WO2015059781A1 - Analysis sample collection device and method for using same, and collected sample analysis device and collected sample analysis method - Google Patents

Analysis sample collection device and method for using same, and collected sample analysis device and collected sample analysis method Download PDF

Info

Publication number
WO2015059781A1
WO2015059781A1 PCT/JP2013/078658 JP2013078658W WO2015059781A1 WO 2015059781 A1 WO2015059781 A1 WO 2015059781A1 JP 2013078658 W JP2013078658 W JP 2013078658W WO 2015059781 A1 WO2015059781 A1 WO 2015059781A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
collected
sampling tube
gas sampling
Prior art date
Application number
PCT/JP2013/078658
Other languages
French (fr)
Japanese (ja)
Inventor
賢治 徳政
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to JP2015513538A priority Critical patent/JP5876614B2/en
Priority to PCT/JP2013/078658 priority patent/WO2015059781A1/en
Publication of WO2015059781A1 publication Critical patent/WO2015059781A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0016Sample conditioning by regulating a physical variable, e.g. pressure or temperature

Definitions

  • the present invention relates to an analytical sample collection device for collecting a sample for analysis, a method for using the same, a collected sample analysis device for analyzing a collected sample, and a collected sample analysis method.
  • a denitration apparatus using a selective catalytic reduction method is installed in order to remove nitrogen oxides (NO x ) contained in exhaust gas.
  • the selective catalytic reduction method is a method in which ammonia is blown into exhaust gas, and NO X and ammonia are reacted on a denitration catalyst to decompose NO X into nitrogen and water. Since the performance of the denitration catalyst deteriorates with use, performance monitoring is performed by measuring the concentration of ammonia (referred to as leaked ammonia) discharged from the denitration catalyst in an unreacted state.
  • the ammonia concentration in the exhaust gas at the outlet of the denitration apparatus is required to be measured with high accuracy since it is greatly related to the grasp of the deterioration of the denitration catalyst and the blockage of the air heater due to acidic ammonium sulfate.
  • soot a sulfur oxide (SO X ), and NO X contained in a large amount in the exhaust gas make accurate analysis of ammonia difficult. If there is a lot of dust, it may cause clogging of the sampling system and contamination.
  • SO X sulfur oxide
  • the present applicants adopted a double-structure gas sampling pipe as a method for analyzing the ammonia concentration in the exhaust gas with high accuracy, and flushed the inner pipe side to wash the inner pipe.
  • a method for analysis along with the absorbent for example, refer to Patent Document 1.
  • Patent Document 1 is an excellent method, but further improvement is required to measure the ammonia concentration in the exhaust gas more stably and more accurately. Such a problem is applicable not only to the measurement of ammonia concentration in exhaust gas but also to the collection and analysis of other analytical gases.
  • An object of the present invention is to provide an analytical sample collection device capable of accurately collecting an analysis target component contained in a gas with a simple apparatus configuration, a method of using the analytical sample collection device, and an accurate analysis target component contained in a gas. It is an object of the present invention to provide a collected sample analysis apparatus and a collected sample analysis method that can be analyzed.
  • the present invention includes a gas sampling pipe for collecting the gas in the gas flow path with a distal end portion inserted into the gas flow path, temperature holding means for holding the gas sampling pipe at a predetermined temperature, and in the gas sampling pipe and / or Or a liquid supply means for supplying a liquid to a member connected to an outlet portion of the gas sampling pipe, and the gas is a gas in which a part of the compound contained in the gas is precipitated when the temperature is lowered,
  • An analytical sample collection device characterized in that the temperature holding means is a heat pipe.
  • the analytical sample collection device of the present invention that can maintain the gas collection tube at a predetermined temperature via the heat pipe can limit the region where the compound is deposited.
  • the region where the compound is deposited is specified, so that cleaning with a cleaning solution is easy.
  • it is possible to prevent the precipitation and / or adhesion of the compound by constantly flowing the liquid through the liquid supply means to the temperature region where the compound is precipitated, and it is possible to collect the analysis sample stably.
  • the component to be analyzed contained in the gas can be accurately collected.
  • the heat pipe is excellent in heat transfer property and temperature uniformity, but means for making the temperature uniform and a power source are unnecessary, so that the analytical sample collection device can be simplified.
  • a heating source of the working fluid of the heat pipe is a gas flowing through the gas flow passage, and a cooling source of the working fluid of the heat pipe is an atmosphere outside the gas flow passage.
  • the gas flowing in the gas flow path can be used as the heating source for the working fluid of the heat pipe and the atmosphere can be used as the cooling source for the working fluid of the heat pipe, it is not necessary to prepare a special heat source and use it immediately in the field. be able to.
  • Such an analytical sample collection device is excellent in practicality.
  • the gas sampling tube is divided by the heat pipe into a temperature region where the compound does not precipitate and a temperature region where the compound precipitates, and the liquid deposits the compound on the gas sampling tube. It is preferable to supply only to the temperature region.
  • the gas sampling pipe straddling the wall of the gas flow passage and the front and back thereof are maintained at a temperature at which the compound is not precipitated by the heat pipe.
  • the gas sampling tube straddling the wall of the gas flow passage and the front and back thereof are maintained at a temperature at which the compound is precipitated by the heat pipe.
  • the gas sampling tube divided into the temperature region where the compound does not precipitate via the heat pipe as in the present invention and the temperature region where the compound precipitates only in the temperature region where the compound precipitates against the gas sampling tube, always, If a cleaning solution or an absorbing solution is supplied, precipitation and / or adhesion of the compound can be prevented with a small amount of the cleaning solution or absorbing solution. Further, if the analysis target component in the collected gas is absorbed with a small amount of absorption liquid, the concentration of the analysis target component does not decrease, and the analysis accuracy can be maintained high. Furthermore, since no liquid is supplied to the temperature region where the compound does not precipitate, the temperature in that region does not decrease, and the compound does not precipitate in that region. This prevents the compound from precipitating in unexpected locations.
  • the heat pipe is preferably provided integrally with the gas sampling pipe on an outer wall surface of the gas sampling pipe.
  • Integrating the gas sampling tube and the heat pipe as in the analytical sample collecting apparatus of the present invention provides excellent heat transfer performance and further simplifies the configuration of the analytical sample collecting apparatus.
  • the analytical sample collection apparatus of the present invention is further supplied to a member connected to the gas collection tube and / or the outlet of the gas collection tube through the collection gas collected through the gas collection tube and the liquid supply means.
  • Gas-liquid separating means for separating the liquid, and a conduit connecting the gas sampling pipe and the gas-liquid separating means, the inner surface of the conduit is made hydrophilic, and flows through the inner surface in the guide pipe It is preferable to form a liquid film of the liquid.
  • a conduit having a hydrophilic inner surface is used as a conduit connected to the outlet of the gas sampling tube and guiding the collected gas and liquid discharged from the gas sampling tube to the gas-liquid separation means, the inner wall side of the conduit is liquidated. However, the sampling gas flows through the center side. For this reason, the contact area between the liquid and the collected gas is increased, and the analysis target component contained in the collected gas can be efficiently absorbed with a small amount of liquid, or the collected gas can be efficiently washed with a small amount of liquid.
  • the gas is a gas containing ammonia
  • the component to be analyzed is ammonia
  • the gas flow passage is a flue at the outlet of a flue gas denitration apparatus that processes boiler exhaust gas, and the gas in the gas flow passage is boiler exhaust gas in the flue.
  • the boiler exhaust gas flowing through the flue at the outlet of the flue gas denitration device installed in a thermal power plant etc. contains a low concentration of unconsumed ammonia, so-called leaked ammonia, among the ammonia supplied to the flue gas denitration device. . Further, the boiler exhaust gas contains sulfur oxide SO x and a lot of soot, and an ammonia compound is deposited when the temperature is lowered.
  • the analytical sample collection device of the present invention can prevent precipitation and / or adhesion of an ammonia compound by always flowing a liquid through the gas collection tube. Furthermore, since the collected gas from which dust and sulfur oxide SO x have been removed can be obtained, it is possible to use a highly sensitive analyzer that dislikes the presence of obstructions in the analyzer, and accurately analyze low concentrations of ammonia. Can do.
  • the cleaning liquid is allowed to flow to the distal end side of the gas sampling tube through the liquid supply means, and the temperature region in which the compound does not precipitate and the temperature region in which the compound precipitates in the gas sampling tube.
  • the method of using the analytical sample collection device is characterized in that the boundary portion is washed.
  • the compound may adhere to the boundary portion between the temperature region where the compound does not precipitate and the temperature region where the compound precipitates in the gas sampling tube. For this reason, it is preferable to periodically wash the boundary by flowing a cleaning solution to the tip of the gas sampling tube.
  • the present invention further includes the analysis sample collection device and an analysis device that analyzes the analysis target component contained in the gas body, wherein the liquid in the analysis sample collection device dissolves the compound and the analysis. It is a liquid that does not absorb the target component, and the analyzer is a collected sample analyzer that analyzes the collected gas washed with the liquid.
  • the present invention further includes the analysis sample collection device and an analysis device for analyzing the analysis target component contained in the liquid, wherein the liquid in the analysis sample collection device dissolves the compound and the analysis target. It is an absorption liquid that absorbs a component, and the analyzer is a collected sample analyzer that analyzes an absorption liquid that has absorbed the analysis target component.
  • the collected sample analyzer of the present invention is practical and easy to use because the sample form may be gas or liquid.
  • the liquid at a constant flow is continuously collected through the liquid supply means while continuously collecting a gas at a constant flow rate through the gas sampling pipe using the collected sample analyzer.
  • the sampled gas supplied into the gas sampling tube and cleaned with the liquid can be analyzed online.
  • the sample collection analyzer is used to continuously collect a constant flow rate of gas through the gas collection tube, while the liquid supply means supplies the absorption liquid at a constant flow rate.
  • the absorption liquid that is continuously supplied into the gas sampling tube and has absorbed the analysis target component can be analyzed online.
  • the present invention is a collected sample analysis method using the collected sample analyzer, wherein the analyzer is a liquid obtained through the absorption step, the washing step, and the mixing step described below, instead of the absorbing solution.
  • Absorption step gas is collected through the gas sampling tube, the gas is passed through the absorption liquid, and the analysis target component is absorbed by the absorption liquid.
  • Washing step After the absorption step, the member connected to the inside of the gas sampling tube and / or the outlet of the gas sampling tube is cleaned with the cleaning liquid supplied through the liquid supply means.
  • Mixing step The absorption liquid obtained in the absorption step and the cleaning liquid obtained in the washing step are mixed.
  • the collected sample analysis method of the present invention since it is possible to analyze the collected sample online or offline, a preferred method can be adopted depending on the application. Furthermore, since the sample may be in the form of gas or liquid, various analyzers can be used, making it easy to use.
  • the analysis sample collection device of the present invention has a simple device configuration, and the analysis target component contained in the gas can be collected accurately by using the analysis sample collection device of the present invention and the method of using the same. Further, the analysis target component contained in the gas can be accurately analyzed by the collected sample analyzer and the collected sample analysis method.
  • FIG. 1 is a schematic configuration diagram of a collected sample analyzer 1 according to a first embodiment of the present invention. It is an enlarged view of the II section of FIG. It is a schematic diagram of the III section of FIG. It is a schematic block diagram of the thermal power plant 100 which is a use place of the collection sample analyzer 1 of FIG. It is a figure which shows the relationship between the sulfur oxide density
  • FIG. 1 is a schematic configuration diagram of a collected sample analyzer 1 according to the first embodiment of the present invention.
  • 2 and 3 are enlarged views of a portion II in FIG. 1 and a schematic diagram of a portion III in FIG.
  • FIG. 4 is a schematic configuration diagram of a thermal power plant 100 which is a usage destination of the collected sample analyzer 1 according to the first embodiment of the present invention.
  • the sampling sample analyzer 1 of the first embodiment of the present invention includes a gas sampling tube 11 that collects a sample gas for analysis, a heat pipe 25 that holds the gas sampling tube 11 at a constant temperature, and a gas sampling tube 11. It includes a liquid supply device 65 that supplies a cleaning liquid, a cyclone 60 that separates the collected gas and the cleaning liquid so that analysis is possible, and an analyzer 81 that analyzes the sample gas.
  • the collected sample analyzer 1 is suitably used for analyzing the boiler exhaust gas of the thermal power plant 100, particularly for measuring the ammonia concentration in the exhaust gas on the outlet side of the flue gas denitration device 109 for removing nitrogen oxides NOx contained in the boiler exhaust gas. be able to.
  • the configuration of the collected sample analyzer 1 is detailed.
  • the collected sample analyzer 1 according to the first embodiment of the present invention can be used for purposes other than the measurement of the ammonia concentration in the exhaust gas on the outlet side of the flue gas denitration device 109.
  • the configuration is not limited to the configuration shown below.
  • the thermal power plant 100 has a pulverized coal-fired boiler 101, and the combustion gas generated in the furnace 103 heats a heat transfer tube 105 such as a heater, and further heats in a coal saver 107 installed in the rear flue. It is collected and discharged from the boiler 101.
  • the combustion gas exhaust gas whose temperature is discharged from the boiler 101 is sent to the flue gas denitration device 109, where nitrogen oxides NOx contained in the exhaust gas are removed.
  • the flue gas denitration device 109 is a selective contact reduction type flue gas denitration device, in which a denitration catalyst is housed in the denitration reactor, and ammonia is supplied into the exhaust gas upstream of the denitration reactor. Nitrogen oxide NOx contained in the exhaust gas reacts with ammonia on the denitration catalyst and is reduced to nitrogen and water.
  • the exhaust gas from which nitrogen oxides NOx have been removed by the flue gas denitration device 109 is sent to the air preheater 111, where the combustion air of the boiler 101 is preheated. Thereafter, the dust in the exhaust gas is gradually removed by the electric dust collector 113, and the sulfur oxide SOx in the exhaust gas is removed by the flue gas desulfurization device 115, and is diffused from the chimney 117 to the atmosphere.
  • the boiler 101, the flue gas denitration device 109, the air preheater 111, the electric dust collector 113, the flue gas desulfurization device 115, and the chimney 117 are connected by a flue 119.
  • the gas sampling pipe 11 is installed in the flue 119 at the outlet of the flue gas denitration device 109.
  • the gas sampling tube 11 is a device that collects exhaust gas flowing through the flue 119, is made of a metal cylindrical pipe, and the tip 12 extends from the sampling port provided in the flue wall (duct wall) 121.
  • the base end portion 13 is positioned outside (atmosphere side) of the flue wall 121.
  • the exhaust gas flowing through the flue 119 has a temperature of about 300 to 400 ° C., and the exhaust gas contains a large amount of soot in addition to nitrogen oxides NOx, sulfur oxides SOx, and ammonia. It must be able to withstand it.
  • the gas sampling tube 11 contains a catalyst component such as iron Fe, vanadium V, or molybdenum Mo, ammonia in the exhaust gas may be decomposed in the gas sampling tube 11.
  • a catalyst component such as iron Fe, vanadium V, or molybdenum Mo
  • ammonia in the exhaust gas may be decomposed in the gas sampling tube 11.
  • the gas sampling tube 11 is preferably a gas sampling tube in which an aluminum pipe is inserted into a stainless steel pipe, or a gas sampling tube in which aluminum is vapor-deposited on the inner surface of the stainless steel pipe.
  • the length and size of the gas sampling tube 11 are not particularly limited.
  • the inner diameter of the gas sampling tube 11 is about 5 to 25 mm ⁇ .
  • the part straddling the flue wall 121 and the front and rear parts thereof are maintained at a predetermined temperature via the heat pipe 25.
  • a region held at a predetermined temperature via the heat pipe 25 is referred to as a temperature holding region 15.
  • the length of the temperature holding region 15 of the gas sampling pipe 11 is about 100 to 300 mm inside the flue 119, about 100 to 300 mm outside the flue 119, and about 400 to 300 mm in total length. It is about 600 mm.
  • the thickness of the flue wall 121 is about 200 mm.
  • the distal end portion 12 and the proximal end portion vicinity 14 of the gas sampling tube 11 are non-temperature holding regions.
  • the non-temperature holding area is an area that is not held at a predetermined temperature via the heat pipe 25.
  • the temperature holding region 15 is held at about 300 ° C. This temperature is a temperature at which the ammonia compound does not precipitate in the temperature holding region 15 of the gas sampling tube 11.
  • the temperature of the temperature holding region 15 of the gas sampling tube 11 is not necessarily limited to 300 ° C., and may be a temperature at which the ammonia compound does not precipitate.
  • FIG. 5 shows the relationship between the concentration of sulfur oxide SO 3 in boiler exhaust gas and the production temperature of acidic ammonium sulfate (ammonium hydrogen sulfate).
  • acidic ammonium sulfate (ammonium hydrogen sulfate) is produced at about 230 ° C. Acidic ammonium sulfate is produced at a higher temperature as the ammonia concentration and the sulfur oxide SO 3 concentration are higher.
  • the heat pipe 25 is provided in the gas sampling pipe 11 so as to cover the temperature holding region 15 in the gas sampling pipe 11, straddles the flue wall 121, and is located inside the flue 119 and outside the flue 119. Yes.
  • the gas sampling pipe 11 and the heat pipe 25 are integrated, and are fixed to the flue wall 121 via a fixing flange 41 provided on the outer peripheral wall 35 of the heat pipe 25.
  • tube 11 and the heat pipe 25 may be another method.
  • the heat pipe 25 is a wick-type heat pipe, has a double pipe structure integrated with the gas sampling pipe 11, and has an airtight container called a container on the outer wall 19 of the gas sampling pipe 11.
  • the sealed container is formed by fixing a cylindrical pipe 27 sealed at both ends to the outer wall 19 of the gas sampling tube 13 in an airtight state.
  • a space 29 formed by the cylindrical pipe 27 and the gas sampling tube 11 has a capillary structure called a wick, and the space 29 is filled with a working fluid 31.
  • the cylindrical pipe 27 is provided with a pressure gauge 39 for detecting the pressure in the space 29 in order to confirm the operating state of the working fluid 31.
  • the heat pipe 25 and the gas sampling tube 11 are integrated, the heat transfer between the heat pipe 25 and the gas sampling tube 11 is excellent.
  • the heat pipe may be separate from the gas sampling tube 11.
  • the shape of the heat pipe may be a pipe shape provided with an insertion hole through which the gas sampling tube 11 is inserted in the center, and the gas sampling tube 11 may be inserted through the center of the heat pipe.
  • a heat pipe may be wound so as to cover the gas sampling tube 11. If it is such a structure, manufacture of a heat pipe becomes easy or it is also possible to use a commercially available heat pipe. In this case, it is necessary to prevent the heat transfer performance between the heat pipe and the gas sampling tube 11 from being lowered due to a gap between the heat pipe and the gas sampling tube 11.
  • the working fluid used in the heat pipe 25 only needs to hold the gas sampling tube 11 at 300 ° C.
  • Examples of the working fluid include heat transfer oil.
  • a heating fin 45 is attached to the outer peripheral wall 35 of the heat pipe 25 located in the flue 119 in order to promote heat transfer between the exhaust gas flowing in the flue 119 and the heat pipe 25. Although it is not necessary to provide the heating fin 45, the heat transfer between the exhaust gas flowing through the flue 119 and the heat pipe 25 is promoted by providing the heating fin 45, and as a result, the heat pipe 25 is made compact. be able to.
  • a portion located inside the flue 119 including a portion where the heating fin 45 is attached becomes a heating portion, and a portion located outside the flue 119 becomes a cooling portion.
  • the proximal end portion 14 of the gas sampling tube 11 is not covered with the heat pipe 25.
  • a cooling fin 21 is attached to the outer wall near the base end portion 14 of the gas sampling tube 11 in order to cool the sampling gas (sample gas) in the gas sampling tube 11 with the atmosphere.
  • the gas sampling tube 11 is connected to a cyclone 60 that is a gas-liquid separator via a conduit 51.
  • the cleaning liquid is sent to the gas sampling pipe 11 via the liquid supply device 65.
  • the conduit 51 is connected to the outlet of the gas sampling tube 11 via an adapter 58 and guides the sampling gas and the cleaning liquid sent from the gas sampling tube 11 to a cyclone 60 that is a gas-liquid separator.
  • pipe 51 consists of the cylindrical tube 52 of a tetrafluoroethylene resin, and the inner surface is hydrophilically processed.
  • the hydrophilic treatment of the inner surface of the cylindrical tube 52 can be performed, for example, by coating the inner surface with titanium oxide and providing a hydrophilic coating layer 53.
  • the conduit 51 may be a cylindrical tube 52 other than the tetrafluoroethylene resin, and the hydrophilic treatment of the inner surface may be a method other than the coating treatment.
  • the conduit 51 does not necessarily need to be a conduit having a hydrophilic inner surface.
  • the cleaning liquid is contained in the conduit 51 when the sampling gas and the hydrophilic cleaning liquid are caused to flow simultaneously.
  • a liquid film 54 is formed so as to cover the peripheral surface, and the collected gas flows through the central portion 55 of the conduit 51.
  • the cleaning liquid flows in the conduit 51 while forming the liquid film 54, the contact area with the sampling gas is large, and the sampling gas can be efficiently cleaned. Further, it is possible to prevent the ammonia compound from depositing and adhering to the conduit 51.
  • the adapter 58 is a fluororesin-based cylindrical body having rubber elasticity, and the gas sampling tube 11 and the conduit 51 are connected by inserting the gas sampling tube 11 and the conduit 51.
  • the adapter is not limited to the adapter 58, and may be another adapter as long as the gas sampling pipe 11, the conduit 51, and the liquid supply pipe 68 can be connected in an airtight and liquidtight manner. Further, a method other than the adapter may be used as long as the gas sampling pipe 11 and the conduit 51, and further the liquid supply pipe 68 can be connected in an airtight and liquidtight manner.
  • the cyclone 60 which is a gas-liquid separator, separates the mixture of the sampling gas and the cleaning liquid sent from the conduit 51 into the sampling gas and the cleaning liquid.
  • the cyclone 60 has a ball 63 inside, and a trap is formed by the cone portion 62 and the ball 63 of the cyclone.
  • the collected gas and the cleaning liquid separated by the cyclone 60 are sent to the analyzer 81 and the liquid supply tank 66, respectively.
  • a collision-type gas-liquid separation device using an inertial force, a louver-type gas-liquid separation device, or the like can be used as the gas-liquid separation device that separates the collected gas and the cleaning liquid.
  • Two or more gas-liquid separators may be arranged in series, or different types of gas-liquid separators may be arranged in series.
  • the liquid supply device 65 includes a liquid supply tank 66, a liquid supply pump 67, and a liquid supply pipe 68, and supplies the cleaning liquid to the non-temperature holding region on the base end portion 13 side of the gas sampling pipe 11 through the liquid supply pipe 68.
  • the liquid supply pipe 68 has an L-shaped pipe body 70 which is inserted into the adapter 58 and fixed.
  • the tip 69 of the liquid supply pipe 68 is installed so as to be located at the boundary between the temperature holding area 15 of the gas sampling pipe 11 and the non-temperature holding area on the base end portion 13 side of the gas sampling pipe 11.
  • the cleaning liquid is circulated, and the cleaning liquid supplied to the gas sampling pipe 11 is sent to the cyclone 60 through the conduit 51 together with the sampling gas, separated from the sampling gas, and returned to the liquid supply tank 66.
  • the liquid supply tank 66 is a sealed tank, and is connected to the cyclone 60 through a pipe 64 so as to be airtight.
  • a cleaning solution that can dissolve the ammonia compound and does not absorb ammonia is used.
  • acidic ammonium sulfate (ammonium hydrogen sulfate) is mentioned as an ammonia compound
  • alkaline water for example, sodium hydroxide aqueous solution
  • the sampling gas cleaned with the cleaning liquid does not contain ammonia compounds and dust, but contains ammonia gas.
  • the analyzer 81 analyzes ammonia contained in the collected gas (sample gas) from which the cleaning liquid has been separated by the cyclone 60.
  • the analyzer that can be used here is not limited to a specific analyzer as long as ammonia contained in the collected gas can be analyzed online. Of course, it is necessary to use an analyzer according to the required accuracy. Collecting gas delivered to the analyzer 81 (sample gas), soot, can be used analyzer precision for SO x is removed.
  • a known gas analyzer can be used.
  • the analyzer 81 includes a type of analyzer that does not include a gas flow meter and a suction pump. In such an analyzer, a gas flow meter and a suction pump may be provided separately.
  • the analyzer 81 is operated and exhaust gas is continuously collected at a constant flow rate through the gas sampling tube 11.
  • the cleaning liquid is continuously supplied to the non-temperature holding region on the base end 13 side of the gas sampling tube 11 through the liquid supply device 65 at a constant flow rate.
  • the sampled gas collected through the gas sampling tube 11 is cleaned in contact with the cleaning liquid in the process of flowing through the gas sampling tube 11 and the conduit 51 connected to the cyclone 60. In this process, soot and SO x are absorbed by the cleaning liquid.
  • the collected gas from which the cleaning liquid has been separated by the cyclone 60 is measured for the ammonia concentration by the gas analyzer 81.
  • the ammonia gas in the exhaust gas online by collecting the collected gas at a constant flow rate and supplying the cleaning liquid at a constant flow rate using the collected sample analyzer 1.
  • the collected gas sent to the analyzer 81 is washed with a washing liquid and the ammonia compound and dust are removed, so that it can be analyzed with high accuracy.
  • the dust contained in the exhaust gas adsorbs ammonia.
  • the soot dust is washed by using the sampling sample analyzer 1, the ammonia adsorbed to the dust can be analyzed.
  • a conventional gas sampling tube is not divided into a temperature holding region and a non-temperature holding region, and the temperature holding region of this embodiment is used.
  • the cleaning liquid was also supplied to the corresponding part.
  • the same location of the gas sampling tube becomes a temperature of about 300 ° C. or a temperature of 100 ° C. or less.
  • an ammonia compound is precipitated and easily adheres to the gas sampling tube.
  • the temperature changes greatly cleaning with a cleaning solution is difficult, and the deposited ammonia compound cannot be sufficiently cleaned.
  • the gas sampling tube 11 is divided into a temperature holding region 15 and a non-temperature holding region, and the temperature holding region 15 is always held at a constant temperature.
  • the compound does not precipitate.
  • the non-temperature holding region on the base end portion 13 side is a temperature region where the ammonia compound is precipitated, but since the cleaning liquid is constantly supplied to this portion, the ammonia compound does not precipitate. Even if deposited, the ammonia compound does not adhere to the gas sampling tube 11 because it dissolves in the cleaning liquid. Thereby, the trouble by precipitation and adhesion of an ammonia compound can be solved.
  • the temperature holding region 15 of the gas sampling pipe 11 is replaced with the heat pipe 25 and an electric heater or a heat medium device is used, both are not preferable as the temperature holding means.
  • the heat pipe 25 has a simple structure and is compact but has excellent temperature uniformity and heat transfer. Furthermore, no power source is required, which is excellent as a temperature holding means for the gas sampling tube 11. In order to operate the heat pipe 25, a heating source and a cooling source are required. However, since the exhaust gas flowing through the flue 119 can be used as the heating source and the atmosphere can be used as the cooling source, it can be easily put into practical use. be able to.
  • ammonia compounds may adhere to the boundary between the temperature holding region 15 of the gas sampling tube 11 and the non-temperature holding region on the base end 13 side of the gas sampling tube 11 with a long-term operation.
  • the cleaning liquid is periodically flowed to the distal end portion 12 side of the gas sampling tube 11 through the liquid supply device 65, and the temperature holding region 15 of the gas sampling tube 11 and the proximal end portion 13 side of the gas sampling tube 11 are It is preferable to clean the boundary portion with the non-temperature holding region and the temperature holding region 15.
  • An example of the cleaning liquid is water. This cleaning operation is also applicable to a collected sample analyzer according to another embodiment described later.
  • FIG. 6 is a schematic configuration diagram of the collected sample analyzer 2 according to the second embodiment of the present invention.
  • the same components as those of the collected sample analyzer 1 according to the first embodiment of the present invention are denoted by the same reference numerals and description thereof is omitted.
  • the collected sample analyzer 2 according to the second embodiment continuously collects exhaust gas and analyzes it online, similarly to the collected sample analyzer 1 according to the first embodiment.
  • the collected sample analyzer 1 according to the first embodiment analyzes the collected gas after cleaning
  • the collected sample analyzer 2 according to the second embodiment analyzes the absorbing solution.
  • the cleaning liquid is supplied to the gas sampling tube 11.
  • the absorbing liquid is supplied to the gas sampling tube 11.
  • the collected gas is brought into contact with the absorbing liquid, the ammonia contained in the collected gas is absorbed by the absorbing liquid, and the absorbed liquid is analyzed by the analyzing apparatus to obtain the ammonia concentration.
  • the absorption liquid is supplied in the same manner as the cleaning liquid of the collected sample analyzer 1 according to the first embodiment.
  • the supplied absorption liquid is used to wash the region so that the ammonia compound does not precipitate in the non-temperature holding region on the base end portion 13 side of the gas sampling tube 11, Alternatively, it plays a role of dissolving the ammonia compound deposited in the region.
  • the absorption liquid used here needs to absorb ammonia gas contained in the sampling gas, dissolve the ammonia compound, and absorb ammonia, ammonium ions, etc. contained in the ammonia compound.
  • Examples of such absorbing liquid include acidic aqueous solutions such as boric acid aqueous solution.
  • the absorption liquid is supplied to the non-temperature holding region on the base end portion 13 side of the gas sampling tube 11 in the same manner as the sampling sample analyzer 1 according to the first embodiment, and then sent to the cyclone 61 via the conduit 51. Although it is separated from the collected gas here, the separated absorption liquid is sent to the analyzer 83 without being circulated.
  • the cyclone 61 used here is not equipped with the ball 63, and the absorbing liquid is continuously discharged.
  • a suction pump is basically provided to suck the collected gas using the suction pump provided in the analyzer 81.
  • the second embodiment is not provided.
  • the suction pump 75 is installed on the downstream side of the cyclone 61, and the collected gas is sucked using the suction pump 75.
  • a gas meter 76 is installed on the downstream side of the suction pump 75 to measure the amount of suction gas.
  • the analysis device 83 can use a known analyzer that can analyze ammonia contained in the absorbing solution online, and may be appropriately selected and used according to the analysis accuracy and the like.
  • An example of the analysis device 83 is a flow injection (FIA) analysis device.
  • the FIA analyzer causes a color development (fading) reaction with a liquid sample containing a component to be analyzed, in this embodiment, an absorption liquid containing ammonia and a reagent, and measures the ammonia concentration from the absorbance of this solution.
  • the suction pump 75 is operated, and the exhaust gas is continuously collected at a constant flow rate through the gas sampling pipe 11.
  • the absorbing liquid is continuously supplied at a constant flow rate to the non-temperature holding region on the base end portion 13 side of the gas sampling tube 11 through the liquid supply device 65.
  • the sampled gas collected through the gas sampling tube 11 comes into contact with the absorbing solution in the process of flowing through the gas collecting tube 11 and the conduit 51 connected to the cyclone 61, and ammonia is absorbed by the absorbing solution.
  • the absorption liquid separated by the cyclone 61 is measured for ammonia concentration by the analyzer 83.
  • FIG. 7 is a schematic configuration diagram of the collected sample analyzer 3 according to the third embodiment of the present invention.
  • FIG. 8 is a flowchart showing the procedure for analyzing the collected gas using the collected sample analyzer 3.
  • the same components as those of the collected sample analyzers 1 and 2 according to the first and second embodiments of the present invention are denoted by the same reference numerals and description thereof is omitted.
  • the sampled sample analyzer 3 according to the third embodiment collects and analyzes exhaust gas by batch operation.
  • the collected sample analyzer 3 according to the third embodiment has an absorption bottle 77 for absorbing the ammonia contained in the collected gas collected via the gas sampling tube 11 into the absorption liquid, and for aspirating the collected gas.
  • a suction pump 75 and a gas meter 76 are provided.
  • One end portion of the conduit 51 is inserted into the absorption bottle 77 so as to be immersed in the absorption liquid, and the gas phase portion of the absorption bottle 77 and the suction pump 75 are connected via the tube 78.
  • the gas meter 76 is connected to the exhaust side of the suction pump 75.
  • the non-temperature holding region on the base end 13 side of the gas sampling tube 11 is extremely short, and a ball valve type three-way valve 79 is provided at the base end 13 of the gas sampling tube 11. Is installed.
  • the non-temperature holding region on the base end portion 13 side of the gas sampling tube 11 is preferably as short as possible, and should not be provided that the three-way valve 79 can be attached.
  • a liquid supply pipe 68 and a conduit 51 are connected to the three-way valve 79.
  • a mixed liquid of an absorbing liquid that has absorbed ammonia in exhaust gas and a cleaning liquid that has cleaned the three-way valve 79 and the conduit 51 is analyzed.
  • the absorption liquid that absorbs ammonia can be the same as the absorption liquid used in the collection sample analyzer 2 according to the second embodiment, and the absorption liquid and the cleaning liquid may be the same type of liquid.
  • the method for analyzing ammonia contained in the mixed solution of the absorbing solution and the cleaning solution is not limited to a specific method, and a known analyzer such as a liquid chromatograph can be used.
  • step S1 absorption process
  • step S2 washing step
  • a three-way valve 79 is connected to the base end portion 13 of the gas sampling tube 11, and a liquid supply pipe 68 and a conduit 51 are connected to this, but the base end portion of the gas sampling tube 11 is connected. 13 may be directly connected to the liquid supply pipe 68 and the conduit 51, and each pipe may be provided with a valve for switching. Since exhaust gas contains a large amount of soot, it is preferable that the valve to be used is not easily blocked by soot, such as a ball valve.
  • the structure on the base end portion 13 side of the gas sampling pipe 11, the connection procedure of the conduit 51 and the liquid supply pipe 68 are the same as those of the sampling sample analyzer 1 according to the first embodiment. You may make it wash
  • the absorption liquid and the cleaning liquid absorb ammonia, and the absorption liquid (including the cleaning liquid) that has absorbed ammonia is analyzed.
  • the collected gas may be analyzed.
  • the cleaning liquid used in the first embodiment is used as the absorption liquid and the cleaning liquid, the collected gas after passing through the cleaning liquid and the ammonia gas generated during the cleaning are collected in a gas holder or the like, and the ammonia contained in this gas is collected. You may analyze.
  • FIG. 9 is a schematic configuration diagram of the collected sample analyzer 4 according to the fourth embodiment of the present invention.
  • the same components as those of the collected sample analyzers 1, 2, and 3 according to the first to third embodiments of the present invention are denoted by the same reference numerals and description thereof is omitted.
  • the collected sample analyzer 4 according to the fourth embodiment continuously collects exhaust gas, continuously supplies a cleaning liquid, and is cleaned with the cleaning liquid. Analyze later collected gas online. Therefore, the collected sample analyzer 4 according to the fourth embodiment and the collected sample analyzer 1 according to the first embodiment have the same basic configuration. However, the temperature of the gas sampling tube 11 is greatly different between the sampling sample analyzer 4 according to the fourth embodiment and the sampling sample analyzer 1 according to the first embodiment. Accordingly, the structure of the heat pipe 26 and the tip position of the liquid supply pipe are different from those of the collected sample analyzer 1 according to the first embodiment.
  • the temperature of the temperature holding region of the gas sampling tube 11 is held at a temperature of 100 ° C. or lower. This is because the temperature holding region of the gas sampling tube 11 is set to a temperature at which the ammonia compound is deposited and the cleaning liquid does not become vapor, and this temperature holding region can be reliably cleaned with the cleaning liquid, thereby stably collecting and analyzing the exhaust gas. This is to improve accuracy.
  • the temperature holding region 15 of the gas sampling tube 11 is a portion straddling the flue wall 121 and its front and rear portions, specifically, a region covered with the heat pipe 26. It is.
  • the total length of the temperature holding region 15 of the gas sampling tube 11 is the same as that of the gas sampling tube 11 of the sampling sample analyzer 1 according to the first embodiment, but the gas sampling tube of the sampling sample analyzer 1 according to the first embodiment. Compared to 11, the length inside the flue 119 is short, and conversely, the length outside the flue 119 is long.
  • the distal end portion 12 and the proximal end portion vicinity 14 of the gas sampling tube 11 are non-temperature holding regions.
  • the non-temperature holding area is an area that is not held at a predetermined temperature via the heat pipe 26.
  • the heat pipe 26 is integrally provided on the outer wall 19 of the gas sampling tube 11 in the same manner as the heat pipe 25 of the sampling sample analyzer 1 according to the first embodiment.
  • the heat pipe 26 is a wick-type heat pipe, and includes a cooling unit 30 provided so as to be orthogonal to the cylindrical unit 28 in addition to the cylindrical unit 28 covering the gas sampling tube 11.
  • the cooling unit 30 is provided integrally with the cylindrical unit 28 so as to communicate with the cylindrical unit 28 in the cylindrical unit 28 located outside the flue 119. Cooling fins 37 for promoting heat dissipation are provided on the outer peripheral surface of the cooling unit 30.
  • the working fluid used in the heat pipe 26 only needs to be able to hold the gas sampling tube 11 at 100 ° C. or lower, and examples thereof include water, methanol, and acetone. Since the heat pipe 26 and the gas sampling tube 11 may be separated from each other, they are the same as the heat pipe 25 of the collected sample analyzer 1 according to the first embodiment, and thus the description thereof is omitted.
  • the liquid supply pipe 68 is provided so that the tip 69 is located at the end of the temperature holding area 15 of the gas sampling tube 11 on the side of the flue 119 so that the entire temperature holding area 15 of the gas sampling pipe 11 can be cleaned.
  • the structures and specifications of the liquid supply device 65, the conduit 51, and the cyclone 60 are the same as those of the collected sample analyzer 1 according to the first embodiment.
  • the cleaning liquid is the same as the cleaning liquid used in the collected sample analyzer 1 according to the first embodiment.
  • the procedure for measuring the ammonia concentration in the exhaust gas of the sampling sample analyzer 4 is the same as the procedure for measuring the ammonia concentration in the exhaust gas of the sampling sample analyzer 1 according to the first embodiment.
  • the temperature holding region 15 of the gas sampling tube 11 is set to a temperature at which the ammonia compound does not precipitate, and the gas sampling tube 11 on the base end 13 side where the ammonia compound may be deposited may be deposited.
  • the non-temperature holding area is cleaned with a cleaning solution.
  • the temperature holding region 15 of the gas sampling tube 11 is set to a temperature at which the ammonia compound is deposited and the cleaning liquid is not vaporized. Rinse thoroughly with a cleaning solution. Note that, also in the sample collection analyzer 4 according to the fourth embodiment, the non-temperature holding region on the base end portion 13 side of the gas sampling tube 11 is cleaned with the cleaning liquid.
  • the collected sample analyzer 1 according to the first embodiment and the collected sample analyzer 4 according to the fourth embodiment are greatly different in the temperature of the gas sampling tube 11, and accordingly, the structure of the heat pipes 25 and 26. And the position of the front-end
  • the specific region of the gas sampling tube 11 is always kept at a constant temperature as the temperature holding region 15, and the temperature region where the ammonia compound is deposited is washed with the cleaning liquid, thereby stabilizing the exhaust gas. The same point is achieved in improving sampling and analysis accuracy.
  • FIG. 10 is a schematic configuration diagram of the collected sample analyzer 5 according to the fifth embodiment of the present invention.
  • the same components as those of the collected sample analyzers 1, 2, 3, and 4 according to the first to fourth embodiments of the present invention are denoted by the same reference numerals and description thereof is omitted.
  • the collected sample analyzer 5 according to the fifth embodiment uses the same apparatus as the collected sample analyzer 4 according to the fourth embodiment, and is similar to the collected sample analyzer 2 according to the second embodiment. Analyze. Therefore, the sample collection analyzer 5 according to the fifth embodiment is different from the sample sample analysis device 4 according to the fourth embodiment in the configuration around the cyclone 61, and the configuration around the cyclone 61 is the second embodiment. This is the same as the collected sample analyzer 2 according to FIG.
  • the absorbing liquid and cleaning liquid used in the collected sample analyzer 5 according to the fifth embodiment are the same as the absorbing liquid and cleaning liquid used in the collected sample analyzer 2 according to the second embodiment.
  • the procedure for measuring the ammonia concentration in the exhaust gas of the collected sample analyzer 5 according to the fifth embodiment is the same as that of the collected sample analyzer 2 according to the second embodiment.
  • the temperature of the temperature holding region 15 of the gas sampling tube 11 is different from that of the sample collection analyzer 2 according to the second embodiment, the point that the exhaust gas can be stably collected and the high analysis accuracy can be realized is the same. .
  • FIG. 11 is a schematic configuration diagram of the collected sample analyzer 6 according to the sixth embodiment of the present invention.
  • the same components as those of the collected sample analyzers 1, 2, 3, 4, 5 according to the first to fifth embodiments of the present invention are denoted by the same reference numerals and description thereof is omitted.
  • the collected sample analyzer 6 according to the sixth embodiment uses the same device as the collected sample analyzer 4 according to the fourth embodiment, and collects exhaust gas and collects the exhaust gas in the same manner as the collected sample analyzer 3 according to the third embodiment. Analyze in batch. Therefore, the sample collection analyzer 6 according to the sixth embodiment is different from the sample collection analyzer 4 according to the fourth embodiment in the structure and arrangement of the gas collection tube 11, the heat pipe 26, and the liquid supply tube 68. Although the same, the downstream side of the conduit 51 and the liquid supply tank 66 are the same as those of the collected sample analyzer 3 according to the third embodiment.
  • the absorbing liquid and cleaning liquid used in the collected sample analyzer 6 according to the sixth embodiment are the same as the absorbing liquid and cleaning liquid used in the collected sample analyzer 3 according to the third embodiment.
  • the analyzer can use a liquid chromatograph in the same manner as the collected sample analyzer 3 according to the third embodiment.
  • the procedure for measuring the ammonia concentration in the exhaust gas of the collected sample analyzer 6 according to the sixth embodiment is basically the same as the procedure for measuring the ammonia concentration of the collected sample analyzer 3 according to the third embodiment.
  • the collected sample analyzer 6 according to the sixth embodiment has a lower temperature in the temperature holding region 15 of the gas collection tube 11 than the collected sample analyzer 3 according to the third embodiment, and the outlet of the gas collection tube 11.
  • the three-way valve 79 which is a switching valve is not provided in the part, it differs from the collected sample analyzer 3 according to the third embodiment, but the technical idea and the operational effect are basically the same, and the exhaust gas is stable. Higher analysis accuracy can be realized.
  • the absorption liquid and the cleaning liquid absorb ammonia, and the absorption liquid (including the cleaning liquid) that has absorbed ammonia is analyzed. These are as described in the collection sample analyzer 3 according to the third embodiment.
  • the collected sample analyzer according to the present invention holds the gas sampling tube 11 at a predetermined temperature via the heat pipes 25 and 26. Therefore, the region where the compound is deposited is specified, and cleaning with the cleaning liquid becomes easy. Furthermore, it is possible to prevent the precipitation and / or adhesion of the compound by always flowing the liquid in the temperature range where the compound is precipitated, and it is possible to collect the analysis sample stably and to include the analysis target contained in the gas. Ingredients can be collected accurately.
  • the heat pipes 25 and 26 are excellent in heat transfer properties and temperature uniformity, but do not require a means for equalizing the temperature or a power source, and the gas flowing through the gas flow path to the heating source of the working fluid. If the atmosphere is used as a cooling source for the working fluid, there is no need to prepare a special heat source, which is excellent in practicality.
  • a heat pipe of another kind for example, a self-excited vibration heat pipe.
  • the sampling sample analyzer according to the present invention since it is possible to analyze the collected sample online or offline, a preferable method can be adopted depending on the application. Furthermore, since the sample may be in the form of gas or liquid, various analyzers can be used, which is convenient and excellent in practicality.
  • the sampling sample analyzer according to the present invention has been described by taking the flue gas of a thermal power plant as an example. However, the analytical sample sampling device according to the present invention and the method of using the same, the sampling sample analyzer and the sampling It goes without saying that the sample analysis method is applicable to collection and analysis of other gases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Provided are an analysis sample collection device and a method for using the analysis sample collection device that make it possible to accurately collect an analyte included in a gas using a simple device structure and a collected sample analysis device and collected sample analysis method that make it possible to accurately analyze an analyte included in a gas using a simple device structure. An analysis sample collection device includes a gas collection tube (11) that has a leading end (12) side inserted into a flue (119) and is for collecting gas that is inside the flue (119), a temperature maintaining means for keeping the gas collection tube (11) at a prescribed temperature, and a liquid supply device (65) for supplying liquid to the inside of the gas collection tube (11) or to a member connected to an outlet portion of the gas collection tube. The gas is a gas in which a portion of the compounds included in the gas precipitate when the temperature decreases, and the temperature maintaining means is a heat pipe (25).

Description

分析試料採取装置及びその使用方法、採取試料分析装置及び採取試料分析方法ANALYSIS SAMPLING DEVICE AND METHOD OF USING THE SAME
 本発明は、分析用試料を採取する分析試料採取装置及びその使用方法、採取試料を分析する採取試料分析装置及び採取試料分析方法に関する。 The present invention relates to an analytical sample collection device for collecting a sample for analysis, a method for using the same, a collected sample analysis device for analyzing a collected sample, and a collected sample analysis method.
 一般的な火力発電所では、排ガスに含まれる窒素酸化物(NO)を除去するため選択接触還元法(SCR法)を使用した脱硝装置が設置されている。選択接触還元法は、排ガス中にアンモニアを吹き込み、脱硝触媒上でNOとアンモニアとを反応させNOを窒素と水とに分解する方法である。脱硝触媒は、使用に伴い性能が劣化するため、脱硝触媒から未反応のまま排出されるアンモニア(リークアンモニアと呼ばれる)の濃度を測定することで性能監視が行われる。 In general thermal power plants, a denitration apparatus using a selective catalytic reduction method (SCR method) is installed in order to remove nitrogen oxides (NO x ) contained in exhaust gas. The selective catalytic reduction method is a method in which ammonia is blown into exhaust gas, and NO X and ammonia are reacted on a denitration catalyst to decompose NO X into nitrogen and water. Since the performance of the denitration catalyst deteriorates with use, performance monitoring is performed by measuring the concentration of ammonia (referred to as leaked ammonia) discharged from the denitration catalyst in an unreacted state.
 脱硝装置出口排ガス中のアンモニア濃度は、脱硝触媒の劣化把握、さらには酸性硫安によるエアーヒーターの閉塞に大きく関係しているため高精度で測定することが求められる。しかしながら脱硝装置出口排ガスの場合、排ガス中に多量に含まれる煤塵、さらに硫黄酸化物(SO)、NOがアンモニアの正確な分析を困難にしている。煤塵が多い場合、サンプリング系統の閉塞、コンタミネーションの原因となる。またSOを含むため、温度が低下すると酸性硫安が生成する。 The ammonia concentration in the exhaust gas at the outlet of the denitration apparatus is required to be measured with high accuracy since it is greatly related to the grasp of the deterioration of the denitration catalyst and the blockage of the air heater due to acidic ammonium sulfate. However, in the case of exhaust gas at the exit of the denitration device, soot, a sulfur oxide (SO X ), and NO X contained in a large amount in the exhaust gas make accurate analysis of ammonia difficult. If there is a lot of dust, it may cause clogging of the sampling system and contamination. In addition, since it contains SO X , acidic ammonium sulfate is produced when the temperature is lowered.
 これに対し、本件出願人らは、排ガス中のアンモニア濃度を高精度で分析する方法として、2重構造のガス採取管を採用し、内管側に洗浄液を流し内管内を洗浄し、その洗浄液も吸収液と一緒に分析対象とする方法を開発している。(例えば特許文献1参照)。 On the other hand, the present applicants adopted a double-structure gas sampling pipe as a method for analyzing the ammonia concentration in the exhaust gas with high accuracy, and flushed the inner pipe side to wash the inner pipe. Has also developed a method for analysis along with the absorbent. (For example, refer to Patent Document 1).
特開2004-117271号公報JP 2004-117271 A
 特許文献1に記載の方法は、アンモニア(含むアンモニア化合物)の付着の可能性のある部分を洗浄し、その洗浄液も分析対象とするので、洗浄によりアンモニア(含むアンモニア化合物)が完全に除去されている場合、アンモニア濃度を高精度で分析することができる。しかしながら実際には、ガス採取管に付着したアンモニア(含むアンモニア化合物)を洗浄操作により完全に除去することができない場合もある。 In the method described in Patent Document 1, a portion where ammonia (including ammonia compound) may adhere is cleaned, and the cleaning liquid is also an analysis target. Therefore, ammonia (including ammonia compound) is completely removed by cleaning. If so, the ammonia concentration can be analyzed with high accuracy. However, in practice, ammonia (including ammonia compound) adhering to the gas sampling pipe may not be completely removed by the cleaning operation.
 洗浄操作を十分に行うべく、多量の洗浄液で洗浄することも考えられるが、多量の洗浄液で洗浄すると回収された洗浄液中のアンモニア濃度が低く、分析精度が低下する。また廃液を増やす原因となる。以上のように、特許文献1に記載の方法は優れた方法ではあるが、より安定的に、またより正確に排ガス中のアンモニア濃度を測定するには更なる改善が必要である。このような課題は、排ガス中のアンモニア濃度測定に限らず、他の分析用ガスの採取及び分析の際にも当てはまる。 It is conceivable to perform washing with a large amount of washing liquid in order to perform the washing operation sufficiently. However, when washing with a large quantity of washing liquid, the ammonia concentration in the collected washing liquid is low and the analysis accuracy is lowered. It also causes an increase in waste liquid. As described above, the method described in Patent Document 1 is an excellent method, but further improvement is required to measure the ammonia concentration in the exhaust gas more stably and more accurately. Such a problem is applicable not only to the measurement of ammonia concentration in exhaust gas but also to the collection and analysis of other analytical gases.
 本発明の目的は、簡単な装置構成で、ガスに含まれる分析対象成分を正確に採取することが可能な分析試料採取装置、分析試料採取装置の使用方法、ガスに含まれる分析対象成分を正確に分析することができる採取試料分析装置及び採取試料分析方法を提供することである。 An object of the present invention is to provide an analytical sample collection device capable of accurately collecting an analysis target component contained in a gas with a simple apparatus configuration, a method of using the analytical sample collection device, and an accurate analysis target component contained in a gas. It is an object of the present invention to provide a collected sample analysis apparatus and a collected sample analysis method that can be analyzed.
 本発明は、先端部側がガス流通路に挿入され前記ガス流通路内のガスを採取するガス採取管と、前記ガス採取管を所定の温度に保持する温度保持手段と、前記ガス採取管内及び/又は前記ガス採取管の出口部に接続される部材に液を供給する液供給手段と、を含み、前記ガスは、温度が低下するとガスに含まれる一部の化合物が析出するガスであり、前記温度保持手段がヒートパイプであることを特徴とする分析試料採取装置である。 The present invention includes a gas sampling pipe for collecting the gas in the gas flow path with a distal end portion inserted into the gas flow path, temperature holding means for holding the gas sampling pipe at a predetermined temperature, and in the gas sampling pipe and / or Or a liquid supply means for supplying a liquid to a member connected to an outlet portion of the gas sampling pipe, and the gas is a gas in which a part of the compound contained in the gas is precipitated when the temperature is lowered, An analytical sample collection device characterized in that the temperature holding means is a heat pipe.
 ヒートパイプを介してガス採取管を所定温度に保持することのできる本発明の分析試料採取装置は、化合物が析出する領域を限定することができる。このような分析試料採取装置の場合、化合物が析出する領域が特定されているので洗浄液による洗浄も容易である。さらに液供給手段を介して化合物が析出する温度領域に常時、液を流しておくことで化合物の析出及び/又は付着を防止することが可能であり、分析試料を安定的に採取可能であると共にガスに含まれる分析対象成分を正確に採取することができる。またヒートパイプは、熱伝達性、温度の均一性に優れる一方で、温度を均一化させるための手段さらには電源も不要であるから分析試料採取装置を簡素化することができる。 The analytical sample collection device of the present invention that can maintain the gas collection tube at a predetermined temperature via the heat pipe can limit the region where the compound is deposited. In the case of such an analytical sample collection device, the region where the compound is deposited is specified, so that cleaning with a cleaning solution is easy. Furthermore, it is possible to prevent the precipitation and / or adhesion of the compound by constantly flowing the liquid through the liquid supply means to the temperature region where the compound is precipitated, and it is possible to collect the analysis sample stably. The component to be analyzed contained in the gas can be accurately collected. In addition, the heat pipe is excellent in heat transfer property and temperature uniformity, but means for making the temperature uniform and a power source are unnecessary, so that the analytical sample collection device can be simplified.
 本発明において、前記ヒートパイプの作動流体の加熱源が、前記ガス流通路内を流通するガスであり、前記ヒートパイプの作動流体の冷却源が、前記ガス流通路外の大気であることが好ましい。 In the present invention, it is preferable that a heating source of the working fluid of the heat pipe is a gas flowing through the gas flow passage, and a cooling source of the working fluid of the heat pipe is an atmosphere outside the gas flow passage. .
 ヒートパイプの作動流体の加熱源にガス流通路内を流通するガスを、ヒートパイプの作動流体の冷却源に大気を使用することができれば、特別の熱源を用意する必要がなく現場で直ちに使用することができる。このような分析試料採取装置は、実用性に優れる。 If the gas flowing in the gas flow path can be used as the heating source for the working fluid of the heat pipe and the atmosphere can be used as the cooling source for the working fluid of the heat pipe, it is not necessary to prepare a special heat source and use it immediately in the field. be able to. Such an analytical sample collection device is excellent in practicality.
 本発明において、前記ガス採取管は、前記ヒートパイプにより前記化合物が析出しない温度領域と前記化合物が析出する温度領域とに区分けされ、前記液は、前記ガス採取管に対しては化合物が析出する温度領域にのみ供給されることが好ましい。 In the present invention, the gas sampling tube is divided by the heat pipe into a temperature region where the compound does not precipitate and a temperature region where the compound precipitates, and the liquid deposits the compound on the gas sampling tube. It is preferable to supply only to the temperature region.
 本発明において、前記ガス採取管は、少なくとも前記ガス流通路の壁を跨ぐ部分及びその前後が、前記ヒートパイプにより前記化合物が析出しない温度に保持されているのが好ましい。 In the present invention, it is preferable that at least a portion of the gas sampling pipe straddling the wall of the gas flow passage and the front and back thereof are maintained at a temperature at which the compound is not precipitated by the heat pipe.
 本発明において、前記ガス採取管は、少なくとも前記ガス流通路の壁を跨ぐ部分及びその前後が、前記ヒートパイプにより前記化合物が析出する温度に保持されているのが好ましい。 In the present invention, it is preferable that at least a portion of the gas sampling tube straddling the wall of the gas flow passage and the front and back thereof are maintained at a temperature at which the compound is precipitated by the heat pipe.
 本発明のようにヒートパイプを介して化合物が析出しない温度領域と化合物が析出する温度領域とに区分されたガス採取管の場合、ガス採取管に対し化合物が析出する温度領域にのみ、常時、洗浄液又は吸収液を供給すれば、少ない洗浄液量又は吸収液量で化合物の析出及び/又は付着を防止することができる。また少ない吸収液量で採取ガス中の分析対象成分を吸収すれば分析対象成分の濃度が低下せず、分析精度を高く維持することができる。さらに化合物が析出しない温度領域には、液が供給されないのでその領域の温度が低下せず、その領域に化合物が析出することはない。これにより予期せぬ場所への化合物の析出が防止される。 In the case of the gas sampling tube divided into the temperature region where the compound does not precipitate via the heat pipe as in the present invention and the temperature region where the compound precipitates, only in the temperature region where the compound precipitates against the gas sampling tube, always, If a cleaning solution or an absorbing solution is supplied, precipitation and / or adhesion of the compound can be prevented with a small amount of the cleaning solution or absorbing solution. Further, if the analysis target component in the collected gas is absorbed with a small amount of absorption liquid, the concentration of the analysis target component does not decrease, and the analysis accuracy can be maintained high. Furthermore, since no liquid is supplied to the temperature region where the compound does not precipitate, the temperature in that region does not decrease, and the compound does not precipitate in that region. This prevents the compound from precipitating in unexpected locations.
 本発明において、前記ヒートパイプは、前記ガス採取管の外壁面に前記ガス採取管と一体的に設けられていることが好ましい。 In the present invention, the heat pipe is preferably provided integrally with the gas sampling pipe on an outer wall surface of the gas sampling pipe.
 本発明の分析試料採取装置のようにガス採取管とヒートパイプとを一体化すれば伝熱性能に優れ、さらに分析試料採取装置の構成がシンプルになる。 Integrating the gas sampling tube and the heat pipe as in the analytical sample collecting apparatus of the present invention provides excellent heat transfer performance and further simplifies the configuration of the analytical sample collecting apparatus.
 本発明の分析試料採取装置は、さらに前記ガス採取管を介して採取される採取ガスと前記液供給手段を通じて前記ガス採取管内及び/又は前記ガス採取管の出口部に接続される部材に供給される前記液とを分離する気液分離手段と、前記ガス採取管と前記気液分離手段とを結ぶ導管と、を備え、前記導管の内面を親水性とし、前記誘導管内の内面に流通する前記液の液膜を形成させるのが好ましい。 The analytical sample collection apparatus of the present invention is further supplied to a member connected to the gas collection tube and / or the outlet of the gas collection tube through the collection gas collected through the gas collection tube and the liquid supply means. Gas-liquid separating means for separating the liquid, and a conduit connecting the gas sampling pipe and the gas-liquid separating means, the inner surface of the conduit is made hydrophilic, and flows through the inner surface in the guide pipe It is preferable to form a liquid film of the liquid.
 ガス採取管の出口部に接続され、ガス採取管から排出される採取ガスと液とを気液分離手段に導く導管に、内面が親水性を有する導管を使用すると、導管の内壁面側を液が、中心部側を採取ガスが流れる。このため液と採取ガスとの接触面積が大きくなり、少ない液で採取ガスに含まれる分析対象成分を効率的に吸収し、又は少ない液量で採取ガスを効率的に洗浄することができる。 If a conduit having a hydrophilic inner surface is used as a conduit connected to the outlet of the gas sampling tube and guiding the collected gas and liquid discharged from the gas sampling tube to the gas-liquid separation means, the inner wall side of the conduit is liquidated. However, the sampling gas flows through the center side. For this reason, the contact area between the liquid and the collected gas is increased, and the analysis target component contained in the collected gas can be efficiently absorbed with a small amount of liquid, or the collected gas can be efficiently washed with a small amount of liquid.
 本発明において、前記ガスが、アンモニアを含むガスであり、分析対象成分がアンモニアである。 In the present invention, the gas is a gas containing ammonia, and the component to be analyzed is ammonia.
 本発明において、前記ガス流通路が、ボイラ排ガスを処理する排煙脱硝装置の出口部の煙道であり、前記ガス流通路内のガスが、前記煙道内のボイラ排ガスである。 In the present invention, the gas flow passage is a flue at the outlet of a flue gas denitration apparatus that processes boiler exhaust gas, and the gas in the gas flow passage is boiler exhaust gas in the flue.
 火力発電所等に設置される排煙脱硝装置の出口部の煙道を流れるボイラ排ガスには、排煙脱硝装置に供給されたアンモニアのうち未消費のアンモニア、いわゆるリークアンモニアが低濃度で含まる。さらにボイラ排ガスには、硫黄酸化物SO、多くの煤塵が含まれ、温度が低下するとアンモニア化合物が析出する。これに対して本発明の分析試料採取装置は、常時、ガス採取管に液を流すことでアンモニア化合物の析出及び/又は付着を防止することができる。さらに煤塵、硫黄酸化物SOが除去された採取ガスが得られるので、分析装置に妨害物の存在を嫌う高感度の分析装置が使用可能となり、これらにより低濃度のアンモニアを精度よく分析することができる。 The boiler exhaust gas flowing through the flue at the outlet of the flue gas denitration device installed in a thermal power plant etc. contains a low concentration of unconsumed ammonia, so-called leaked ammonia, among the ammonia supplied to the flue gas denitration device. . Further, the boiler exhaust gas contains sulfur oxide SO x and a lot of soot, and an ammonia compound is deposited when the temperature is lowered. On the other hand, the analytical sample collection device of the present invention can prevent precipitation and / or adhesion of an ammonia compound by always flowing a liquid through the gas collection tube. Furthermore, since the collected gas from which dust and sulfur oxide SO x have been removed can be obtained, it is possible to use a highly sensitive analyzer that dislikes the presence of obstructions in the analyzer, and accurately analyze low concentrations of ammonia. Can do.
 また本発明は、前記液供給手段を介して洗浄用の液を、前記ガス採取管の先端部側に流し、前記ガス採取管のうち前記化合物が析出しない温度領域と前記化合物が析出する温度領域との境界部を洗浄することを特徴とする前記分析試料採取装置の使用方法である。 In the present invention, the cleaning liquid is allowed to flow to the distal end side of the gas sampling tube through the liquid supply means, and the temperature region in which the compound does not precipitate and the temperature region in which the compound precipitates in the gas sampling tube. The method of using the analytical sample collection device is characterized in that the boundary portion is washed.
 本発明に係る分析試料採取装置を長時間使用すると、ガス採取管において化合物が析出しない温度領域と化合物が析出する温度領域との境界部に化合物が付着する恐れがある。このため定期的に洗浄用の液をガス採取管の先端部側に流し、前記境界部を洗浄することが好ましい。 When the analytical sample collection device according to the present invention is used for a long time, the compound may adhere to the boundary portion between the temperature region where the compound does not precipitate and the temperature region where the compound precipitates in the gas sampling tube. For this reason, it is preferable to periodically wash the boundary by flowing a cleaning solution to the tip of the gas sampling tube.
 また本発明は、前記分析試料採取装置と、さらにガス体に含まれる分析対象成分を分析する分析装置と、を備え、前記分析試料採取装置における前記液が、前記化合物を溶解させ、かつ前記分析対象成分を吸収しない液であり、前記分析装置は、前記液で洗浄された採取ガスを分析することを特徴とする採取試料分析装置である。 The present invention further includes the analysis sample collection device and an analysis device that analyzes the analysis target component contained in the gas body, wherein the liquid in the analysis sample collection device dissolves the compound and the analysis. It is a liquid that does not absorb the target component, and the analyzer is a collected sample analyzer that analyzes the collected gas washed with the liquid.
 また本発明は、前記分析試料採取装置と、さらに液体に含まれる分析対象成分を分析する分析装置と、を備え、前記分析試料採取装置における前記液が、前記化合物を溶解させ、かつ前記分析対象成分を吸収する吸収液であり、前記分析装置は、前記分析対象成分を吸収した吸収液を分析することを特徴とする採取試料分析装置である。 The present invention further includes the analysis sample collection device and an analysis device for analyzing the analysis target component contained in the liquid, wherein the liquid in the analysis sample collection device dissolves the compound and the analysis target. It is an absorption liquid that absorbs a component, and the analyzer is a collected sample analyzer that analyzes an absorption liquid that has absorbed the analysis target component.
 本発明の採取試料分析装置は、試料の形態がガスであっても液であってもよいので、実用的で使い勝手がよい。 The collected sample analyzer of the present invention is practical and easy to use because the sample form may be gas or liquid.
 本発明の採取試料分析方法において、前記採取試料分析装置を用い、前記ガス採取管を介して一定流量のガスを連続的に採取しつつ、前記液供給手段を介して一定流量の前記液を連続的に前記ガス採取管内に供給し、前記液で洗浄された採取ガスをオンラインで分析することができる。 In the collected sample analysis method of the present invention, the liquid at a constant flow is continuously collected through the liquid supply means while continuously collecting a gas at a constant flow rate through the gas sampling pipe using the collected sample analyzer. In addition, the sampled gas supplied into the gas sampling tube and cleaned with the liquid can be analyzed online.
 本発明の採取試料分析方法において、前記採取試料分析装置を用い、前記ガス採取管を介して一定流量のガスを連続的に採取しつつ、前記液供給手段を介して一定流量の前記吸収液を連続的に前記ガス採取管内に供給し、前記分析対象成分を吸収した吸収液をオンラインで分析することができる。 In the sample collection analysis method of the present invention, the sample collection analyzer is used to continuously collect a constant flow rate of gas through the gas collection tube, while the liquid supply means supplies the absorption liquid at a constant flow rate. The absorption liquid that is continuously supplied into the gas sampling tube and has absorbed the analysis target component can be analyzed online.
 また本発明は、前記採取試料分析装置を用いた採取試料分析方法であって、前記分析装置は、前記吸収液に代え、以下に記載の吸収工程、洗浄工程、及び混合工程を経て得られる液を分析対象とすることができる。
 吸収工程:前記ガス採取管を介してガスを採取し、当該ガスを吸収液に通じ、該吸収液に分析対象成分を吸収させる。
 洗浄工程:前記吸収工程後、前記ガス採取管内及び/又は前記ガス採取管の出口部に接続される部材を、前記液供給手段を介して供給する洗浄液で洗浄する。
 混合工程:前記吸収工程で得られる吸収液と前記洗浄工程で得られる洗浄液とを混合する。
Further, the present invention is a collected sample analysis method using the collected sample analyzer, wherein the analyzer is a liquid obtained through the absorption step, the washing step, and the mixing step described below, instead of the absorbing solution. Can be analyzed.
Absorption step: gas is collected through the gas sampling tube, the gas is passed through the absorption liquid, and the analysis target component is absorbed by the absorption liquid.
Washing step: After the absorption step, the member connected to the inside of the gas sampling tube and / or the outlet of the gas sampling tube is cleaned with the cleaning liquid supplied through the liquid supply means.
Mixing step: The absorption liquid obtained in the absorption step and the cleaning liquid obtained in the washing step are mixed.
 本発明の採取試料分析方法によれば、採取試料の分析をオンライン又はオフラインで行うことが可能なため用途に応じて好ましい方法を採用することができる。さらに試料の形態がガスであっても液であってもよいので種々の分析計を使用することが可能であり、使い勝手がよい。 According to the collected sample analysis method of the present invention, since it is possible to analyze the collected sample online or offline, a preferred method can be adopted depending on the application. Furthermore, since the sample may be in the form of gas or liquid, various analyzers can be used, making it easy to use.
 本発明の分析試料採取装置は、簡単な装置構成であり、本発明の分析試料採取装置及びその使用方法を用いることによりガスに含まれる分析対象成分を正確に採取することができる。また採取試料分析装置及び採取試料分析方法によりガスに含まれる分析対象成分を正確に分析することができる。 The analysis sample collection device of the present invention has a simple device configuration, and the analysis target component contained in the gas can be collected accurately by using the analysis sample collection device of the present invention and the method of using the same. Further, the analysis target component contained in the gas can be accurately analyzed by the collected sample analyzer and the collected sample analysis method.
本発明の第1実施形態に係る採取試料分析装置1の概略構成図である。1 is a schematic configuration diagram of a collected sample analyzer 1 according to a first embodiment of the present invention. 図1のII部の拡大図である。It is an enlarged view of the II section of FIG. 図1のIII部の模式図である。It is a schematic diagram of the III section of FIG. 図1の採取試料分析装置1の使用先である火力発電所100の概略構成図である。It is a schematic block diagram of the thermal power plant 100 which is a use place of the collection sample analyzer 1 of FIG. ボイラ排ガス中の硫黄酸化物濃度と酸性硫安(硫酸水素アンモニウム)生成温度との関係を示す図である。It is a figure which shows the relationship between the sulfur oxide density | concentration in boiler exhaust gas, and acidic ammonium sulfate (ammonium hydrogen sulfate) production | generation temperature. 本発明の第2実施形態に係る採取試料分析装置2の概略構成図である。It is a schematic block diagram of the collection sample analyzer 2 which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る採取試料分析装置3の概略構成図である。It is a schematic block diagram of the collection sample analyzer 3 which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る採取試料分析装置3を用いた分析手順を示すフローチャートである。It is a flowchart which shows the analysis procedure using the collection sample analyzer 3 which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る採取試料分析装置4の概略構成図である。It is a schematic block diagram of the collection sample analyzer 4 which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る採取試料分析装置5の概略構成図である。It is a schematic block diagram of the collection sample analyzer 5 which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る採取試料分析装置6の概略構成図である。It is a schematic block diagram of the collection sample analyzer 6 which concerns on 6th Embodiment of this invention.
 図1は、本発明の第1実施形態に係る採取試料分析装置1の概略構成図である。図2及び図3は、図1のII部拡大図、図1のIII部の模式図である。また図4は、本発明の第1実施形態に係る採取試料分析装置1の使用先である火力発電所100の概略構成図である。 FIG. 1 is a schematic configuration diagram of a collected sample analyzer 1 according to the first embodiment of the present invention. 2 and 3 are enlarged views of a portion II in FIG. 1 and a schematic diagram of a portion III in FIG. FIG. 4 is a schematic configuration diagram of a thermal power plant 100 which is a usage destination of the collected sample analyzer 1 according to the first embodiment of the present invention.
 本発明の第1実施形態の採取試料分析装置1は、分析用の試料ガスを採取するガス採取管11と、ガス採取管11を一定の温度に保持するヒートパイプ25と、ガス採取管11に洗浄液を供給する液供給装置65と、分析可能に採取ガスと洗浄液とを分離するサイクロン60と、試料ガスを分析する分析装置81とを含む。 The sampling sample analyzer 1 of the first embodiment of the present invention includes a gas sampling tube 11 that collects a sample gas for analysis, a heat pipe 25 that holds the gas sampling tube 11 at a constant temperature, and a gas sampling tube 11. It includes a liquid supply device 65 that supplies a cleaning liquid, a cyclone 60 that separates the collected gas and the cleaning liquid so that analysis is possible, and an analyzer 81 that analyzes the sample gas.
 採取試料分析装置1は、火力発電所100のボイラ排ガスの分析、特にボイラ排ガスに含まれる窒素酸化物NOxを除去する排煙脱硝装置109の出口側の排ガス中のアンモニア濃度測定に好適に使用することができる。以下、本発明の第1実施形態の採取試料分析装置1を用いて、排煙脱硝装置109の出口側の排ガス中のアンモニア濃度を測定する場合を例にとり、採取試料分析装置1の構成を詳細に説明する。但し、本発明の第1実施形態に係る採取試料分析装置1は、排煙脱硝装置109の出口側の排ガス中のアンモニア濃度の測定以外にも使用することが可能であり、火力発電所100の構成も以下に示す構成に限定されるものではない。 The collected sample analyzer 1 is suitably used for analyzing the boiler exhaust gas of the thermal power plant 100, particularly for measuring the ammonia concentration in the exhaust gas on the outlet side of the flue gas denitration device 109 for removing nitrogen oxides NOx contained in the boiler exhaust gas. be able to. Hereinafter, taking as an example the case of measuring the ammonia concentration in the exhaust gas on the outlet side of the flue gas denitration device 109 using the collected sample analyzer 1 of the first embodiment of the present invention, the configuration of the collected sample analyzer 1 is detailed. Explained. However, the collected sample analyzer 1 according to the first embodiment of the present invention can be used for purposes other than the measurement of the ammonia concentration in the exhaust gas on the outlet side of the flue gas denitration device 109. The configuration is not limited to the configuration shown below.
 火力発電所100は、微粉炭焚きボイラ101を有し、火炉103で発生する燃焼ガスは、加熱器などの伝熱管105を加熱し、さらに後部煙道部に設置された節炭器107で熱回収され、ボイラ101から排出される。ボイラ101から排出される温度を低下させた燃焼ガス(排ガス)は、排煙脱硝装置109に送られ、ここで排ガスに含まれる窒素酸化物NOxが除去される。 The thermal power plant 100 has a pulverized coal-fired boiler 101, and the combustion gas generated in the furnace 103 heats a heat transfer tube 105 such as a heater, and further heats in a coal saver 107 installed in the rear flue. It is collected and discharged from the boiler 101. The combustion gas (exhaust gas) whose temperature is discharged from the boiler 101 is sent to the flue gas denitration device 109, where nitrogen oxides NOx contained in the exhaust gas are removed.
 排煙脱硝装置109は、選択接触還元方式の排煙脱硝装置であり、脱硝反応器内に脱硝触媒を収納し、脱硝反応器の上流側において排ガス中にアンモニアが供給される。排ガスに含まれる窒素酸化物NOxは、脱硝触媒上でアンモニアと反応し、窒素と水に還元される。 The flue gas denitration device 109 is a selective contact reduction type flue gas denitration device, in which a denitration catalyst is housed in the denitration reactor, and ammonia is supplied into the exhaust gas upstream of the denitration reactor. Nitrogen oxide NOx contained in the exhaust gas reacts with ammonia on the denitration catalyst and is reduced to nitrogen and water.
 排煙脱硝装置109で窒素酸化物NOxが除去された排ガスは、空気予熱器111に送られ、ここでボイラ101の燃焼用空気を予熱する。その後、電気集塵機113で排ガス中の煤塵が徐塵され、さらに排煙脱硫装置115で排ガス中の硫黄酸化物SOxが除去され、煙突117から大気中に放散される。 The exhaust gas from which nitrogen oxides NOx have been removed by the flue gas denitration device 109 is sent to the air preheater 111, where the combustion air of the boiler 101 is preheated. Thereafter, the dust in the exhaust gas is gradually removed by the electric dust collector 113, and the sulfur oxide SOx in the exhaust gas is removed by the flue gas desulfurization device 115, and is diffused from the chimney 117 to the atmosphere.
 ボイラ101、排煙脱硝装置109、空気予熱器111、電気集塵機113、排煙脱硫装置115及び煙突117は、煙道119で結ばれており、本実施形態では排煙脱硝装置109の出口側の排ガス中のアンモニア濃度を測定すべく、ガス採取管11が排煙脱硝装置109の出口部の煙道119に設置されている。 The boiler 101, the flue gas denitration device 109, the air preheater 111, the electric dust collector 113, the flue gas desulfurization device 115, and the chimney 117 are connected by a flue 119. In order to measure the ammonia concentration in the exhaust gas, the gas sampling pipe 11 is installed in the flue 119 at the outlet of the flue gas denitration device 109.
 ガス採取管11は、煙道119内を流れる排ガスを採取する装置であり、金属製の円筒パイプからなり、煙道壁(ダクト壁)121に設けられた採取口から先端部12が煙道119内に挿入されており、基端部13は、煙道壁121の外側(大気側)に位置している。煙道119を流れる排ガスは、温度が約300~400℃であり、排ガス中には、窒素酸化物NOx、硫黄酸化物SOx、アンモニアの他、多量の煤塵を含むので、ガス採取管11は、それに耐えるものでなければならない。 The gas sampling tube 11 is a device that collects exhaust gas flowing through the flue 119, is made of a metal cylindrical pipe, and the tip 12 extends from the sampling port provided in the flue wall (duct wall) 121. The base end portion 13 is positioned outside (atmosphere side) of the flue wall 121. The exhaust gas flowing through the flue 119 has a temperature of about 300 to 400 ° C., and the exhaust gas contains a large amount of soot in addition to nitrogen oxides NOx, sulfur oxides SOx, and ammonia. It must be able to withstand it.
 ガス採取管11に鉄Fe、バナジウムV、モリブデンMoなどの触媒成分が含まれる場合、排ガス中のアンモニアが、ガス採取管11内で分解する恐れがある。特に排ガス中のアンモニア濃度は、0.1~5ppm程度と低いためアンモニアの分解には十分注意する必要がある。このためガス採取管11には、ステンレス製パイプ内にアルミニウム製パイプを挿入したガス採取管、又はステンレス製パイプの内面にアルミニウムを蒸着させたガス採取管が好ましい。 When the gas sampling tube 11 contains a catalyst component such as iron Fe, vanadium V, or molybdenum Mo, ammonia in the exhaust gas may be decomposed in the gas sampling tube 11. In particular, since the ammonia concentration in the exhaust gas is as low as about 0.1 to 5 ppm, it is necessary to pay careful attention to the decomposition of ammonia. Therefore, the gas sampling tube 11 is preferably a gas sampling tube in which an aluminum pipe is inserted into a stainless steel pipe, or a gas sampling tube in which aluminum is vapor-deposited on the inner surface of the stainless steel pipe.
 ガス採取管11の長さ及び大きさは、特に限定されるものではない。ガス採取管11の内径を例示すれば、5~25mmφ程度である。 The length and size of the gas sampling tube 11 are not particularly limited. For example, the inner diameter of the gas sampling tube 11 is about 5 to 25 mmφ.
 ガス採取管11のうち煙道壁121を跨ぐ部分及びその前後部分は、ヒートパイプ25を介して所定の温度に保持されている。以下、ヒートパイプ25を介して所定の温度に保持されている領域を温度保持領域15と言う。ガス採取管11の温度保持領域15の長さを例示すれば、煙道壁121を挟み、煙道119内側に100~300mm程度、煙道119外側に100~300mm程度であり、全長で400~600mm程度である。なお、煙道壁121の厚さは200mm程度である。本実施形態においてガス採取管11の先端部12及び基端部近傍14は、非温度保持領域である。非温度保持領域は、ヒートパイプ25を介して所定の温度に保持されていない領域である。 In the gas sampling pipe 11, the part straddling the flue wall 121 and the front and rear parts thereof are maintained at a predetermined temperature via the heat pipe 25. Hereinafter, a region held at a predetermined temperature via the heat pipe 25 is referred to as a temperature holding region 15. For example, the length of the temperature holding region 15 of the gas sampling pipe 11 is about 100 to 300 mm inside the flue 119, about 100 to 300 mm outside the flue 119, and about 400 to 300 mm in total length. It is about 600 mm. In addition, the thickness of the flue wall 121 is about 200 mm. In the present embodiment, the distal end portion 12 and the proximal end portion vicinity 14 of the gas sampling tube 11 are non-temperature holding regions. The non-temperature holding area is an area that is not held at a predetermined temperature via the heat pipe 25.
 本実施形態では、温度保持領域15は、約300℃に保持される。この温度は、ガス採取管11の温度保持領域15でアンモニア化合物が析出しない温度である。なお、ガス採取管11の温度保持領域15の温度は、必ずしも300℃に限定されるものではなく、アンモニア化合物が析出しない温度であればよい。 In the present embodiment, the temperature holding region 15 is held at about 300 ° C. This temperature is a temperature at which the ammonia compound does not precipitate in the temperature holding region 15 of the gas sampling tube 11. In addition, the temperature of the temperature holding region 15 of the gas sampling tube 11 is not necessarily limited to 300 ° C., and may be a temperature at which the ammonia compound does not precipitate.
 排煙脱硝装置109の出口側の排ガスの場合、アンモニア化合物として酸性硫安(硫酸水素アンモニウム)が生成する。図5は、ボイラ排ガスにおける硫黄酸化物SOの濃度と酸性硫安(硫酸水素アンモニウム)生成温度との関係を示す。図5より排ガス中のアンモニア濃度が1ppmで、排ガス中の硫黄酸化物SOの濃度が10ppmであれば、酸性硫安(硫酸水素アンモニウム)は、約230℃で生成することが分かる。酸性硫安は、アンモニア濃度及び硫黄酸化物SO濃度が高い程、高い温度で生成する。 In the case of the exhaust gas at the outlet side of the flue gas denitration device 109, acidic ammonium sulfate (ammonium hydrogen sulfate) is generated as an ammonia compound. FIG. 5 shows the relationship between the concentration of sulfur oxide SO 3 in boiler exhaust gas and the production temperature of acidic ammonium sulfate (ammonium hydrogen sulfate). As can be seen from FIG. 5, when the ammonia concentration in the exhaust gas is 1 ppm and the concentration of the sulfur oxide SO 3 in the exhaust gas is 10 ppm, acidic ammonium sulfate (ammonium hydrogen sulfate) is produced at about 230 ° C. Acidic ammonium sulfate is produced at a higher temperature as the ammonia concentration and the sulfur oxide SO 3 concentration are higher.
 ヒートパイプ25は、ガス採取管11のうち温度保持領域15を覆うように、ガス採取管11に設けられており、煙道壁121を跨ぎ、煙道119内及び煙道119外に位置している。本実施形態では、ガス採取管11とヒートパイプ25とが一体化しており、ヒートパイプ25の外周壁35に設けられた固定用フランジ41を介して煙道壁121に固定されている。なお、ガス採取管11及びヒートパイプ25の煙道壁121に対する固定方法は、他の方法であってもよい。 The heat pipe 25 is provided in the gas sampling pipe 11 so as to cover the temperature holding region 15 in the gas sampling pipe 11, straddles the flue wall 121, and is located inside the flue 119 and outside the flue 119. Yes. In the present embodiment, the gas sampling pipe 11 and the heat pipe 25 are integrated, and are fixed to the flue wall 121 via a fixing flange 41 provided on the outer peripheral wall 35 of the heat pipe 25. In addition, the fixing method with respect to the flue wall 121 of the gas sampling pipe | tube 11 and the heat pipe 25 may be another method.
 ヒートパイプ25は、ウィック式ヒートパイプであり、ガス採取管11と一体化された2重管構造であり、ガス採取管11の外壁19にコンテナと呼ばれる密閉容器を有する。密閉容器は、両端が封止された円筒パイプ27が、ガス採取管13の外壁19に気密状態で固着され形成されている。円筒パイプ27とガス採取管11とで形成される空間部29は、ウィックと呼ばれる毛細管構造となっており、当該空間部29には、作動流体31が充填されている。また円筒パイプ27には、作動流体31の作動状態を確認するために、前記空間部29内の圧力を検出する圧力計39が設けられている。 The heat pipe 25 is a wick-type heat pipe, has a double pipe structure integrated with the gas sampling pipe 11, and has an airtight container called a container on the outer wall 19 of the gas sampling pipe 11. The sealed container is formed by fixing a cylindrical pipe 27 sealed at both ends to the outer wall 19 of the gas sampling tube 13 in an airtight state. A space 29 formed by the cylindrical pipe 27 and the gas sampling tube 11 has a capillary structure called a wick, and the space 29 is filled with a working fluid 31. The cylindrical pipe 27 is provided with a pressure gauge 39 for detecting the pressure in the space 29 in order to confirm the operating state of the working fluid 31.
 ヒートパイプ25とガス採取管11とを一体化した構造とすると、ヒートパイプ25とガス採取管11との伝熱性に優れる。但し、ヒートパイプは、ガス採取管11と別体であってもよい。ヒートパイプの形状を、中心部をガス採取管11が挿通する挿通孔を設けたパイプ形状とし、ヒートパイプの中心部にガス採取管11を挿通させてもよい。さらにはガス採取管11を覆うようにヒートパイプを巻き付けてもよい。このような構成とすれば、ヒートパイプの製作が容易となり、又は市販のヒートパイプを使用することも可能である。この場合、ヒートパイプとガス採取管11との間に隙間が生じ、ヒートパイプとガス採取管11との間の伝熱性能が低下しないようにする必要がある。 When the heat pipe 25 and the gas sampling tube 11 are integrated, the heat transfer between the heat pipe 25 and the gas sampling tube 11 is excellent. However, the heat pipe may be separate from the gas sampling tube 11. The shape of the heat pipe may be a pipe shape provided with an insertion hole through which the gas sampling tube 11 is inserted in the center, and the gas sampling tube 11 may be inserted through the center of the heat pipe. Further, a heat pipe may be wound so as to cover the gas sampling tube 11. If it is such a structure, manufacture of a heat pipe becomes easy or it is also possible to use a commercially available heat pipe. In this case, it is necessary to prevent the heat transfer performance between the heat pipe and the gas sampling tube 11 from being lowered due to a gap between the heat pipe and the gas sampling tube 11.
 ヒートパイプは、ガス採取管13内に配置することも可能であるが、段差が生じるので、本実施形態のように煤塵が多い場合には、段差部に煤塵が溜まり好ましくない。 Although it is possible to arrange the heat pipe in the gas sampling tube 13, since a step is generated, if there is a large amount of dust as in the present embodiment, the dust accumulates in the step portion, which is not preferable.
 ヒートパイプ25で使用する作動流体は、ガス採取管11を300℃に保持可能であればよい。作動流体としては、熱媒油が例示される。 The working fluid used in the heat pipe 25 only needs to hold the gas sampling tube 11 at 300 ° C. Examples of the working fluid include heat transfer oil.
 煙道119内に位置するヒートパイプ25の外周壁35には、煙道119内を流れる排ガスとヒートパイプ25との間の伝熱を促進すべく、加熱用フィン45が取り付けられている。加熱用フィン45を設けなくてもよいが、加熱用フィン45を設けることで煙道119内を流れる排ガスとヒートパイプ25との間の伝熱が促進され、結果、ヒートパイプ25をコンパクトにすることができる。 A heating fin 45 is attached to the outer peripheral wall 35 of the heat pipe 25 located in the flue 119 in order to promote heat transfer between the exhaust gas flowing in the flue 119 and the heat pipe 25. Although it is not necessary to provide the heating fin 45, the heat transfer between the exhaust gas flowing through the flue 119 and the heat pipe 25 is promoted by providing the heating fin 45, and as a result, the heat pipe 25 is made compact. be able to.
 上記ヒートパイプ25は、加熱用フィン45が取付けられた部分も含め煙道119内に位置する部分が加熱部となり、煙道119外に位置する部分が冷却部となる。 In the heat pipe 25, a portion located inside the flue 119 including a portion where the heating fin 45 is attached becomes a heating portion, and a portion located outside the flue 119 becomes a cooling portion.
 ガス採取管11の基端部近傍14は、ヒートパイプ25で覆われていない。ガス採取管11の基端部近傍14の外壁には、大気によりガス採取管11内の採取ガス(試料ガス)を冷却すべく、冷却用フィン21が取り付けられている。 The proximal end portion 14 of the gas sampling tube 11 is not covered with the heat pipe 25. A cooling fin 21 is attached to the outer wall near the base end portion 14 of the gas sampling tube 11 in order to cool the sampling gas (sample gas) in the gas sampling tube 11 with the atmosphere.
 ガス採取管11は、導管51を介して気液分離装置であるサイクロン60と接続する。またガス採取管11には、液供給装置65を介して洗浄液が送られる。 The gas sampling tube 11 is connected to a cyclone 60 that is a gas-liquid separator via a conduit 51. In addition, the cleaning liquid is sent to the gas sampling pipe 11 via the liquid supply device 65.
 導管51は、ガス採取管11の出口部にアダプタ58を介して接続され、ガス採取管11から送られる採取ガス及び洗浄液を気液分離装置であるサイクロン60に導く。導管51は、4フッ化エチレン樹脂の円筒チューブ52からなり、内面が親水性処理されている。円筒チューブ52の内面の親水性処理は、例えば内面に酸化チタンをコーティングし、親水性のコーティング層53を設けることで行える。なお、導管51は、4フッ化エチレン樹脂以外の円筒チューブ52であってもよく、内面の親水性処理もコーティング処理以外の方法であってもよい。 The conduit 51 is connected to the outlet of the gas sampling tube 11 via an adapter 58 and guides the sampling gas and the cleaning liquid sent from the gas sampling tube 11 to a cyclone 60 that is a gas-liquid separator. The conduit | pipe 51 consists of the cylindrical tube 52 of a tetrafluoroethylene resin, and the inner surface is hydrophilically processed. The hydrophilic treatment of the inner surface of the cylindrical tube 52 can be performed, for example, by coating the inner surface with titanium oxide and providing a hydrophilic coating layer 53. The conduit 51 may be a cylindrical tube 52 other than the tetrafluoroethylene resin, and the hydrophilic treatment of the inner surface may be a method other than the coating treatment.
 導管51は、必ずしも内面が親水性の導管である必要はないが、内面が親水性を有する導管を使用すると、採取ガスと親水性の洗浄液とを同時に流したとき、洗浄液は、導管51の内周面を覆うように液膜54を形成し流れ、採取ガスは、導管51の中心部55を流れる。このように導管51内を洗浄液が液膜54を形成しながら流れる場合、採取ガスとの接触面積が大きく、採取ガスを効率的に洗浄することができる。またアンモニア化合物が析出し、導管51に付着することを防止することができる。 The conduit 51 does not necessarily need to be a conduit having a hydrophilic inner surface. However, when a conduit having a hydrophilic inner surface is used, the cleaning liquid is contained in the conduit 51 when the sampling gas and the hydrophilic cleaning liquid are caused to flow simultaneously. A liquid film 54 is formed so as to cover the peripheral surface, and the collected gas flows through the central portion 55 of the conduit 51. Thus, when the cleaning liquid flows in the conduit 51 while forming the liquid film 54, the contact area with the sampling gas is large, and the sampling gas can be efficiently cleaned. Further, it is possible to prevent the ammonia compound from depositing and adhering to the conduit 51.
 アダプタ58は、ゴム弾性を有するフッ素樹脂系の円筒体であり、ガス採取管11及び導管51を差し込むことでガス採取管11及び導管51が連結される。アダプタは、上記アダプタ58に限定されるものではなく、ガス採取管11と導管51、さらには液供給管68を気密及び液密可能に連結できれば他のアダプタであってもよい。またガス採取管11と導管51、さらには液供給管68を気密及び液密可能に連結できればアダプタ以外の方法を用いてもよい。 The adapter 58 is a fluororesin-based cylindrical body having rubber elasticity, and the gas sampling tube 11 and the conduit 51 are connected by inserting the gas sampling tube 11 and the conduit 51. The adapter is not limited to the adapter 58, and may be another adapter as long as the gas sampling pipe 11, the conduit 51, and the liquid supply pipe 68 can be connected in an airtight and liquidtight manner. Further, a method other than the adapter may be used as long as the gas sampling pipe 11 and the conduit 51, and further the liquid supply pipe 68 can be connected in an airtight and liquidtight manner.
 気液分離装置であるサイクロン60は、導管51から送られる採取ガスと洗浄液との混合物を、採取ガスと洗浄液とに分離する。サイクロン60は、内部にボール63を有し、サイクロンの円錐部62とボール63とでトラップを形成し、円錐部62に所定量の洗浄液が溜まると、ボール63が浮き洗浄液が排出され、洗浄液が排出されるとボール63が円錐部62に接し採取ガスの排出を防止する。これにより採取ガスを排出させることなく、洗浄液を排出することができる。 The cyclone 60, which is a gas-liquid separator, separates the mixture of the sampling gas and the cleaning liquid sent from the conduit 51 into the sampling gas and the cleaning liquid. The cyclone 60 has a ball 63 inside, and a trap is formed by the cone portion 62 and the ball 63 of the cyclone. When a predetermined amount of cleaning liquid is accumulated in the cone portion 62, the ball 63 is lifted and the cleaning solution is discharged, and the cleaning solution is discharged. When discharged, the ball 63 comes into contact with the conical portion 62 to prevent the sampling gas from being discharged. As a result, the cleaning liquid can be discharged without discharging the sampling gas.
 サイクロン60で分離された採取ガス及び洗浄液は、それぞれ分析装置81及び液供給タンク66へ送られる。採取ガスと洗浄液とを分離する気液分離装置は、サイクロン60の他、慣性力を利用した衝突式気液分離装置、ルーバー式気液分離装置などを使用することができる。2台以上の気液分離装置を直列に配置してもよく、異なる型式の気液分離装置を直列に配置してもよい。 The collected gas and the cleaning liquid separated by the cyclone 60 are sent to the analyzer 81 and the liquid supply tank 66, respectively. As the gas-liquid separation device that separates the collected gas and the cleaning liquid, in addition to the cyclone 60, a collision-type gas-liquid separation device using an inertial force, a louver-type gas-liquid separation device, or the like can be used. Two or more gas-liquid separators may be arranged in series, or different types of gas-liquid separators may be arranged in series.
 液供給装置65は、液供給タンク66、液供給ポンプ67及び液供給管68とで構成され、液供給管68を通じて洗浄液をガス採取管11の基端部13側の非温度保持領域に供給する。液供給管68は、L字型の管体70を有しこれがアダプタ58に突き刺され固定されている。液供給管68の先端69は、ガス採取管11の温度保持領域15とガス採取管11の基端部13側の非温度保持領域との境界に位置するように設置されている。 The liquid supply device 65 includes a liquid supply tank 66, a liquid supply pump 67, and a liquid supply pipe 68, and supplies the cleaning liquid to the non-temperature holding region on the base end portion 13 side of the gas sampling pipe 11 through the liquid supply pipe 68. . The liquid supply pipe 68 has an L-shaped pipe body 70 which is inserted into the adapter 58 and fixed. The tip 69 of the liquid supply pipe 68 is installed so as to be located at the boundary between the temperature holding area 15 of the gas sampling pipe 11 and the non-temperature holding area on the base end portion 13 side of the gas sampling pipe 11.
 洗浄液は、循環使用されており、ガス採取管11に供給された洗浄液は、採取ガスと一緒に導管51を通じてサイクロン60に送られ、採取ガスと分離され、液供給タンク66に返送される。液供給タンク66は、密閉式のタンクであり、サイクロン60ともパイプ64を通じて気密可能に連結する。 The cleaning liquid is circulated, and the cleaning liquid supplied to the gas sampling pipe 11 is sent to the cyclone 60 through the conduit 51 together with the sampling gas, separated from the sampling gas, and returned to the liquid supply tank 66. The liquid supply tank 66 is a sealed tank, and is connected to the cyclone 60 through a pipe 64 so as to be airtight.
 洗浄液には、アンモニア化合物を溶解可能でかつ、アンモニアを吸収しない洗浄液が使用される。本実施形態では、アンモニア化合物として酸性硫安(硫酸水素アンモニウム)が挙げられ、洗浄液としてアルカリ性の水、例えば水酸化ナトリウム水溶液が挙げられる。洗浄液で洗浄された採取ガスは、アンモニア化合物及び煤塵を含まず、アンモニアガスを含むこととなる。 As the cleaning solution, a cleaning solution that can dissolve the ammonia compound and does not absorb ammonia is used. In this embodiment, acidic ammonium sulfate (ammonium hydrogen sulfate) is mentioned as an ammonia compound, and alkaline water, for example, sodium hydroxide aqueous solution, is mentioned as a washing | cleaning liquid. The sampling gas cleaned with the cleaning liquid does not contain ammonia compounds and dust, but contains ammonia gas.
 分析装置81は、サイクロン60で洗浄液が分離された採取ガス(試料ガス)に含まれるアンモニアを分析する。ここで使用可能な分析装置は、採取ガスに含まれるアンモニアをオンラインで分析可能であれば、特定の分析装置に限定されるものではない。要求される精度に応じた分析装置を使用することが必要なことは当然である。分析装置81に送られる採取ガス(試料ガス)は、煤塵、SOが除去されているため高精度の分析装置を使用することができる。 The analyzer 81 analyzes ammonia contained in the collected gas (sample gas) from which the cleaning liquid has been separated by the cyclone 60. The analyzer that can be used here is not limited to a specific analyzer as long as ammonia contained in the collected gas can be analyzed online. Of course, it is necessary to use an analyzer according to the required accuracy. Collecting gas delivered to the analyzer 81 (sample gas), soot, can be used analyzer precision for SO x is removed.
 ここで使用可能な分析装置としては、公知のガス分析計を使用することができる。ガス分析計としては、光源にレーザーを使用し吸光強度からアンモニア濃度を検出するレーザー式ガス分析計、NO-NHの還元反応によるNO濃度の減少を測定することでNH濃度を検出するNO-NH還元差動方式の煙道排ガスアンモニア測定装置(例えば株式会社島津製作所製)、酸化触媒処理後の増加窒素酸化物成分をアンモニア濃度として科学発効法により測定するアンモニア測定装置(例えば株式会社堀場製作所製)が例示される。 As a usable analyzer, a known gas analyzer can be used. The gas analyzer, the laser gas analyzer for detecting concentration of ammonia from absorption strength using a laser as a light source, detecting the NH 3 concentration by measuring the reduction of the NO x concentration by the reduction reaction of the NO x -NH 3 NO x —NH 3 reduction differential type flue gas ammonia measurement device (for example, manufactured by Shimadzu Corporation), ammonia measurement device that measures the increased nitrogen oxide component after oxidation catalyst treatment as an ammonia concentration by a scientific effect method ( For example, HORIBA, Ltd.) is exemplified.
 分析装置81には、ガス流量計、吸引ポンプを備えないタイプの分析装置があるが、そのような分析装置の場合、別途、ガス流量計、吸引ポンプを設ければよい。 The analyzer 81 includes a type of analyzer that does not include a gas flow meter and a suction pump. In such an analyzer, a gas flow meter and a suction pump may be provided separately.
 次に上記採取試料分析装置1の排ガス中のアンモニア濃度測定要領について説明する。 Next, the procedure for measuring the ammonia concentration in the exhaust gas of the collected sample analyzer 1 will be described.
 分析装置81を作動させ、ガス採取管11を通じて排ガスを連続的に一定の流量で採取する。同時に、液供給装置65を通じて、ガス採取管11の基端部13側の非温度保持領域に洗浄液を一定の流量で連続的に供給する。ガス採取管11を通じて採取された採取ガスは、ガス採取管11及びサイクロン60につながる導管51を流通する過程で、洗浄液と接触し洗浄される。この過程で煤塵、SOは、洗浄液に吸収される。サイクロン60で洗浄液が分離された採取ガスは、ガス分析装置81でアンモニア濃度が測定される。 The analyzer 81 is operated and exhaust gas is continuously collected at a constant flow rate through the gas sampling tube 11. At the same time, the cleaning liquid is continuously supplied to the non-temperature holding region on the base end 13 side of the gas sampling tube 11 through the liquid supply device 65 at a constant flow rate. The sampled gas collected through the gas sampling tube 11 is cleaned in contact with the cleaning liquid in the process of flowing through the gas sampling tube 11 and the conduit 51 connected to the cyclone 60. In this process, soot and SO x are absorbed by the cleaning liquid. The collected gas from which the cleaning liquid has been separated by the cyclone 60 is measured for the ammonia concentration by the gas analyzer 81.
 以上のように採取試料分析装置1を使用し、一定流量の採取ガスを採取し、かつ一定流量の洗浄液を供給することで、オンラインで排ガス中のアンモニアガスを分析することができる。分析装置81に送られる採取ガスは、洗浄液で洗浄され、アンモニア化合物及び煤塵が除去されているので精度よく分析することができる。排ガスに含まれる煤塵がアンモニアを吸着している場合もあるが、本採取試料分析装置1を使用することで煤塵も洗浄されるので、煤塵に吸着するアンモニアも分析対象とすることができる。 As described above, it is possible to analyze the ammonia gas in the exhaust gas online by collecting the collected gas at a constant flow rate and supplying the cleaning liquid at a constant flow rate using the collected sample analyzer 1. The collected gas sent to the analyzer 81 is washed with a washing liquid and the ammonia compound and dust are removed, so that it can be analyzed with high accuracy. In some cases, the dust contained in the exhaust gas adsorbs ammonia. However, since the soot dust is washed by using the sampling sample analyzer 1, the ammonia adsorbed to the dust can be analyzed.
 従来の採取試料分析装置においても、洗浄液による洗浄が行われているが、従来のガス採取管は、温度保持領域と非温度保持領域とに区分けされておらず、本実施形態の温度保持領域に該当する部分にも洗浄液が供給されていた。このため従来の方法では、ガス採取管の同じ場所が、約300℃の温度となったり100℃以下の温度になったりする。このように加温、冷却を繰り返すと、アンモニア化合物が析出し、ガス採取管内に付着し易くなる。さらに温度が大きく変化するため洗浄液による洗浄も難しく、析出したアンモニア化合物を十分に洗浄することができない。 In a conventional sampling sample analyzer, cleaning with a cleaning liquid is performed, but a conventional gas sampling tube is not divided into a temperature holding region and a non-temperature holding region, and the temperature holding region of this embodiment is used. The cleaning liquid was also supplied to the corresponding part. For this reason, in the conventional method, the same location of the gas sampling tube becomes a temperature of about 300 ° C. or a temperature of 100 ° C. or less. When heating and cooling are repeated in this manner, an ammonia compound is precipitated and easily adheres to the gas sampling tube. Furthermore, since the temperature changes greatly, cleaning with a cleaning solution is difficult, and the deposited ammonia compound cannot be sufficiently cleaned.
 これに対して、本採取試料分析装置1は、ガス採取管11が温度保持領域15と非温度保持領域とに区分けされ、温度保持領域15は常に一定温度に保持されているのでこの領域にアンモニア化合物が析出することはない。一方、基端部13側の非温度保持領域は、アンモニア化合物が析出する温度領域であるが、この部分には洗浄液が常時供給されているので、アンモニア化合物が析出することはない。仮に析出したとしても洗浄液に溶解するためガス採取管11内にアンモニア化合物が付着することはない。これによりアンモニア化合物の析出、付着による不具合を解消することができる。 On the other hand, in the sampling sample analyzer 1, the gas sampling tube 11 is divided into a temperature holding region 15 and a non-temperature holding region, and the temperature holding region 15 is always held at a constant temperature. The compound does not precipitate. On the other hand, the non-temperature holding region on the base end portion 13 side is a temperature region where the ammonia compound is precipitated, but since the cleaning liquid is constantly supplied to this portion, the ammonia compound does not precipitate. Even if deposited, the ammonia compound does not adhere to the gas sampling tube 11 because it dissolves in the cleaning liquid. Thereby, the trouble by precipitation and adhesion of an ammonia compound can be solved.
 ガス採取管11の温度保持領域15をヒートパイプ25に代え、電気ヒータ、熱媒装置を使用して行うことも考えられるが、共に温度保持手段として好ましくない。 Although it can be considered that the temperature holding region 15 of the gas sampling pipe 11 is replaced with the heat pipe 25 and an electric heater or a heat medium device is used, both are not preferable as the temperature holding means.
 電気ヒータの場合、温度分布の大きさが懸念される。局所的に温度が低下するとアンモニア化合物が析出する。一方で、アンモニア化合物が析出しないように温度を高めに設定した場合、500℃以上の場所ができるとアンモニアが分解してしまう。さらに通常、煙道119付近には、電源がないため電気ヒータは使い難い。熱媒装置は、電気ヒータに比較して温度の均一性に優れるが、熱媒を加熱する装置、熱媒を循環又は撹拌する装置が必要となり、装置が大型化し、かつ構成が複雑化する。 In the case of an electric heater, there is a concern about the size of the temperature distribution. When the temperature is locally lowered, an ammonia compound is precipitated. On the other hand, when the temperature is set high so that the ammonia compound does not precipitate, ammonia is decomposed when a place of 500 ° C. or higher is formed. Furthermore, since there is usually no power source near the flue 119, the electric heater is difficult to use. The heat medium device is superior in temperature uniformity as compared with the electric heater, but requires a device for heating the heat medium and a device for circulating or stirring the heat medium, which increases the size of the device and complicates the configuration.
 これに対してヒートパイプ25は、簡単な構造でコンパクトながら温度の均一性、熱伝達性に優れる。さらには電源も不要であり、ガス採取管11の温度保持手段として優れる。ヒートパイプ25を動作させるには、加熱源と冷却源が必要であるが、加熱源には煙道119内を流れる排ガスを、冷却源には大気を利用することができるので簡単に実用化することができる。 In contrast, the heat pipe 25 has a simple structure and is compact but has excellent temperature uniformity and heat transfer. Furthermore, no power source is required, which is excellent as a temperature holding means for the gas sampling tube 11. In order to operate the heat pipe 25, a heating source and a cooling source are required. However, since the exhaust gas flowing through the flue 119 can be used as the heating source and the atmosphere can be used as the cooling source, it can be easily put into practical use. be able to.
 本採取試料分析装置1も長期間の運転に伴い、ガス採取管11の温度保持領域15とガス採取管11の基端部13側の非温度保持領域との境界部にアンモニア化合物が付着する恐れがある。よって定期的に、液供給装置65を介して洗浄用の液を、ガス採取管11の先端部12側に流し、ガス採取管11の温度保持領域15とガス採取管11の基端部13側の非温度保持領域との境界部さらには温度保持領域15を洗浄することが好ましい。洗浄用の液としては、水が挙げられる。なおこの洗浄操作は、後述の他の実施形態に係る採取試料分析装置にも当てはまる。 In the sampled sample analyzer 1 as well, ammonia compounds may adhere to the boundary between the temperature holding region 15 of the gas sampling tube 11 and the non-temperature holding region on the base end 13 side of the gas sampling tube 11 with a long-term operation. There is. Accordingly, the cleaning liquid is periodically flowed to the distal end portion 12 side of the gas sampling tube 11 through the liquid supply device 65, and the temperature holding region 15 of the gas sampling tube 11 and the proximal end portion 13 side of the gas sampling tube 11 are It is preferable to clean the boundary portion with the non-temperature holding region and the temperature holding region 15. An example of the cleaning liquid is water. This cleaning operation is also applicable to a collected sample analyzer according to another embodiment described later.
 図6は、本発明の第2実施形態に係る採取試料分析装置2の概略構成図である。本発明の第1実施形態に係る採取試料分析装置1と同一の構成には、同一の符号を付して説明を省略する。 FIG. 6 is a schematic configuration diagram of the collected sample analyzer 2 according to the second embodiment of the present invention. The same components as those of the collected sample analyzer 1 according to the first embodiment of the present invention are denoted by the same reference numerals and description thereof is omitted.
 第2実施形態に係る採取試料分析装置2は、第1実施形態に係る採取試料分析装置1と同様に、連続的に排ガスを採取しオンラインで分析する。但し、第1実施形態に係る採取試料分析装置1が洗浄後の採取ガスを分析するのに対して、第2実施形態に係る採取試料分析装置2では、吸収液を分析する。このため第1実施形態に係る採取試料分析装置1では、ガス採取管11に洗浄液を供給するが、第2実施形態に係る採取試料分析装置2では、ガス採取管11に吸収液を供給する。 The collected sample analyzer 2 according to the second embodiment continuously collects exhaust gas and analyzes it online, similarly to the collected sample analyzer 1 according to the first embodiment. However, the collected sample analyzer 1 according to the first embodiment analyzes the collected gas after cleaning, whereas the collected sample analyzer 2 according to the second embodiment analyzes the absorbing solution. For this reason, in the sampling sample analyzer 1 according to the first embodiment, the cleaning liquid is supplied to the gas sampling tube 11. In the sampling sample analyzer 2 according to the second embodiment, the absorbing liquid is supplied to the gas sampling tube 11.
 第2実施形態に係る採取試料分析装置2では、採取ガスと吸収液とを接触させ、採取ガスに含まれるアンモニアを吸収液で吸収し、この吸収液を分析装置で分析しアンモニア濃度を求める。吸収液は、第1実施形態に係る採取試料分析装置1の洗浄液と同様に供給される。供給された吸収液は、採取ガスに含まれるアンモニアを吸収する役目の他、ガス採取管11の基端部13側の非温度保持領域内にアンモニア化合物が析出しないように当該領域を洗浄し、あるいは当該領域に析出したアンモニア化合物を溶解する役目を担う。 In the collected sample analyzer 2 according to the second embodiment, the collected gas is brought into contact with the absorbing liquid, the ammonia contained in the collected gas is absorbed by the absorbing liquid, and the absorbed liquid is analyzed by the analyzing apparatus to obtain the ammonia concentration. The absorption liquid is supplied in the same manner as the cleaning liquid of the collected sample analyzer 1 according to the first embodiment. In addition to the role of absorbing the ammonia contained in the collected gas, the supplied absorption liquid is used to wash the region so that the ammonia compound does not precipitate in the non-temperature holding region on the base end portion 13 side of the gas sampling tube 11, Alternatively, it plays a role of dissolving the ammonia compound deposited in the region.
 ここで使用される吸収液は、採取ガスに含まれるアンモニアガスを吸収し、アンモニア化合物を溶解させ、アンモニア化合物に含まれるアンモニア、アンモニウムイオン等を吸収する必要がある。このような吸収液には、ホウ酸水溶液など酸性の水溶液が例示される。 The absorption liquid used here needs to absorb ammonia gas contained in the sampling gas, dissolve the ammonia compound, and absorb ammonia, ammonium ions, etc. contained in the ammonia compound. Examples of such absorbing liquid include acidic aqueous solutions such as boric acid aqueous solution.
 吸収液は、第1実施形態に係る採取試料分析装置1と同様にガス採取管11の基端部13側の非温度保持領域に供給された後、導管51を介してサイクロン61に送られ、ここで採取ガスと分離されるが、分離された吸収液は、循環使用されることなく分析装置83に送られる。ここで使用されるサイクロン61は、ボール63が装着されておらず、吸収液は連続的に排出される。 The absorption liquid is supplied to the non-temperature holding region on the base end portion 13 side of the gas sampling tube 11 in the same manner as the sampling sample analyzer 1 according to the first embodiment, and then sent to the cyclone 61 via the conduit 51. Although it is separated from the collected gas here, the separated absorption liquid is sent to the analyzer 83 without being circulated. The cyclone 61 used here is not equipped with the ball 63, and the absorbing liquid is continuously discharged.
 図1に示す第1実施形態に係る採取試料分析装置1では、基本的に分析装置81が備える吸引ポンプを使用し採取ガスを吸引するため、吸引ポンプが設けられていないが、第2実施形態に係る採取試料分析装置2では、サイクロン61の後流側に吸引ポンプ75を設置し、この吸引ポンプ75を用いて採取ガスを吸引する。さらに吸引ポンプ75の後流側にガスメータ76を設置し、吸引ガス量を測定する。 In the collected sample analyzer 1 according to the first embodiment shown in FIG. 1, a suction pump is basically provided to suck the collected gas using the suction pump provided in the analyzer 81. However, the second embodiment is not provided. In the collected sample analyzer 2, the suction pump 75 is installed on the downstream side of the cyclone 61, and the collected gas is sucked using the suction pump 75. Further, a gas meter 76 is installed on the downstream side of the suction pump 75 to measure the amount of suction gas.
 分析装置83は、吸収液に含まれるアンモニアをオンラインで分析可能な公知の分析計を使用可能であり、分析精度等に応じて適宜選択して使用すればよい。分析装置83としては、フローインジェクション(FIA)分析装置が例示される。FIA分析装置は、分析対象成分を含む液体試料、本実施形態では、アンモニアを含む吸収液と試薬とにより発色(退色)反応を生じさせ、この溶液の吸光光度からアンモニア濃度を測定する。 The analysis device 83 can use a known analyzer that can analyze ammonia contained in the absorbing solution online, and may be appropriately selected and used according to the analysis accuracy and the like. An example of the analysis device 83 is a flow injection (FIA) analysis device. The FIA analyzer causes a color development (fading) reaction with a liquid sample containing a component to be analyzed, in this embodiment, an absorption liquid containing ammonia and a reagent, and measures the ammonia concentration from the absorbance of this solution.
 次に上記採取試料分析装置2の排ガス中のアンモニア濃度測定要領について説明する。 Next, the procedure for measuring the ammonia concentration in the exhaust gas of the collected sample analyzer 2 will be described.
 吸引ポンプ75を作動させ、ガス採取管11を通じて排ガスを連続的に一定の流量で採取する。同時に、液供給装置65を通じて、ガス採取管11の基端部13側の非温度保持領域に吸収液を一定の流量で連続的に供給する。ガス採取管11を通じて採取された採取ガスは、ガス採取管11及びサイクロン61につながる導管51を流通する過程で、吸収液と接触しアンモニアは吸収液に吸収される。サイクロン61で分離された吸収液は、分析装置83によりアンモニア濃度が測定される。 The suction pump 75 is operated, and the exhaust gas is continuously collected at a constant flow rate through the gas sampling pipe 11. At the same time, the absorbing liquid is continuously supplied at a constant flow rate to the non-temperature holding region on the base end portion 13 side of the gas sampling tube 11 through the liquid supply device 65. The sampled gas collected through the gas sampling tube 11 comes into contact with the absorbing solution in the process of flowing through the gas collecting tube 11 and the conduit 51 connected to the cyclone 61, and ammonia is absorbed by the absorbing solution. The absorption liquid separated by the cyclone 61 is measured for ammonia concentration by the analyzer 83.
 以上のように採取試料分析装置2を使用し、一定流量の採取ガスを採取し、かつ一定流量の吸収液を供給することで、オンラインで排ガス中のアンモニアガスを分析することができる。ヒートパイプ25の効果、吸収液を供給することによるアンモニア化合物の析出防止効果は、第1実施形態に係る採取試料分析装置1のところで説明した通りである。また内面が親水性を有する導管51の作用効果も、第1実施形態に係る採取試料分析装置1のところで説明した通りであり、吸収液量を少なくすることができるので液中のアンモニア濃度が高まり、分析精度が向上する。 As described above, it is possible to analyze the ammonia gas in the exhaust gas online by collecting the collected gas at a constant flow rate and supplying the absorption liquid at a constant flow rate using the collected sample analyzer 2. The effect of the heat pipe 25 and the effect of preventing the precipitation of the ammonia compound by supplying the absorbing liquid are as described in the collected sample analyzer 1 according to the first embodiment. In addition, the action and effect of the conduit 51 having a hydrophilic inner surface is also as described in the collected sample analyzer 1 according to the first embodiment, and the amount of absorbed liquid can be reduced, so that the ammonia concentration in the liquid increases. , Analysis accuracy is improved.
 図7は、本発明の第3実施形態に係る採取試料分析装置3の概略構成図である。図8は、採取試料分析装置3を用いた採取ガスの分析手順を示すフローチャートである。本発明の第1及び第2実施形態に係る採取試料分析装置1、2と同一の構成には、同一の符号を付して説明を省略する。 FIG. 7 is a schematic configuration diagram of the collected sample analyzer 3 according to the third embodiment of the present invention. FIG. 8 is a flowchart showing the procedure for analyzing the collected gas using the collected sample analyzer 3. The same components as those of the collected sample analyzers 1 and 2 according to the first and second embodiments of the present invention are denoted by the same reference numerals and description thereof is omitted.
 第3実施形態に係る採取試料分析装置3は、第1及び第2実施形態に係る採取試料分析装置1、2と異なり、排ガスの採取及び分析をバッチ操作で行う。このため第3実施形態に係る採取試料分析装置3は、ガス採取管11を介して採取された採取ガスに含まれるアンモニアを吸収液に吸収させるための吸収ビン77、採取ガスを吸引するための吸引ポンプ75、及びガスメータ76を備える。導管51の一端部が吸収液に浸漬するように吸収ビン77に挿入され、吸収ビン77の気相部と吸引ポンプ75とがチューブ78を介して接続する。ガスメータ76は、吸引ポンプ75の排気側に接続されている。 Unlike the sampled sample analyzers 1 and 2 according to the first and second embodiments, the sampled sample analyzer 3 according to the third embodiment collects and analyzes exhaust gas by batch operation. For this reason, the collected sample analyzer 3 according to the third embodiment has an absorption bottle 77 for absorbing the ammonia contained in the collected gas collected via the gas sampling tube 11 into the absorption liquid, and for aspirating the collected gas. A suction pump 75 and a gas meter 76 are provided. One end portion of the conduit 51 is inserted into the absorption bottle 77 so as to be immersed in the absorption liquid, and the gas phase portion of the absorption bottle 77 and the suction pump 75 are connected via the tube 78. The gas meter 76 is connected to the exhaust side of the suction pump 75.
 第3実施形態に係る採取試料分析装置3では、ガス採取管11の基端部13側の非温度保持領域が極端に短く、ガス採取管11の基端部13にボール弁タイプの三方弁79が取付けられている。本実施形態において、ガス採取管11の基端部13側の非温度保持領域は、できるだけ短い方が好ましく、三方弁79を取付けることができるのであればない方がよい。三方弁79に液供給管68及び導管51が接続する。 In the sample collection analyzer 3 according to the third embodiment, the non-temperature holding region on the base end 13 side of the gas sampling tube 11 is extremely short, and a ball valve type three-way valve 79 is provided at the base end 13 of the gas sampling tube 11. Is installed. In the present embodiment, the non-temperature holding region on the base end portion 13 side of the gas sampling tube 11 is preferably as short as possible, and should not be provided that the three-way valve 79 can be attached. A liquid supply pipe 68 and a conduit 51 are connected to the three-way valve 79.
 第3実施形態に係る採取試料分析装置3では、排ガス中のアンモニアを吸収した吸収液と三方弁79及び導管51を洗浄した洗浄液との混合液を分析する。アンモニアを吸収する吸収液は、第2実施形態に係る採取試料分析装置2で使用する吸収液と同じものを使用することができ、吸収液と洗浄液とは同じ種類の液を使用すればよい。 In the collected sample analyzer 3 according to the third embodiment, a mixed liquid of an absorbing liquid that has absorbed ammonia in exhaust gas and a cleaning liquid that has cleaned the three-way valve 79 and the conduit 51 is analyzed. The absorption liquid that absorbs ammonia can be the same as the absorption liquid used in the collection sample analyzer 2 according to the second embodiment, and the absorption liquid and the cleaning liquid may be the same type of liquid.
 吸収液と洗浄液との混合液に含まれるアンモニアの分析方法は、特定の方法に限定されるものではなく、公知の分析装置、例えば液体クロマトグラフを使用することができる。 The method for analyzing ammonia contained in the mixed solution of the absorbing solution and the cleaning solution is not limited to a specific method, and a known analyzer such as a liquid chromatograph can be used.
 次に上記採取試料分析装置3の排ガス中のアンモニア濃度測定要領について説明する。 Next, the procedure for measuring the ammonia concentration in the exhaust gas of the collected sample analyzer 3 will be described.
 ガス採取管11と導管51とが連通し、洗浄液は供給不能となるように三方弁79をセットし、吸引ポンプ75を作動させ、ガス採取管11を通じて所定量の排ガスを吸引し、吸収液に通じアンモニアを吸収させる(ステップS1:吸収工程)。その後、液供給管68と導管51とが連通し、ガス採取管11と導管51は連通しない状態となるように三方弁79を切替え、吸引ポンプ75を作動させた状態で、洗浄液を供給し三方弁79及び導管51を洗浄する(ステップS2:洗浄工程)。供給された洗浄液は、吸収ビン77に送られ吸収液と混合される。洗浄工程終了後、吸収ビン77の吸収液を十分に撹拌し(ステップS3:混合工程)、この吸収液(混合液)を分析する(ステップS4:分析工程)。 The gas sampling pipe 11 and the conduit 51 communicate with each other, the three-way valve 79 is set so that the cleaning liquid cannot be supplied, the suction pump 75 is operated, a predetermined amount of exhaust gas is sucked through the gas sampling pipe 11, and the absorption liquid is obtained. The ammonia is absorbed through (step S1: absorption process). Thereafter, the three-way valve 79 is switched so that the liquid supply pipe 68 and the conduit 51 communicate with each other, and the gas sampling pipe 11 and the conduit 51 do not communicate with each other, and the suction liquid 75 is supplied and the three-way valve 79 is operated. The valve 79 and the conduit 51 are washed (step S2: washing step). The supplied cleaning liquid is sent to the absorption bottle 77 and mixed with the absorption liquid. After completion of the cleaning process, the absorption liquid in the absorption bottle 77 is sufficiently stirred (step S3: mixing process), and the absorption liquid (mixed liquid) is analyzed (step S4: analysis process).
 以上のように採取試料分析装置3を使用し、一定量の採取ガスを採取し、かつ三方弁79及び導管51を洗浄液で洗浄することで、バッチ操作により排ガス中のアンモニアガスを精度よく分析することができる。本実施形態では、ガス採取管11の基端部13側の非温度保持領域が非常に短いので、この部分の洗浄を省略することができる。ヒートポンプ25の効果、洗浄液の効果は、第1及び第2実施形態に係る採取試料分析装置1、2のところで説明した通りである。 As described above, by using the collected sample analyzer 3, a certain amount of collected gas is collected, and the three-way valve 79 and the conduit 51 are washed with a washing liquid, whereby the ammonia gas in the exhaust gas is accurately analyzed by batch operation. be able to. In this embodiment, since the non-temperature holding region on the base end portion 13 side of the gas sampling tube 11 is very short, cleaning of this portion can be omitted. The effects of the heat pump 25 and the cleaning liquid are the same as described in the sample collection analyzers 1 and 2 according to the first and second embodiments.
 図7に示す採取試料分析装置3では、ガス採取管11の基端部13に三方弁79を接続し、これに液供給管68及び導管51を接続するが、ガス採取管11の基端部13に直接、液供給管68及び導管51を接続し、各々の管に弁を設け、切替えるようにしてもよい。排ガスには多くの煤塵が含まれるので、使用する弁は、ボール弁などのように煤塵で閉塞し難いものが好ましい。 In the collected sample analyzer 3 shown in FIG. 7, a three-way valve 79 is connected to the base end portion 13 of the gas sampling tube 11, and a liquid supply pipe 68 and a conduit 51 are connected to this, but the base end portion of the gas sampling tube 11 is connected. 13 may be directly connected to the liquid supply pipe 68 and the conduit 51, and each pipe may be provided with a valve for switching. Since exhaust gas contains a large amount of soot, it is preferable that the valve to be used is not easily blocked by soot, such as a ball valve.
 またガス採取管11の基端部13側の構造、導管51及び液供給管68の接続要領を第1実施形態に係る採取試料分析装置1と同じとし、一定量の排ガスを吸引後、洗浄液を供給してガス採取管11の基端部13側の非温度保持領域及び導管51を洗浄するようにしてもよい。また洗浄液を供給するとき、吸引ポンプ75を作動させてもよい。 Further, the structure on the base end portion 13 side of the gas sampling pipe 11, the connection procedure of the conduit 51 and the liquid supply pipe 68 are the same as those of the sampling sample analyzer 1 according to the first embodiment. You may make it wash | clean and supply the non-temperature holding area | region and the conduit | pipe 51 by the side of the base end part 13 of the gas sampling pipe | tube 11. FIG. Further, when supplying the cleaning liquid, the suction pump 75 may be operated.
 また図7に示す採取試料分析装置3では、吸収液及び洗浄液にアンモニアを吸収させ、アンモニアを吸収した吸収液(含む洗浄液)を分析するが、採取ガスを分析するようにしてもよい。具体的には、吸収液及び洗浄液に第1実施形態で使用した洗浄液を用い、洗浄液を通過した後の採取ガス及び洗浄時に発生するアンモニアガスをガスホルダー等に集め、このガスに含まれるアンモニアを分析してもよい。 Further, in the sample collection analyzer 3 shown in FIG. 7, the absorption liquid and the cleaning liquid absorb ammonia, and the absorption liquid (including the cleaning liquid) that has absorbed ammonia is analyzed. However, the collected gas may be analyzed. Specifically, the cleaning liquid used in the first embodiment is used as the absorption liquid and the cleaning liquid, the collected gas after passing through the cleaning liquid and the ammonia gas generated during the cleaning are collected in a gas holder or the like, and the ammonia contained in this gas is collected. You may analyze.
 図9は、本発明の第4実施形態に係る採取試料分析装置4の概略構成図である。本発明の第1~第3実施形態に係る採取試料分析装置1、2、3と同一の構成には、同一の符号を付して説明を省略する。 FIG. 9 is a schematic configuration diagram of the collected sample analyzer 4 according to the fourth embodiment of the present invention. The same components as those of the collected sample analyzers 1, 2, and 3 according to the first to third embodiments of the present invention are denoted by the same reference numerals and description thereof is omitted.
 第4実施形態に係る採取試料分析装置4は、第1実施形態に係る試料ガス分析装置1と同様に、連続的に排ガスを採取し、かつ連続的に洗浄液を供給し、洗浄液で洗浄された後の採取ガスをオンラインで分析する。このため第4実施形態に係る採取試料分析装置4と第1実施形態に係る採取試料分析装置1とは、装置の基本構成は同一である。但し、第4実施形態に係る採取試料分析装置4と第1実施形態に係る採取試料分析装置1とでは、ガス採取管11の温度が大きく異なる。これに伴いヒートパイプ26の構造及び液供給管の先端位置が第1実施形態に係る採取試料分析装置1と異なる。 As in the sample gas analyzer 1 according to the first embodiment, the collected sample analyzer 4 according to the fourth embodiment continuously collects exhaust gas, continuously supplies a cleaning liquid, and is cleaned with the cleaning liquid. Analyze later collected gas online. Therefore, the collected sample analyzer 4 according to the fourth embodiment and the collected sample analyzer 1 according to the first embodiment have the same basic configuration. However, the temperature of the gas sampling tube 11 is greatly different between the sampling sample analyzer 4 according to the fourth embodiment and the sampling sample analyzer 1 according to the first embodiment. Accordingly, the structure of the heat pipe 26 and the tip position of the liquid supply pipe are different from those of the collected sample analyzer 1 according to the first embodiment.
 第4実施形態に係る採取試料分析装置4では、ガス採取管11の温度保持領域の温度を100℃以下の温度に保持する。これは、ガス採取管11の温度保持領域をアンモニア化合物が析出する温度でかつ洗浄液が蒸気とならない温度とし、この温度保持領域を洗浄液で確実に洗浄可能とすることで、排ガスの安定採取及び分析精度向上を実現するものである。 In the collected sample analyzer 4 according to the fourth embodiment, the temperature of the temperature holding region of the gas sampling tube 11 is held at a temperature of 100 ° C. or lower. This is because the temperature holding region of the gas sampling tube 11 is set to a temperature at which the ammonia compound is deposited and the cleaning liquid does not become vapor, and this temperature holding region can be reliably cleaned with the cleaning liquid, thereby stably collecting and analyzing the exhaust gas. This is to improve accuracy.
 第4実施形態に係る採取試料分析装置4において、ガス採取管11の温度保持領域15は、煙道壁121を跨ぐ部分及びその前後部分であり、具体的にはヒートパイプ26で覆われた領域である。ガス採取管11の温度保持領域15の全長は、第1実施形態に係る採取試料分析装置1のガス採取管11と同じであるが、第1実施形態に係る採取試料分析装置1のガス採取管11に比較し、煙道119内側の長さが短く、逆に煙道119外側の長さが長い。ガス採取管11の先端部12及び基端部近傍14は、非温度保持領域である。非温度保持領域は、ヒートパイプ26を介して所定の温度に保持されていない領域である。 In the collected sample analyzer 4 according to the fourth embodiment, the temperature holding region 15 of the gas sampling tube 11 is a portion straddling the flue wall 121 and its front and rear portions, specifically, a region covered with the heat pipe 26. It is. The total length of the temperature holding region 15 of the gas sampling tube 11 is the same as that of the gas sampling tube 11 of the sampling sample analyzer 1 according to the first embodiment, but the gas sampling tube of the sampling sample analyzer 1 according to the first embodiment. Compared to 11, the length inside the flue 119 is short, and conversely, the length outside the flue 119 is long. The distal end portion 12 and the proximal end portion vicinity 14 of the gas sampling tube 11 are non-temperature holding regions. The non-temperature holding area is an area that is not held at a predetermined temperature via the heat pipe 26.
 ヒートパイプ26は、第1実施形態に係る採取試料分析装置1のヒートパイプ25と同様に、ガス採取管11の外壁19に一体的に設けられている。 The heat pipe 26 is integrally provided on the outer wall 19 of the gas sampling tube 11 in the same manner as the heat pipe 25 of the sampling sample analyzer 1 according to the first embodiment.
 ヒートパイプ26は、ウィック式のヒートパイプであり、ガス採取管11を覆う円筒部28の他に、円筒部28に直交するように設けられた冷却部30を有する。冷却部30は、煙道119外に位置する円筒部28に、円筒部28と連通するように円筒部28と一体的に設けられている。また冷却部30の外周面には、放熱を促進するための冷却用フィン37が設けられている。 The heat pipe 26 is a wick-type heat pipe, and includes a cooling unit 30 provided so as to be orthogonal to the cylindrical unit 28 in addition to the cylindrical unit 28 covering the gas sampling tube 11. The cooling unit 30 is provided integrally with the cylindrical unit 28 so as to communicate with the cylindrical unit 28 in the cylindrical unit 28 located outside the flue 119. Cooling fins 37 for promoting heat dissipation are provided on the outer peripheral surface of the cooling unit 30.
 ヒートパイプ26で使用する作動流体は、ガス採取管11を100℃以下に保持可能であればよく、水、メタノール、アセトンが例示される。なお、ヒートパイプ26とガス採取管11とを別体としてもよい点などは、第1実施形態に係る採取試料分析装置1のヒートパイプ25と同じであるので説明を省略する。 The working fluid used in the heat pipe 26 only needs to be able to hold the gas sampling tube 11 at 100 ° C. or lower, and examples thereof include water, methanol, and acetone. Since the heat pipe 26 and the gas sampling tube 11 may be separated from each other, they are the same as the heat pipe 25 of the collected sample analyzer 1 according to the first embodiment, and thus the description thereof is omitted.
 液供給管68は、ガス採取管11の温度保持領域15全体を洗浄可能に、先端部69がガス採取管11の温度保持領域15の煙道119側端部に位置するように設けられている。その他、液供給装置65、導管51、サイクロン60の構造、仕様は、第1実施形態に係る採取試料分析装置1と同じである。また洗浄液も第1実施形態に係る採取試料分析装置1で使用する洗浄液と同じである。 The liquid supply pipe 68 is provided so that the tip 69 is located at the end of the temperature holding area 15 of the gas sampling tube 11 on the side of the flue 119 so that the entire temperature holding area 15 of the gas sampling pipe 11 can be cleaned. . In addition, the structures and specifications of the liquid supply device 65, the conduit 51, and the cyclone 60 are the same as those of the collected sample analyzer 1 according to the first embodiment. Further, the cleaning liquid is the same as the cleaning liquid used in the collected sample analyzer 1 according to the first embodiment.
 採取試料分析装置4の排ガス中のアンモニア濃度測定要領は、第1実施形態に係る採取試料分析装置1の排ガス中のアンモニア濃度測定要領と同じである。 The procedure for measuring the ammonia concentration in the exhaust gas of the sampling sample analyzer 4 is the same as the procedure for measuring the ammonia concentration in the exhaust gas of the sampling sample analyzer 1 according to the first embodiment.
 第1実施形態に係る採取試料分析装置1では、ガス採取管11の温度保持領域15をアンモニア化合物が析出しない温度とし、アンモニア化合物が析出する恐れがあるガス採取管11の基端部13側の非温度保持領域を洗浄液で洗浄する。これに対して、第4実施形態に係る採取試料分析装置4では、ガス採取管11の温度保持領域15をアンモニア化合物が析出する温度でかつ洗浄液が蒸気とならない温度とし、この温度保持領域15を洗浄液で確実に洗浄する。なお、第4実施形態に係る採取試料分析装置4においてもガス採取管11の基端部13側の非温度保持領域は、洗浄液で洗浄される。 In the sample collection analyzer 1 according to the first embodiment, the temperature holding region 15 of the gas sampling tube 11 is set to a temperature at which the ammonia compound does not precipitate, and the gas sampling tube 11 on the base end 13 side where the ammonia compound may be deposited may be deposited. The non-temperature holding area is cleaned with a cleaning solution. On the other hand, in the collected sample analyzer 4 according to the fourth embodiment, the temperature holding region 15 of the gas sampling tube 11 is set to a temperature at which the ammonia compound is deposited and the cleaning liquid is not vaporized. Rinse thoroughly with a cleaning solution. Note that, also in the sample collection analyzer 4 according to the fourth embodiment, the non-temperature holding region on the base end portion 13 side of the gas sampling tube 11 is cleaned with the cleaning liquid.
 上記のように第1実施形態に係る採取試料分析装置1と第4実施形態に係る採取試料分析装置4とでは、ガス採取管11の温度が大きく異なり、これに伴いヒートパイプ25、26の構造及び液供給管の先端部69の位置が異なる。しかしながらヒートパイプ25、26を用いて、ガス採取管11の特定の領域を温度保持領域15として常に一定の温度に保持し、かつアンモニア化合物が析出する温度領域を洗浄液で洗浄することで排ガスの安定採取及び分析精度向上を実現する点は同じである。 As described above, the collected sample analyzer 1 according to the first embodiment and the collected sample analyzer 4 according to the fourth embodiment are greatly different in the temperature of the gas sampling tube 11, and accordingly, the structure of the heat pipes 25 and 26. And the position of the front-end | tip part 69 of a liquid supply pipe differs. However, by using the heat pipes 25 and 26, the specific region of the gas sampling tube 11 is always kept at a constant temperature as the temperature holding region 15, and the temperature region where the ammonia compound is deposited is washed with the cleaning liquid, thereby stabilizing the exhaust gas. The same point is achieved in improving sampling and analysis accuracy.
 図10は、本発明の第5実施形態に係る採取試料分析装置5の概略構成図である。本発明の第1~第4実施形態に係る採取試料分析装置1、2、3、4と同一の構成には、同一の符号を付して説明を省略する。 FIG. 10 is a schematic configuration diagram of the collected sample analyzer 5 according to the fifth embodiment of the present invention. The same components as those of the collected sample analyzers 1, 2, 3, and 4 according to the first to fourth embodiments of the present invention are denoted by the same reference numerals and description thereof is omitted.
 第5実施形態に係る採取試料分析装置5は、第4実施形態に係る採取試料分析装置4と同様の装置を使用し、第2実施形態に係る採取試料分析装置2と同じく、オンラインで吸収液を分析する。このため第5実施形態に係る採取試料分析装置5は、第4実施形態に係る採取試料分析装置4と比較して、サイクロン61廻りの構成が異なり、サイクロン61廻りの構成は、第2実施形態に係る採取試料分析装置2と同一である。 The collected sample analyzer 5 according to the fifth embodiment uses the same apparatus as the collected sample analyzer 4 according to the fourth embodiment, and is similar to the collected sample analyzer 2 according to the second embodiment. Analyze. Therefore, the sample collection analyzer 5 according to the fifth embodiment is different from the sample sample analysis device 4 according to the fourth embodiment in the configuration around the cyclone 61, and the configuration around the cyclone 61 is the second embodiment. This is the same as the collected sample analyzer 2 according to FIG.
 第5実施形態に係る採取試料分析装置5で使用する吸収液及び洗浄液は、第2実施形態に係る採取試料分析装置2で使用する吸収液及び洗浄液と同じである。 The absorbing liquid and cleaning liquid used in the collected sample analyzer 5 according to the fifth embodiment are the same as the absorbing liquid and cleaning liquid used in the collected sample analyzer 2 according to the second embodiment.
 第5実施形態に係る採取試料分析装置5の排ガス中のアンモニア濃度測定要領は、第2実施形態に係る採取試料分析装置2と同じである。第2実施形態に係る採取試料分析装置2と比較してガス採取管11の温度保持領域15の温度が異なるが、排ガスを安定的に採取できる点及び高い分析精度を実現できる点は同じである。 The procedure for measuring the ammonia concentration in the exhaust gas of the collected sample analyzer 5 according to the fifth embodiment is the same as that of the collected sample analyzer 2 according to the second embodiment. Although the temperature of the temperature holding region 15 of the gas sampling tube 11 is different from that of the sample collection analyzer 2 according to the second embodiment, the point that the exhaust gas can be stably collected and the high analysis accuracy can be realized is the same. .
 図11は、本発明の第6実施形態に係る採取試料分析装置6の概略構成図である。本発明の第1~第5実施形態に係る採取試料分析装置1、2、3、4、5と同一の構成には、同一の符号を付して説明を省略する。 FIG. 11 is a schematic configuration diagram of the collected sample analyzer 6 according to the sixth embodiment of the present invention. The same components as those of the collected sample analyzers 1, 2, 3, 4, 5 according to the first to fifth embodiments of the present invention are denoted by the same reference numerals and description thereof is omitted.
 第6実施形態に係る採取試料分析装置6は、第4実施形態に係る採取試料分析装置4と同様の装置を使用し、第3実施形態に係る採取試料分析装置3と同様に排ガスの採取及び分析をバッチ操作で行う。このため第6実施形態に係る採取試料分析装置6は、第4実施形態に係る採取試料分析装置4と比較して、ガス採取管11、ヒートパイプ26及び液供給管68の構造、配置は、同一であるが、導管51よりも下流側及び液供給タンク66は、第3実施形態に係る採取試料分析装置3と同じである。 The collected sample analyzer 6 according to the sixth embodiment uses the same device as the collected sample analyzer 4 according to the fourth embodiment, and collects exhaust gas and collects the exhaust gas in the same manner as the collected sample analyzer 3 according to the third embodiment. Analyze in batch. Therefore, the sample collection analyzer 6 according to the sixth embodiment is different from the sample collection analyzer 4 according to the fourth embodiment in the structure and arrangement of the gas collection tube 11, the heat pipe 26, and the liquid supply tube 68. Although the same, the downstream side of the conduit 51 and the liquid supply tank 66 are the same as those of the collected sample analyzer 3 according to the third embodiment.
 第6実施形態に係る採取試料分析装置6で使用する吸収液及び洗浄液は、第3実施形態に係る採取試料分析装置3で使用する吸収液及び洗浄液と同じである。 The absorbing liquid and cleaning liquid used in the collected sample analyzer 6 according to the sixth embodiment are the same as the absorbing liquid and cleaning liquid used in the collected sample analyzer 3 according to the third embodiment.
 分析計は、第3実施形態に係る採取試料分析装置3と同様に液体クロマトグラフを使用することができる。 The analyzer can use a liquid chromatograph in the same manner as the collected sample analyzer 3 according to the third embodiment.
 第6実施形態に係る採取試料分析装置6の排ガス中のアンモニア濃度測定要領は、第3実施形態に係る採取試料分析装置3のアンモニア濃度測定要領と基本的に同じである。 The procedure for measuring the ammonia concentration in the exhaust gas of the collected sample analyzer 6 according to the sixth embodiment is basically the same as the procedure for measuring the ammonia concentration of the collected sample analyzer 3 according to the third embodiment.
 第6実施形態に係る採取試料分析装置6は、第3実施形態に係る採取試料分析装置3と比較して、ガス採取管11の温度保持領域15の温度が低い点、ガス採取管11の出口部に切換弁である三方弁79が設けられていない点で、第3実施形態に係る採取試料分析装置3と異なるが、技術的思想、作用効果は基本的に同じであり、排ガスを安定的に採取しさらに高い分析精度を実現できる。 The collected sample analyzer 6 according to the sixth embodiment has a lower temperature in the temperature holding region 15 of the gas collection tube 11 than the collected sample analyzer 3 according to the third embodiment, and the outlet of the gas collection tube 11. Although the three-way valve 79 which is a switching valve is not provided in the part, it differs from the collected sample analyzer 3 according to the third embodiment, but the technical idea and the operational effect are basically the same, and the exhaust gas is stable. Higher analysis accuracy can be realized.
 また図11に示す採取試料分析装置6では、吸収液及び洗浄液にアンモニアを吸収させ、アンモニアを吸収した吸収液(含む洗浄液)を分析するが、ガスを分析するようにしてもよい点、その要領は、第3実施形態に係る採取試料分析装置3のところに記した通りである。 Further, in the collected sample analyzer 6 shown in FIG. 11, the absorption liquid and the cleaning liquid absorb ammonia, and the absorption liquid (including the cleaning liquid) that has absorbed ammonia is analyzed. These are as described in the collection sample analyzer 3 according to the third embodiment.
 以上、第1~第6実施形態に係る採取試料分析装置を用いて説明したように、本発明に係る採取試料分析装置は、ヒートパイプ25、26を介してガス採取管11を所定温度に保持することができるので、化合物が析出する領域が特定され洗浄液による洗浄が容易となる。さらに化合物が析出する温度領域に常時、液を流しておくことで化合物の析出及び/又は付着を防止することが可能であり、分析試料を安定的に採取可能であると共にガスに含まれる分析対象成分を正確に採取することができる。 As described above, as described using the collected sample analyzer according to the first to sixth embodiments, the collected sample analyzer according to the present invention holds the gas sampling tube 11 at a predetermined temperature via the heat pipes 25 and 26. Therefore, the region where the compound is deposited is specified, and cleaning with the cleaning liquid becomes easy. Furthermore, it is possible to prevent the precipitation and / or adhesion of the compound by always flowing the liquid in the temperature range where the compound is precipitated, and it is possible to collect the analysis sample stably and to include the analysis target contained in the gas. Ingredients can be collected accurately.
 ヒートパイプ25、26は、熱伝達性、温度の均一性に優れる一方で、温度を均一化させるための手段さらには電源も不要であり、作動流体の加熱源にガス流通路内を流通するガスを、作動流体の冷却源に大気を使用すれば特別の熱源を用意する必要がなく実用性に優れる。なお、上記実施形態では、ウィック式のヒートパイプを使用する例を示したが、ヒートパイプは、他の種類のヒートパイプ、例えば自励振動ヒートパイプを用いてもよい。 The heat pipes 25 and 26 are excellent in heat transfer properties and temperature uniformity, but do not require a means for equalizing the temperature or a power source, and the gas flowing through the gas flow path to the heating source of the working fluid. If the atmosphere is used as a cooling source for the working fluid, there is no need to prepare a special heat source, which is excellent in practicality. In addition, although the example which uses a wick-type heat pipe was shown in the said embodiment, you may use a heat pipe of another kind, for example, a self-excited vibration heat pipe.
 また本発明によれば、採取試料の分析をオンライン又はオフラインで行うことが可能なため用途に応じて好ましい方法を採用することができる。さらに試料の形態がガスであっても液であってもよいので種々の分析計を使用することが可能であり、使い勝手がよく実用性に優れる。なお、上記実施形態では、火力発電所の煙道排ガスを例として、本発明に係る採取試料分析装置を説明したが、本発明に係る分析試料採取装置及びその使用方法、採取試料分析装置及び採取試料分析方法は、他のガスの採取及び分析にも適用可能なことは言うまでもない。 Further, according to the present invention, since it is possible to analyze the collected sample online or offline, a preferable method can be adopted depending on the application. Furthermore, since the sample may be in the form of gas or liquid, various analyzers can be used, which is convenient and excellent in practicality. In the above embodiment, the sampling sample analyzer according to the present invention has been described by taking the flue gas of a thermal power plant as an example. However, the analytical sample sampling device according to the present invention and the method of using the same, the sampling sample analyzer and the sampling It goes without saying that the sample analysis method is applicable to collection and analysis of other gases.
 図面を参照しながら好適な採取試料分析装置及びその使用方法について説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更及び修正を容易に想定するであろう。従って、そのような変更及び修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 Although a preferred sample analysis apparatus and a method for using the same have been described with reference to the drawings, those skilled in the art will readily consider various changes and modifications within the obvious scope by looking at the present specification. Let's go. Therefore, such changes and modifications are interpreted as being within the scope of the invention defined by the claims.
 1、2、3、4、5、6 採取試料分析装置
11 ガス採取管
12 ガス採取管の先端部
13 ガス採取管の基端部
14 ガス採取管の基端部近傍
15 温度保持領域
19 ガス採取管の外壁
25、26 ヒートパイプ
51 導管
53 コーティング層
54 液膜
60、61 サイクロン
65 液供給装置
69 液供給管先端部
77 吸収ビン
81、83 分析装置
100 火力発電所
109 排煙脱硝装置
119 煙道
121 煙道壁
1, 2, 3, 4, 5, 6 Sampling sample analyzer 11 Gas sampling tube 12 Gas sampling tube tip 13 Gas sampling tube proximal end 14 Gas sampling tube proximal end 15 Temperature holding region 19 Gas sampling Tube outer wall 25, 26 Heat pipe 51 Conduit 53 Coating layer 54 Liquid film 60, 61 Cyclone 65 Liquid supply device 69 Liquid supply pipe tip 77 Absorption bottle 81, 83 Analysis device 100 Thermal power plant 109 Flue gas denitration device 119 Flue 121 Flue wall

Claims (15)

  1.  先端部側がガス流通路に挿入され前記ガス流通路内のガスを採取するガス採取管と、
     前記ガス採取管を所定の温度に保持する温度保持手段と、
     前記ガス採取管内及び/又は前記ガス採取管の出口部に接続される部材に液を供給する液供給手段と、
    を含み、
     前記ガスは、温度が低下するとガスに含まれる一部の化合物が析出するガスであり、
     前記温度保持手段がヒートパイプであることを特徴とする分析試料採取装置。
    A gas sampling tube whose tip end side is inserted into the gas flow path and collects gas in the gas flow path;
    Temperature holding means for holding the gas sampling pipe at a predetermined temperature;
    A liquid supply means for supplying a liquid to a member connected to the gas sampling pipe and / or the outlet of the gas sampling pipe;
    Including
    The gas is a gas in which a part of the compounds contained in the gas is precipitated when the temperature decreases,
    An analytical sample collecting apparatus, wherein the temperature holding means is a heat pipe.
  2.  前記ヒートパイプの作動流体の加熱源が、前記ガス流通路内を流通するガスであり、前記ヒートパイプの作動流体の冷却源が、前記ガス流通路外の大気であることを特徴とする請求項1に記載の分析試料採取装置。 The heating source of the working fluid of the heat pipe is a gas flowing in the gas flow passage, and the cooling source of the working fluid of the heat pipe is the atmosphere outside the gas flow passage. 2. The analytical sampling apparatus according to 1.
  3.  前記ガス採取管は、前記ヒートパイプにより前記化合物が析出しない温度領域と前記化合物が析出する温度領域とに区分けされ、
     前記液は、前記ガス採取管に対しては化合物が析出する温度領域にのみ供給されることを特徴とする請求項1又は2に記載の分析試料採取装置。
    The gas sampling pipe is divided into a temperature region where the compound is not precipitated by the heat pipe and a temperature region where the compound is precipitated,
    The analytical sample collecting apparatus according to claim 1 or 2, wherein the liquid is supplied only to a temperature region where the compound is deposited with respect to the gas sampling tube.
  4.  前記ガス採取管は、少なくとも前記ガス流通路の壁を跨ぐ部分及びその前後が、前記ヒートパイプにより前記化合物が析出しない温度に保持されていることを特徴とする請求項3に記載の分析試料採取装置。 The analytical sample collection according to claim 3, wherein the gas sampling pipe is held at a temperature at which the compound does not precipitate by the heat pipe at least at a portion straddling the wall of the gas flow passage and before and after the portion. apparatus.
  5.  前記ガス採取管は、少なくとも前記ガス流通路の壁を跨ぐ部分及びその前後が、前記ヒートパイプにより前記化合物が析出する温度に保持されていることを特徴とする請求項3に記載の分析試料採取装置。 The analytical sample collection according to claim 3, wherein at least a portion of the gas sampling tube straddling the wall of the gas flow passage and its front and back are maintained at a temperature at which the compound is precipitated by the heat pipe. apparatus.
  6.  前記ヒートパイプは、前記ガス採取管の外壁面に前記ガス採取管と一体的に設けられていることを特徴とする請求項1から5のいずれか1項に記載の分析試料採取装置。 The analytical sample collection device according to any one of claims 1 to 5, wherein the heat pipe is provided integrally with the gas collection tube on an outer wall surface of the gas collection tube.
  7.  さらに前記ガス採取管を介して採取される採取ガスと前記液供給手段を通じて前記ガス採取管内及び/又は前記ガス採取管の出口部に接続される部材に供給される前記液とを分離する気液分離手段と、
     前記ガス採取管と前記気液分離手段とを結ぶ導管と、を備え、
     前記導管は、内面が親水性であり、前記導管内を流通する前記液は、前記導管の内壁面に液膜を形成しながら流通することを特徴とする請求項1から6のいずれか1項に記載の分析試料採取装置。
    Further, the gas / liquid that separates the collected gas collected through the gas sampling tube from the liquid supplied to the member connected to the gas sampling tube and / or the outlet of the gas sampling tube through the liquid supply means. Separating means;
    A conduit connecting the gas sampling pipe and the gas-liquid separation means,
    7. The conduit according to claim 1, wherein the conduit has a hydrophilic inner surface, and the fluid flowing through the conduit flows while forming a liquid film on the inner wall surface of the conduit. The analytical sample collection device described in 1.
  8.  前記ガスが、アンモニアを含むガスであり、分析対象成分がアンモニアであることを特徴とする請求項1から7のいずれか1項に記載の分析試料採取装置。 The analytical sample collection device according to any one of claims 1 to 7, wherein the gas is a gas containing ammonia, and the component to be analyzed is ammonia.
  9.  前記ガス流通路が、ボイラ排ガスを処理する排煙脱硝装置の出口部の煙道であり、前記ガス流通路内のガスが、前記煙道内のボイラ排ガスであることを特徴とする請求項8に記載の分析試料採取装置。 The gas flow passage is a flue at an outlet of a flue gas denitration apparatus that processes boiler exhaust gas, and the gas in the gas flow passage is boiler exhaust gas in the flue. The analytical sample collection device described.
  10.  前記液供給手段を介して洗浄用の液を、前記ガス採取管の先端部側に流し、前記ガス採取管のうち前記化合物が析出しない温度領域と前記化合物が析出する温度領域との境界部を洗浄することを特徴とする請求項3から9のいずれか1項に記載の分析試料採取装置の使用方法。 A cleaning liquid is allowed to flow to the tip end side of the gas sampling tube through the liquid supply means, and a boundary portion between a temperature region where the compound does not precipitate and a temperature region where the compound precipitates is included in the gas sampling tube. The method of using the analytical sample collection device according to any one of claims 3 to 9, wherein the analytical sample collection device is washed.
  11.  請求項1から10のいずれか1項に記載の分析試料採取装置と、
     さらにガス体に含まれる分析対象成分を分析する分析装置と、を備え、
     請求項1から10のいずれか1項に記載の分析試料採取装置における前記液が、前記化合物を溶解させ、かつ前記分析対象成分を吸収しない液であり、
     前記分析装置は、前記液で洗浄された採取ガスを分析することを特徴とする採取試料分析装置。
    The analytical sample collection device according to any one of claims 1 to 10,
    And an analyzer for analyzing the component to be analyzed contained in the gas body,
    The liquid in the analytical sample collection device according to any one of claims 1 to 10, wherein the liquid dissolves the compound and does not absorb the analysis target component.
    The collected sample analysis apparatus, wherein the analysis apparatus analyzes the collected gas washed with the liquid.
  12.  請求項1から10のいずれか1項に記載の分析試料採取装置と、
     さらに液体に含まれる分析対象成分を分析する分析装置と、を備え、
     請求項1から10のいずれか1項に記載の分析試料採取装置における前記液が、前記化合物を溶解させ、かつ前記分析対象成分を吸収する吸収液であり、
     前記分析装置は、前記分析対象成分を吸収した吸収液を分析することを特徴とする採取試料分析装置。
    The analytical sample collection device according to any one of claims 1 to 10,
    And an analyzer for analyzing an analysis target component contained in the liquid,
    The liquid in the analytical sampling device according to any one of claims 1 to 10, wherein the liquid is an absorption liquid that dissolves the compound and absorbs the analysis target component.
    The collected sample analyzer which analyzes the absorption liquid which absorbed the analysis object ingredient.
  13.  請求項11に記載の採取試料分析装置を用い、前記ガス採取管を介して一定流量のガスを連続的に採取しつつ、前記液供給手段を介して一定流量の前記液を連続的に前記ガス採取管内に供給し、前記液で洗浄された採取ガスをオンラインで分析することを特徴とする採取試料分析方法。 The sample collection analyzer according to claim 11 is used to continuously collect a constant flow rate of gas through the gas supply pipe, while continuously collecting a constant flow rate of the liquid through the liquid supply means. A method for analyzing a collected sample, wherein the collected gas supplied into the collection tube and washed with the liquid is analyzed online.
  14.  請求項12に記載の採取試料分析装置を用い、前記ガス採取管を介して一定流量のガスを連続的に採取しつつ、前記液供給手段を介して一定流量の前記吸収液を連続的に前記ガス採取管内に供給し、前記分析対象成分を吸収した吸収液をオンラインで分析することを特徴とする採取試料分析方法。 Using the sample collection analyzer according to claim 12, continuously collecting a constant flow rate of gas through the gas sampling tube, and continuously supplying the absorption liquid at a constant flow rate through the liquid supply means. A method for analyzing a collected sample, characterized in that an absorbing solution that has been supplied into a gas sampling tube and absorbed the component to be analyzed is analyzed online.
  15.  請求項12に記載の採取試料分析装置を用いた採取試料分析方法であって、前記分析装置は、前記吸収液に代え、以下に記載の吸収工程、洗浄工程、及び混合工程を経て得られる液を分析対象とすることを特徴とする採取試料分析方法。
     吸収工程:前記ガス採取管を介してガスを採取し、当該ガスを吸収液に通じ、該吸収液に分析対象成分を吸収させる。
     洗浄工程:前記吸収工程後、前記ガス採取管内及び/又は前記ガス採取管の出口部に接続される部材を、前記液供給手段を介して供給する洗浄液で洗浄する。
     混合工程:前記吸収工程で得られる吸収液と前記洗浄工程で得られる洗浄液とを混合する。
    It is a collection sample analysis method using the collection sample analyzer of Claim 12, Comprising: The said analyzer replaces the said absorption liquid, The liquid obtained through the absorption process of the following, a washing | cleaning process, and a mixing process A method for analyzing a collected sample, characterized in that
    Absorption step: gas is collected through the gas sampling tube, the gas is passed through the absorption liquid, and the analysis target component is absorbed by the absorption liquid.
    Washing step: After the absorption step, the member connected to the inside of the gas sampling tube and / or the outlet of the gas sampling tube is cleaned with the cleaning liquid supplied through the liquid supply means.
    Mixing step: The absorption liquid obtained in the absorption step and the cleaning liquid obtained in the washing step are mixed.
PCT/JP2013/078658 2013-10-23 2013-10-23 Analysis sample collection device and method for using same, and collected sample analysis device and collected sample analysis method WO2015059781A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015513538A JP5876614B2 (en) 2013-10-23 2013-10-23 ANALYSIS SAMPLING DEVICE AND METHOD OF USING THE SAME
PCT/JP2013/078658 WO2015059781A1 (en) 2013-10-23 2013-10-23 Analysis sample collection device and method for using same, and collected sample analysis device and collected sample analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/078658 WO2015059781A1 (en) 2013-10-23 2013-10-23 Analysis sample collection device and method for using same, and collected sample analysis device and collected sample analysis method

Publications (1)

Publication Number Publication Date
WO2015059781A1 true WO2015059781A1 (en) 2015-04-30

Family

ID=52992419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078658 WO2015059781A1 (en) 2013-10-23 2013-10-23 Analysis sample collection device and method for using same, and collected sample analysis device and collected sample analysis method

Country Status (2)

Country Link
JP (1) JP5876614B2 (en)
WO (1) WO2015059781A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151445A (en) * 2015-02-16 2016-08-22 中国電力株式会社 Analysis sample extractor and extracted sample analyzer
EP3616769A1 (en) * 2018-08-28 2020-03-04 Vortexair Ltd A precleaner
CN117109996A (en) * 2023-10-25 2023-11-24 成都蓝湖科技有限公司 Analysis sampling system of sulfur analysis ratio instrument

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619432A (en) * 1979-07-26 1981-02-24 Fuji Electric Co Ltd Exhaust gas sampler
JPS5773648A (en) * 1980-10-27 1982-05-08 Mitsubishi Heavy Ind Ltd Analyzing method for ammonia
JP2001083054A (en) * 1999-09-09 2001-03-30 Dkk Corp Exhaust gas sample collecting method and device
JP2001349828A (en) * 2000-06-09 2001-12-21 Mitsubishi Heavy Ind Ltd Method for measuring trace metal carbonyl compound, and apparatus for collecting same
JP2002131198A (en) * 2000-08-17 2002-05-09 Mitsubishi Heavy Ind Ltd Exhaust gas pretreatment equipment and method
JP2003130768A (en) * 2001-10-25 2003-05-08 Mitsubishi Heavy Ind Ltd Sulfur trioxide concentration measuring instrument
JP2004117271A (en) * 2002-09-27 2004-04-15 Chugoku Electric Power Co Inc:The Method of collecting analytical exhaust gas containing high adsorptivity gas component
JP2005147950A (en) * 2003-11-18 2005-06-09 Chugoku Electric Power Co Inc:The Analytical system and analytical method for gas
WO2005100947A1 (en) * 2004-04-01 2005-10-27 The Chugoku Electric Power Co. Inc Method for sampling flue gas for analysis containing gas component having high susceptibility to adsorption
JP2012093156A (en) * 2010-10-26 2012-05-17 Chugoku Electric Power Co Inc:The Exhaust gas collection device and ammonia collection method using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210954A (en) * 1994-09-28 1996-08-20 Nisshin Steel Co Ltd Method and device for collecting so3 gas in exhaust gas, and method and device for analyzing so3 concentration

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619432A (en) * 1979-07-26 1981-02-24 Fuji Electric Co Ltd Exhaust gas sampler
JPS5773648A (en) * 1980-10-27 1982-05-08 Mitsubishi Heavy Ind Ltd Analyzing method for ammonia
JP2001083054A (en) * 1999-09-09 2001-03-30 Dkk Corp Exhaust gas sample collecting method and device
JP2001349828A (en) * 2000-06-09 2001-12-21 Mitsubishi Heavy Ind Ltd Method for measuring trace metal carbonyl compound, and apparatus for collecting same
JP2002131198A (en) * 2000-08-17 2002-05-09 Mitsubishi Heavy Ind Ltd Exhaust gas pretreatment equipment and method
JP2003130768A (en) * 2001-10-25 2003-05-08 Mitsubishi Heavy Ind Ltd Sulfur trioxide concentration measuring instrument
JP2004117271A (en) * 2002-09-27 2004-04-15 Chugoku Electric Power Co Inc:The Method of collecting analytical exhaust gas containing high adsorptivity gas component
JP2005147950A (en) * 2003-11-18 2005-06-09 Chugoku Electric Power Co Inc:The Analytical system and analytical method for gas
WO2005100947A1 (en) * 2004-04-01 2005-10-27 The Chugoku Electric Power Co. Inc Method for sampling flue gas for analysis containing gas component having high susceptibility to adsorption
JP2012093156A (en) * 2010-10-26 2012-05-17 Chugoku Electric Power Co Inc:The Exhaust gas collection device and ammonia collection method using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151445A (en) * 2015-02-16 2016-08-22 中国電力株式会社 Analysis sample extractor and extracted sample analyzer
EP3616769A1 (en) * 2018-08-28 2020-03-04 Vortexair Ltd A precleaner
WO2020043631A1 (en) * 2018-08-28 2020-03-05 Vortexair Ltd A precleaner
US11649791B2 (en) 2018-08-28 2023-05-16 Vortexair Ltd Precleaner
CN117109996A (en) * 2023-10-25 2023-11-24 成都蓝湖科技有限公司 Analysis sampling system of sulfur analysis ratio instrument
CN117109996B (en) * 2023-10-25 2024-01-02 成都蓝湖科技有限公司 Analysis sampling system of sulfur analysis ratio instrument

Also Published As

Publication number Publication date
JP5876614B2 (en) 2016-03-02
JPWO2015059781A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP5876614B2 (en) ANALYSIS SAMPLING DEVICE AND METHOD OF USING THE SAME
CN102959386B (en) Mercury removing method in the removing of gas analyzing apparatus, mercury system, analysis method for gases and waste gas
WO2005100947A1 (en) Method for sampling flue gas for analysis containing gas component having high susceptibility to adsorption
RU2521719C1 (en) Mercury monitor
JP6575794B2 (en) Analytical sample collection device and collected sample analysis device
CN105181614B (en) Sulfur trioxide analytical instrument and method
CN109342284A (en) A kind of detection system and detection method for harmful substances from flue gases
CN106353457A (en) Method and system for detecting flue gas SO3 based on salt absorption
US20150160102A1 (en) System and method for sampling of fluid
JP2008190950A (en) Removing method and removing device for selenium oxide in sample, and measuring method and measuring device for mercury in coal combustion exhaust gas using them
CN101046481B (en) Sample treating device, and measuring instrument provided therewith
CN107300490A (en) A kind of denitration high-temperature flue gas sampling pretreatment unit and preprocess method
CN106248442A (en) SO in a kind of detection flue gas3method and system
JP3361994B2 (en) Ammonia analyzer
JP2010156592A (en) Exhaust gas sampling device
JP5147920B2 (en) Exhaust gas collection device and ammonia collection method using the same
JP6030083B2 (en) How to clean the sampling tube
JP2008232741A (en) Liquid flow sensor, clean water supply system using this, intra-specimen selenium dioxide eliminator, and measuring instrument for mercury in coal combustion exhaust gas using these
JP6468004B2 (en) Gas sampling device
JP5466870B2 (en) Method and apparatus for measuring mercury concentration
JP2013160525A (en) Nitrogen oxide measuring instrument
JP2004117271A (en) Method of collecting analytical exhaust gas containing high adsorptivity gas component
CN205982241U (en) Detect flue gas SO3's flue gas reaction unit and system based on salt absorbs
JP5967908B2 (en) Nitrogen oxide measuring instrument
JPH10332668A (en) Probe for ammonia measuring device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015513538

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895887

Country of ref document: EP

Kind code of ref document: A1