JP4326341B2 - Electrolytic regeneration treatment equipment - Google Patents

Electrolytic regeneration treatment equipment Download PDF

Info

Publication number
JP4326341B2
JP4326341B2 JP2003566278A JP2003566278A JP4326341B2 JP 4326341 B2 JP4326341 B2 JP 4326341B2 JP 2003566278 A JP2003566278 A JP 2003566278A JP 2003566278 A JP2003566278 A JP 2003566278A JP 4326341 B2 JP4326341 B2 JP 4326341B2
Authority
JP
Japan
Prior art keywords
regeneration
etching
tank
electrolytic
treatment liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003566278A
Other languages
Japanese (ja)
Other versions
JPWO2003066939A1 (en
Inventor
孝博 竹前
郁雄 宮崎
賢二 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Publication of JPWO2003066939A1 publication Critical patent/JPWO2003066939A1/en
Application granted granted Critical
Publication of JP4326341B2 publication Critical patent/JP4326341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
    • C25F7/02Regeneration of process liquids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/46Regeneration of etching compositions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/21Manganese oxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

技術分野
本発明は電解再生処理装置に関し、更に詳細には金属イオンを含有するエッチング処理液を、電極が設けられた再生槽内で再生する電解再生処理装置に関する。
背景技術
半導体装置等に用いる多層回路基板には、いわゆるビルドアップ基板が用いられることがある。
かかるビルドアップ基板の製造には、例えば、コア基板の両面側の各々に形成した所定厚さの樹脂層に、コア基板に形成された導体パターン等が底面に露出するヴィア穴を形成した後、ヴィア穴の内壁面を含む樹脂層の全表面に、めっき金属層を形成し、次いで、このめっき金属層にパターニングを施して導体パターン及びヴィアを形成する。更に、同様な操作を繰り返してコア基板の両面側に複数の導体パターンが積層された多層回路基板を得ることができる。
このビルドアップ基板の製造工程では、樹脂層の表面にめっき金属層を形成する際に、樹脂層とめっき金属層との密着性を良好にすべく、樹脂層の表面に微細な凹凸を形成する粗面化処理を施す。
かかる粗面化処理には、樹脂層をエッチングするエッチング液として、例えば過マンガン酸塩水溶液や6価クロム含有液等の金属イオンを含むエッチング液が用いられる。
この様な金属イオンを含むエッチング液は、樹脂層の表面に粗面化処理等を施すことにより、そのエッチング性能が低下するが、エッチング性能が低下したエッチング処理液に電解処理を施すことによって、そのエッチング性能を再生できる。
かかる電解処理装置としては、特開平10−245443号公報に、図5に示す装置が提案されている。
図5に示す電解処理装置100は、粗面化処理が施される樹脂製基板102がエッチング液中に浸漬されたエッチング処理槽104と配管106によって一体化された再生槽108が設けられており、この再生槽108には、整流器に電気的に接続された複数本の電極110,110・・が配設されている。
かかる再生槽108とエッチング処理槽104との間には、両槽を結ぶ循環配管112が設けられており、この循環配管112の途中に設けられ循環ポンプ114によって、エッチング処理槽104から再生槽108に流入したエッチング処理液は、電極110,110・・の電解処理によって再生されてエッチング処理槽104に戻る。
ところで、再生槽108内での電解処理の際には、エッチング処理液を再生する再生反応と共に、不溶性のスラッジを生成する副反応が惹起される。例えば、エッチング液として過マンガン酸塩水溶液を用いた場合、エッチング処理槽104内ではMn7+がMn6+に還元される際に、樹脂製基板102の表面粗化がなされる。このエッチング処理槽104で生成したMn6+を含有するエッチング処理液は、再生槽108に入り、電極110,110・・の電解処理によってMn6+がMn7+に酸化され、再度、エッチング処理槽104に戻る。かかる電極110,110・・による電解処理の際には、Mn6+をMn7+に酸化し再生される。しかし、再生効率により、一部のMn6+は再生されずに二酸化マンガン(MnO)が生成される。
この様にして生成された二酸化マンガン(MnO)は、不溶性のスラッジ(以下、単にスラッジと称することがある)としてエッチング処理槽104及び再生槽108を循環して次第に蓄積され、配管等の目詰まりの原因となり易く、樹脂製基板102の表面粗化にも悪影響を与える。
このため、図5に示す電解処理装置100では、エッチング処理液中のスラッジを沈殿除去するスラッジ除去槽200を設けている。このスラッジ除去槽200と再生槽108とは、循環ポンプ202が配設された循環配管204,206によって接続されているため、再生槽108内のスラッジは、エッチング処理液と共にスラッジ除去槽200に送液され、スラッジが除去された処理液を再生槽108に戻すことができる。
図5に示す電解処理装置100では、スラッジ除去槽200の設置によってエッチング処理液中のスラッジを除去できるため、エッチング処理槽104及び再生槽108内にスラッジが蓄積することを防止できる。
しかしながら、スラッジ除去槽200に沈殿蓄積されたスラッジは定期的に除去することが必要であるが、その除去作業は煩雑な作業であり、しかも沈殿蓄積されたスラッジ塊は硬く、スラッジの除去作業は困難である。
また、スラッジ除去槽200を併設することは、電解処理装置100を大型化することになる。
このため、スラッジ除去槽200を不要化できる程度にスラッジの発生を可及的に少なくし得る再生槽108の提案が要請されている。
発明の開示
そこで、本発明の課題は、金属イオンを含有するエッチング処理液を、電極が設けられた再生槽内で再生する際に、発生する不溶性のスラッジを可及的に少なくでき、スラッジ除去槽等のスラッジ除去手段を特別に併設することを要しない電解再生処理装置を提供することにある。
本発明者等は、前記課題を解決すべく検討を重ねた結果、再生槽に流入したエッチング処理液を交互に上向又は下向に流し、上向に流れるエッチング処理液と接触するように電極を配設すること、及びエッチング処理液が淀む部分に攪拌を施すことによって、再生槽で発生するスラッジ量を可及的に少なくできることを見出し、本発明に到達した。
すなわち、本発明によれば、金属イオンを含有するエッチング処理液を再生する電解再生処理装置において、供給側から供給された前記エッチング処理液が流動方向を交互に上向又は下向に変更しながら出口側方向に順次流れるように、内部が複数個の区画に区分された再生槽と、前記複数個の区画のうち、前記エッチング処理液が上向に流れる区画内に設けられた電極と、前記区画内のエッチング液が淀む部分に設けられた、前記エッチング液を攪拌する攪拌手段と、を具備してなることを特徴とする電解再生処理装置が提供される。
かかる本発明において、電極として、陽極面積が陰極面積よりも大の電極を用いることが好ましく、特に、筒状の網体から成る陽極と、前記網体内に挿入された棒体から成る陰極とから構成される電極を、前記網体及び棒体が処理液の流動方向に沿って立設して用いることが好ましい。
また、攪拌手段を、エッチング処理液の流動方向が下向から上向に変更される部位の近傍に設けることによって、エッチング処理液の流動方向を変更する部分に不溶性のスラッジが蓄積することを防止できる。この攪拌手段としては、再生槽内のエッチング処理液を噴出するノズルを具備する攪拌手段が好適である。
再生槽からエッチング処理液を取り出し、エッチング処理液を再度該再生槽へ戻す循環経路を設け、該循環経路に前記ノズルを設けるのが好適である。
本発明に係る電解再生処理装置によれば、再生槽内で発生する不溶性のスラッジ量を、従来の装置に比較して大幅に減少できる。
しかも、二酸化マンガン(MnO)等の不溶性のスラッジが生成される電極が、上向に流れるエッチング処理液と接触するように配設されていると共に、エッチング処理液が淀む部分には攪拌手段が設けられ、電極で生成された不溶性のスラッジが再生槽内で実質的に蓄積しないため、循還配管の途中に設けられたフィルター等の簡易のスラッジ除去手段により容易に除去できる。
その結果、本発明に係る電解再生処理装置には、スラッジ除去槽等のスラッジ除去手段を特別に併設することを要しないため、電解再生処理装置の小型化を図ることができる。
発明を実施するための最良の形態
本発明に係る電解再生処理装置の一例を図1に示す。図1に示す電解再生処理装置10を構成する再生槽12は、過マンガン酸塩水溶液等の金属イオンを含むエッチング液を用いて樹脂製基板の表面に粗面化処理等を施した、金属イオンを含有するエッチング処理液が供給される供給側から出口側方向に複数個の区画12a〜12hに区分されている。
かかる区画12a〜12hの各々は、二種類の仕切り板14a,14bによって仕切られており、仕切り板14aは、その上端がエッチング処理液の水面上に突出しているものの、その下端と再生槽12の底面との間にエッチング処理液が通過する通路が形成されている。一方、仕切り板14bは、その下端が再生槽12の底面に密着しているものの、その上端を越えてエッチング処理液が次の区画に流出するように設けられている。
図1に示す再生槽12では、再生槽12の内壁面と仕切り板14aとで形成された区画12aに流入したエッチング処理液は、仕切り板14aの下端と再生槽12の底面との間に形成された間隙から区画12bに流入するため、区画12aでは、エッチング処理液の流動方向は下向となる。
また、区画12bは、仕切り板14aと仕切り板14bとで形成されているため、仕切り板14aの下端側の間隙から区画12bに流入したエッチング処理液は、仕切り板14bの上端を越え、仕切り板14bと仕切り板14aとで形成された区画12cに流入するため、区画12bでのエッチング処理液の流動方向は上向となる。
この様に、区画12a〜12hは、区画12aに流入したエッチング処理液は、その流動方向を交互に上向又は下向に変更しながら出口方向(区画12hの方向)に、即ち、12a→12b→12c→12d→12e→12f→12g→12hの順序で順次流れるように、区画12a〜12hの各々が二種類の仕切り板14a,14bによって仕切られている。
図1に示す再生槽12では、エッチング処理液の流動方向が上向となる区画12b,12d,12fの各区画に電極16が配設されている。かかる電極16は、図3に示す様に、筒状の網体16aから成る陽極と、網体16a内に挿入された棒体16bから成る陰極とから構成される電極である。棒体16bは例えばポリテトラフルオロエチレン製のチューブで導体表面の一部を被覆したものである。また、筒状の網体16には金属製のラス又はメッシュから成る。このため、電極16は、網体16aから成る陽極が、棒体16bから成る陰極よりも大面積に形成されている。かかる図3に示す電極16は、区画12b,12d,12fの各区画に、網体16a及び棒体16bが上向のエッチング処理液の流動方向に沿って立設されている。陽極と陰極の面積比や電流値はエッチング処理液の処理量をいかに設定するかで異なるが、二酸化マンガン(MnO)を処理するには、後述のように、陽極陰極面積比を20:1程度に設定するのが適当である。
また、区画12b,12d,12fの各区画に設けられる電極16は、図2に示す様に、複数個の電極16,16,16を設けてもよい。
図1に示す再生槽12では、区画12aに流入したエッチング処理液は、その流動方向を交互に上向又は下向に変更しながら出口方向(区画12hの方向)に、各区画を順次流れる。
かかるエッチング処理液の流動方向が、上向から下向或いは下向から上向に変更される際に、エッチング処理液の流速が極めて遅くなる淀み部分が発生する。かかる淀み部分には、エッチング処理液に含有されているスラッジが沈殿し易くなる。
この点、図1に示す再生槽12では、エッチング処理液の流動方向が、上向から下向或いは下向から上向に変更される近傍に、エッチング処理液を攪拌する攪拌手段を設けている。この攪拌手段では、再生槽12の底面に沿って配管20を配設し、エッチング処理液の流動方向が変更される近傍に位置する配管20の部分に、図4に示す様に、配管20の再生槽12の底面側に形成したノズル穴20a,20aから、区画12hに流入した再生された再生エッチング液をポンプ18で昇圧して噴出して再生中のエッチング処理液を攪拌する。
このノズル穴20a,20aからは、再生槽12の底面側に向けて再生エッチング液が噴出され、スラッジが再生槽12の底面に沈殿蓄積することも防止できる。
かかるノズル穴20a,20aが形成された配管20は、図2に示す様に、各区画と、次にエッチング処理液が流入する区画と間の仕切り板14a,14bに沿って略平行に、かつ再生槽12の底面の近傍に配設されている。配管20をこのように配置するのは、この仕切り板14a,14bの近傍でかつ再生槽12の底面の近傍位置でエッチング処理液の流動方向が下向から上向に変更され、その付近でスラッジの沈殿蓄積を起しやすいからである。
尚、配管20のノズル穴20a,20aから噴出する噴出液は、再生中のエッチング処理液を攪拌し、スラッジが再生槽12の底面に沈殿蓄積することを防止するものであるため、図1に点線で示す様に、再生槽12の区画12h以外の区画に溜められているエッチング処理液を、配管20のノズル穴20a,20aから噴出してもよい。
この様な図1に示す電解再生処理装置10は、樹脂製基板の表面に粗面化処理等のエッチングを施す処理装置30に併設されている。この処理装置30には、樹脂製基板の表面に粗面化処理等のエッチングを施す過マンガン酸塩水溶液等の金属イオンを含むエッチング液が貯留された処理槽32が設けられており、処理槽32の外周には、処理槽32をオーバーフローして流出するエッチング液を受けるオーバーフロー槽34が設けられている。オーバーフロー槽34には、電解再生処理装置10の区画12hから再生された再生エッチング液が配管36を経由して戻される。
オーバーフロー槽34に流入したエッチング液及び再生エッチング液は、配管38、ポンプ40及びフィルター42を経由して処理槽32に戻される。このフィルター42は、オーバーフロー槽34に流入したエッチング液及び再生エッチング液中の樹脂粉を分離するためのものである。
また、処理槽32には、貯留しているエッチング液の一部をエッチング処理液として、電解再生処理装置10の再生槽12に送液する配管44が設けられており、配管44には送液ポンプ46及びフィルター48が設けられている。フィルター48は、再生槽12に送液するエッチング処理液中の樹脂粉を分離するためのものである。フィルター48で除去されるスラッジは、主として処理槽32での樹脂製基板の表面に粗面化処理等のエッチングによって発生した樹脂粉である。
図1に示す処理装置30及び電解再生処理装置10によれば、再生槽12内での電解によるエッチング処理液の再生の際に、スラッジの発生が極めて少なく、図5に示す従来のエッチング処理槽104で発生するスラッジ量に比較して約1/10程度に抑制できる。このため、図1に示す処理装置30及び電解再生処理装置10では、再生された再生エッチング液及びエッチング液中のスラッジを除去する手段として、オーバーフロー槽34に流入したエッチング液及び再生エッチング液を処理槽32に戻す配管38の途中にフィルター42を設ける程度で足り、図5に示すスラッジ除去槽200等の特別の装置を再生槽12に併設することを要しない。
したがって、図1に示す処理装置30及び電解再生処理装置10では、スラッジ除去作業としては、フィルター42の交換程度で足りるため、スラッジ除去槽200に沈殿蓄積されたスラッジ塊を除去する作業を省略でき、装置の小型化も図ることができる。
次に、表1及び表2、図6及び図7を参照して本発明の効果について説明する。これらの図表は、図1に示すような電解再生処理装置を使用して、金属イオンとして過マンガン酸塩水溶液を含むエッチング液を電解処理した場合の実験結果を示すものである。

Figure 0004326341
表1は、ノズル20a,20bの有無、攪拌量(装置を通過するエッチング液の流速)を変化させた場合の、電解時間(初期状態、2時間、4時間、6時間経過後)ごとの過マンガン酸の含有率の変化(上昇率)をならびにスラッジ量の変化を示したものである。いずれの条件でも、縦方向の仕切り板14a,14bは存在するが、条件1では、ノズル20a,20b無しで、通過流速を67リットル/分とした場合、条件2では同様にノズル20a,20b無しであるが、通過流速を150リットル/分と上げた場合、条件3ではノズル20a,20b有りで、通過流速を67リットル/分とした場合、条件4では同様にノズル20a,20b有りであるが、通過流速を150リットル/分と上げた場合である。図6は表1の結果を示したグラフである。
この実験結果からわかるように、再生電極の通過流速と停滞部分の攪拌により再生率、即ち過マンガン酸増加率が上昇するが、この場合において、再生電極の通過流速による攪拌のみでは、スラッジを十分に除去することができない。一方で、ノズル20a,20bにより攪拌することで、スラッジの量を著しく減少させることができる。
Figure 0004326341
表2は極比(陰極16bと陽極16aの電極面積比率)及び陽極電流密度を変化させた場合の実験結果による再生効率を示し、図7はその結果を示すもので、電流密度に対する過マンガン酸再生率を示す。再生率のピークの値は、極比1:20の場合と1:10の場合とでは実質的な差はないが、実用的には使用電流の密度範囲を出来る限り広くとれるようにするために、極比を1:20とするのが好ましい。
産業上の利用可能性
以上に説明したように、本発明に係る電解再生処理装置によれば、金属イオンを含有するエッチング処理液を電解再生する際に、不溶性のスラッジの発生を可及的に少なくできるため、スラッジの除去手段を簡便なものとすることができ、スラッジの除去作業を簡単化できると共に、装置の小型化を図ることができる。
【図面の簡単な説明】
図1は本発明に係る電解再生処理装置の一例を説明する説明図である。
図2は図1に示す電解再生処理装置の平面図である。
図3は図1に示す電解再生処理装置で用いる電極の斜視図である。
図4は図1に示す電解再生処理装置で用いる攪拌手段として、再生槽内のエッチング処理液を噴出するノズル穴を説明する断面図である。
図5は従来の電解処理装置を説明するための説明図である。
図6は電解時間に対する過マンガン酸の増加率を示すグラフである。
図7は電流密度に対する過マンガン酸の再生率を示すグラフである。TECHNICAL FIELD The present invention relates to an electrolytic regeneration processing apparatus, and more particularly to an electrolytic regeneration processing apparatus that regenerates an etching treatment liquid containing metal ions in a regeneration tank provided with electrodes.
Background Art A so-called build-up substrate may be used for a multilayer circuit substrate used for a semiconductor device or the like.
In the manufacture of such a build-up substrate, for example, after forming a via hole in which a conductor pattern or the like formed on the core substrate is exposed on the bottom surface in a resin layer having a predetermined thickness formed on each of both surfaces of the core substrate, A plated metal layer is formed on the entire surface of the resin layer including the inner wall surface of the via hole, and then the plated metal layer is patterned to form a conductor pattern and a via. Furthermore, the same operation is repeated to obtain a multilayer circuit board in which a plurality of conductor patterns are laminated on both sides of the core substrate.
In the manufacturing process of this build-up substrate, when forming the plated metal layer on the surface of the resin layer, fine irregularities are formed on the surface of the resin layer in order to improve the adhesion between the resin layer and the plated metal layer. A roughening treatment is performed.
In the roughening treatment, an etching solution containing metal ions such as an aqueous permanganate solution or a hexavalent chromium-containing solution is used as an etching solution for etching the resin layer.
Etching solution containing such metal ions reduces the etching performance by applying a roughening treatment or the like to the surface of the resin layer, but by applying electrolytic treatment to the etching processing solution having reduced etching performance, The etching performance can be regenerated.
As such an electrolytic treatment apparatus, an apparatus shown in FIG. 5 is proposed in Japanese Patent Application Laid-Open No. 10-245443.
The electrolytic treatment apparatus 100 shown in FIG. 5 is provided with an etching treatment tank 104 in which a resin substrate 102 to be roughened is immersed in an etching solution and a regeneration tank 108 integrated with a pipe 106. The regeneration tank 108 is provided with a plurality of electrodes 110, 110,... Electrically connected to a rectifier.
A circulation pipe 112 connecting the two tanks is provided between the regeneration tank 108 and the etching treatment tank 104, and the circulation tank 114 provided in the middle of the circulation pipe 112 is connected from the etching treatment tank 104 to the regeneration tank 108. The etching solution flowing into the electrode is regenerated by the electrolytic treatment of the electrodes 110, 110.
By the way, in the electrolytic treatment in the regeneration tank 108, a side reaction for generating insoluble sludge is caused along with a regeneration reaction for regenerating the etching solution. For example, when a permanganate aqueous solution is used as the etching solution, the surface of the resin substrate 102 is roughened when Mn 7+ is reduced to Mn 6+ in the etching treatment tank 104. The etching treatment liquid containing Mn 6+ generated in the etching treatment tank 104 enters the regeneration tank 108, and Mn 6+ is oxidized to Mn 7+ by the electrolytic treatment of the electrodes 110, 110 ,. Return. In the electrolytic treatment using the electrodes 110, 110,..., Mn 6+ is oxidized to Mn 7+ and regenerated. However, due to the regeneration efficiency, some Mn 6+ is not regenerated and manganese dioxide (MnO 2 ) is generated.
The manganese dioxide (MnO 2 ) produced in this way is gradually accumulated as an insoluble sludge (hereinafter sometimes simply referred to as “sludge”) circulating through the etching treatment tank 104 and the regeneration tank 108. This is likely to cause clogging and adversely affects the surface roughening of the resin substrate 102.
For this reason, the electrolytic treatment apparatus 100 shown in FIG. 5 is provided with a sludge removal tank 200 that precipitates and removes sludge in the etching treatment solution. Since the sludge removal tank 200 and the regeneration tank 108 are connected by circulation pipes 204 and 206 in which a circulation pump 202 is disposed, the sludge in the regeneration tank 108 is sent to the sludge removal tank 200 together with the etching treatment liquid. The treated liquid from which the sludge has been removed can be returned to the regeneration tank 108.
In the electrolytic treatment apparatus 100 shown in FIG. 5, since the sludge in the etching treatment liquid can be removed by installing the sludge removal tank 200, it is possible to prevent the accumulation of sludge in the etching treatment tank 104 and the regeneration tank 108.
However, it is necessary to periodically remove the sludge accumulated in the sludge removal tank 200, but the removal operation is complicated, and the sludge lump accumulated in the sediment is hard, and the sludge removal operation is Have difficulty.
In addition, the addition of the sludge removal tank 200 increases the size of the electrolytic treatment apparatus 100.
For this reason, the proposal of the reproduction | regeneration tank 108 which can reduce generation | occurrence | production of sludge as much as possible to the extent which can make the sludge removal tank 200 unnecessary is requested | required.
DISCLOSURE OF THE INVENTION Accordingly, an object of the present invention is to reduce sludge removal by reducing insoluble sludge generated as much as possible when regenerating an etching solution containing metal ions in a regeneration tank provided with electrodes. An object of the present invention is to provide an electrolytic regeneration processing apparatus that does not require any special sludge removing means such as a tank.
As a result of repeated studies to solve the above-mentioned problems, the inventors of the present invention alternately flow the etching solution flowing into the regeneration tank upward or downward and contact the etching solution flowing upward. The present inventors have found that the amount of sludge generated in the regeneration tank can be reduced as much as possible by arranging the slag and stirring the portion where the etching solution is contained.
That is, according to the present invention, in the electrolytic regeneration processing apparatus that regenerates the etching treatment liquid containing metal ions, the etching treatment liquid supplied from the supply side alternately changes the flow direction upward or downward. A regeneration tank whose interior is divided into a plurality of compartments so as to sequentially flow in the outlet side direction, an electrode provided in the compartment in which the etching solution flows upward among the plurality of compartments; There is provided an electrolytic regeneration processing apparatus characterized by comprising an agitating means for agitating the etching solution provided in a portion where the etching solution is contained in the compartment.
In the present invention, an electrode having an anode area larger than the cathode area is preferably used as the electrode, and in particular, from an anode composed of a cylindrical mesh and a cathode composed of a rod inserted into the mesh. It is preferable to use the electrode that is configured such that the mesh body and the rod body are erected along the flow direction of the processing liquid.
In addition, by providing a stirring means in the vicinity of the part where the flow direction of the etching treatment liquid is changed from downward to upward, insoluble sludge is prevented from accumulating in the portion where the flow direction of the etching treatment liquid is changed. it can. As this agitation means, an agitation means having a nozzle for ejecting the etching treatment liquid in the regeneration tank is suitable.
It is preferable to provide a circulation path for taking out the etching treatment liquid from the regeneration tank, returning the etching treatment liquid to the regeneration tank again, and providing the nozzle in the circulation path.
According to the electrolytic regeneration processing apparatus according to the present invention, the amount of insoluble sludge generated in the regeneration tank can be greatly reduced as compared with the conventional apparatus.
Moreover, an electrode for generating insoluble sludge such as manganese dioxide (MnO 2 ) is disposed so as to come into contact with the etching solution flowing upward, and a stirring means is provided in the portion where the etching solution is contained. Since the insoluble sludge provided and generated by the electrode does not substantially accumulate in the regeneration tank, it can be easily removed by simple sludge removing means such as a filter provided in the middle of the circulation pipe.
As a result, the electrolytic regeneration treatment apparatus according to the present invention does not require any special sludge removal means such as a sludge removal tank, so that the electrolytic regeneration treatment apparatus can be downsized.
BEST MODE FOR CARRYING OUT THE INVENTION An example of an electrolytic regeneration processing apparatus according to the present invention is shown in FIG. The regeneration tank 12 constituting the electrolytic regeneration treatment apparatus 10 shown in FIG. 1 is a metal ion obtained by subjecting the surface of a resin substrate to a surface roughening treatment using an etching solution containing a metal ion such as a permanganate aqueous solution. Is divided into a plurality of sections 12a to 12h in the direction from the supply side to which the etching treatment liquid containing is supplied.
Each of the compartments 12a to 12h is partitioned by two types of partition plates 14a and 14b. The partition plate 14a has an upper end protruding above the water surface of the etching solution, but the lower end and the regeneration tank 12 A passage through which the etching solution passes is formed between the bottom surface. On the other hand, the partition plate 14b is provided so that the lower end of the partition plate 14b is in close contact with the bottom surface of the regeneration tank 12, but the etching processing liquid flows out to the next section beyond the upper end.
In the regeneration tank 12 shown in FIG. 1, the etching processing liquid that has flowed into the compartment 12 a formed by the inner wall surface of the regeneration tank 12 and the partition plate 14 a is formed between the lower end of the partition plate 14 a and the bottom surface of the regeneration tank 12. In order to flow into the section 12b from the formed gap, the flow direction of the etching processing liquid is downward in the section 12a.
Further, since the partition 12b is formed by the partition plate 14a and the partition plate 14b, the etching processing liquid that has flowed into the partition 12b from the gap on the lower end side of the partition plate 14a exceeds the upper end of the partition plate 14b, and the partition plate Since it flows into the section 12c formed by 14b and the partition plate 14a, the flow direction of the etching processing liquid in the section 12b is upward.
In this manner, in the sections 12a to 12h, the etching processing liquid that has flowed into the section 12a is changed in the flow direction alternately upward or downward in the outlet direction (direction of the section 12h), that is, 12a → 12b. Each of the sections 12a to 12h is partitioned by two types of partition plates 14a and 14b so as to sequentially flow in the order of → 12c → 12d → 12e → 12f → 12g → 12h.
In the regeneration tank 12 shown in FIG. 1, an electrode 16 is provided in each of the compartments 12b, 12d, and 12f in which the flow direction of the etching treatment liquid is upward. As shown in FIG. 3, the electrode 16 is an electrode composed of an anode composed of a cylindrical mesh body 16a and a cathode composed of a rod body 16b inserted into the mesh body 16a. The rod body 16b is obtained by coating a part of the conductor surface with, for example, a polytetrafluoroethylene tube. The cylindrical net 16 is made of a metal lath or mesh. For this reason, the electrode 16 is formed such that the anode made of the net 16a has a larger area than the cathode made of the rod 16b. In the electrode 16 shown in FIG. 3, a net body 16a and a rod body 16b are erected in each of the sections 12b, 12d, and 12f along the flow direction of the upward etching treatment liquid. The area ratio and current value between the anode and the cathode differ depending on how the processing amount of the etching solution is set. To treat manganese dioxide (MnO 2 ), the anode-cathode area ratio is set to 20: 1 as described later. It is appropriate to set the degree.
Further, as shown in FIG. 2, the electrodes 16 provided in the sections 12b, 12d, and 12f may include a plurality of electrodes 16, 16, and 16, respectively.
In the regeneration tank 12 shown in FIG. 1, the etching solution flowing into the compartment 12a sequentially flows through each compartment in the outlet direction (direction of the compartment 12h) while alternately changing the flow direction upward or downward.
When the flow direction of the etching processing solution is changed from upward to downward or from downward to upward, a stagnation portion where the flow rate of the etching processing solution becomes extremely slow occurs. In such a stagnation portion, sludge contained in the etching solution is likely to precipitate.
In this regard, in the regeneration tank 12 shown in FIG. 1, a stirring means for stirring the etching processing solution is provided in the vicinity where the flow direction of the etching processing solution is changed from upward to downward or from downward to upward. . In this agitation means, the pipe 20 is disposed along the bottom surface of the regeneration tank 12, and the pipe 20 is located near the portion where the flow direction of the etching solution is changed, as shown in FIG. From the nozzle holes 20a and 20a formed on the bottom surface side of the regeneration tank 12, the regenerated etching solution that has flowed into the section 12h is pressurized by the pump 18 and ejected to stir the etching solution being regenerated.
From this nozzle hole 20 a, 20 a, the regenerated etching solution is ejected toward the bottom surface side of the regeneration tank 12, and it is possible to prevent sludge from being accumulated on the bottom surface of the regeneration tank 12.
As shown in FIG. 2, the pipe 20 in which the nozzle holes 20a and 20a are formed is substantially parallel along the partition plates 14a and 14b between each section and the section into which the etching solution flows next, and It is disposed near the bottom surface of the regeneration tank 12. The pipe 20 is arranged in this way because the flow direction of the etching processing solution is changed from downward to upward near the partition plates 14a and 14b and near the bottom surface of the regeneration tank 12, and sludge is present in the vicinity thereof. It is because it is easy to cause accumulation of precipitation.
In addition, since the jetting liquid ejected from the nozzle holes 20a, 20a of the pipe 20 stirs the etching processing liquid being regenerated and prevents sludge from being accumulated on the bottom surface of the regenerating tank 12, FIG. As indicated by the dotted line, the etching treatment liquid stored in the sections other than the section 12 h of the regeneration tank 12 may be ejected from the nozzle holes 20 a and 20 a of the pipe 20.
Such an electrolytic regeneration processing apparatus 10 shown in FIG. 1 is attached to a processing apparatus 30 that performs etching such as roughening on the surface of a resin substrate. The processing apparatus 30 is provided with a processing tank 32 in which an etching solution containing metal ions such as a permanganate aqueous solution for performing etching such as roughening treatment on the surface of the resin substrate is provided. On the outer periphery of 32, an overflow tank 34 is provided for receiving an etching solution that overflows and flows out of the processing tank 32. The regenerated etching solution regenerated from the section 12 h of the electrolytic regeneration processing apparatus 10 is returned to the overflow tank 34 via the pipe 36.
The etching solution and the regenerated etching solution that have flowed into the overflow tank 34 are returned to the processing tank 32 via the pipe 38, the pump 40, and the filter 42. This filter 42 is for separating the resin powder in the etching solution and the regenerated etching solution flowing into the overflow tank 34.
Further, the processing tank 32 is provided with a pipe 44 for supplying a part of the stored etching solution as an etching processing liquid to the regeneration tank 12 of the electrolytic regeneration processing apparatus 10. A pump 46 and a filter 48 are provided. The filter 48 is for separating the resin powder in the etching treatment liquid sent to the regeneration tank 12. The sludge removed by the filter 48 is resin powder generated mainly by etching such as roughening treatment on the surface of the resin substrate in the treatment tank 32.
According to the processing apparatus 30 and the electrolytic regeneration processing apparatus 10 shown in FIG. 1, sludge is hardly generated when the etching processing solution is regenerated by electrolysis in the regeneration tank 12, and the conventional etching processing tank shown in FIG. Compared to the amount of sludge generated at 104, the amount can be reduced to about 1/10. For this reason, in the processing apparatus 30 and the electrolytic regeneration processing apparatus 10 shown in FIG. 1, the etching solution and the regenerated etching solution that have flowed into the overflow tank 34 are processed as means for removing the regenerated regenerating solution and sludge in the etching solution. It is sufficient to provide the filter 42 in the middle of the pipe 38 returning to the tank 32, and it is not necessary to provide a special apparatus such as the sludge removal tank 200 shown in FIG.
Therefore, in the processing apparatus 30 and the electrolytic regeneration processing apparatus 10 shown in FIG. 1, it is sufficient to replace the filter 42 as the sludge removal work. Therefore, the work of removing the sludge lump accumulated in the sludge removal tank 200 can be omitted. Further, the apparatus can be miniaturized.
Next, effects of the present invention will be described with reference to Tables 1 and 2 and FIGS. 6 and 7. These charts show experimental results in the case where an electrolytic solution containing a permanganate aqueous solution as metal ions is electrolytically processed using the electrolytic regeneration processing apparatus as shown in FIG.
Figure 0004326341
Table 1 shows the excess for each electrolysis time (initial state, 2 hours, 4 hours, after 6 hours) when the presence or absence of the nozzles 20a and 20b and the amount of stirring (flow rate of the etching solution passing through the apparatus) are changed. The change (increase rate) in the content of manganic acid and the change in the amount of sludge are shown. In any condition, the vertical partition plates 14a and 14b exist. However, in condition 1, when nozzles 20a and 20b are not provided and the passage flow velocity is 67 liters / minute, in condition 2, nozzles 20a and 20b are not provided. However, when the passage flow rate is increased to 150 liters / minute, the nozzles 20a and 20b are provided under the condition 3, and when the passage flow rate is 67 liters / minute, the nozzles 20a and 20b are provided similarly under the condition 4. In this case, the passage flow rate is increased to 150 liters / minute. FIG. 6 is a graph showing the results of Table 1.
As can be seen from the experimental results, the regeneration rate, that is, the permanganic acid increase rate, increases due to the flow rate of the regenerative electrode passing through and the stagnant portion. Can not be removed. On the other hand, the amount of sludge can be remarkably reduced by stirring with the nozzles 20a and 20b.
Figure 0004326341
Table 2 shows the regeneration efficiency according to the experimental result when the pole ratio (electrode area ratio of the cathode 16b and the anode 16a) and the anode current density are changed, and FIG. 7 shows the result, and permanganic acid with respect to the current density. Indicates the playback rate. The peak value of the regeneration rate is not substantially different between the case where the pole ratio is 1:20 and the case where it is 1:10. However, in order to practically make the working current density range as wide as possible. The pole ratio is preferably 1:20.
Industrial Applicability As described above, according to the electrolytic regeneration processing apparatus of the present invention, insoluble sludge is generated as much as possible when electrolytically regenerating an etching treatment solution containing metal ions. Therefore, the sludge removal means can be simplified, the sludge removal operation can be simplified, and the apparatus can be downsized.
[Brief description of the drawings]
FIG. 1 is an explanatory view illustrating an example of an electrolytic regeneration processing apparatus according to the present invention.
FIG. 2 is a plan view of the electrolytic regeneration processing apparatus shown in FIG.
FIG. 3 is a perspective view of an electrode used in the electrolytic regeneration processing apparatus shown in FIG.
FIG. 4 is a cross-sectional view for explaining a nozzle hole for ejecting the etching treatment liquid in the regeneration tank as a stirring means used in the electrolytic regeneration treatment apparatus shown in FIG.
FIG. 5 is an explanatory diagram for explaining a conventional electrolytic treatment apparatus.
FIG. 6 is a graph showing the increase rate of permanganic acid with respect to electrolysis time.
FIG. 7 is a graph showing the regeneration rate of permanganic acid with respect to the current density.

Claims (6)

金属イオンを含有するエッチング処理液を再生する電解再生処理装置において、
供給側から供給された前記エッチング処理液が流動方向を交互に上向又は下向に変更しながら出口側方向に順次流れるように、内部が複数個の区画に区分された再生槽と、
前記複数個の区画のうち、前記エッチング処理液が上向きに流れる区画内に設けられた電極と、
前記区画内のエッチング液が淀む部分に設けられた、前記エッチング液を攪拌する攪拌手段と、
を具備してなることを特徴とする電解再生処理装置。
In an electrolytic regeneration processing apparatus that regenerates an etching treatment liquid containing metal ions,
A regeneration tank whose interior is divided into a plurality of compartments so that the etching treatment liquid supplied from the supply side flows sequentially in the outlet side direction while alternately changing the flow direction upward or downward;
Among the plurality of compartments, an electrode provided in a compartment in which the etching solution flows upward;
An agitation means for agitating the etchant, provided in a portion where the etchant in the compartment crawls;
An electrolytic regeneration treatment apparatus comprising:
前記電極は陽極と陰極とからなり、陽極の面積が陰極の面積より大であることを特徴とする請求項1に記載の電解再生処理装置。  The electrolytic regeneration processing apparatus according to claim 1, wherein the electrode includes an anode and a cathode, and an area of the anode is larger than an area of the cathode. 前記電極は、筒状の網体から成る陽極と、該網体内に挿入された棒状の陰極とで構成され、前記網体及び前記棒体が処理液の流動方向に沿って立設されていることを特徴とする請求項1又は2に記載の電解再生処理装置。  The electrode includes an anode formed of a cylindrical mesh body and a rod-shaped cathode inserted into the mesh body, and the mesh body and the rod body are erected along the flow direction of the processing liquid. The electrolytic regeneration processing apparatus according to claim 1 or 2, characterized by the above. 前記攪拌手段は、エッチング処理液の流動方向が下向から上向に変更される部位の近傍に設けられていることを特徴とする請求項1〜3のいずれか1項に記載の電解再生処理装置。  The electrolytic regeneration process according to any one of claims 1 to 3, wherein the stirring means is provided in the vicinity of a portion where the flow direction of the etching treatment liquid is changed from downward to upward. apparatus. 前記攪拌手段は、前記再生槽内のエッチング処理液を噴出するノズルを具備することを特徴とする請求項1〜4のいずれか1項に記載の電解再生処理装置。  5. The electrolytic regeneration processing apparatus according to claim 1, wherein the agitation unit includes a nozzle that ejects an etching treatment liquid in the regeneration tank. 前記再生槽からエッチング処理液を取り出し、エッチング処理液を再度該再生槽へ戻す循環経路が設けられ、該循環経路のエッチング処理液の再生槽への流入部に前記ノズルが設けられていることを特徴とする請求項5に記載の電解再生処理装置。A circulation path for removing the etching treatment liquid from the regeneration tank and returning the etching treatment liquid to the regeneration tank is provided, and the nozzle is provided at the inflow portion of the etching treatment liquid in the circulation path to the regeneration tank. 6. The electrolytic regeneration treatment apparatus according to claim 5, wherein
JP2003566278A 2002-02-06 2003-02-05 Electrolytic regeneration treatment equipment Expired - Lifetime JP4326341B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002029713 2002-02-06
JP2002029713 2002-02-06
PCT/JP2003/001187 WO2003066939A1 (en) 2002-02-06 2003-02-05 Electrolytic recycling device

Publications (2)

Publication Number Publication Date
JPWO2003066939A1 JPWO2003066939A1 (en) 2005-06-02
JP4326341B2 true JP4326341B2 (en) 2009-09-02

Family

ID=27677892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003566278A Expired - Lifetime JP4326341B2 (en) 2002-02-06 2003-02-05 Electrolytic regeneration treatment equipment

Country Status (5)

Country Link
JP (1) JP4326341B2 (en)
KR (1) KR100972998B1 (en)
CN (1) CN100406619C (en)
TW (1) TWI287589B (en)
WO (1) WO2003066939A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101472425B1 (en) * 2011-05-24 2014-12-12 우에무라 고교 가부시키가이샤 Electrolytic recycling unit and electrolytic recycling device with the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251254B (en) * 2011-06-24 2014-01-08 深圳市惠尔能科技有限公司 Circular treatment equipment for recovery of copper from microetching liquid and special eddy flow electrolysis unit thereof
CN102995094A (en) * 2011-09-19 2013-03-27 代芳 Method for stabilizing metal ion concentration in electroplating bath
CN106835257B (en) * 2017-01-19 2018-09-25 南京麦文环保设备工程有限责任公司 The full-automatic compounding system of copper-bath for copper-plating technique
CN106757294B (en) * 2017-01-19 2018-09-25 南京麦文环保设备工程有限责任公司 A method of for supplementing copper sulphate in copper plating groove
CN109628948A (en) * 2019-01-04 2019-04-16 苏州创峰光电科技有限公司 Regenerating unit
CN110438506A (en) * 2019-07-08 2019-11-12 深圳市裕展精密科技有限公司 The regenerative preparation of decoating liquid
CN112323131A (en) * 2020-11-03 2021-02-05 重庆圣盈达科技开发有限公司 Method for removing bubbles on surface of electroplated workpiece
CN112281163A (en) * 2020-11-23 2021-01-29 江苏上达电子有限公司 PI etching solution electrolytic regeneration system
EP4105362A1 (en) 2021-06-16 2022-12-21 Atotech Deutschland GmbH & Co. KG Method for oxidizing manganese species in a treatment device and treatment device
EP4105361A1 (en) 2021-06-16 2022-12-21 Atotech Deutschland GmbH & Co. KG Method for oxidizing manganese species in a treatment device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3716013C2 (en) * 1987-05-11 1993-11-18 Schering Ag Process for the regeneration of permanganate etching solutions
JP2827210B2 (en) * 1988-01-19 1998-11-25 凸版印刷株式会社 Regeneration method of ferric chloride etching waste liquid
SG46415A1 (en) * 1991-10-28 1998-02-20 Nittetsu Mining Co Ltd Method for treating etchant
JP3783972B2 (en) * 1996-02-22 2006-06-07 ペルメレック電極株式会社 Cyanide water treatment method
JP3301341B2 (en) * 1997-03-06 2002-07-15 日本ビクター株式会社 Surface roughening equipment
DE10025551C2 (en) * 2000-05-19 2002-04-18 Atotech Deutschland Gmbh Cathode for the electrochemical regeneration of permanganate etching solutions, process for their preparation and electrochemical regeneration device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101472425B1 (en) * 2011-05-24 2014-12-12 우에무라 고교 가부시키가이샤 Electrolytic recycling unit and electrolytic recycling device with the same

Also Published As

Publication number Publication date
CN100406619C (en) 2008-07-30
WO2003066939A1 (en) 2003-08-14
TWI287589B (en) 2007-10-01
JPWO2003066939A1 (en) 2005-06-02
CN1498291A (en) 2004-05-19
KR100972998B1 (en) 2010-07-30
KR20040082946A (en) 2004-09-30
TW200302881A (en) 2003-08-16

Similar Documents

Publication Publication Date Title
JP4326341B2 (en) Electrolytic regeneration treatment equipment
JP6033234B2 (en) Plating solution regeneration method, plating method, and plating apparatus
WO2005123605A1 (en) Equipment and method for electrolytic deposition treatment
JP4484414B2 (en) Method and apparatus for adjusting metal ion concentration in an electrolyte fluid, method of using the method and method of using the apparatus
JP2003516471A (en) Method and apparatus for electrolytically treating electrically insulated conductive structures on the surface of an electrically insulating foil material and use of said method
JP4425271B2 (en) Method for regenerating an iron-containing etchant used in etching or pickling copper or copper alloys and apparatus for carrying out the method
JP3301341B2 (en) Surface roughening equipment
JP5393214B2 (en) Pickling method for copper-based materials
JP2005076100A (en) Plating apparatus and method
US20240060202A1 (en) Optimized method and device for insoluble anode acid sulfate copper electroplating process
CN113637976B (en) Sulphuric acid wash tank liquid medicine regeneration system
JP2004059948A (en) Method and apparatus for recovering metal from metal dissolution liquid
JP2004238704A (en) Electrolytic device, and electrolytic treatment method
JP2912511B2 (en) Electrolysis tank for closed processing of waste etching liquid
CN115537816B (en) Rotational flow electrolysis system and method for regenerating acidic copper chloride etchant and recycling copper
JP2003298210A (en) Manufacturing method of resin wiring board and electrolytic regeneration tank
JP3179721B2 (en) Wastewater treatment method and apparatus by discharge electrolysis heating
JPH0697631A (en) Electroless plating method and equipment
CN215328423U (en) Circuit board electroplating device and system thereof
JP2001107271A (en) Copper chloride etching solution electrolytic regeneration system
EP0172847A1 (en) Metal recovery process.
JP2000160400A (en) Electroplating using insoluble anode and device therefor
JP4806498B2 (en) Printed wiring board manufacturing apparatus and manufacturing method
JP2003342775A (en) Method of producing silver powder, silver powder and electronic parts
JPH06306667A (en) Electrolytic regeneration device for alkali permanganate solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4326341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

EXPY Cancellation because of completion of term