant or the like, the generated particles have a low water content and a high purity. Therefore, reuse as a metal fluoride is also possible. Moreover, the effects of low sludge moisture content, low disposal costs, and low concentration of treated water fluorine are also obtained.
[0013]
Further, it is preferable to provide a circulation means for circulating a part of the treated water from the reaction tank to the reaction tank. Thereby, the flow rate in the reaction vessel can be arbitrarily controlled.
[0014]
In addition, it is preferable that the water to be treated is passed upward through the reaction tank and the treated water is discharged from the upper part of the reaction tank. As a result, the crystallization product can be separated in the reaction tank, and there is no need to provide a separate solid-liquid separation device such as a precipitation tank.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating an overall configuration of a processing apparatus according to an embodiment. The water to be treated flows into the reaction tank 10 through an inflow member 12 provided in the lower part thereof. This inflow member 12 is a pipe-shaped member having a plurality of openings, whereby the water to be treated is distributed in the lower part in the reaction tank 10. In addition, the reaction tank 10 has a vertically long cylindrical shape and has a hopper shape at the bottom.
[0016]
Further, in the crystallizer storage tank 14, a metal aqueous solution compound that reacts with fluorine or phosphorus in the water to be treated and insolubilizes them is stored, and this is reacted from the inflow member 18 by the crystallizer injection pump 16. It is supplied into the tank 10. The inflow member 18 is disposed slightly above the inflow member 12 and has the same configuration as the inflow member 12.
[0017]
An overflow section 20 is formed at the upper end of the reaction tank 10, and the supernatant liquid that has flowed over the overflow section 20 is discharged as treated water.
[0018]
In the reaction tank 10, the water to be treated and the crystallization agent are mixed in the lower part. The water to be treated contains fluorine or phosphorus, and the crystallization agent is an aqueous solution of a compound of at least one metal among rare earth metals, Ti, Zr, Hf, V, Nb, and Ta. Accordingly, the reaction with fluorine or phosphorus produces an insoluble metal fluoride or metal phosphate compound. The reaction tank 10 has an upward flow due to the incoming water to be treated and the crystallization agent, and the crystallized product is maintained in a fluid state in the reaction tank 10. Therefore, the newly generated insoluble metal fluoride or metal phosphate compound is crystallized on the surface of the crystallized material flowing in the tank. In order to keep the crystallized product in a fluid state, an upward flow linear velocity LV of about 40 m / h is appropriate.
[0019]
Rare earth elements include scandium Sc (atomic number 21), yttrium Y (39) and lanthanum La, cerium Ce, praseodymium Pr, neodymium Nd, promethium Pm, samarium Sm, europium Eu, gadolinium Gd, There are terbium Tb, dysprosium Dy, holmium Ho, erbium Er, thulium Tm, ytterbium Yb, and lutetium Lu, and these chlorides, sulfates, and nitrates can be used as crystallizers. Ti, Zr, Hf, V, Nb and Ta chlorides, sulfates, nitrates, chlorides and sulfates are also used as crystallization agents.
[0020]
In addition, as a seed of the crystallization agent, a crystallization product generated by reacting water to be treated with the crystallization agent, sand, calcium carbonate particles, fluorite, or the like may be added in advance.
[0021]
Moreover, as pH in the reaction tank 10, 3-7 are more suitable, and it is suitable to adjust pH by adding an acid (for example, hydrochloric acid) or an alkali (for example, sodium hydroxide) as needed. is there.
[0022]
Furthermore, if the fluorine concentration and phosphorus concentration in the water to be treated are too high, the amount of crystallized product produced is large, and it becomes expensive compared to coagulation precipitation with a calcium agent, etc., which is not preferable. It is preferable to apply the apparatus of this embodiment to the water to be treated having a fluorine concentration of 20 mg / L or less and a phosphorus concentration of 10 mg / L or less. For high-concentration water to be treated, it is preferable to perform a coagulation sedimentation treatment with a normal calcium agent as a pretreatment and treat the treated water with this apparatus.
[0023]
Thus, in this embodiment, to-be-processed water and a crystallization agent (metal water-soluble compound) are separately injected into the reaction vessel 10. For this reason, in the reaction tank 10, the fluorine and phosphorus insolubilized substance newly produced | generated on the surface of the crystallizing agent used as a seed crystallize efficiently. In the reaction tank 10, the crystallized product is flowing in an upward flow, and is separated into treated water and crystallized product in the upper part of the tank. Therefore, a separate settling tank or the like is unnecessary.
[0024]
In the present embodiment, a metal fluoride or a phosphoric acid compound is generated by the reaction of fluorine or phosphorus and the metal of the crystallizing agent, and at the same time, crystallizes around the crystallized product in the reaction vessel, and grows. Crystallized particles of 1000 μm are formed. Unlike the case where the flocculant is used to flocce, the generated particles have a low water content and a high purity. Therefore, reuse as a metal fluoride is also possible. Moreover, the effects of low sludge moisture content, low disposal costs, and low concentration of treated water fluorine are also obtained.
[0025]
In addition, the crystallized product continues to grow as the process continues. Therefore, it is necessary to discharge the crystallized substance at an appropriate frequency. In this case, it is preferable to provide a discharge drain at the bottom and discharge the slurry in the form of a slurry. Further, it may be discharged from above with a pump or the like.
[0026]
FIG. 2 shows the configuration of another embodiment. In this apparatus, it has the treated water tank 22 and the circulation pump 24, and the treated water obtained from the upper part of the reaction tank 10 is once stored in the treated water tank 22, and discharged from here. A part of the treated water in the treated water tank 22 is circulated to the bottom of the reaction tank 10 by a circulation pump 24. Thereby, the linear velocity LV of the upward flow in the reaction tank 10 can be arbitrarily set regardless of the flow rate of the water to be treated, and the flow state of the crystallized substance in the reaction tank 10 is always maintained appropriately. Becomes easier.
[0027]
The present invention can also be suitably applied to waste water containing both fluorine and phosphorus. In this case, an equivalent or more zirconyl salt may be added with respect to the total amount of fluorine and phosphorus.
[0028]
【Example】
"Fluorine removal experiment"
An apparatus was constructed as shown in FIG. 1 using a reaction vessel 10 having a diameter = 50 mm and a height = 2500 mm filled with about 5 L of fluorite as a seed crystal, and an experiment was conducted to pass simulated fluorine drainage water.
[0029]
In Experiment 1, sodium fluoride was diluted to 20 mg-F / L, simulated drainage of fluorine drainage adjusted to pH = 5 was passed at 79 L / h, and chlorinated with a zirconium content of 10% as a crystallization agent. Zirconium oxide solution was added at 4 g-Zr / h. After operating for about 100 hours, the fluorine concentration of the treated water was measured.
[0030]
Next, as Experiment 2, a cerium chloride solution having a cerium content of 10% was added as a crystallization agent at 4 g-Ce / h, and the others were operated under the same conditions as in Experiment 1, and the treated water fluorine concentration was measured.
[0031]
Further, as Experiment 3, a tantalum chloride solution having a tantalum content of 10% was added as a crystallization agent at 4 g-Ta / h, and the others were operated under the same conditions as in Experiment 1 to measure the fluorine concentration in the treated water.
[0032]
Table 1 shows the results of these experiments.
[Table 1]
Figure 0004330317
[0033]
As shown in Table 1, in any of the above-described Experiments 1, 2, and 3, good water quality was obtained as the treated water fluorine concentration. In addition, the crystallized product produced in each experiment had a water content of about 10%, which was lower than the sludge obtained with the conventional apparatus.
[0034]
"Phosphorus removal experiment"
An apparatus was constructed as shown in FIG. 1 using a reaction tank 10 having a diameter = 50 mm and a height = 2500 mm filled with about 5 L of calcium phosphate as a seed crystal, and an experiment was conducted to pass phosphorus simulated drainage water.
[0035]
In Experiment 4, phosphorus simulated waste water diluted with potassium dihydrogen phosphate to 10 mg-P / L and adjusted to pH = 5 was passed at 79 L / h, and zirconyl chloride having a zirconium content of 10% was used as a crystallization agent. (ZrOCl 2 ) solution was added at 2 g-Zr / h. After operating for about 100 hours, the concentration of treated water phosphorus was measured.
[0036]
Next, as Experiment 5, a cerium chloride solution having a cerium content of 10% was added as a crystallization agent at 2 g-Ce / h, and the others were operated under the same conditions as in Experiment 4, and the concentration of treated water phosphorus was measured.
[0037]
Further, as Experiment 6, a tantalum chloride solution having a tantalum content of 10% was added as a crystallization agent at 2 g-Ta / h, and the others were operated under the same conditions as in Experiment 4 to measure the concentration of treated water phosphorus.
[Table 2]
Figure 0004330317
[0038]
Thus, in any of Experiments 4, 5, and 6, good water quality was obtained as the treated water phosphorus concentration. In addition, the crystallized product produced in each experiment had a water content of about 10%, which was lower than the sludge obtained with the conventional apparatus.
[0039]
【The invention's effect】
As described above, according to the present invention, a metal fluoride or a phosphoric acid compound is produced by the reaction of fluorine or phosphorus and the metal of the crystallization agent, and at the same time, the crystallization occurs around the crystallization product in the reaction vessel. To do. Therefore, unlike the case where the flocculant is made using a flocculant or the like, the generated particles have a low water content and a high purity. Therefore, reuse as a metal fluoride is also possible. Moreover, the effect that the sludge moisture content is low, the disposal cost is low, and the fluorine concentration of the treated water is low is also obtained.
[0040]
Moreover, the flow rate in a reaction tank can be arbitrarily controlled by providing the circulation means which circulates a part of treated water to a reaction tank.
[0041]
Furthermore, the water to be treated is passed through the reaction tank in an upward flow, and the treated water is discharged from the upper part of the reaction tank, so that the crystallized product can be separated in the reaction tank. There is no need to provide it.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an overall configuration of a processing apparatus according to an embodiment.
FIG. 2 is a diagram showing a configuration of another embodiment.
[Explanation of symbols]
10 reaction tanks, 12, 18 inflow part, 14 crystallization agent storage tank, 16 crystallization agent injection pump, 20 overflow part, 22 treated water tank, 24 circulation pump.

Claims (4)

内部に晶析物を流動状態で保持する反応槽を含むフッ素またはリン含有水の処理装置であって、
前記反応槽にフッ素またはリンを含有する被処理水と、希土類金属、Ti、Zr、Hf、V、Nb、Taの中の少なくとも1種の金属の水溶性化合物とを別々に導入して前記被処理水と前記水溶性化合物とを接触させ、前記フッ素またはリンと前記水溶性化合物とを反応させるとともに、フッ化物またはリン酸化合物を前記晶析物の表面に晶析させて、被処理水中のフッ素またはリンを除去することを特徴とするフッ素またはリン含有水の処理装置。
An apparatus for treating fluorine-containing or phosphorus-containing water including a reaction tank that holds a crystallized substance in a fluid state therein,
The water to be treated containing fluorine or phosphorus and a water-soluble compound of at least one metal selected from rare earth metals, Ti, Zr, Hf, V, Nb, and Ta are separately introduced into the reaction tank, and the water is removed. Treated water and the water-soluble compound are contacted, the fluorine or phosphorus and the water-soluble compound are reacted, and a fluoride or phosphoric acid compound is crystallized on the surface of the crystallized product, An apparatus for treating fluorine or phosphorus-containing water, wherein fluorine or phosphorus is removed.
請求項1に記載の装置において、
前記反応槽からの処理水の一部を反応槽に循環する循環手段を設けたことを特徴とするフッ素またはリン含有水の処理装置。
The apparatus of claim 1.
A treatment apparatus for fluorine- or phosphorus-containing water, comprising a circulation means for circulating a part of the treated water from the reaction tank to the reaction tank.
請求項1または2に記載の装置において、
前記被処理水を前記反応槽に上向流で通水し、処理水を反応槽上部から排出することを特徴とするフッ素またはリン含有水の処理装置。
The apparatus according to claim 1 or 2,
The water to be treated was passed water upflow in the reactor, the processing apparatus of fluorine or phosphorus-containing water, which comprises discharging the treated water from the reactor top.
請求項1〜3のいずれか1つに記載の装置において、The device according to any one of claims 1 to 3,
前記反応槽内のpHを、3〜7に調整することを特徴とするフッ素またはリン含有水の処理装置。  A treatment apparatus for fluorine or phosphorus-containing water, wherein the pH in the reaction vessel is adjusted to 3 to 7.
JP2002259357A 2002-09-04 2002-09-04 Fluorine or phosphorus-containing water treatment equipment Expired - Lifetime JP4330317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002259357A JP4330317B2 (en) 2002-09-04 2002-09-04 Fluorine or phosphorus-containing water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259357A JP4330317B2 (en) 2002-09-04 2002-09-04 Fluorine or phosphorus-containing water treatment equipment

Publications (2)

Publication Number Publication Date
JP2004097861A JP2004097861A (en) 2004-04-02
JP4330317B2 true JP4330317B2 (en) 2009-09-16

Family

ID=32260404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259357A Expired - Lifetime JP4330317B2 (en) 2002-09-04 2002-09-04 Fluorine or phosphorus-containing water treatment equipment

Country Status (1)

Country Link
JP (1) JP4330317B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696473B2 (en) * 2004-05-25 2011-06-08 三菱マテリアル株式会社 Reaction crystallizer
JP6500534B2 (en) * 2015-03-20 2019-04-17 日本製鉄株式会社 Method and apparatus for removing phosphorus from water

Also Published As

Publication number Publication date
JP2004097861A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
EP0421399B2 (en) Method of treating fluoride-containing water
JP4880656B2 (en) Water treatment apparatus and water treatment method
JP2001096281A (en) Method of recovering desalted water from fluorine- containing waste water
JP4351867B2 (en) Fluorine or phosphorus-containing water treatment equipment
JP4330317B2 (en) Fluorine or phosphorus-containing water treatment equipment
JP3227760B2 (en) Fluorine-containing water treatment method
JP4396965B2 (en) Heavy metal removal method and apparatus
JP2002292204A5 (en)
JP2503806B2 (en) Fluoride-containing water treatment method
JP2003305458A (en) Method for treating fluorine-containing waste water
JP3319053B2 (en) Treatment method for fluoride-containing water
JP5217883B2 (en) Method and apparatus for treating phosphoric acid, nitric acid and water containing organic acid
JP4139600B2 (en) Treatment method of wastewater containing fluorine
JP4543478B2 (en) Method for treating boron-containing water
JP2004121948A (en) Fluorine or phosphorus removing method
TW201738185A (en) Method for treating boron-containing wastewater using fluidized-bed homogeneous granulation technique
JP2002292201A (en) Crystallization reaction apparatus provided with means for vaporizing/concentrating treated water
JP2002292201A5 (en)
JP4210509B2 (en) Method for treating boron-containing water
JPS6097090A (en) Treatment of water containing fluoride ion and sulfate ion
JP3622407B2 (en) Water treatment method
JP2017036972A (en) Processing method and processor of water to be treated containing radiostrontium
JP2002292202A (en) Crystallization reaction apparatus provided with means for recovering crystallization-reactive component
JP4348116B2 (en) Fluorine or phosphorus-containing water treatment equipment
JPH0130554B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4330317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term