JP2004117271A - Method of collecting analytical exhaust gas containing high adsorptivity gas component - Google Patents

Method of collecting analytical exhaust gas containing high adsorptivity gas component Download PDF

Info

Publication number
JP2004117271A
JP2004117271A JP2002283365A JP2002283365A JP2004117271A JP 2004117271 A JP2004117271 A JP 2004117271A JP 2002283365 A JP2002283365 A JP 2002283365A JP 2002283365 A JP2002283365 A JP 2002283365A JP 2004117271 A JP2004117271 A JP 2004117271A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
sampling
pipe
cleaning liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002283365A
Other languages
Japanese (ja)
Other versions
JP3616876B2 (en
Inventor
Yutaka Shimada
島田 裕
Shinya Tamura
田村 晋也
Naoyuki Tokunaga
徳永 直行
Megumi Yoshikawa
吉川 恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RABOTEKKU KK
Chugoku Electric Power Co Inc
Chuden Kankyo Technos Co Ltd
Original Assignee
RABOTEKKU KK
Chugoku Electric Power Co Inc
Chuden Kankyo Technos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RABOTEKKU KK, Chugoku Electric Power Co Inc, Chuden Kankyo Technos Co Ltd filed Critical RABOTEKKU KK
Priority to JP2002283365A priority Critical patent/JP3616876B2/en
Priority to TW93108294A priority patent/TWI275786B/en
Publication of JP2004117271A publication Critical patent/JP2004117271A/en
Application granted granted Critical
Publication of JP3616876B2 publication Critical patent/JP3616876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately analyze the concentration of an ammonia gas component in exhaust gas. <P>SOLUTION: In the method, the ammonia gas adhering to the inner wall of a duct 2 for collecting the exhaust gas as an object, is cleaned from the duct wall, by using a liquid absorbing the ammonia gas as the cleaning liquid. The gas component is fully recovered by the method. An analyzed result is obtained with high precision by analyzing the cleaning liquid. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、排ガスの脱硝装置において添加されるアンモニアガス濃度の調整のため、排ガス中に微量に含まれるアンモニアガスを高精度に分析することを目的とした吸着性の高いガス成分を含む分析用排ガス採取方法に関するものである。
【0002】
【従来の技術】
従来、排ガス中のガス成分の測定は現場で試料採取を行い湿式分析を行うか、ガスモニタにて測定することが一般的に行われてきている。この排ガス測定の中で、窒素酸化物硫黄酸化物などのようなガス成分は、このガス採取工程で特に採取技術に関する問題はなく比較的容易に目標の精度にて測定可能である。
【0003】
ここで対象とするアンモニアガス等は、吸着性の高いガスであり、排ガス採取中に排ガスの採取管に成分ガスが吸着する現象が著しく、通常の方法では採取時に吸着ロスが発生し精度の高い測定値を得ることに障害があった。
【0004】
その対策として、従来はガス採取管を加熱することで吸着の低減をはかる方法が行われるのが一般的であった。またJIS規格においても排ガス中のアンモニア分析方法がJIS K0099に規定されていて排ガスを導入する道入管の加熱が必要であるなど吸着防止対策が示されている。当JIS K0099は通常規模の排ガス採取現場において手分析にて行う標準的方法である。
【0005】
我々は比較的規模の大きい発電所ボイラ−煙道などの排ガス採取現場において、監視用に自動連続測定をする場合は、大規模な加熱機構付き排ガス採取管を備え、しかも、大量に排ガスを吸引し自動分析装置に連結する方法を採用している。この方法は、特許第3229088号および特許第3322420号の方法である。
【0006】
しかし、さらに高精度を求める濃度範囲100〜1ppm付近の微量分析の範囲の測定においては充分ではなく、排ガス採取管の加熱不足や部分的な加熱不充分箇所の発生等で吸着ロスを起こすという支障があった。
【0007】
すなわち、排ガスを吸引し、これをガス中のアンモニアガス成分を吸収する吸収液を通過させ、その吸収液に捕捉されたアンモニアを分析して排ガス中の濃度を測定する工程において、排ガス採取管等へアンモニア排ガスがその一部が付着するため、このガス成分のみが吸収びんへ捕捉されないという現象である。
【0008】
このため、分析値は期待する値より低値を示すこととなる。本発明は特許第3229088号および特許第3322420号の排ガス採取管部分の改良に関するものである。
【0009】
【発明が解決しようとする課題】
アンモニアガスは水に溶解し易い成分であり、また、排ガス採取管に吸着し易いため、通常採取管を加温し水分の凝結やアンモニア自身の吸着を少なくしてガス採取を行っている。この場合ガス採取管全体を充分加熱する必要があり、一部分たりとも加熱不充分な部分があってはならず、採取管の接続部等で特に充分な加熱効果を得るにはノウハウと熟練が必要である。
【0010】
排ガス中の微量成分分析のためにはこのような従来の方法では不充分であり、さらに確実な方法を求めるため排ガス採取管に付着したガス成分を回収することによって分析精度を高めることが一つの課題である。
【0011】
【課題を解決するための手段】
本発明は、排ガス採取管の採取中の付着ガスによる分析精度の低下を防止する方法として採取管内面を洗浄水にて洗い流し、さらに、この洗浄水も試料水として分析の対象に含めることによって採取ガスと付着ガスを含めた全体のガス組成を分析することとなり、結果として微量分析の領域で格段の分析精度の向上がはかられる。
【0012】
排ガス採取時排ガス管など設置の状態にて自動的に管内を洗浄できる装置とするため、採取管の構造上装置として利便性の高いものとする必要があり、採取管を二重にすること。内管外管の中間に洗浄水を流す構造とすること。採取管途中に洗浄水を注入する細孔を設けること排ガス吸引ポンプにて吸引することで吸収びんに回収できること。さらに洗浄水は排ガス採取管にポンプで押し込む構造とすることによって可能としたものである。そこで本発明はさらに、洗浄水を注入する細孔部分の位置などを水量および洗浄時間などの条件を設計することで採取可能とした。
【0013】
【発明の実施の形態】
以下、本発明を図面に示す実施例に基づいて具体的に説明すると、図1は本発明に係わる自動測定装置の概念図である。また図2はガス採取管部分の拡大図である。ガス採取管(2)は先端は煙道(1)内にて排ガス(3)と接触していてこの部分は単管である。このガス採取管の材質は排ガスの温度に耐えられるステンレスを用いるのが普通である。また、採取管の管径は約5mm程度である。
【0014】
煙道のフランジ(7)の取り付け付近から煙道外部に向けて採取管は二重構造(4、5)となっている。ガス採取管(2)は排ガスの吸収びん(12)に接続されさらに吸引ポンプ(14)およびガス流量メ−タ(15)に接続される。その後ここでは省略しているがさらに排ガス成分を吸収した試料水を自動的に採取し自動分析装置に接続される。
【0015】
また、二重管構造部分(4、5)の内部すなわち内側管と外側管の中間には洗浄液が注入される構造である。洗浄液は洗浄液ポンプ(11)によって二重管構造部分(4、5)の尾端にある洗浄液注入口(9)から洗浄液を注入する構造である。
【0016】
ガス採取方法について説明する。まず、排ガス吸引ポンプ(14)を作動させる。これによって煙道の排ガスの吸引が開始されるが排ガスは採取管を通過しさらにガス吸収びん(12)で分析対象となる成分すなわちこの場合はアンモニアガスを吸収反応後排ガスはさらに吸引されガスメ−タ(8)を経由して廃棄される。
【0017】
排ガス採取を一定量行った後、吸引ポンプ(14)は作動のまま洗浄液ポンプ(11)を作動させ、採取管の二重構造部分へ洗浄液(13)を注入する。
【0018】
洗浄液は内側管と外側管の間の二重構造部分(4、5)を通過し、その先端部の細孔(6)から洗浄液が内側管、すなわち,排ガス採取管(2)の内部に注入される。
【0019】
排ガス採取管内部に注入された洗浄液は、吸引ポンプ(14)が作動しているため、ガス吸収びんに向かって吸引方向へ流され、これによって採取管の内面が洗浄されて内面に付着したアンモニア成分を洗浄移送し吸収びんへ貯留される。この採取管の内面の洗浄を行う方法によってアンモニアを効率よく確実に回収できる。
【0020】
排ガス採取管の二重構造部分に発生する現象をさらに解説すると、二重管の煙道側の先端付近においては排ガスと接触するため200〜300℃に加熱されて洗浄液が注入された初期は洗浄液(この場合は純水)はこの部分で沸騰するが、沸騰した水蒸気は、細孔(6)から排ガス吸引方向へ吸引されて経路通過中に冷却され液体となり吸収びんへ回収される。
【0021】
さらに、洗浄液を継続注入すると二重管全体が冷却し、今度は液体の状態で細孔(6)から洗浄液が注入される。この洗浄液は同様に吸収びんに回収されアンモニア(以下NH3とする)が捕集される。
【0022】
本実施例で得られた排ガス分析のうちNH3ガスの分析精度に関して以下に説明する。実験は脱硝装置の設備された火力発電所の発電ボイラ−の煙道に設けた排ガス採取孔において、同一フランジに異なる3種類の方法の採取管を併設した大がかりなもので行った。煙道内の採取管の長さは、1150mmの一定に揃え、さらに採取時間、間隔など条件を統一した。比較する排ガス採取方法は、連続測定法として本発明の方法および加熱方法(特許第3229088号および特許第3322420号の方法に係わる従来法の意である)と同時に基準とするため、手分析方法としてJIS方法(JIS K0099による方法)の3種類の方法である。いずれも連続測定法1種類とJIS方法と同時測定したものである。
【0023】
【表1】

Figure 2004117271
【0024】
【表2】
Figure 2004117271
【0025】
【表3】
Figure 2004117271
【0026】
なお、加熱方法は加熱程度を2水準とした。それぞれの排ガス採取条件を[表1]に示す。これらの測定条件を整えて実験した結果を[表2]、図3および[表3]、図4に示す。[表2]、図3は比較的高いNH3濃度範囲130ppm程度の水準における比較実験で連続試験No.は実験のバラツキをできるだけ避けるため連続的に実験した順番である。また、連続測定方法と手分析JIS方法は同時測定したものである。[表3]、図4は比較的低いNH3濃度範囲15ppm程度の水準における比較実験である。
【0027】
それぞれのデ−タの特徴は、図3、図4をみればほぼ明らかであるが、さらに分かりやすくするために連続測定方法に対して基準としたJIS方法との測定値の差をヒストグラムとして図にしたものが図5、図6である。図5によれば高濃度範囲では加熱法1はJIS方法に対して低値を示し多少NH3ガスを捕捉しきれなかったものと推定されるが連続測定方法は安定した結果が得られている。
【0028】
加熱法2はJIS方法に対してほぼ同値を示し加熱方法1に比較してヒ−トアップの効果がでているものと考えられる。また、本発明の方法はJIS方法に対して相当高い値を示し、NH3ガスを充分に捕捉したものと推定される。同様に図6における低濃度範囲についてみれば加熱方法1は明らかに低値を示している。また、本発明の方法は高濃度範囲同様に高値を示している。すなわち、本発明による方法は、NH3ガス濃度の高い範囲から低い範囲にわたって極めて優れた方法であることが分かる。
【0029】
【発明の効果】
以上詳述したように、本発明になる排ガス採取方法によれば排ガスのアンモニアガス成分の濃度を極めて精度よく分析することができる。本発明による方法と従来の方法によるものを比較すれば図3、図4、図5、図6に示すごとく、極めて優れた方法であり、この方法を連続測定の自動分析装置に導入することによって優れた自動分析装置となるものである。
【図面の簡単な説明】
【図1】本発明の実施例に係わる排ガス採取方法の概念図。
【図2】本発明の実施例に係わる図1における排ガス採取管部分の拡大図。
【図3】本発明の実施例に係わるNH3ガス高濃度の場合における各種排ガス採取方法の実験結果を示す線図。
【図4】本発明の実施例に係わるNH3ガス低濃度の場合における各種排ガス採取方法の実験結果を示す線図。
【図5】本発明の実施例に係わるNH3ガス高濃度の場合における各種排ガス採取方法の比較実験結果を示す頻度図。
【図6】本発明の実施例に係わるNH3ガス低濃度の場合における各種排ガス採取方法の比較実験結果を示す頻度図。
【符号の説明】
1 煙道
2 採取管
3 排ガス
4 内管
5 外管
6 細孔
7 フランジ
8 シ−ル
9 洗浄液注入口
10 ガス吸引口
11 洗浄液ポンプ
12 ガス吸収びん
13 洗浄液
14 吸引ポンプ
15 ガスメ−タ[0001]
BACKGROUND OF THE INVENTION
The present invention is for analysis containing a gas component having high adsorptivity for the purpose of analyzing ammonia gas contained in a trace amount in exhaust gas with high accuracy in order to adjust the concentration of ammonia gas added in the denitration device of exhaust gas. The present invention relates to a method for collecting exhaust gas.
[0002]
[Prior art]
Conventionally, measurement of gas components in exhaust gas has been generally performed by sampling on site and performing wet analysis, or measuring with a gas monitor. In this exhaust gas measurement, gas components such as nitrogen oxides and sulfur oxides can be measured with a target accuracy relatively easily without any problems in particular in the gas sampling process.
[0003]
The target ammonia gas, etc., is a highly adsorbable gas, and the phenomenon that the component gas is adsorbed to the exhaust gas sampling pipe during exhaust gas collection is remarkable, and the adsorption loss occurs at the time of collection with high accuracy in the normal method. There were obstacles in obtaining measurements.
[0004]
As a countermeasure, conventionally, a method of reducing adsorption by heating a gas sampling tube has been generally performed. Also in the JIS standard, a method for analyzing ammonia in exhaust gas is defined in JIS K0099, and measures for preventing adsorption are shown, such as heating the inlet pipe for introducing the exhaust gas. This JIS K0099 is a standard method that is manually analyzed at an exhaust gas sampling site on a normal scale.
[0005]
We have a large-scale exhaust gas sampling pipe with a heating mechanism for automatic continuous measurement for monitoring in exhaust gas sampling sites such as power plant boilers-flue, etc. The method of connecting to an automatic analyzer is adopted. This method is that of Japanese Patent No. 3229088 and Japanese Patent No. 3322420.
[0006]
However, it is not sufficient for measurement in the range of trace analysis in the concentration range near 100 to 1 ppm, which requires higher accuracy, and it may cause adsorption loss due to insufficient heating of the exhaust gas sampling pipe or partial heating insufficiency. was there.
[0007]
That is, in the process of sucking the exhaust gas, passing it through an absorption liquid that absorbs the ammonia gas component in the gas, analyzing the ammonia trapped in the absorption liquid, and measuring the concentration in the exhaust gas, an exhaust gas sampling tube, etc. This is a phenomenon in which only the gas component is not trapped in the absorption bottle because part of the ammonia exhaust gas adheres.
[0008]
For this reason, the analysis value shows a lower value than expected. The present invention relates to an improvement of the exhaust gas collecting pipe portion of Japanese Patent Nos. 3229088 and 3322420.
[0009]
[Problems to be solved by the invention]
Ammonia gas is a component that is easily dissolved in water, and is easily adsorbed to the exhaust gas sampling tube. Therefore, the gas sampling is usually performed by heating the sampling tube to reduce moisture condensation and adsorption of ammonia itself. In this case, it is necessary to heat the entire gas sampling tube sufficiently, and there must be no part that is insufficiently heated, and know-how and skill are required to obtain a particularly sufficient heating effect at the connecting part of the sampling tube. It is.
[0010]
Such a conventional method is insufficient for analysis of trace components in exhaust gas, and in order to obtain a more reliable method, it is one of the measures to improve the analysis accuracy by collecting the gas component adhering to the exhaust gas sampling pipe. It is a problem.
[0011]
[Means for Solving the Problems]
In the present invention, the inner surface of the sampling tube is washed away with cleaning water as a method for preventing the deterioration of the analysis accuracy due to the adhering gas during sampling of the exhaust gas sampling tube, and further, this cleaning water is collected as a sample water to be analyzed. The entire gas composition including the gas and the adhering gas is analyzed, and as a result, the analysis accuracy is remarkably improved in the area of microanalysis.
[0012]
In order to make a device that can automatically clean the inside of the exhaust pipe when it is installed, such as an exhaust gas pipe when collecting exhaust gas, it is necessary to make it convenient as a device due to the structure of the sampling pipe, and double the sampling pipe. The cleaning water should flow between the inner and outer pipes. Providing pores for injecting cleaning water in the middle of the sampling tube, and collecting it in the absorption bottle by suction with an exhaust gas suction pump. Furthermore, the washing water is made possible by a structure that is pushed into the exhaust gas collecting pipe by a pump. In view of this, the present invention has made it possible to collect the positions of the pores into which the cleaning water is injected by designing conditions such as the amount of water and the cleaning time.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings. FIG. 1 is a conceptual diagram of an automatic measuring apparatus according to the present invention. FIG. 2 is an enlarged view of the gas sampling tube portion. The tip of the gas sampling pipe (2) is in contact with the exhaust gas (3) in the flue (1), and this part is a single pipe. The material of the gas sampling tube is usually made of stainless steel that can withstand the temperature of the exhaust gas. The diameter of the sampling tube is about 5 mm.
[0014]
The sampling tube has a double structure (4, 5) from the vicinity of the flue flange (7) to the outside of the flue. The gas sampling pipe (2) is connected to an exhaust gas absorption bottle (12) and further connected to a suction pump (14) and a gas flow rate meter (15). Thereafter, although omitted here, the sample water having absorbed the exhaust gas component is automatically collected and connected to the automatic analyzer.
[0015]
Further, the cleaning liquid is injected into the double pipe structure (4, 5), that is, between the inner pipe and the outer pipe. The cleaning liquid is a structure in which the cleaning liquid is injected from the cleaning liquid inlet (9) at the tail end of the double pipe structure (4, 5) by the cleaning liquid pump (11).
[0016]
A gas sampling method will be described. First, the exhaust gas suction pump (14) is operated. As a result, the exhaust gas from the flue starts to be sucked, but the exhaust gas passes through the sampling pipe and further the component to be analyzed in the gas absorption bottle (12), that is, in this case, after absorbing the ammonia gas, the exhaust gas is further sucked and the gas mem (8) is discarded.
[0017]
After a certain amount of exhaust gas is collected, the cleaning liquid pump (11) is operated while the suction pump (14) is operating, and the cleaning liquid (13) is injected into the double structure portion of the sampling pipe.
[0018]
The cleaning liquid passes through the double structure part (4, 5) between the inner pipe and the outer pipe, and the cleaning liquid is injected into the inner pipe, that is, the exhaust gas collecting pipe (2) from the pore (6) at the tip. Is done.
[0019]
The cleaning liquid injected into the exhaust gas sampling pipe is caused to flow toward the gas absorption bottle in the suction direction because the suction pump (14) is operated, whereby the inner surface of the sampling pipe is cleaned and attached to the inner surface. Ingredients are washed and transferred to an absorption bottle. Ammonia can be efficiently and reliably recovered by the method of cleaning the inner surface of the sampling tube.
[0020]
The phenomenon occurring in the double structure portion of the exhaust gas sampling pipe will be further explained. In the vicinity of the tip on the flue side of the double pipe, the cleaning liquid is initially heated after being heated to 200 to 300 ° C. so that the cleaning liquid is injected. (Pure water in this case) boils in this portion, but the boiled water vapor is sucked from the pores (6) in the direction of exhaust gas suction, cooled while passing through the path, becomes liquid, and is collected in the absorption bottle.
[0021]
Further, when the cleaning liquid is continuously injected, the entire double tube is cooled, and this time, the cleaning liquid is injected from the pores (6) in a liquid state. This cleaning liquid is similarly collected in an absorption bottle and ammonia (hereinafter referred to as NH3) is collected.
[0022]
Of the exhaust gas analysis obtained in this example, the analysis accuracy of NH3 gas will be described below. The experiment was conducted with a large-scale exhaust gas sampling hole provided in the flue of a power generation boiler of a thermal power plant equipped with a denitration device, with three different types of sampling pipes attached to the same flange. The length of the sampling tube in the flue was made uniform at 1150 mm, and the conditions such as sampling time and interval were unified. The exhaust gas sampling method to be compared is based on the method of the present invention and the heating method (meaning the conventional method related to the methods of Patent Nos. 3229088 and 3322420) at the same time as the continuous measurement method. There are three types of JIS methods (methods according to JIS K0099). Each of them was measured simultaneously with one kind of continuous measurement method and the JIS method.
[0023]
[Table 1]
Figure 2004117271
[0024]
[Table 2]
Figure 2004117271
[0025]
[Table 3]
Figure 2004117271
[0026]
In addition, the heating method made the heating grade into 2 levels. Each exhaust gas collection condition is shown in [Table 1]. [Table 2], FIG. 3 and [Table 3], and FIG. [Table 2], FIG. 3 is a comparative experiment in a comparatively high NH3 concentration range of about 130 ppm, and the continuous test No. Is the order of continuous experimentation to avoid variations in the experiment as much as possible. Moreover, the continuous measurement method and the manual analysis JIS method are measured simultaneously. [Table 3] and FIG. 4 are comparative experiments at a relatively low NH3 concentration range of about 15 ppm.
[0027]
The characteristics of each data are almost obvious from FIG. 3 and FIG. 4, but in order to make it easier to understand, the difference in measured values from the JIS method used as a reference for the continuous measurement method is shown as a histogram. FIG. 5 and FIG. 6 show the results. According to FIG. 5, in the high concentration range, it is presumed that the heating method 1 shows a lower value than the JIS method and some NH3 gas could not be captured, but the continuous measurement method has obtained a stable result.
[0028]
It is considered that the heating method 2 has almost the same value as the JIS method and has a heat-up effect as compared with the heating method 1. Moreover, the method of the present invention shows a considerably higher value than the JIS method, and it is estimated that the NH3 gas is sufficiently captured. Similarly, in the low concentration range in FIG. 6, the heating method 1 clearly shows a low value. Further, the method of the present invention shows a high value as in the high concentration range. That is, it can be seen that the method according to the present invention is an extremely excellent method over a range from a high range of NH 3 gas concentration to a low range.
[0029]
【The invention's effect】
As described in detail above, according to the exhaust gas sampling method of the present invention, the concentration of the ammonia gas component in the exhaust gas can be analyzed with extremely high accuracy. Comparing the method according to the present invention with the conventional method, as shown in FIG. 3, FIG. 4, FIG. 5, and FIG. 6, it is an extremely excellent method. By introducing this method into an automatic analyzer for continuous measurement, It becomes an excellent automatic analyzer.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of an exhaust gas sampling method according to an embodiment of the present invention.
2 is an enlarged view of an exhaust gas sampling pipe portion in FIG. 1 according to an embodiment of the present invention.
FIG. 3 is a diagram showing experimental results of various exhaust gas sampling methods in the case of a high concentration of NH 3 gas according to an example of the present invention.
FIG. 4 is a diagram showing experimental results of various exhaust gas sampling methods in the case of a low concentration of NH 3 gas according to an example of the present invention.
FIG. 5 is a frequency diagram showing the results of comparative experiments of various exhaust gas sampling methods in the case of a high concentration of NH 3 gas according to an example of the present invention.
FIG. 6 is a frequency diagram showing the results of comparative experiments of various exhaust gas sampling methods in the case of a low concentration of NH 3 gas according to an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flue 2 Sampling pipe 3 Exhaust gas 4 Inner pipe 5 Outer pipe 6 Pore 7 Flange 8 Seal 9 Cleaning liquid injection port 10 Gas suction port 11 Cleaning liquid pump 12 Gas absorption bottle 13 Cleaning liquid 14 Suction pump 15 Gas meter

Claims (1)

自動排ガス測定装置であって、煙道における分析用排ガス採取工程において、排ガス採取管に付着するガス成分を回収採取するため採取管を、内側管と外側管との二重とし、その内側管は採取ガスを流し、外側管と内側管との間隙には内側の排ガス採取管に付着する排ガス成分を洗浄する洗浄液を注入するものとし、その洗浄液を排ガスが通過する内側管の途中に開孔した細孔から流出させ、この洗浄液を排ガス吸収びんへ回収することを特徴とする吸着性の高いガス成分を含む分析用排ガス採取方法。It is an automatic exhaust gas measuring device, and in the exhaust gas sampling process for analysis in a flue, the sampling tube is made up of a double inner tube and an outer tube to collect and collect gas components adhering to the exhaust gas sampling tube, and the inner tube is Sampling gas is allowed to flow, and a cleaning liquid for cleaning exhaust gas components adhering to the inner exhaust gas sampling pipe is injected into the gap between the outer pipe and the inner pipe, and the cleaning liquid is opened in the middle of the inner pipe through which the exhaust gas passes. A method for collecting exhaust gas for analysis containing a gas component having high adsorptivity, characterized in that the cleaning liquid is discharged from the pores and recovered in an exhaust gas absorption bottle.
JP2002283365A 2002-09-27 2002-09-27 Method for collecting exhaust gas for analysis containing highly adsorbable gas components Expired - Lifetime JP3616876B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002283365A JP3616876B2 (en) 2002-09-27 2002-09-27 Method for collecting exhaust gas for analysis containing highly adsorbable gas components
TW93108294A TWI275786B (en) 2002-09-27 2004-03-26 Collection method for analytic exhaust gas containing gaseous component with high adsroptivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283365A JP3616876B2 (en) 2002-09-27 2002-09-27 Method for collecting exhaust gas for analysis containing highly adsorbable gas components

Publications (2)

Publication Number Publication Date
JP2004117271A true JP2004117271A (en) 2004-04-15
JP3616876B2 JP3616876B2 (en) 2005-02-02

Family

ID=32277247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283365A Expired - Lifetime JP3616876B2 (en) 2002-09-27 2002-09-27 Method for collecting exhaust gas for analysis containing highly adsorbable gas components

Country Status (2)

Country Link
JP (1) JP3616876B2 (en)
TW (1) TWI275786B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100947A1 (en) * 2004-04-01 2005-10-27 The Chugoku Electric Power Co. Inc Method for sampling flue gas for analysis containing gas component having high susceptibility to adsorption
JP2012093156A (en) * 2010-10-26 2012-05-17 Chugoku Electric Power Co Inc:The Exhaust gas collection device and ammonia collection method using the same
CN103185693A (en) * 2011-12-27 2013-07-03 株式会社堀场制作所 Gas analyzing apparatus
WO2015059781A1 (en) * 2013-10-23 2015-04-30 中国電力株式会社 Analysis sample collection device and method for using same, and collected sample analysis device and collected sample analysis method
JP2015175597A (en) * 2014-03-12 2015-10-05 中国電力株式会社 Exhaust gas sampling apparatus, and cleaning method for sampling tube
JP2016151445A (en) * 2015-02-16 2016-08-22 中国電力株式会社 Analysis sample extractor and extracted sample analyzer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100947A1 (en) * 2004-04-01 2005-10-27 The Chugoku Electric Power Co. Inc Method for sampling flue gas for analysis containing gas component having high susceptibility to adsorption
US7730796B2 (en) 2004-04-01 2010-06-08 The Chugoku Electric Power Co., Inc. Method for sampling flue gas for analysis containing gas component having high susceptibility to adsorption
JP2012093156A (en) * 2010-10-26 2012-05-17 Chugoku Electric Power Co Inc:The Exhaust gas collection device and ammonia collection method using the same
CN103185693A (en) * 2011-12-27 2013-07-03 株式会社堀场制作所 Gas analyzing apparatus
WO2015059781A1 (en) * 2013-10-23 2015-04-30 中国電力株式会社 Analysis sample collection device and method for using same, and collected sample analysis device and collected sample analysis method
JP5876614B2 (en) * 2013-10-23 2016-03-02 中国電力株式会社 ANALYSIS SAMPLING DEVICE AND METHOD OF USING THE SAME
JP2015175597A (en) * 2014-03-12 2015-10-05 中国電力株式会社 Exhaust gas sampling apparatus, and cleaning method for sampling tube
JP2016151445A (en) * 2015-02-16 2016-08-22 中国電力株式会社 Analysis sample extractor and extracted sample analyzer

Also Published As

Publication number Publication date
JP3616876B2 (en) 2005-02-02
TWI275786B (en) 2007-03-11
TW200532179A (en) 2005-10-01

Similar Documents

Publication Publication Date Title
WO2005100947A1 (en) Method for sampling flue gas for analysis containing gas component having high susceptibility to adsorption
JP5762273B2 (en) Mist-containing gas analyzer
CN105181614B (en) Sulfur trioxide analytical instrument and method
CN105352784A (en) Sampling method and device for testing concentration of SO3 acid mist in wet desulfuration flue gas
JPH07113796A (en) Automatic gas gathering method and automatic gas analyzing method
JP2004117271A (en) Method of collecting analytical exhaust gas containing high adsorptivity gas component
CN208588591U (en) A kind of gas analysis of flue dust automatic tester sampling device twice
WO2013094628A1 (en) Mist-containing gas analysis device
JP3892319B2 (en) Method and apparatus for measuring mercury concentration in exhaust gas
JP5147920B2 (en) Exhaust gas collection device and ammonia collection method using the same
KR100787378B1 (en) Method for sampling flue gas for analysis containing gas component having high susceptibility to adsorption
JP5981447B2 (en) Fluid transportation system
JP5876614B2 (en) ANALYSIS SAMPLING DEVICE AND METHOD OF USING THE SAME
CN207540841U (en) A kind of sampling pre-processing device of chemical method the escaping of ammonia on-line analysis monitor
JP3322420B2 (en) Automatic gas sampling method and automatic gas analysis method
JPS6137580B2 (en)
CN207528518U (en) A kind of lasting collector of chemical method the escaping of ammonia in-line analyzer
JPH10104133A (en) Apparatus for collecting gas simple
CN209662989U (en) A kind of film changeable hydrophobicity device for drying and filtering for gas analysis
JP3778442B2 (en) Gas sampling method and sampling device
JP2020204553A (en) Device and method for collecting and detecting hydrophilic substance in gas
CN218003025U (en) Flying ash ammonia sampling and analyzing device
JPH0994425A (en) Moisture remover
CN219495840U (en) Flue gas sampler with cooling effect
JP3974825B2 (en) Primary filter for exhaust gas measurement

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

R150 Certificate of patent or registration of utility model

Ref document number: 3616876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term