JP4330293B2 - Power semiconductor device - Google Patents

Power semiconductor device Download PDF

Info

Publication number
JP4330293B2
JP4330293B2 JP2001241952A JP2001241952A JP4330293B2 JP 4330293 B2 JP4330293 B2 JP 4330293B2 JP 2001241952 A JP2001241952 A JP 2001241952A JP 2001241952 A JP2001241952 A JP 2001241952A JP 4330293 B2 JP4330293 B2 JP 4330293B2
Authority
JP
Japan
Prior art keywords
power semiconductor
insulating substrate
semiconductor element
semiconductor device
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001241952A
Other languages
Japanese (ja)
Other versions
JP2003060158A (en
Inventor
慶久 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001241952A priority Critical patent/JP4330293B2/en
Publication of JP2003060158A publication Critical patent/JP2003060158A/en
Application granted granted Critical
Publication of JP4330293B2 publication Critical patent/JP4330293B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Structure Of Printed Boards (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、インバータ等の電力用半導体装置に関し、より詳しくは、その装置内での電力用半導体素子を搭載した絶縁基板のベース板に対する固定構造に関する。
【0002】
【従来の技術】
従来、電力用半導体装置において、電力用半導体素子を搭載した絶縁基板は、放熱及び位置固定の必要性からベース板に対してハンダ接合されることが一般的である。図4に、従来知られる電力用半導体装置の内部構造の一例を示す。この電力半導体装置50において、電力用半導体素子51が搭載される絶縁基板52の表面側には、半導体素子搭載用の回路パターン53(以下、表面パターンと称す)が形成され、他方、絶縁基板52の裏面側には、ほぼ全面に広がる金属パターン54(以下、裏面パターンと称す)が形成される。
表面パターン53上には、電力用半導体素子51がハンダ55を用いて接合される。そして、絶縁基板52は、その裏面側で、裏面パターン54の全面に広がるハンダ層56を介し、金属製のベース板59に接合される。
【0003】
【発明が解決しようとする課題】
しかしながら、かかる電力用半導体装置50においては、電力用半導体素子51のスイッチング動作時に発生する熱により絶縁基板52やベース板59が熱膨張することによって、両者を接合しているハンダ層56にクラックが生じる惧れがある。このクラックは、放熱性の低下による各素子の破壊や絶縁不良をもたらす要因となる。
【0004】
本発明は、上記技術的課題に鑑みてなされたもので、電力用半導体素子を搭載した絶縁基板とベース板とを接合するハンダ層内でのクラック発生を確実に防止し得る電力用半導体装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本願の第1の発明は、その表面側で回路パターンが形成された上で電力用半導体素子が搭載される一方、その裏面側では金属パターンが形成された上でハンダ層を介して放熱および位置固定用のベース板に接合される絶縁基板を備えた電力用半導体装置において、金属パターンが矩形状であり、金属パターンのコーナ部に切欠き部が設けられていることを特徴とするものである。
【0006】
また、本願の第2の発明は、更に、切欠き部が、金属パターンにおける、絶縁基板の表面側で電力用半導体素子が搭載される領域に対応する部位以外に設けられていることを特徴とするものである。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態について、添付図面を参照しながら説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る電力用半導体装置の内部構造を示す縦断面説明図である。この電力用半導体装置10は、基本的に、制御基板2を含む制御部(図中の上段側の構成)と、電力用半導体素子9を搭載した絶縁基板6を含むパワー部(図中の下段側の構成)とから構成されている。制御部に含まれる制御基板2は、装置本体の外形を構成する樹脂ケース4内に規定された空間部5に保持され、その制御基板2上には、抵抗,コンデンサ,制御用IC等の部品3が搭載されている。他方、パワー部に含まれる絶縁基板6は、装置本体の底面を構成する金属製のベース板11上に放熱および位置固定のために取り付けられ、その絶縁基板6上には、複数(この実施の形態では2つ)の電力用半導体素子9が搭載されている。
【0008】
制御基板2と絶縁基板6とは、中継端子11を介して電気的に接続され、電力用半導体素子9のスイッチング動作によって、絶縁基板6側から制御基板2側へ供給される電力が変換・制御されるようになっている。
【0009】
樹脂ケース4は、ケース成形時にインサート成形された複数の主回路端子16を有しており、各主回路端子16は、その一部でケース4の外面に露出して、装置10の外部端子を構成している。また、樹脂ケース4内には、制御基板2および絶縁基板6を収納する空間部5が規定されている。この空間部5は、ケース4の上面側で、蓋18が取り付けられることにより閉じられ、他方、ケース4の下面側では、樹脂ケース4がその下端部にてベース板11に接合されることにより閉じられる。なお、蓋18には開口部18aが設けられ、この開口部18aを介して、信号回路用コネクタ17が制御基板2に装着されるようになっている。
【0010】
電力用半導体素子9が搭載される絶縁基板6の表面側には、半導体素子搭載用の回路パターン7(以下、表面パターンと称す)が形成され、他方、絶縁基板6の裏面側には、金属パターン8(以下、裏面パターンと称す)が形成されている。なお、図1において、表面パターン7は、べた一面に広がるように示されるが、平面視した場合には、搭載される半導体素子9用の電極や配線を構成する形状を有するものである。
【0011】
表面パターン7上の所定位置には、電力用半導体素子9が、ハンダ12を用いて接合されている。そして、絶縁基板6は、裏面パターン8が形成された側で、ハンダ層13を介してベース板11に接合されている。また、半導体素子9ともう一方の半導体素子9との間,半導体素子9と中継端子15との間、および、半導体素子9と主回路端子16との間が、アルミワイヤ14で電気的に接続されている。このように、絶縁基板6がベース板11にハンダ接合され、各構成要素間がアルミワイヤ14で接続された状態で、絶縁基板6及びアルミワイヤ14は、図1に示すように、樹脂ケース4内に規定される空間部5の下半分に充填されたシリコンゲル19によって封止される。
【0012】
この実施の形態1では、絶縁基板6の裏面側に形成された裏面パターン8が、その中央部に、切欠き部8aを備えている。この中央部は、絶縁基板6の表面側に搭載される2つの電力用半導体素子9間の空き領域(半導体素子9が存在しない領域)に対応する部位である。また、ハンダ層13には、切欠き部8aに対応する部位にて、孔部13aが形成されている。
【0013】
このように、裏面パターン8に切欠き部8aが形成されることにより、電力用半導体素子9のスイッチング動作時に発生する熱によって裏面パターン8とベース板11との間のハンダ層13に生じる応力を緩和することができ、ハンダ層13にクラックが発生する惧れをなくすることができる。また、この実施の形態1では、切欠き部8aが絶縁基板6の表面側に搭載される2つの半導体素子9間の空き領域に対応して設けられ、各半導体素子9に対応する部位にて裏面パターン8は存在するため、放熱効果は十分に確保される。
【0014】
なお、この実施の形態1では、絶縁基板6上に2つの半導体素子9が設けられる場合について説明したが、これに限定されることはなく、例えば、3つの半導体素子9が絶縁基板6上で所定の間隔を隔てて搭載されている場合には、切欠き部8aを、それらの半導体素子9間の2つの空き領域に対応して設けることにより、上記と同様の効果を得ることができる。また、特に図示しないが、ハンダ層13におけるクラック発生をより確実に防止するには、切欠き部8aが、絶縁基板6の表面側での半導体素子9間の空き領域に対応する部位のみならず、半導体素子9が搭載される領域に対応する部位に形成されてもよい。
【0015】
以下、本発明の別の実施の形態について説明する。なお、以下では、上記実施の形態1における場合と同じものについては同一の符号を付し、それ以上の説明を省略する。
実施の形態2.
図2は、本発明の実施の形態2に係る電力用半導体装置に組み込まれる絶縁基板およびその裏面パターンを示す平面図である。裏面パターン23は、絶縁基板6の形状に対応して、矩形状に形成されている。この裏面パターン23には、その中央に、すなわち、絶縁基板6の表面側に搭載される2つの電力用半導体素子9間の空き領域に対応する部位にて、矩形状の切欠き部23aが形成されている。更に、この裏面パターン23には、4つのコーナ部を含む周縁部に、円形状の切欠き部23bが所定の間隔を隔てて複数形成されている。
【0016】
この実施の形態2では、裏面パターン23の中央に形成される切欠き部23aが設けられることにより、上記実施の形態1における場合と同様の効果が得られるとともに、、裏面パターン23の4つのコーナ部を含む周縁部に形成される切欠き部23bが設けられることにより、裏面パターン23とベース板11(図1参照)との間のハンダ層8に生じる応力を一層緩和することができ、ハンダ層13におけるクラック発生を一層確実に防止することができる。
【0017】
なお、切欠き部23bは、裏面パターン23の4つのコーナ部を含む周縁部に限定されることなく、少なくとも4つのコーナ部に形成されればよい。また、切欠き部23bの形状は、円形状に限定されるものでなく、ハンダ層8に生じる応力を緩和することができれば、いかなる形状であってもよい。
【0018】
実施の形態3.
図3は、本発明の実施の形態3に係る電力用半導体装置の内部構造の一部を拡大して示す縦断面説明図である。この実施の形態3では、絶縁基板6の表面側に搭載された電力用半導体素子9の占める領域に基づき規定される部位に、裏面パターン33が形成されている。この部位は、図3から分かるように、絶縁基板6の表面側における半導体素子9の下端部と絶縁基板6との接線を通過し、基板平面と角度θ(θ<90°)をなす平面によって規定される内側領域A及びAに含まれる部位である。かかる部位の設定条件によれば、半導体素子9が搭載された領域に対応する部位及びその近傍に裏面パターン33が形成されることになる。また、これを言い換えれば、半導体素子9が搭載された領域に対応する部位及びその近傍以外に、切欠き部33a及び33bが形成されることになる。
【0019】
このように、裏面パターン33に切欠き部33a及び33bが形成されることにより、電力用半導体素子9のスイッチング動作時に発生する熱によって裏面パターン33とベース板11との間のハンダ層13に生じる応力を緩和することができ、ハンダ層13にクラックが発生する惧れをなくすることができる。また、この実施の形態3によれば、切欠き部33a及び33bが、半導体素子9が搭載された領域に対応する部位及びその近傍以外に形成されることにより、各半導体素子9に対応する部位及びその近傍にて裏面パターン33は存在するため、放熱効果は十分に確保される。
【0020】
なお、本発明は、例示された実施の形態に限定されるものでなく、本発明の要旨を逸脱しない範囲において、種々の改良及び設計上の変更が可能であることは言うまでもない。
【0021】
【発明の効果】
以上の説明から明らかなように、本願の第1の発明によれば、その表面側で回路パターンが形成された上で電力用半導体素子が搭載される一方、その裏面側では金属パターンが形成された上でハンダ層を介して放熱および位置固定用のベース板に接合される絶縁基板を備えた電力用半導体装置において、上記絶縁基板の裏面側に形成される金属パターンの所定部位に、切欠き部が設けられているので、簡単な構成で、裏面パターンとベース板との間のハンダ層に生ずる応力を緩和することができ、その結果、ハンダ層におけるクラック発生による放熱性の低下を有効に防止することができる。
【0022】
また、本願の第2の発明によれば、上記切欠き部が、上記金属パターンにおける、上記絶縁基板の表面側で電力用半導体素子が搭載される領域に対応する部位以外に設けられているので、放熱効果を確保しつつ、簡単な構成で、裏面パターンとベース板とのハンダ層に生ずる応力を抑制することができる。
【0023】
更に、上記金属パターンが矩形状に形成されており、上記切欠き部が、更に、該金属パターンにおけるコーナ部に設けられているので、簡単な構成で、裏面パターンとベース板とのハンダ層に生ずる応力を一層緩和することができ、その結果、ハンダ層におけるクラック発生による放熱性の低下を有効に防止することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係る電力用半導体装置の内部構造をあらわす縦断面説明図である。
【図2】 本発明の実施の形態2に係る電力用半導体装置に組み込まれる絶縁基板の裏面一体金属パターンを示す平面図である。
【図3】 本発明の実施の形態3に係る電力用半導体装置の内部構造の一部(ベース板に対する絶縁基板の接合構造)を拡大して示す縦断面説明図である。
【図4】 従来の電力用半導体装置の内部構造を示す縦断面説明図である。
【符号の説明】
6 絶縁基板,7 回路パターン,8,23,33 裏面パターン,8a,23a,23b,33a,33b 切欠き部,9 電力用半導体素子,10 電力用半導体装置,11 ベース板,12 ハンダ,13 ハンダ層。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power semiconductor device such as an inverter, and more particularly to a structure for fixing an insulating substrate mounted with a power semiconductor element in the device to a base plate.
[0002]
[Prior art]
Conventionally, in a power semiconductor device, an insulating substrate on which a power semiconductor element is mounted is generally soldered to a base plate because of the necessity of heat dissipation and position fixing. FIG. 4 shows an example of an internal structure of a conventionally known power semiconductor device. In the power semiconductor device 50, a circuit pattern 53 (hereinafter referred to as a surface pattern) for mounting a semiconductor element is formed on the surface side of the insulating substrate 52 on which the power semiconductor element 51 is mounted. A metal pattern 54 (hereinafter referred to as a back surface pattern) is formed on the back surface side of the metal pattern 54 so as to extend over substantially the entire surface.
On the surface pattern 53, the power semiconductor element 51 is bonded using the solder 55. The insulating substrate 52 is bonded to the metal base plate 59 via a solder layer 56 extending over the entire surface of the back surface pattern 54 on the back surface side.
[0003]
[Problems to be solved by the invention]
However, in such a power semiconductor device 50, the insulating substrate 52 and the base plate 59 are thermally expanded by heat generated during the switching operation of the power semiconductor element 51, so that cracks are generated in the solder layer 56 that joins the two. There is a possibility that it will occur. This crack becomes a factor which causes destruction of each element and insulation failure due to a decrease in heat dissipation.
[0004]
The present invention has been made in view of the above technical problem, and provides a power semiconductor device that can reliably prevent generation of cracks in a solder layer that joins an insulating substrate on which a power semiconductor element is mounted and a base plate. The purpose is to provide.
[0005]
[Means for Solving the Problems]
In the first invention of the present application, the power semiconductor element is mounted after the circuit pattern is formed on the front surface side, while the heat radiation and the position are provided via the solder layer after the metal pattern is formed on the back surface side. In a power semiconductor device including an insulating substrate bonded to a fixing base plate, the metal pattern is rectangular, and a notch is provided in a corner portion of the metal pattern. .
[0006]
The second invention of the present application is further characterized in that the notch is provided in a portion other than the portion corresponding to the region where the power semiconductor element is mounted on the surface side of the insulating substrate in the metal pattern. To do.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a longitudinal cross-sectional explanatory view showing the internal structure of the power semiconductor device according to the first embodiment of the present invention. This power semiconductor device 10 basically includes a control unit including the control board 2 (upper side configuration in the figure) and a power unit including the insulating substrate 6 on which the power semiconductor element 9 is mounted (lower stage in the figure). Side structure). The control board 2 included in the control unit is held in a space part 5 defined in a resin case 4 constituting the outer shape of the apparatus main body. On the control board 2, components such as a resistor, a capacitor, and a control IC are provided. 3 is installed. On the other hand, the insulating substrate 6 included in the power unit is attached on a metal base plate 11 constituting the bottom surface of the apparatus main body for heat dissipation and position fixing, and a plurality of (this embodiment) is mounted on the insulating substrate 6. In the embodiment, two power semiconductor elements 9 are mounted.
[0008]
The control board 2 and the insulating board 6 are electrically connected via the relay terminal 11, and the power supplied from the insulating board 6 side to the control board 2 side is converted and controlled by the switching operation of the power semiconductor element 9. It has come to be.
[0009]
The resin case 4 has a plurality of main circuit terminals 16 that are insert-molded at the time of molding the case. Each main circuit terminal 16 is partially exposed to the outer surface of the case 4 so that the external terminals of the device 10 can be used. It is composed. In the resin case 4, a space 5 for accommodating the control board 2 and the insulating board 6 is defined. The space portion 5 is closed by attaching a lid 18 on the upper surface side of the case 4, and on the other hand, on the lower surface side of the case 4, the resin case 4 is joined to the base plate 11 at the lower end portion thereof. Closed. The lid 18 is provided with an opening 18a, and the signal circuit connector 17 is attached to the control board 2 through the opening 18a.
[0010]
A circuit pattern 7 for mounting a semiconductor element (hereinafter referred to as a surface pattern) is formed on the surface side of the insulating substrate 6 on which the power semiconductor element 9 is mounted, while a metal pattern is formed on the back side of the insulating substrate 6. A pattern 8 (hereinafter referred to as a back surface pattern) is formed. In FIG. 1, the surface pattern 7 is shown so as to spread over the entire surface. However, when viewed in plan, the surface pattern 7 has a shape constituting an electrode or wiring for the semiconductor element 9 to be mounted.
[0011]
A power semiconductor element 9 is bonded to a predetermined position on the surface pattern 7 using solder 12. The insulating substrate 6 is bonded to the base plate 11 via the solder layer 13 on the side where the back surface pattern 8 is formed. Also, the aluminum wire 14 is electrically connected between the semiconductor element 9 and the other semiconductor element 9, between the semiconductor element 9 and the relay terminal 15, and between the semiconductor element 9 and the main circuit terminal 16. Has been. In this manner, the insulating substrate 6 and the aluminum wire 14 are connected to the resin case 4 as shown in FIG. 1 in a state where the insulating substrate 6 is soldered to the base plate 11 and the components are connected by the aluminum wires 14. It is sealed by the silicon gel 19 filled in the lower half of the space 5 defined inside.
[0012]
In the first embodiment, the back surface pattern 8 formed on the back surface side of the insulating substrate 6 has a notch 8a at the center. This central portion is a portion corresponding to a vacant region between the two power semiconductor elements 9 mounted on the surface side of the insulating substrate 6 (a region where the semiconductor element 9 does not exist). In addition, a hole 13a is formed in the solder layer 13 at a site corresponding to the notch 8a.
[0013]
Thus, by forming the notch 8a in the back surface pattern 8, the stress generated in the solder layer 13 between the back surface pattern 8 and the base plate 11 due to heat generated during the switching operation of the power semiconductor element 9 is caused. This can alleviate and eliminate the possibility of cracks occurring in the solder layer 13. Further, in the first embodiment, the notch 8 a is provided corresponding to the empty area between the two semiconductor elements 9 mounted on the surface side of the insulating substrate 6, and at a portion corresponding to each semiconductor element 9. Since the back surface pattern 8 exists, the heat dissipation effect is sufficiently ensured.
[0014]
In the first embodiment, the case where two semiconductor elements 9 are provided on the insulating substrate 6 has been described. However, the present invention is not limited to this. For example, three semiconductor elements 9 are provided on the insulating substrate 6. In the case where they are mounted at a predetermined interval, the same effect as described above can be obtained by providing the notches 8 a corresponding to the two empty regions between the semiconductor elements 9. Although not particularly illustrated, in order to prevent cracks in the solder layer 13 more reliably, the notch 8a is not only a part corresponding to the empty area between the semiconductor elements 9 on the surface side of the insulating substrate 6. The semiconductor element 9 may be formed in a part corresponding to the region where the semiconductor element 9 is mounted.
[0015]
Hereinafter, another embodiment of the present invention will be described. In the following, the same components as those in the first embodiment are denoted by the same reference numerals, and further description thereof is omitted.
Embodiment 2. FIG.
FIG. 2 is a plan view showing an insulating substrate and its back surface pattern incorporated in the power semiconductor device according to the second embodiment of the present invention. The back surface pattern 23 is formed in a rectangular shape corresponding to the shape of the insulating substrate 6. The back surface pattern 23 is formed with a rectangular cutout portion 23a at the center thereof, that is, at a portion corresponding to an empty area between the two power semiconductor elements 9 mounted on the front surface side of the insulating substrate 6. Has been. Furthermore, a plurality of circular notches 23b are formed on the back surface pattern 23 at predetermined intervals on the peripheral edge including the four corners.
[0016]
In the second embodiment, by providing the notch portion 23a formed at the center of the back surface pattern 23, the same effect as in the case of the first embodiment can be obtained, and the four corners of the back surface pattern 23 can be obtained. By providing the notch portion 23b formed in the peripheral portion including the portion, the stress generated in the solder layer 8 between the back surface pattern 23 and the base plate 11 (see FIG. 1) can be further alleviated, and the solder Generation of cracks in the layer 13 can be more reliably prevented.
[0017]
In addition, the notch part 23b is not limited to the peripheral part containing the four corner parts of the back surface pattern 23, What is necessary is just to be formed in at least four corner parts. Moreover, the shape of the notch 23b is not limited to a circular shape, and may be any shape as long as the stress generated in the solder layer 8 can be relieved.
[0018]
Embodiment 3 FIG.
FIG. 3 is an explanatory longitudinal sectional view showing a part of the internal structure of the power semiconductor device according to the third embodiment of the present invention. In the third embodiment, the back surface pattern 33 is formed at a site defined based on a region occupied by the power semiconductor element 9 mounted on the front surface side of the insulating substrate 6. As can be seen from FIG. 3, this portion passes through a tangent line between the lower end portion of the semiconductor element 9 on the surface side of the insulating substrate 6 and the insulating substrate 6 and is formed by a plane that forms an angle θ (θ <90 °) with the substrate plane. it is a site contained in the inner area a 1 and a 2 are defined. According to the setting conditions of such a part, the back surface pattern 33 is formed in the part corresponding to the region where the semiconductor element 9 is mounted and in the vicinity thereof. In other words, the notches 33a and 33b are formed in addition to the portion corresponding to the region where the semiconductor element 9 is mounted and the vicinity thereof.
[0019]
Thus, by forming the notches 33 a and 33 b in the back surface pattern 33, heat is generated during the switching operation of the power semiconductor element 9 and is generated in the solder layer 13 between the back surface pattern 33 and the base plate 11. The stress can be relaxed, and the possibility of cracks occurring in the solder layer 13 can be eliminated. Further, according to the third embodiment, the notches 33a and 33b are formed in portions other than the portion corresponding to the region where the semiconductor element 9 is mounted and the vicinity thereof, thereby the portion corresponding to each semiconductor element 9 And since the back surface pattern 33 exists in the vicinity thereof, a sufficient heat dissipation effect is secured.
[0020]
Note that the present invention is not limited to the illustrated embodiments, and it goes without saying that various improvements and design changes are possible without departing from the scope of the present invention.
[0021]
【The invention's effect】
As is clear from the above description, according to the first invention of the present application, the power semiconductor element is mounted after the circuit pattern is formed on the front surface side, while the metal pattern is formed on the back surface side. In addition, in a power semiconductor device including an insulating substrate bonded to a base plate for heat dissipation and position fixing via a solder layer, a notch is formed in a predetermined portion of the metal pattern formed on the back side of the insulating substrate. Since the part is provided, the stress generated in the solder layer between the back surface pattern and the base plate can be relieved with a simple configuration, and as a result, the heat dissipation is effectively reduced due to the occurrence of cracks in the solder layer. Can be prevented.
[0022]
According to the second invention of the present application, the notch is provided in a portion other than the portion corresponding to the region where the power semiconductor element is mounted on the surface side of the insulating substrate in the metal pattern. The stress generated in the solder layer between the back surface pattern and the base plate can be suppressed with a simple configuration while ensuring the heat dissipation effect.
[0023]
Further, the metal pattern is formed in a rectangular shape, and the notch is further provided in a corner portion of the metal pattern, so that the solder layer between the back pattern and the base plate can be formed with a simple configuration. The resulting stress can be further relaxed, and as a result, a reduction in heat dissipation due to the occurrence of cracks in the solder layer can be effectively prevented.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view illustrating an internal structure of a power semiconductor device according to a first embodiment of the present invention.
FIG. 2 is a plan view showing a back surface integrated metal pattern of an insulating substrate incorporated in a power semiconductor device according to a second embodiment of the present invention.
FIG. 3 is an explanatory longitudinal sectional view showing a part of the internal structure of a power semiconductor device according to a third embodiment of the present invention (bonding structure of an insulating substrate to a base plate).
FIG. 4 is a longitudinal sectional view showing an internal structure of a conventional power semiconductor device.
[Explanation of symbols]
6 Insulating substrate, 7 Circuit pattern, 8, 23, 33 Back surface pattern, 8a, 23a, 23b, 33a, 33b Notch, 9 Power semiconductor element, 10 Power semiconductor device, 11 Base plate, 12 Solder, 13 Solder layer.

Claims (2)

その表面側で回路パターンが形成された上で電力用半導体素子が搭載される一方、その裏面側では金属パターンが形成された上でハンダ層を介して放熱および位置固定用のベース板に接合される絶縁基板を備えた電力用半導体装置において、
上記金属パターンが矩形状であり、上記金属パターンのコーナ部に切欠き部が設けられていることを特徴とする電力用半導体装置。
A power semiconductor element is mounted after a circuit pattern is formed on the front side, and a metal pattern is formed on the back side and bonded to a base plate for heat dissipation and position fixing via a solder layer. In a power semiconductor device including an insulating substrate,
The power semiconductor device according to claim 1, wherein the metal pattern has a rectangular shape, and a corner portion of the metal pattern is provided with a notch.
更に、上記切欠き部が、上記金属パターンにおける、上記絶縁基板の表面側で電力用半導体素子が搭載される領域に対応する部位以外に設けられていることを特徴とする請求項1記載の電力用半導体装置。 2. The electric power according to claim 1 , wherein the notch is provided in a portion other than a portion of the metal pattern corresponding to a region where the power semiconductor element is mounted on the surface side of the insulating substrate. Semiconductor device.
JP2001241952A 2001-08-09 2001-08-09 Power semiconductor device Expired - Lifetime JP4330293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001241952A JP4330293B2 (en) 2001-08-09 2001-08-09 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001241952A JP4330293B2 (en) 2001-08-09 2001-08-09 Power semiconductor device

Publications (2)

Publication Number Publication Date
JP2003060158A JP2003060158A (en) 2003-02-28
JP4330293B2 true JP4330293B2 (en) 2009-09-16

Family

ID=19072306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001241952A Expired - Lifetime JP4330293B2 (en) 2001-08-09 2001-08-09 Power semiconductor device

Country Status (1)

Country Link
JP (1) JP4330293B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4365388B2 (en) * 2006-06-16 2009-11-18 株式会社日立製作所 Semiconductor power module and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003060158A (en) 2003-02-28

Similar Documents

Publication Publication Date Title
KR100307465B1 (en) Power module
JP3547333B2 (en) Power converter
JPH06209054A (en) Semiconductor device
JP2004039858A (en) Waterproofing method for power circuit and power module having power circuit
CN110914975B (en) Power semiconductor module
JP2848068B2 (en) Semiconductor device
JP6790902B2 (en) Electronic device
JP4330293B2 (en) Power semiconductor device
JP4301096B2 (en) Semiconductor device
JP5267221B2 (en) Semiconductor device
JP2004088022A (en) High power semiconductor device
JPH11307721A (en) Power module device and manufacture therefor
JPH06204398A (en) Hybrid integrated circuit device
JPH09246433A (en) Radiation structure of module
JP6075470B2 (en) Semiconductor device and manufacturing method thereof
JP3559692B2 (en) Semiconductor module
JP4108909B2 (en) Semiconductor device
JP2515515Y2 (en) Electronics
JP2003243611A (en) Semiconductor module and semiconductor device
JP2013187479A (en) Semiconductor device and method for manufacturing the same
JP2006041199A (en) Electronic device
JP3754197B2 (en) Hybrid integrated circuit device
JP3172393B2 (en) Hybrid integrated circuit device
JP2504586Y2 (en) Package for electronic parts
JP2544272Y2 (en) Hybrid integrated circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4330293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term