JP4323259B2 - Electrolyte analyzer - Google Patents

Electrolyte analyzer Download PDF

Info

Publication number
JP4323259B2
JP4323259B2 JP2003296266A JP2003296266A JP4323259B2 JP 4323259 B2 JP4323259 B2 JP 4323259B2 JP 2003296266 A JP2003296266 A JP 2003296266A JP 2003296266 A JP2003296266 A JP 2003296266A JP 4323259 B2 JP4323259 B2 JP 4323259B2
Authority
JP
Japan
Prior art keywords
diluent
solution
standard
sample
standard solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003296266A
Other languages
Japanese (ja)
Other versions
JP2005062128A (en
Inventor
直也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003296266A priority Critical patent/JP4323259B2/en
Publication of JP2005062128A publication Critical patent/JP2005062128A/en
Application granted granted Critical
Publication of JP4323259B2 publication Critical patent/JP4323259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は、電解質分析装置に関し、より詳細には、例えば尿や血清等の試料中の電解質濃度を測定する電解質分析装置に関する。   The present invention relates to an electrolyte analyzer, and more particularly to an electrolyte analyzer that measures an electrolyte concentration in a sample such as urine or serum.

従来、例えば尿や血清等の試料中の電解質濃度(イオン濃度)を、イオン選択性電極を用いて測定する電解質分析装置、つまり、イオン選択性電極を用いた測定(以下、「ISE(Ion Selective Electrodes)測定」ともいう)原理を採用した電解質分析装置が知られている。   Conventionally, for example, an electrolyte analyzer for measuring an electrolyte concentration (ion concentration) in a sample such as urine or serum using an ion selective electrode, that is, measurement using an ion selective electrode (hereinafter referred to as “ISE (Ion Selective Electrolyte analyzers employing the principle of “Electrodes” (also known as “measurement”) are known.

このような電解質分析装置は、イオン選択性電極および比較電極を用いて、試料を希釈液で希釈して生成した試料溶液の起電力(イオン選択性電極での電位と比較電極での電位との電位差)を計測するとともに、標準液の起電力を計測し、これら試料溶液と標準液のそれぞれの計測データから試料溶液に含まれる被測定成分の電解質濃度を測定するものである(例えば、特許文献1参照)。   Such an electrolyte analyzer uses an ion-selective electrode and a reference electrode, and the electromotive force (the potential of the ion-selective electrode and the potential of the reference electrode is generated by diluting the sample with a diluent. In addition to measuring the potential difference), the electromotive force of the standard solution is measured, and the electrolyte concentration of the component to be measured contained in the sample solution is measured from the measurement data of each of the sample solution and the standard solution (for example, patent document) 1).

上記電解質分析装置において、イオン選択性電極での電位は下記式で表される。
E=E0+(RT/nF)lna
ここで、Eはイオン選択性電極の電位、E0は標準電極電位、nは反応に関与するイオン価数、Fはファラデー定数、Rは気体定数、Tは絶対温度、aはイオン活量である。
In the electrolyte analyzer, the potential at the ion selective electrode is represented by the following formula.
E = E 0 + (RT / nF) lna
Where E is the potential of the ion selective electrode, E 0 is the standard electrode potential, n is the ionic valence involved in the reaction, F is the Faraday constant, R is the gas constant, T is the absolute temperature, and a is the ion activity. is there.

特開平8−178885号公報Japanese Patent Laid-Open No. 8-17885

ところが、上記電解質分析装置における電解質濃度の測定では、上記式から明らかなように、絶対温度(T)が因子として含まれている。そのため、試料溶液と標準液との間に温度差があると、イオン選択性電極および比較電極を用いて計測した試料溶液の起電力と標準液の起電力との間には、かかる温度差の大きさが重畳して必要以上に大きな差が生じてしまい、試料溶液に含まれる被測定成分の電解質濃度を正確に測定することができない、という問題があった。この問題について更に述べると、同一の試料から生成した試料溶液が複数あり、一方の試料溶液と標準液との間には温度差がなく、他方の試料溶液と標準液との間には温度差があった場合には、測定結果として得られた一方の試料溶液に含まれる被測定成分の電解質濃度と、他方の試料溶液に含まれる被測定成分の電解質濃度とは、全く異なったものになってしまう。   However, in the measurement of the electrolyte concentration in the electrolyte analyzer, the absolute temperature (T) is included as a factor, as is apparent from the above formula. Therefore, if there is a temperature difference between the sample solution and the standard solution, the temperature difference between the sample solution electromotive force measured using the ion selective electrode and the reference electrode and the standard solution electromotive force There is a problem that the size is superposed and a larger difference than necessary is generated, and the electrolyte concentration of the component to be measured contained in the sample solution cannot be accurately measured. To further describe this problem, there are multiple sample solutions generated from the same sample, there is no temperature difference between one sample solution and the standard solution, and there is a temperature difference between the other sample solution and the standard solution. If there is, the electrolyte concentration of the component to be measured contained in one sample solution obtained as a measurement result is completely different from the electrolyte concentration of the component to be measured contained in the other sample solution. End up.

そこで、かかる問題に対処すべく、従来の電解質分析装置では、試料溶液および標準液の温度を恒温化するための装置や、試料溶液および標準液の温度を例えばサーミスタ等で検出して、それぞれの検出温度から温度補正を行うための装置等を備えたものが提案されている。   Therefore, in order to cope with such a problem, in the conventional electrolyte analyzer, the temperature of the sample solution and the standard solution is constant, the temperature of the sample solution and the standard solution is detected by, for example, a thermistor, and the like. A device equipped with a device for performing temperature correction from the detected temperature has been proposed.

しかしながら、このような恒温化するための装置や、温度補正を行うための装置を備えることは、電解質分析装置全体の大型化を招来するだけでなく、試料溶液に含まれる被測定成分の電解質濃度の測定を複雑化させることになり、好ましくはない。   However, providing such a device for constant temperature and a device for performing temperature correction not only leads to an increase in the size of the entire electrolyte analyzer, but also the electrolyte concentration of the component to be measured contained in the sample solution. This is not preferable because it complicates the measurement.

本発明は、上記実情に鑑みて、装置全体を大型化させることなく、試料溶液に含まれる被測定成分の電解質濃度を正確、かつ容易に測定することができる電解質分析装置を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an electrolyte analyzer that can accurately and easily measure the electrolyte concentration of a component to be measured contained in a sample solution without increasing the size of the entire apparatus. And

上記目的を達成するために、本発明の請求項1に係る電解質分析装置は、試料を希釈して試料溶液を生成するための希釈液を希釈用容器に供給する希釈液供給手段と、標準液を前記希釈用容器に供給する標準液供給手段と、イオン選択性電極を用いて前記試料溶液および前記標準液のそれぞれの起電力を計測することにより、前記試料溶液に含まれる被測定成分の電解質濃度を測定する測定手段とを備えた電解質分析装置において、前記希釈液供給手段により供給される希釈液と、前記標準液供給手段により供給される標準液とを互いに熱交換させるための熱交換手段を備えたことを特徴とする。   In order to achieve the above object, an electrolyte analyzer according to claim 1 of the present invention comprises a diluent supply means for supplying a diluent for diluting a sample to produce a sample solution, and a standard solution. By measuring the electromotive force of each of the sample solution and the standard solution using a standard solution supply means for supplying the dilution solution to the dilution container and an ion-selective electrode. A heat exchanging means for exchanging heat between the diluent supplied by the diluent supply means and the standard solution supplied by the standard solution supply means in an electrolyte analyzer comprising a measuring means for measuring the concentration It is provided with.

また、本発明の請求項2に係る電解質分析装置は、上記請求項1において、前記希釈液供給手段による前記希釈液の供給と、前記標準液供給手段による前記標準液の供給とが交互に行われることを特徴とする。   The electrolyte analyzer according to claim 2 of the present invention is the electrolyte analyzer according to claim 1, wherein the dilution liquid supply by the dilution liquid supply means and the standard liquid supply by the standard liquid supply means are alternately performed. It is characterized by being.

本発明の請求項1に記載の発明によれば、熱交換手段が、希釈液供給手段により供給される希釈液と、標準液供給手段により供給される標準液とを互いに熱交換させるので、希釈液と標準液との温度がほぼ等しいものになり、両者の温度差を極めて零に近いものにすることができる。これにより、測定手段により測定される試料溶液と標準液との温度差が生じにくくなり、計測される起電力が試料溶液と標準液との温度差の影響を受ける虞れがない。従って、装置全体を大型化させることなく、試料溶液に含まれる被測定成分の電解質濃度を正確、かつ容易に測定することができるという効果を奏する。   According to the first aspect of the present invention, the heat exchanging means exchanges heat between the diluent supplied by the diluent supplying means and the standard liquid supplied by the standard liquid supplying means. The temperatures of the liquid and the standard liquid are almost equal, and the temperature difference between the two can be made extremely close to zero. Thereby, the temperature difference between the sample solution and the standard solution measured by the measuring means is less likely to occur, and the measured electromotive force is not affected by the temperature difference between the sample solution and the standard solution. Therefore, it is possible to accurately and easily measure the electrolyte concentration of the component to be measured contained in the sample solution without increasing the size of the entire apparatus.

本発明の請求項2に記載の発明によれば、上記請求項1に記載の発明が奏する効果に加え、次のような効果を奏することができる。希釈液供給手段による希釈液の供給と、標準液供給手段による標準液の供給とが交互に行われるので、標準液が希釈用容器、測定手段の洗浄を兼ねることになる。そのため、洗浄に要する時間を設ける必要がなく、測定時間の短縮化を図ることができるという効果を奏する。   According to invention of Claim 2 of this invention, in addition to the effect which the invention of said Claim 1 show | plays, there can exist the following effects. Since the supply of the diluting solution by the diluting solution supply means and the supply of the standard solution by the standard solution supplying means are alternately performed, the standard solution also serves as the washing of the dilution container and the measuring means. Therefore, there is no need to provide time for cleaning, and the measurement time can be shortened.

以下に添付図面を参照して、本発明に係る電解質分析装置の好適な実施例について詳細に説明する。尚、この実施例により本発明が限定されるものではない。   Exemplary embodiments of an electrolyte analyzer according to the present invention will be described below in detail with reference to the accompanying drawings. In addition, this invention is not limited by this Example.

図1は、本発明の実施例に係る電解質分析装置の構成を簡略的に示した説明図である。この図1において、電解質分析装置は、試料供給手段10と、希釈液供給手段20と、標準液供給手段30と、測定手段40と、熱交換器(熱交換手段)50とを備えて構成してある。   FIG. 1 is an explanatory diagram simply showing the configuration of an electrolyte analyzer according to an embodiment of the present invention. In FIG. 1, the electrolyte analyzer comprises a sample supply means 10, a diluent supply means 20, a standard solution supply means 30, a measurement means 40, and a heat exchanger (heat exchange means) 50. It is.

試料供給手段10は、試料容器11と、試料分注ノズル12とを備えて構成してある。試料容器11には、例えば尿や血清等の試料が収容してある。試料分注ノズル12は、試料容器11から一定量だけ試料を分取して、希釈用容器60に分注するものである。   The sample supply means 10 includes a sample container 11 and a sample dispensing nozzle 12. The sample container 11 contains a sample such as urine or serum. The sample dispensing nozzle 12 dispenses a certain amount of sample from the sample container 11 and dispenses it to the dilution container 60.

希釈液供給手段20は、希釈液容器21と、希釈液分取器22とを備えて構成してある。希釈液容器21には、上記試料を希釈するための希釈液が収容してある。この希釈液が試料を例えば約30倍程度希釈することにより試料溶液が生成されることになる。   The diluent supply means 20 includes a diluent container 21 and a diluent separator 22. The diluent container 21 contains a diluent for diluting the sample. The diluted solution dilutes the sample, for example, about 30 times, thereby generating a sample solution.

希釈液分取器22は、希釈液導入配管23を介して希釈液容器21に連設してあるとともに、希釈液供給配管24を介して希釈液注出ノズル25に連設してある。希釈液導入配管23は、希釈液容器21から希釈液分取器22まで希釈液を導くための管路である。希釈液供給配管24は、希釈液分取器22から希釈液注出ノズル25まで希釈液を供給するための管路である。この希釈液供給配管24には、所定の個所、すなわち希釈液注出ノズル25との連通個所に希釈液供給バルブ26が配設してある。希釈液注出ノズル25は、希釈液供給配管24からの希釈液を希釈用容器60に注出するためのものである。   The diluent separator 22 is connected to the diluent container 21 via the diluent inlet pipe 23 and is connected to the diluent outlet nozzle 25 via the diluent supply pipe 24. The diluent introduction pipe 23 is a conduit for guiding the diluent from the diluent container 21 to the diluent separator 22. The diluent supply pipe 24 is a conduit for supplying the diluent from the diluent separator 22 to the diluent dispensing nozzle 25. The diluent supply pipe 24 is provided with a diluent supply valve 26 at a predetermined location, that is, a location where the diluent supply pipe 24 communicates with the diluent dispensing nozzle 25. The diluent dispensing nozzle 25 is for dispensing the diluent from the diluent supply pipe 24 to the dilution container 60.

この希釈液分取器22は、詳細は後述するが、希釈液導入配管23を通じて希釈液容器21から所定量だけ希釈液を分取し、希釈液供給配管24に送出するものである。   Although the details will be described later, the diluent separator 22 separates a predetermined amount of the diluent from the diluent container 21 through the diluent introduction pipe 23 and sends it to the diluent supply pipe 24.

標準液供給手段30は、標準液容器31と、標準液分取器32とを備えて構成してある。標準液容器31には、上記試料溶液の測定に用いるための標準液が収容してある。   The standard solution supply means 30 includes a standard solution container 31 and a standard solution separator 32. The standard solution container 31 contains a standard solution for use in measuring the sample solution.

標準液分取器32は、標準液導入配管33を介して標準液容器31に連設してあるとともに、標準液供給配管34を介して標準液注出ノズル35に連設してある。標準液導入配管33は、標準液容器31から標準液分取器32まで標準液を導くための管路である。標準液供給配管34は、標準液分取器32から標準液注出ノズル35まで標準液を供給するための管路である。この標準液供給配管34には、所定の個所、すなわち標準液注出ノズル35との連通個所に標準液供給バルブ36が配設してある。標準液注出ノズル35は、標準液供給配管34からの標準液を希釈用容器60に注出するためのものである。   The standard liquid separator 32 is connected to the standard liquid container 31 via a standard liquid introduction pipe 33 and is connected to a standard liquid dispensing nozzle 35 via a standard liquid supply pipe 34. The standard solution introduction pipe 33 is a conduit for guiding the standard solution from the standard solution container 31 to the standard solution separator 32. The standard liquid supply pipe 34 is a pipe line for supplying the standard liquid from the standard liquid separator 32 to the standard liquid dispensing nozzle 35. In the standard liquid supply pipe 34, a standard liquid supply valve 36 is disposed at a predetermined position, that is, a position where the standard liquid supply pipe 34 communicates with the standard liquid dispensing nozzle 35. The standard liquid dispensing nozzle 35 is for dispensing the standard liquid from the standard liquid supply pipe 34 to the dilution container 60.

この標準液分取器32は、詳細は後述するが、標準液導入配管33を通じて標準液容器31から所定量だけ標準液を分取し、標準液供給配管34に送出するものである。   As will be described in detail later, the standard liquid separator 32 separates a predetermined amount of standard liquid from the standard liquid container 31 through the standard liquid introduction pipe 33 and sends it to the standard liquid supply pipe 34.

測定手段40は、測定液供給配管41と、電極部42と、起電力計測部43と、測定部44とを備えて構成してある。測定液供給配管41は、その一端が希釈用容器60に連設してあり、その他端が廃液容器61に連設してある。この測定液供給配管41には、他端側の個所に測定液吸引部45が配設してある。測定液吸引部45は、希釈用容器60の内部にある測定液、すなわち試料溶液、あるいは標準液を吸引して、廃液容器61まで送出するためのものである。つまり、測定液供給配管41は、測定液吸引部45の作用により、希釈用容器60の内部にある測定液(試料溶液、標準液)を該希釈用容器60から廃液容器61まで導くための管路である。   The measurement means 40 includes a measurement liquid supply pipe 41, an electrode part 42, an electromotive force measurement part 43, and a measurement part 44. One end of the measurement liquid supply pipe 41 is connected to the dilution container 60, and the other end is connected to the waste liquid container 61. The measurement liquid supply pipe 41 is provided with a measurement liquid suction part 45 at the other end side. The measurement liquid suction unit 45 is for sucking the measurement liquid in the dilution container 60, that is, the sample solution or the standard liquid, and sending it to the waste liquid container 61. That is, the measurement liquid supply pipe 41 is a pipe for guiding the measurement liquid (sample solution, standard solution) inside the dilution container 60 from the dilution container 60 to the waste liquid container 61 by the action of the measurement liquid suction part 45. Road.

電極部42は、測定液供給配管41の所定の個所、すなわち測定液吸引部45の配設個所よりも上流側の個所に配設してある。この電極部42は、イオン選択性電極および比較電極(ともに図示せず)を備えている。イオン選択性電極は、例えばナトリウムイオン、カリウムイオン、塩素イオン等の特定のイオンに感応して電位を示す電極である。これらイオン選択性電極および比較電極は、測定液供給配管41の電極部42の配設個所を通過する測定液(試料溶液、標準液)のそれぞれの電位を示すためのものである。より詳細に説明すると、イオン選択性電極および比較電極は、測定液供給配管41の電極部42の配設個所に測定液が通過する場合に、該電極部22に対して参照液(以下、REF液ともいう)が供給されることにより、通過する測定液のそれぞれの電位を示すためのものである。   The electrode part 42 is disposed at a predetermined position of the measurement liquid supply pipe 41, that is, at a position upstream of the position where the measurement liquid suction part 45 is disposed. The electrode portion 42 includes an ion selective electrode and a comparison electrode (both not shown). The ion selective electrode is an electrode that exhibits a potential in response to specific ions such as sodium ion, potassium ion, and chlorine ion. These ion-selective electrodes and comparative electrodes are for indicating the respective potentials of the measurement liquid (sample solution and standard solution) passing through the location where the electrode portion 42 of the measurement liquid supply pipe 41 is provided. More specifically, the ion-selective electrode and the reference electrode have a reference liquid (hereinafter referred to as REF) that is used for the electrode portion 22 when the measurement solution passes through the electrode portion 42 of the measurement solution supply pipe 41. (Also referred to as a liquid) to indicate the potential of each of the measurement liquids that pass through.

起電力計測部43は、電極部42を通じて測定液供給配管41を通過する試料溶液および標準液のそれぞれの起電力を計測するものである。より詳細に説明すると、起電力計測部42は、測定液供給配管41を通過する試料溶液に対して、イオン選択性電極が示した電位と、比較電極が示した電位との電位差を計測するとともに、測定液供給配管41を通過する標準液に対して、イオン選択性電極が示した電位と、比較電極が示した電位との電位差を計測するものである。   The electromotive force measurement unit 43 measures the electromotive force of each of the sample solution and the standard solution that passes through the measurement solution supply pipe 41 through the electrode unit 42. More specifically, the electromotive force measurement unit 42 measures the potential difference between the potential indicated by the ion selective electrode and the potential indicated by the comparison electrode with respect to the sample solution passing through the measurement liquid supply pipe 41. The potential difference between the potential indicated by the ion selective electrode and the potential indicated by the comparison electrode is measured with respect to the standard solution passing through the measurement solution supply pipe 41.

測定部44は、起電力計測部42で計測した起電力に基づいて、測定液供給配管41を通過する試料溶液に含まれる被測定成分、例えばナトリウムイオン、カリウムイオン、塩素イオン等の電解質濃度を測定するものである。   Based on the electromotive force measured by the electromotive force measurement unit 42, the measurement unit 44 determines the concentration of an electrolyte such as sodium ions, potassium ions, and chlorine ions to be measured contained in the sample solution that passes through the measurement liquid supply pipe 41. Measure.

図2〜図3は、本発明の実施例に係る電解質分析装置を構成する熱交換器の一例を示したものであり、図2は平面断面図であり、図3は正面断面図である。以下にこれら図2および図3も用いて熱交換器50について説明する。熱交換器50は、上記希釈液供給配管24を通過する希釈液と、上記標準液供給配管34を通過する標準液とを互いに熱交換させるためのものである。より詳細に説明すると、熱交換器50は次のようなものである。熱交換器50は、熱交換器本体51と、希釈液通過部52と、標準液通過部53とを備えて構成してある。   2 to 3 show an example of a heat exchanger constituting the electrolyte analyzer according to the embodiment of the present invention, FIG. 2 is a plan sectional view, and FIG. 3 is a front sectional view. The heat exchanger 50 will be described below with reference to FIGS. 2 and 3 as well. The heat exchanger 50 is for exchanging heat between the diluent that passes through the diluent supply pipe 24 and the standard solution that passes through the standard liquid supply pipe 34. More specifically, the heat exchanger 50 is as follows. The heat exchanger 50 includes a heat exchanger body 51, a diluent passing part 52, and a standard liquid passing part 53.

熱交換器本体51は、例えばアルミニウム合金等から形成された筐体である。希釈液通過部52は、希釈液供給配管24を構成しており、熱交換器本体51の内部に配設してある。この希釈液通過部52は、例えばステンレス鋼等からなり、コイル状に巻回された形状を有している。標準液通過部53は、標準液供給配管34を構成しており、熱交換器本体51の内部に配設してある。この標準液通過部53は、例えばステンレス鋼等からなり、コイル状に巻回された形状を有している。   The heat exchanger body 51 is a housing formed of, for example, an aluminum alloy. The diluent passage 52 constitutes the diluent supply pipe 24 and is disposed inside the heat exchanger main body 51. The dilution liquid passage portion 52 is made of, for example, stainless steel and has a shape wound in a coil shape. The standard liquid passage part 53 constitutes a standard liquid supply pipe 34 and is disposed inside the heat exchanger main body 51. The standard liquid passage portion 53 is made of, for example, stainless steel and has a shape wound in a coil shape.

また、希釈液通過部52と標準液通過部53とは、該希釈液通過部52の内部にある希釈液と、該標準液通過部53の内部にある標準液とが熱的に接続した状態になる態様で配設してある。つまり、希釈液通過部52の一部と、標準液通過部53の一部とが接触した状態で配設してある。   Further, the dilution liquid passage part 52 and the standard liquid passage part 53 are in a state in which the dilution liquid in the dilution liquid passage part 52 and the standard liquid in the standard liquid passage part 53 are thermally connected. It arrange | positions in the aspect which becomes. That is, a part of the diluent passing part 52 and a part of the standard liquid passing part 53 are arranged in contact with each other.

以下に、上記電解質分析装置による試料溶液に含まれる被測定成分の電解質濃度の測定について説明する。尚、以下においては、説明の便宜上、希釈液供給バルブ26および標準液供給バルブ36は、ともに閉状態になっている。また、初期状態として、希釈液は、希釈液供給配管24に送出されて滞留しており、標準液は、標準液供給配管34に送出されて滞留している。   Hereinafter, measurement of the electrolyte concentration of the component to be measured contained in the sample solution by the electrolyte analyzer will be described. In the following, for convenience of explanation, both the diluent supply valve 26 and the standard solution supply valve 36 are closed. In the initial state, the diluent is sent to the diluent supply pipe 24 and stays there, and the standard solution is sent to the standard solution supply pipe 34 and stays there.

上記電解質分析装置においては、希釈液供給配管24に滞留する希釈液と、標準液供給配管34に滞留する標準液とは、熱交換器本体51(熱交換器50)の内部において希釈液通過部52および標準液通過部53を通じて互いに熱的に接続しているために、熱交換を行う。その結果、希釈液供給配管24に滞留する希釈液と、標準液供給配管34に滞留する標準液とは、互いの温度がほぼ等しいものになり、希釈液と標準液との温度差が極めて零に近くなる。   In the electrolyte analyzer, the diluent that stays in the diluent supply pipe 24 and the standard solution that stays in the standard liquid supply pipe 34 pass through the diluent passage in the heat exchanger main body 51 (heat exchanger 50). Heat exchange is performed because they are thermally connected to each other through 52 and the standard solution passage portion 53. As a result, the dilution liquid staying in the dilution liquid supply pipe 24 and the standard liquid staying in the standard liquid supply pipe 34 have substantially the same temperature, and the temperature difference between the dilution liquid and the standard liquid is extremely zero. Close to.

そして、希釈液供給バルブ26を開状態にして、開通状態になった希釈液供給配管24に滞留する希釈液を、希釈液注出ノズル25を通じて希釈用容器60に注出する。   Then, the diluent supply valve 26 is opened, and the diluent remaining in the opened diluent supply pipe 24 is poured into the dilution container 60 through the diluent dispensing nozzle 25.

その後、試料容器11に収容された試料を、試料分注ノズル12で一定量だけ分取し、この分取した一定量の試料を希釈液が注出された希釈用容器60に分注する。これにより、希釈用容器60では、試料が希釈液によって例えば30倍程度希釈されて、図示しない撹拌機構によって均一に混合させることにより試料溶液が生成する。   Thereafter, the sample accommodated in the sample container 11 is dispensed by a certain amount by the sample dispensing nozzle 12, and the certain amount of the dispensed sample is dispensed into the dilution container 60 from which the diluent has been dispensed. Thereby, in the dilution container 60, the sample is diluted by about 30 times with the diluent, for example, and mixed uniformly by a stirring mechanism (not shown) to generate a sample solution.

希釈用容器60で生成した試料溶液を、測定液吸引部45を作動させて吸引する。これにより、試料溶液は、測定液として測定液供給配管41を通過することになる。試料溶液が測定液供給配管41の電極部42(イオン選択性電極および比較電極)の配設個所を通過する場合に、起電力計測部43がイオン選択性電極および比較電極を通じて試料溶液の起電力を計測する。つまり、起電力計測部43は、測定液供給配管41の電極部42の配設個所を通過する試料溶液に対して、イオン選択性電極が示した電位と、比較電極が示した電位との電位差を計測する。その後、試料溶液は、廃液容器61まで導かれて廃棄されることになる。   The sample solution generated in the dilution container 60 is aspirated by operating the measurement liquid aspirating unit 45. As a result, the sample solution passes through the measurement liquid supply pipe 41 as the measurement liquid. When the sample solution passes through the electrode portion 42 (ion-selective electrode and comparison electrode) of the measurement liquid supply pipe 41, the electromotive force measurement unit 43 causes the electromotive force of the sample solution through the ion-selective electrode and the comparison electrode. Measure. That is, the electromotive force measurement unit 43 determines the potential difference between the potential indicated by the ion-selective electrode and the potential indicated by the comparison electrode with respect to the sample solution passing through the location where the electrode part 42 of the measurement liquid supply pipe 41 is provided. Measure. Thereafter, the sample solution is guided to the waste liquid container 61 and discarded.

次に、標準液供給バルブ36を開状態にして、開通状態になった標準液供給配管34に滞留する標準液を、標準液注出ノズル35を通じて希釈用容器60に注出する。   Next, the standard solution supply valve 36 is opened, and the standard solution staying in the opened standard solution supply pipe 34 is poured out into the dilution container 60 through the standard solution dispensing nozzle 35.

希釈用容器60に注出された標準液を、測定液吸引部45を作動させて吸引する。これにより、標準液は、測定液として測定液供給配管41を通過することになる。標準液が測定液供給配管41の電極部42(イオン選択性電極および比較電極)の配設個所を通過する場合に、起電力計測部43がイオン選択性電極および比較電極を通じて標準液の起電力を計測する。つまり、起電力計測部43は、測定液供給配管41の電極部42の配設個所を通過する標準液に対して、イオン選択性電極が示した電位と、比較電極が示した電位との電位差を計測する。その後、標準液は、廃液容器61まで導かれて廃棄されることになる。   The standard solution poured into the dilution container 60 is aspirated by operating the measurement liquid aspirating unit 45. As a result, the standard solution passes through the measurement liquid supply pipe 41 as the measurement liquid. When the standard solution passes through the electrode 42 (ion-selective electrode and comparison electrode) of the measurement solution supply pipe 41, the electromotive force measurement unit 43 transmits the electromotive force of the standard solution through the ion-selective electrode and the comparison electrode. Measure. In other words, the electromotive force measurement unit 43 compares the potential difference between the potential indicated by the ion selective electrode and the potential indicated by the comparison electrode with respect to the standard solution passing through the location where the electrode portion 42 of the measurement solution supply pipe 41 is provided. Measure. Thereafter, the standard solution is guided to the waste liquid container 61 and discarded.

測定部44は、電極部42および起電力計測部43を通じて計測した試料溶液の起電力および標準液の起電力に基づいて、試料溶液に含まれる被測定成分の電解質濃度を測定する。これにより、上記電解質分析装置による試料溶液に含まれる被測定成分の電解質濃度の測定は終了する。   The measuring unit 44 measures the electrolyte concentration of the component to be measured included in the sample solution based on the electromotive force of the sample solution and the electromotive force of the standard solution measured through the electrode unit 42 and the electromotive force measuring unit 43. Thereby, the measurement of the electrolyte concentration of the component to be measured contained in the sample solution by the electrolyte analyzer is completed.

以上説明したように、本発明の実施例に係る電解質分析装置によれば、熱交換器50が、希釈液供給配管24に滞留する希釈液と、標準液供給配管34に滞留する標準液とを、互いに熱交換させるので、両者の温度がほぼ等しいものになり、両者の温度差を極めて零に近いものにすることができる。これにより、測定手段40により測定液として測定される試料溶液と標準液との温度差が生じにくくなり、電極部42および起電力計測部43で計測される起電力が試料溶液と標準液との温度差の影響を受ける虞れがない。従って、試料溶液に含まれる被測定成分の電解質濃度を正確、かつ容易に測定することができる。   As described above, according to the electrolyte analyzer according to the embodiment of the present invention, the heat exchanger 50 uses the diluted solution that stays in the diluent supply pipe 24 and the standard solution that stays in the standard solution supply pipe 34. Since they are mutually heat-exchanged, the temperatures of the two are substantially equal, and the temperature difference between the two can be made extremely close to zero. Thereby, a temperature difference between the sample solution measured as the measurement solution by the measuring means 40 and the standard solution is less likely to occur, and the electromotive force measured by the electrode unit 42 and the electromotive force measurement unit 43 is the difference between the sample solution and the standard solution. There is no risk of being affected by temperature differences. Therefore, the electrolyte concentration of the component to be measured contained in the sample solution can be measured accurately and easily.

上記電解質分析装置によれば、熱交換器50を希釈液供給配管24および標準液供給配管34に配設しただけなので、従来のように試料溶液および標準液の温度を恒温化するための装置や、試料溶液および標準液の温度を検出して、それぞれの検出温度から温度補正を行うための装置等を配設する必要がなく、装置全体を大型化させることがない。また、装置全体に要するコストを低減させることもできる。   According to the above-described electrolyte analyzer, the heat exchanger 50 is simply disposed in the diluent supply pipe 24 and the standard solution supply pipe 34. Therefore, as in the prior art, an apparatus for keeping the temperature of the sample solution and the standard solution constant, In addition, it is not necessary to provide a device or the like for detecting the temperature of the sample solution and the standard solution and correcting the temperature based on the detected temperature, and the entire device is not enlarged. In addition, the cost required for the entire apparatus can be reduced.

また、上記電解質分析装置においては、希釈液を希釈用容器60に供給して試料溶液を生成し、この試料溶液の起電力を計測した後に、標準液を希釈用容器60に供給して、この標準液の起電力を計測するので、つまり、希釈液の供給と標準液の供給とが交互に行われるので、標準液が希釈用容器60、測定液供給配管41および電極部42の洗浄を兼ねることになる。そのため、洗浄に要する時間を設ける必要がなく、測定時間の短縮化を図ることができる。   In the above electrolyte analyzer, a dilution solution is supplied to the dilution container 60 to generate a sample solution, and after measuring the electromotive force of the sample solution, the standard solution is supplied to the dilution container 60. Since the electromotive force of the standard solution is measured, that is, the supply of the dilution solution and the supply of the standard solution are performed alternately, the standard solution also serves to clean the dilution container 60, the measurement solution supply pipe 41, and the electrode unit 42. It will be. Therefore, it is not necessary to provide time for cleaning, and the measurement time can be shortened.

以上、本発明の好適な実施例について説明したが、本発明はこれに限定されるものではなく、種々の変更を行うことができる。例えば、熱交換器の熱交換器本体の内部には、伝熱効果の高い伝熱媒体を封入しても良い。また、希釈液通過部と、標準液通過部とは、その一部が接しているだけでなく、全長にわたって接していても良い。これにより、希釈液と標準液との熱交換率を十分に高くすることができる。更に、希釈液供給配管の全体を希釈液通過部とし、標準液供給配管の全体を標準液通過部としても良い。これによっても、希釈液と標準液との熱交換率を十分に高くすることができ、しかも、希釈液および標準液とも熱交換後の温度を保持しやすくなる。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to this, and various modifications can be made. For example, a heat transfer medium having a high heat transfer effect may be enclosed in the heat exchanger body of the heat exchanger. Moreover, the dilution liquid passage part and the standard liquid passage part may be in contact with each other over the entire length as well as a part thereof. Thereby, the heat exchange rate between the diluted solution and the standard solution can be sufficiently increased. Furthermore, the whole diluent supply pipe may be used as a diluent passage, and the whole standard solution supply pipe may be used as a standard solution passage. Also by this, the heat exchange rate between the diluted solution and the standard solution can be made sufficiently high, and the diluted solution and the standard solution can easily maintain the temperature after the heat exchange.

以上のように、本発明に係る電解質分析装置は、例えば尿や血清等の試料中の電解質濃度を測定に有用である。   As described above, the electrolyte analyzer according to the present invention is useful for measuring the electrolyte concentration in a sample such as urine or serum.

本発明の実施例に係る電解質分析装置の構成を簡略的に示した説明図である。It is explanatory drawing which showed simply the structure of the electrolyte analyzer which concerns on the Example of this invention. 本発明の実施例に係る電解質分析装置を構成する熱交換器の一例を示した平面断面図である。It is plane sectional drawing which showed an example of the heat exchanger which comprises the electrolyte analyzer which concerns on the Example of this invention. 本発明の実施例に係る電解質分析装置を構成する熱交換器の一例を示した正面断面図である。It is front sectional drawing which showed an example of the heat exchanger which comprises the electrolyte analyzer which concerns on the Example of this invention.

符号の説明Explanation of symbols

10 試料供給手段
11 試料容器
12 試料分注ノズル
20 希釈液供給手段
21 希釈液容器
22 希釈液分取器
23 希釈液導入配管
24 希釈液供給配管
25 希釈液注出ノズル
26 希釈液供給バルブ
30 標準液供給手段
31 標準液容器
32 標準液分取器
33 標準液導入配管
34 標準液供給配管
35 標準液注出ノズル
36 標準液供給バルブ
40 測定手段
41 測定液供給配管
42 電極部
43 起電力計測部
44 測定部
45 測定液吸引部
50 熱交換器
51 熱交換器本体
52 希釈液通過部
53 標準液通過部
60 希釈用容器
61 廃液容器
DESCRIPTION OF SYMBOLS 10 Sample supply means 11 Sample container 12 Sample dispensing nozzle 20 Diluent supply means 21 Diluent container 22 Diluent separator 23 Diluent introduction pipe 24 Diluent supply pipe 25 Diluent dispensing nozzle 26 Diluent supply valve 30 Standard Liquid supply means 31 Standard liquid container 32 Standard liquid separator 33 Standard liquid introduction pipe 34 Standard liquid supply pipe 35 Standard liquid dispensing nozzle 36 Standard liquid supply valve 40 Measuring means 41 Measurement liquid supply pipe 42 Electrode section 43 Electromotive force measurement section 44 Measuring Unit 45 Measuring Solution Suction Unit 50 Heat Exchanger 51 Heat Exchanger Body 52 Diluent Passing Portion 53 Standard Solution Passing Portion 60 Dilution Container 61 Waste Liquid Container

Claims (2)

試料を希釈して試料溶液を生成するための希釈液を希釈用容器に供給する希釈液供給手段と、
標準液を前記希釈用容器に供給する標準液供給手段と、
イオン選択性電極を用いて前記試料溶液および前記標準液のそれぞれの起電力を計測することにより、前記試料溶液に含まれる被測定成分の電解質濃度を測定する測定手段と
を備えた電解質分析装置において、
前記希釈液供給手段により供給される希釈液と、前記標準液供給手段により供給される標準液とを互いに熱交換させるための熱交換手段を備えたことを特徴とする電解質分析装置。
A diluent supply means for supplying a diluent for diluting the sample to produce a sample solution to the dilution container;
A standard solution supply means for supplying a standard solution to the dilution container;
In an electrolyte analyzer comprising: a measuring means for measuring an electrolyte concentration of a component to be measured contained in the sample solution by measuring each electromotive force of the sample solution and the standard solution using an ion selective electrode. ,
An electrolyte analyzer comprising heat exchange means for exchanging heat between the diluent supplied by the diluent supply means and the standard solution supplied by the standard solution supply means.
前記希釈液供給手段による前記希釈液の供給と、前記標準液供給手段による前記標準液の供給とが交互に行われることを特徴とする請求項1に記載の電解質分析装置。   2. The electrolyte analyzer according to claim 1, wherein supply of the diluent by the diluent supply unit and supply of the standard solution by the standard solution supply unit are alternately performed.
JP2003296266A 2003-08-20 2003-08-20 Electrolyte analyzer Expired - Lifetime JP4323259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003296266A JP4323259B2 (en) 2003-08-20 2003-08-20 Electrolyte analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003296266A JP4323259B2 (en) 2003-08-20 2003-08-20 Electrolyte analyzer

Publications (2)

Publication Number Publication Date
JP2005062128A JP2005062128A (en) 2005-03-10
JP4323259B2 true JP4323259B2 (en) 2009-09-02

Family

ID=34372230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003296266A Expired - Lifetime JP4323259B2 (en) 2003-08-20 2003-08-20 Electrolyte analyzer

Country Status (1)

Country Link
JP (1) JP4323259B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887113B2 (en) * 2006-10-25 2012-02-29 株式会社エイアンドティー Electrolyte analyzer
JP2008215926A (en) * 2007-03-01 2008-09-18 Hitachi High-Technologies Corp Electrolyte measuring instrument and biochemical autoanalyzer
JP5214420B2 (en) * 2008-12-02 2013-06-19 株式会社エイアンドティー Electrolyte analysis method and electrolyte analyzer
JP6650358B2 (en) * 2016-06-30 2020-02-19 株式会社日立ハイテクノロジーズ Automatic analyzer
WO2021024527A1 (en) * 2019-08-05 2021-02-11 株式会社日立ハイテク Deaerator and electrolyte measurement system

Also Published As

Publication number Publication date
JP2005062128A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP6622665B2 (en) Electrolyte concentration measuring device
CN105452845B (en) Measuring method, substrate-cleaning method and the basal plate cleaning system of total oxidant concentration
US8894932B2 (en) Reagent preparing device and specimen processing system
JP3265830B2 (en) Total organic carbon meter
JP4323259B2 (en) Electrolyte analyzer
EP0992792A2 (en) Fluid analyte measurement system
JP6126387B2 (en) Electrolyte analyzer with double tube structure sample suction nozzle
JP2012181102A (en) Electrolyte measuring instrument
JP7542598B2 (en) Electrolyte Analyzer
JP5198187B2 (en) Liquid processing apparatus and processing liquid supply method
US8888989B2 (en) Method and apparatus for electrolyte measurements
JP5492833B2 (en) Automatic analyzer and control method thereof
JP4657838B2 (en) Ion concentration measurement composite electrode and ion concentration monitor
JPH11118782A (en) Ammoniacal nitrogen measuring apparatus
WO2015059781A1 (en) Analysis sample collection device and method for using same, and collected sample analysis device and collected sample analysis method
JP2008175729A (en) Specimen measurement system
JP2000266757A (en) Automatic analyzer
JP2005321230A (en) Flow rate/residual chlorine concentration measuring device, and flow rate/residual chlorine concentration measuring method of service water
JP2023512773A (en) Inorganic carbon (IC) exclusion conductivity measurement of aqueous samples
JP5571397B2 (en) Reagent preparation device
JP2007057367A (en) Method and device for measuring electrolyte
JP2000221165A (en) Apparatus for measuring concentration of residual chlorine
JP7489535B2 (en) Electrolyte Analyzer
JP7209096B2 (en) Deaerator and electrolyte measurement system
JP2015145837A (en) Automatic analysis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090604

R151 Written notification of patent or utility model registration

Ref document number: 4323259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term