JP4324948B2 - Manufacturing method of high-frequency piezoelectric vibration device - Google Patents

Manufacturing method of high-frequency piezoelectric vibration device Download PDF

Info

Publication number
JP4324948B2
JP4324948B2 JP20313699A JP20313699A JP4324948B2 JP 4324948 B2 JP4324948 B2 JP 4324948B2 JP 20313699 A JP20313699 A JP 20313699A JP 20313699 A JP20313699 A JP 20313699A JP 4324948 B2 JP4324948 B2 JP 4324948B2
Authority
JP
Japan
Prior art keywords
manufacturing
recess
piezoelectric vibration
forming
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20313699A
Other languages
Japanese (ja)
Other versions
JP2001036369A (en
Inventor
俊介 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP20313699A priority Critical patent/JP4324948B2/en
Publication of JP2001036369A publication Critical patent/JP2001036369A/en
Application granted granted Critical
Publication of JP4324948B2 publication Critical patent/JP4324948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は通信機器の受信部、あるいはマイクロコンピュータのクロック源として用いられる水晶振動子、水晶フィルタ等の圧電振動デバイスに関し、特に薄型で、高周波化に対応した圧電振動デバイスに関するものである。
【0002】
【従来の技術】
通信機器の高周波数化、あるいはマイクロコンピュータの動作周波数の高周波数化に伴い、水晶振動子、水晶フィルタ等の圧電振動デバイスも高周波数化対応が求められている。一般に、高周波数化に対応した水晶板として、ATカット水晶板の厚みすべり振動がよく用いられており、周知のとおりその周波数は厚さで決定され、周波数と厚さは反比例する。例えば、基本振動周波数で100MHzの周波数を得る場合、約16μmの極薄圧電振動板が必要となる。このような極薄板の加工は、研磨作業が難しく製造歩留まりを向上させることが困難となっていた。
【0003】
このような問題を解決するために、図6(f)に示すように、水晶板の中央部分に凹部を設け、この凹部の底部に薄肉加工した振動領域91を設定し、その周囲の厚肉部分で振動領域を補強する補強部92を有する構成が発明されている。図6(f)は従来例を示す内部断面図であり、薄肉化された凹部の振動領域91とその周囲に形成された厚肉の補強部92を有する水晶板9において、振動領域91に複数の励振電極9aを形成し、図示していないが電極を凹部から厚肉部端部まで引き出した構成を示している。このような構成を採用することにより、全体的な機械的強度を維持して振動領域を従来よりもかなり薄くすることができ、上述した従来の単一厚の圧電振動板に比べて、16μmあるいはそれ以下の厚さの振動領域の形成も良好な歩留まりで形成できていた。
【0004】
このような構成の圧電振動子を得るには、例えば図6各図に示すようなフォトリソグラフィー技術を用いた製造工程による。図6(a)に示すように、水晶板9の表裏面(両主面)に保護膜として、Cr膜93とAu膜94を順に真空蒸着法等により形成する。図6(b)に示すように、凹部を形成する表面(一方の主面)にレジスト液を塗布した後、パターニング露光し、所定パターンのレジスト膜95を得る。このレジスト膜95をマスクとして、保護膜であるAu膜、Cr膜の一部をエッチングし、凹部に対応したパターンを有する保護膜を得る。その後、レジスト膜を除去し、図6(d)に示すように、前記保護膜をマスクとして、水晶板の一部をエッチングし凹部を形成する。その後、前記保護膜を剥離除去した後、図6(f)に示すように励振電極を形成する。
【0005】
【発明が解決しようとする課題】
上述の製造方法によれば、水晶板の凹部を形成しない側の主面においても保護膜を形成する必要があり、この保護膜は実際の製造工程上、凹部形成に用いた保護膜とともに最終的に除去されてしまう。保護膜の厚さは要求される周波数すなわち水晶板のエッチング時間によって決定される。例えばAu膜は数百〜数千オングストローム程度必要となるが、これらが最終的に除去されてしまうことになり、製造コストの引き上げ要因となっていた。
【0006】
またエッチング時等において、エッチングをバラツキなく効率的に行うためには、水晶板を所定の間隔を持って治具に設置し、エッチング液に浸漬する必要があるが、単位面積あたりの設置数が限定されてしまい、量産効率を低下させるという問題点もあった。
【0007】
本発明は上記問題点を解決するためになされたもので、製造コストを抑制するとともに、製造効率を上げることのできる高周波圧電振動デバイスの製造方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明は請求項1に示すように、厚さにより周波数が決定されるATカット水晶板の一方の主面の中央部分に凹部を形成することにより、中央部分に薄肉の圧電振動領域を形成するとともに、この圧電振動領域の周囲に設けられた厚肉の補強部を形成してなる高周波圧電振動デバイスの製造方法であって、2枚のATカット水晶板の、それぞれ凹部を形成しない主面どうしを貼り合わせ、当該貼り合わせ面に金属保護膜を形成し、かつ凹部を形成する主面に対し所定の凹部が形成されるようマスキングを行った状態で、エッチング液に浸漬し凹部を形成した後、当該2枚のATカット水晶板を分離することを特徴とするものである。
【0009】
上記構成により貼り合わせ面においてエッチング液による耐腐食性を向上させることができる。
【0010】
また、貼り合わせ面の端面周囲に、貼り合わせに用いる接着剤を回り込ませ、エッチング液の貼り合わせ部分への浸透を防ぐ構成を採用してもよい。
【0011】
本発明によれば、2枚の圧電振動板を貼り合わせることにより、凹部形成に必要な主面のみをエッチング処理することができる。従って、従来のように、凹部形成に関与しない他の主面にもAu膜等の保護膜を形成する必要がなくなる。
【0012】
またレジスト膜および保護膜形成、あるいはエッチング処理時において2枚1組に一体化された圧電振動板を用いるので、製造上取り扱いが容易となり、また製造効率を向上させることができる。
【0013】
【実施の形態】
本発明の第1の実施の形態についてATカット水晶板を用いたMCF(モノリシッククリスタルフィルタ)を例にとり、図面を参照して説明する。
【0014】
図1は本発明による製造方法を示す図であり、図2は大型のウェハに対し、多数個の水晶板を得るよう加工した状態を示す斜視図である。
図1は2枚の水晶板を用い、両者に凹部を形成した後、電極形成を行うまでの製造工程を示している。図1(a)は、水晶板1と水晶板2の凹部を形成しない主面どうしを接着剤3で貼り合わせ、その後貼り合わせ面以外の主面上に金属膜(保護膜)10,20を形成した状態を示している。各水晶板1,2の厚さは約50μmであり、その両主面はポリッシュ加工により鏡面化されている。接着剤3はこの実施の形態においてはノボラック系の高分子樹脂を用いているが、他にアクリレート系、ヒドロキシスチレン系等の高分子樹脂であっても良いし、エポキシ系の接着剤,UV(紫外線)硬化型の接着剤であっても良い。金属膜10、20は真空蒸着法等の薄膜形成手段を用いて形成され、水晶板1,2に接してCr膜11,21が形成され、その上面にAu膜12,22が形成される。
【0015】
図1(b)は金属膜の表面に形成したレジスト膜の形成について示している。この例ではレジスト膜に東京応化工業社製OFPR−800のポジ型を用いている。金属膜10,20上にスピナー等によりフォトレジストを均一に塗布し、図示していないが所定のマスクパターンのフォトマスクを介して露光する。その後現像工程等を経て不要なレジスト41を除去し、所定のマスクパターンを有するレジスト膜4を得ている。
【0016】
その後当該レジスト膜4をマスクとして金属膜10,20の一部をエッチングし、水晶板に凹部1a,2aを形成するためのマスクパターンを有する金属膜10a,20aを得る。図1(c)はパターン形成された金属膜10a,20aをマスクとしてエッチングにより水晶板に凹部1a,2aを形成した状態を示している。凹部のエッチング深さはエッチング液の種類、周囲環境、エッチング時間等のパラメータにより制御されるが、本例においてはエッチング液にフッ酸とフッ化アンモニウムの混合液を用い、約4時間エッチングを行うことにより、約35μmのエッチング量を得ている。これにより凹部の薄肉の圧電振動領域は約15μmの厚さを得ている。
【0017】
図1(d)はエッチング終了後、金属膜10a,20aを金属剥離液に浸漬することにより除去するとともに、接着剤3を樹脂剥離液に浸漬することにより除去して、水晶板1,2を分離した状態を示している。これにより厚肉の補強部13,23と薄肉の圧電振動領域14,24を有する2つの水晶板を得ることができる。
【0018】
その後図1(e)に示すように、圧電振動領域14,24に励振電極並びに引出電極(図示せず)を形成する。本例においてはMCFを得るために、励振電極として各々分割電極15,16,25,26と共通電極17,27をマスキング手段を用いた真空蒸着法等により形成している。
【0019】
なお、上記製造例では2枚の水晶板を貼り付けた例を示したが、実際の製造にあたっては、効率面から大きなウェハを用いて一括処理することが多い。図2は大きな水晶ウェハW1,W2を2枚貼り合わせ、凹部10を有する水晶板1を多数個得る例を示しており、各水晶板の周囲には小割用の深溝W11、W21が縦横に形成されている。なお、この深溝を形成しなくてもダイシング等により小割切断することももちろん可能である。
【0020】
第2の実施の形態について、図3とともに説明する。なお上記実施の形態の説明と同じ構造部分については同番号を用いて説明するとともに、同じ構成、製法部分については一部説明を省略する。
【0021】
この例においては2枚の水晶板1,2を保持板5に対向して貼り付けている。保持板は例えばPt、Au等のエッチング液に対する耐腐食性を有する材料を用いる。また、コア部分が黒鉛でその表面に高純度SiCをメッキした構成としたり、あるいは水晶をコアとしCr−Auをメッキした構成とし、エッチング液に対する耐腐食性を持たせた構成としてもよい。そして、図3(a)に示すように、保持板5の表裏には断面でみて、位置決め凹部51,52が形成されている。この位置決め凹部部分に水晶板1,2を接着剤61,62により接着するとともに、それぞれCr膜11,21、Au膜12、22からなる金属膜10、20を形成する。この位置決め凹部は必須ではないが、製造上位置決め固定に有効に機能する。図3(b)に示すようにレジスト膜4を形成し、当該レジスト膜4をマスクとして金属膜10、20を所定のパターンにエッチングする。その後図3(c)に示すようにパターン形成された金属膜10a,20aをマスクとして、エッチングを行い、水晶板に凹部1a,2aを形成する。
【0022】
エッチング終了後図3(d)に示すように金属膜10a,20aを剥離除去し、また接着剤61,62を剥離除去することにより、保持板5から各水晶板1,2を分離する。その後分離した凹部を有する水晶板に励振電極を形成する。この実施の形態においては、水晶振動子を例示しているので、図3(e)に示すように、圧電振動領域の表裏に励振電極71,72並びに引出電極(図示せず)を形成する。
【0023】
なお、上記各実施の形態においては、外形サイズの等しい水晶板を貼り合わせる例を示したが、サイズの異なる水晶板あるいは水晶ウェハを貼り合わせてもよい。この場合、多品種生産に対応できるなど、フレキシブルな製造を行うことができる。ただし、外形サイズの大きい水晶板あるいは水晶ウェハの貼り合わせ面のうち、はみ出した領域にはエッチングに対する保護膜(樹脂または金属膜)等を形成しておく必要がある。
【0024】
さらに貼り合わせ部分へのエッチング液の浸透を防止するため、図4に示すように、各水晶板1,2の貼り合わせ面に保護膜として薄い金属膜18,28を形成したうえで、接着剤3により水晶板を貼り合わせても良い。なお金属膜材料のコストを低減するために、上記保護膜は水晶板の貼り合わせ面の外周近傍にのみ形成しても良い。
【0025】
また、図5に示すように、接着剤接合の外周近傍において、貼り合わせた水晶板1,2の側面を被覆(29で図示)するよう接着剤3を塗布することにより、エッチング時において水晶板貼り合わせ面の意図しない腐食を防ぐことができる。この側面の被覆は少なくとも周状の貼り合わせ部分を含むことが必要である。
【0026】
上記各実施例では圧電体として水晶板を例示したが、タンタル酸リチウム、ランガサイト等の他の圧電体でもよい。
【0027】
【発明の効果】
本発明によれば、2枚の圧電振動板を貼り合わせることにより、凹部形成に必要な主面のみをエッチング処理することができる。従って、従来のように、凹部形成に関与しない他の主面にも、エッチング液が直接接液するのに十分耐えうる程度の膜厚のAu膜等の保護膜を形成する必要がなくなる。従って、製造時の材料コストを低減できる。
【0028】
またレジスト膜および保護膜形成、あるいはエッチング処理時において2枚1組に一体化された圧電振動板を用いるので、製造上取り扱いが容易となり、また製造効率を向上させることができる。
【図面の簡単な説明】
【図1】 本発明による製造工程を示す図。
【図2】 本発明による製造方法を示す図。
【図3】 本発明による製造方法を示す図。
【図4】 本発明による製造方法を示す図。
【図5】 本発明による製造方法を示す図。
【図6】 従来例を示す図。
【符号の説明】
1、2、9 水晶板(圧電振動デバイス)
10,20 金属膜
1a,2a 凹部
14,24,91 圧電振動領域
13,23,92 補強部
15,16,17,25,26,27,71,72,9a 励振電極
4 レジスト膜
W1,W2 水晶ウェハ
[0001]
[Industrial application fields]
The present invention relates to a piezoelectric vibration device such as a crystal resonator and a crystal filter used as a receiving unit of a communication device or a clock source of a microcomputer, and particularly relates to a piezoelectric vibration device that is thin and compatible with high frequency.
[0002]
[Prior art]
With the increase in frequency of communication equipment or the increase in the operating frequency of microcomputers, piezoelectric vibration devices such as crystal resonators and crystal filters are also required to support higher frequencies. In general, the thickness shear vibration of an AT-cut quartz plate is often used as a quartz plate corresponding to a higher frequency, and as is well known, the frequency is determined by the thickness, and the frequency and the thickness are inversely proportional. For example, when a fundamental vibration frequency of 100 MHz is obtained, an ultrathin piezoelectric diaphragm having a thickness of about 16 μm is required. Such processing of an ultra-thin plate is difficult to polish and it has been difficult to improve the manufacturing yield.
[0003]
In order to solve such a problem, as shown in FIG. 6 (f), a concave portion is provided in the center portion of the quartz plate, and a thinned vibration region 91 is set at the bottom portion of the concave portion. A configuration having a reinforcing portion 92 that reinforces the vibration region at a portion has been invented. FIG. 6F is an internal cross-sectional view showing a conventional example. In the quartz plate 9 having the vibration region 91 of the thinned recess and the thick reinforcing portion 92 formed around the vibration region 91, a plurality of vibration regions 91 are provided in the vibration region 91. The excitation electrode 9a is formed, and although not shown, the electrode is drawn from the concave portion to the end of the thick portion. By adopting such a configuration, the overall mechanical strength can be maintained and the vibration region can be made much thinner than the conventional one. Compared to the conventional single-thick piezoelectric diaphragm described above, 16 μm or The vibration region having a thickness smaller than that could be formed with a good yield.
[0004]
In order to obtain a piezoelectric vibrator having such a configuration, for example, a manufacturing process using a photolithography technique as shown in FIGS. As shown in FIG. 6A, a Cr film 93 and an Au film 94 are sequentially formed on the front and back surfaces (both main surfaces) of the quartz plate 9 as a protective film by a vacuum deposition method or the like. As shown in FIG. 6B, after a resist solution is applied to the surface (one main surface) on which the recesses are formed, patterning exposure is performed to obtain a resist film 95 having a predetermined pattern. Using this resist film 95 as a mask, a part of the Au film and Cr film, which are protective films, are etched to obtain a protective film having a pattern corresponding to the recess. Thereafter, the resist film is removed, and as shown in FIG. 6D, a part of the crystal plate is etched using the protective film as a mask to form a recess. Then, after peeling off and removing the protective film, an excitation electrode is formed as shown in FIG.
[0005]
[Problems to be solved by the invention]
According to the manufacturing method described above, it is necessary to form a protective film on the main surface of the quartz plate on which the concave portion is not formed. This protective film is finally formed together with the protective film used for forming the concave portion in the actual manufacturing process. Will be removed. The thickness of the protective film is determined by the required frequency, that is, the etching time of the quartz plate. For example, the Au film requires several hundred to several thousand angstroms, but these are eventually removed, which increases the manufacturing cost.
[0006]
In order to perform etching efficiently without variation during etching, etc., it is necessary to place the crystal plate in a jig with a predetermined interval and immerse it in an etching solution. There was also a problem that it was limited and reduced the mass production efficiency.
[0007]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method of manufacturing a high-frequency piezoelectric vibrating device that can suppress manufacturing costs and increase manufacturing efficiency.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a central portion by forming a recess in the central portion of one main surface of an AT-cut quartz plate whose frequency is determined by the thickness, as shown in claim 1. A method of manufacturing a high-frequency piezoelectric vibration device in which a thin piezoelectric vibration region is formed and a thick reinforcing portion provided around the piezoelectric vibration region is formed. Etching solution in a state where main surfaces not forming recesses are bonded to each other , a metal protective film is formed on the bonding surfaces, and masking is performed so that predetermined recesses are formed on the main surfaces forming the recesses. The two AT-cut quartz plates are separated after being dipped in to form a recess.
[0009]
With the above structure, the corrosion resistance due to the etching solution can be improved on the bonding surface.
[0010]
Alternatively, a configuration may be employed in which an adhesive used for bonding is wrapped around the end surface of the bonding surface to prevent penetration of the etching solution into the bonding portion.
[0011]
According to the present invention , only the main surface necessary for forming the recess can be etched by bonding the two piezoelectric diaphragms together. Therefore, it is not necessary to form a protective film such as an Au film on the other main surface that is not involved in the formation of the recess as in the prior art.
[0012]
In addition, since the piezoelectric diaphragm integrated into one set at the time of forming the resist film and the protective film or etching is used, handling in manufacturing becomes easy, and manufacturing efficiency can be improved.
[0013]
Embodiment
The first embodiment of the present invention will be described with reference to the drawings, taking an MCF (monolithic crystal filter) using an AT-cut quartz plate as an example.
[0014]
FIG. 1 is a view showing a manufacturing method according to the present invention, and FIG. 2 is a perspective view showing a large wafer processed so as to obtain a large number of crystal plates.
FIG. 1 shows a manufacturing process from using two quartz plates to forming electrodes after forming recesses in both plates. In FIG. 1A, the main surfaces of the quartz plate 1 and the quartz plate 2 that do not form the recesses are bonded together with the adhesive 3, and then the metal films (protective films) 10 and 20 are formed on the main surfaces other than the bonded surfaces. The formed state is shown. The quartz plates 1 and 2 have a thickness of about 50 μm, and both main surfaces thereof are mirror-finished by polishing. In this embodiment, the novolac polymer resin is used as the adhesive 3. However, the adhesive 3 may be an acrylate-based or hydroxystyrene-based polymer resin, an epoxy-based adhesive, UV ( It may be an ultraviolet) curable adhesive. The metal films 10 and 20 are formed by using a thin film forming means such as a vacuum deposition method, Cr films 11 and 21 are formed in contact with the crystal plates 1 and 2, and Au films 12 and 22 are formed on the upper surfaces thereof.
[0015]
FIG. 1B shows the formation of a resist film formed on the surface of the metal film. In this example, a positive type of OFPR-800 manufactured by Tokyo Ohka Kogyo Co., Ltd. is used as the resist film. A photoresist is uniformly coated on the metal films 10 and 20 by a spinner or the like and exposed through a photomask having a predetermined mask pattern (not shown). Thereafter, an unnecessary resist 41 is removed through a development process or the like, and a resist film 4 having a predetermined mask pattern is obtained.
[0016]
Thereafter, part of the metal films 10 and 20 is etched using the resist film 4 as a mask to obtain metal films 10a and 20a having a mask pattern for forming the recesses 1a and 2a in the crystal plate. FIG. 1C shows a state in which the concave portions 1a and 2a are formed in the quartz plate by etching using the patterned metal films 10a and 20a as a mask. The etching depth of the recess is controlled by parameters such as the type of etching solution, the surrounding environment, and the etching time. In this example, etching is performed for about 4 hours using a mixed solution of hydrofluoric acid and ammonium fluoride as the etching solution. As a result, an etching amount of about 35 μm is obtained. As a result, the thin piezoelectric vibration region of the recess has a thickness of about 15 μm.
[0017]
In FIG. 1D, after the etching is completed, the metal films 10a and 20a are removed by immersing them in a metal stripping solution, and the adhesive 3 is removed by immersing them in a resin stripping solution. The separated state is shown. As a result, two quartz plates having thick reinforcing portions 13 and 23 and thin piezoelectric vibration regions 14 and 24 can be obtained.
[0018]
Thereafter, as shown in FIG. 1E, excitation electrodes and extraction electrodes (not shown) are formed in the piezoelectric vibration regions 14 and 24. In this example, in order to obtain MCF, the divided electrodes 15, 16, 25, 26 and the common electrodes 17, 27 are formed as excitation electrodes by a vacuum deposition method using a masking means.
[0019]
In the above manufacturing example, an example in which two quartz plates are attached is shown. However, in actual manufacturing, a large wafer is often used for batch processing from the viewpoint of efficiency. FIG. 2 shows an example in which two large crystal wafers W1 and W2 are bonded together to obtain a large number of crystal plates 1 having recesses 10, and deep grooves W11 and W21 for splitting are vertically and horizontally around each crystal plate. Is formed. Of course, it is possible to cut the wafer into pieces by dicing or the like without forming the deep groove.
[0020]
A second embodiment will be described with reference to FIG. Note that the same structural parts as those described in the above embodiment are described using the same reference numerals, and part of the description of the same configuration and manufacturing method is omitted.
[0021]
In this example, two crystal plates 1 and 2 are attached to face the holding plate 5. For the holding plate, a material having corrosion resistance against an etching solution such as Pt or Au is used. Alternatively, the core portion may be made of graphite and the surface thereof may be plated with high-purity SiC, or the quartz may be made of a core and Cr—Au may be plated to provide corrosion resistance to the etching solution. As shown in FIG. 3A, positioning recesses 51 and 52 are formed on the front and back surfaces of the holding plate 5 in a cross section. The quartz plates 1 and 2 are bonded to the positioning recesses by adhesives 61 and 62, and metal films 10 and 20 made of Cr films 11 and 21 and Au films 12 and 22, respectively, are formed. This positioning recess is not essential, but functions effectively for positioning and fixing in manufacturing. As shown in FIG. 3B, a resist film 4 is formed, and the metal films 10 and 20 are etched into a predetermined pattern using the resist film 4 as a mask. Thereafter, etching is performed using the patterned metal films 10a and 20a as a mask as shown in FIG. 3C to form recesses 1a and 2a in the quartz plate.
[0022]
After the etching is finished, as shown in FIG. 3D, the metal films 10a and 20a are peeled off and the adhesives 61 and 62 are peeled off to separate the quartz plates 1 and 2 from the holding plate 5. Thereafter, an excitation electrode is formed on the quartz plate having the separated recesses. In this embodiment, since a crystal resonator is illustrated, excitation electrodes 71 and 72 and extraction electrodes (not shown) are formed on the front and back sides of the piezoelectric vibration region as shown in FIG.
[0023]
In each of the embodiments described above, an example in which quartz plates having the same outer size are bonded is shown. However, quartz plates or quartz wafers having different sizes may be bonded. In this case, it is possible to perform flexible manufacturing, such as being able to handle multi-product production. However, it is necessary to form a protective film (resin or metal film) against etching on the protruding region of the bonded surface of the crystal plate or crystal wafer having a large outer size.
[0024]
Further, in order to prevent the etching solution from penetrating into the bonded portion, as shown in FIG. 4, after forming thin metal films 18 and 28 as protective films on the bonded surfaces of the crystal plates 1 and 2, an adhesive is used. A crystal plate may be bonded together by 3. In order to reduce the cost of the metal film material, the protective film may be formed only in the vicinity of the outer periphery of the bonded surface of the crystal plate.
[0025]
Further, as shown in FIG. 5, in the vicinity of the outer periphery of the adhesive bonding, by applying the adhesive 3 so as to cover the side surfaces of the bonded quartz plates 1 and 2 (illustrated by 29), the quartz plate is etched. Unintentional corrosion of the bonding surface can be prevented. The side surface coating needs to include at least a circumferential bonded portion.
[0026]
In each of the above embodiments, the quartz plate is exemplified as the piezoelectric body, but other piezoelectric bodies such as lithium tantalate and langasite may be used.
[0027]
【The invention's effect】
According to the present invention , only the main surface necessary for forming the recess can be etched by bonding the two piezoelectric diaphragms together. Accordingly, it is not necessary to form a protective film such as an Au film having a film thickness that can sufficiently withstand the etching solution in direct contact with the other main surface that is not involved in the formation of the recess as in the prior art. Therefore, the material cost at the time of manufacture can be reduced.
[0028]
In addition, since the piezoelectric diaphragm integrated into one set at the time of forming the resist film and the protective film or etching is used, handling in manufacturing is facilitated, and manufacturing efficiency can be improved.
[Brief description of the drawings]
FIG. 1 shows a manufacturing process according to the present invention.
FIG. 2 is a view showing a manufacturing method according to the present invention.
FIG. 3 is a view showing a manufacturing method according to the present invention.
FIG. 4 is a view showing a manufacturing method according to the present invention.
FIG. 5 is a view showing a manufacturing method according to the present invention.
FIG. 6 is a diagram showing a conventional example.
[Explanation of symbols]
1, 2, 9 Crystal plate (piezoelectric vibration device)
10, 20 Metal film 1a, 2a Recess 14, 24, 91 Piezoelectric vibration region 13, 23, 92 Reinforcement part 15, 16, 17, 25, 26, 27, 71, 72, 9a Excitation electrode 4 Resist film W1, W2 Quartz Wafer

Claims (1)

厚さにより周波数が決定されるATカット水晶板の一方の主面の中央部分に凹部を形成することにより、中央部分に薄肉の圧電振動領域を形成するとともに、この圧電振動領域の周囲に設けられた厚肉の補強部を形成してなる高周波圧電振動デバイスの製造方法であって、2枚のATカット水晶板の、それぞれ凹部を形成しない主面どうしを貼り合わせ、当該貼り合わせ面に金属保護膜を形成し、かつ凹部を形成する主面に対し所定の凹部が形成されるようマスキングを行った状態で、エッチング液に浸漬し凹部を形成した後、当該2枚のATカット水晶板を分離することを特徴とする高周波圧電振動デバイスの製造方法。By forming a recess in the central part of one main surface of the AT-cut quartz plate whose frequency is determined by the thickness, a thin piezoelectric vibration area is formed in the central part and provided around the piezoelectric vibration area. Manufacturing method of a high-frequency piezoelectric vibration device formed by forming a thick reinforcing portion, and bonding main surfaces of two AT-cut quartz plates that do not form a recess to each other, and protecting the bonded surface with metal After forming a film and masking so that a predetermined recess is formed on the main surface where the recess is formed, the two AT-cut quartz plates are separated after forming the recess by dipping in an etching solution. A method for manufacturing a high-frequency piezoelectric vibration device.
JP20313699A 1999-07-16 1999-07-16 Manufacturing method of high-frequency piezoelectric vibration device Expired - Fee Related JP4324948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20313699A JP4324948B2 (en) 1999-07-16 1999-07-16 Manufacturing method of high-frequency piezoelectric vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20313699A JP4324948B2 (en) 1999-07-16 1999-07-16 Manufacturing method of high-frequency piezoelectric vibration device

Publications (2)

Publication Number Publication Date
JP2001036369A JP2001036369A (en) 2001-02-09
JP4324948B2 true JP4324948B2 (en) 2009-09-02

Family

ID=16469019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20313699A Expired - Fee Related JP4324948B2 (en) 1999-07-16 1999-07-16 Manufacturing method of high-frequency piezoelectric vibration device

Country Status (1)

Country Link
JP (1) JP4324948B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204253A (en) * 2004-01-19 2005-07-28 Toyo Commun Equip Co Ltd Uhf band fundamental wave at cut crystal oscillating element
JP5051250B2 (en) * 2010-02-15 2012-10-17 セイコーエプソン株式会社 Method for manufacturing an AT-cut crystal resonator element

Also Published As

Publication number Publication date
JP2001036369A (en) 2001-02-09

Similar Documents

Publication Publication Date Title
JP5239748B2 (en) Quartz crystal
US7485238B2 (en) Etching method, etched product formed by the same, and piezoelectric vibration device, method for producing the same
US20110227457A1 (en) Piezoelectric vibrating pieces and devices, and methods for manufacturing same
JP2002314368A (en) Thin film bulk acoustic resonator and improved method for fabricating the same
JP2002033640A (en) Piezoelectric device
JP3888107B2 (en) Etching method of piezoelectric diaphragm for piezoelectric vibrating device
JPH04322507A (en) Method of processing crystal resonator
JP3543772B2 (en) Manufacturing method of piezoelectric vibrating reed
US20100141100A1 (en) Method of manufacturing piezoelectric oscillating pieces, piezoelectric oscillating piece, and piezoelectric resonator
GB1600706A (en) Subminiature quartz crystal vibrator and method for manufacturing the same
JP4324948B2 (en) Manufacturing method of high-frequency piezoelectric vibration device
JP2008174767A (en) Tool for film deposition
JP2004088706A (en) Etching method and etching shaped article thereby
JP3520839B2 (en) Manufacturing method of piezoelectric vibrating reed
JPH10308640A (en) Manufacture of piezoelectric device
JP2005020141A (en) Manufacturing method of piezoelectric vibration chip and manufacturing method of piezoelectric device
JP2008169414A (en) Jig for film deposition
JP2000228547A (en) Manufacture of piezoelectric board
US4232109A (en) Method for manufacturing subminiature quartz crystal vibrator
JPH05315881A (en) Manufacture of crystal vibrator
JP2001251154A (en) Manufacture of piezoelectric vibrating reed
WO2017012347A1 (en) Piezoelectric quartz wafer with single convex structure
JP5618078B2 (en) Method for manufacturing piezoelectric vibrating piece
JPH11163654A (en) Manufacture of reinforced piezo-electric substrate
JP2016174328A (en) Wafer manufacturing method and wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4324948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees