JP2020204553A - Device and method for collecting and detecting hydrophilic substance in gas - Google Patents

Device and method for collecting and detecting hydrophilic substance in gas Download PDF

Info

Publication number
JP2020204553A
JP2020204553A JP2019112647A JP2019112647A JP2020204553A JP 2020204553 A JP2020204553 A JP 2020204553A JP 2019112647 A JP2019112647 A JP 2019112647A JP 2019112647 A JP2019112647 A JP 2019112647A JP 2020204553 A JP2020204553 A JP 2020204553A
Authority
JP
Japan
Prior art keywords
gas
hydrophilic substance
water
coil tube
collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019112647A
Other languages
Japanese (ja)
Inventor
信久 渡邊
Nobuhisa Watanabe
信久 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Josho Gakuen Educational Foundation
Original Assignee
Josho Gakuen Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Josho Gakuen Educational Foundation filed Critical Josho Gakuen Educational Foundation
Priority to JP2019112647A priority Critical patent/JP2020204553A/en
Publication of JP2020204553A publication Critical patent/JP2020204553A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

To provide a device for collecting and detecting hydrophilic substances in a gas that can efficiently collect a gaseous hydrophilic substance and a particulate hydrophilic substance in the gas at the same time and detect them with high accuracy, and a method for collecting and detecting the hydrophilic substances in the gas performed by the device for collecting and detecting.SOLUTION: A device collects and detects a gaseous hydrophilic substance and a particulate hydrophilic substance which are contained in a gas. The device for collecting and detecting the hydrophilic substances in the gas includes: a coil tube through which the gas passes; condensate collecting means connected to an outlet of the coil tube; cleaning means for cleaning the inside of the coil tube by making cleaning water pass through the coil tube; and hydrophilic substance detection means. The device for collecting and detecting the hydrophilic substance performs a method for collecting and detecting the hydrophilic substance in the gas.SELECTED DRAWING: Figure 1

Description

本発明は、気体中に含まれるガス状又は微粒子状の親水性物質を捕集し、その検出をする捕集・検出装置、及び、捕集・検出方法に関する。 The present invention relates to a collection / detection device for collecting and detecting a gaseous or fine particle-like hydrophilic substance contained in a gas, and a collection / detection method.

排ガス等の気体中に含まれる有害なガス状、粒子状の物質を気体中から除去する排ガス処理工程や処理設備の性能確認のために、除去後の気体中に含まれるガス状、粒子状の物質の捕集、検出、さらに濃度測定・定量等が検討され、その方法が種々提案されている。
例えば、非特許文献1には、放射性セシウムを含む廃棄物の焼却排ガス中のセシウムを円筒ろ紙及びその後段に設けられたインピンジャー(ガス吸引ビン)により捕集して検出する方法が記載されており、廃棄物処理における排ガス処理設備の性能確認のための公定法とされている。
To check the performance of the exhaust gas treatment process and treatment equipment that removes harmful gaseous and particulate substances contained in gas such as exhaust gas from the gas, the gaseous and particulate matter contained in the gas after removal Collection and detection of substances, as well as concentration measurement and quantification, have been studied, and various methods have been proposed.
For example, Non-Patent Document 1 describes a method of collecting and detecting cesium in incineration exhaust gas of waste containing radioactive cesium with a cylindrical filter paper and an impinger (gas suction bottle) provided in the subsequent stage. It is an official method for checking the performance of exhaust gas treatment equipment in waste treatment.

又、特許文献1には、SOガスを含む排ガスを、酸露点温度以下に保持したスパイラル管内を通過させ、管内での慣性衝突作用を利用してガス状硫酸を液状硫酸に変換し、凝集させた後に、管内を洗浄水で洗浄して分取する排ガス中のSOガスの採取方法、及びこの方法により得られた洗浄水をイオンクロマトグラフ等の硫黄酸化物分析方法により分析するSO濃度の分析方法が開示されている。
さらに、非特許文献2には、直列した2本のガラスコイル管に、NaCl、CsCl等の吸湿性アルカリ金属塩化物の微粒子を含む気体を通して、前記ガラスコイル管により気体中に含まれるアルカリ金属塩化物の微粒子を捕集する方法が開示されている。
Further, in Patent Document 1, exhaust gas containing SO 3 gas is passed through a spiral tube kept below the acid dew point temperature, and gaseous sulfuric acid is converted into liquid sulfuric acid by utilizing the inertial collision action in the tube to aggregate. after allowed to, SO 3 for analyzing sampling method SO 3 gas in the exhaust gas to be fractionated by washing the tube with washing water, and the sulfur oxides analyzer method ion chromatograph such washing water obtained by this method A method for analyzing the concentration is disclosed.
Further, in Non-Patent Document 2, a gas containing fine particles of hygroscopic alkali metal chloride such as NaCl and CsCl is passed through two glass coil tubes in series, and the alkali metal chloride contained in the gas by the glass coil tube is passed. A method of collecting fine particles of an object is disclosed.

特開平8−210954号公報Japanese Unexamined Patent Publication No. 8-210954

廃棄物関係ガイドライン5−20〜5−23(環境省:2011年12月27日)Waste-related guidelines 5-20 to 5-23 (Ministry of the Environment: December 27, 2011) 環境化学Vol.28,No.3,pp.61−67,2018Environmental Chemistry Vol. 28, No. 3, pp. 61-67, 2018

前記のように、気体中に含まれるガス状および微粒子状の親水性物質を捕集する方法としては、円筒ろ紙等のフィルターにより濾過する方法、インピンジャー等のガス吸引ビンによりガスと水とを接触させ水にガスを吸収させる方法、スパイラル管やコイル管等の管内での慣性衝突作用を利用する方法が知られている。
フィルターによる方法は、ガスと液体を接触させる方法よりも、粒子の捕集効率に優れ、特に微粒子の領域で捕集効率が高いと言われている。そのためこの方法が、廃棄物処理における排ガス処理設備の性能確認のための公定法とされている。
As described above, as a method of collecting the gaseous and fine particle hydrophilic substances contained in the gas, a method of filtering with a filter such as a cylindrical filter paper or a gas suction bottle such as an impinger is used to separate gas and water. A method of contacting with water to absorb gas and a method of utilizing an inertial collision action in a pipe such as a spiral pipe or a coil pipe are known.
It is said that the method using a filter is superior in the collection efficiency of particles to the method in which a gas and a liquid are brought into contact with each other, and the collection efficiency is particularly high in the region of fine particles. Therefore, this method is regarded as an official method for confirming the performance of exhaust gas treatment equipment in waste treatment.

しかし、フィルターによる方法では、ガスの捕集は困難と考えられる。又、廃棄物焼却排ガス中で、ガス状又は微粒子状で存在することが予測される塩化セシウム等は、バグフィルターで捕集・除去されているので、その捕集・除去の性能(集じん性能)をフィルターによる捕集で評価・確認することは好ましくなく、フィルターとは全く異なる原理による評価・確認が望まれる。 However, it is considered difficult to collect gas by the filter method. In addition, cesium chloride, which is predicted to exist in the form of gas or fine particles in the waste incineration exhaust gas, is collected and removed by the bag filter, so its collection and removal performance (dust collection performance). ) Is not preferable to be evaluated and confirmed by collecting with a filter, and evaluation and confirmation by a principle completely different from that of a filter is desired.

インピンジャー等のガス吸引ビンによりガスと水を接触させ水にガスを吸収させる方法は、気体中の親水性ガスの捕集効率は高いと考えられる。しかし、粒子、特に微粒子については、捕集が不充分であると指摘されている。 It is considered that the method of bringing the gas into contact with water by a gas suction bottle such as an impinger and allowing the water to absorb the gas has a high collection efficiency of the hydrophilic gas in the gas. However, it has been pointed out that the collection of particles, especially fine particles, is insufficient.

一方、非特許文献2に示されているように、ガラスコイル管内に気体を通すことにより、その気体中に含まれている吸湿性アルカリ金属塩化物微粒を捕集できる。そして、ガラスコイル管内を湿潤状態とすることにより、微粒子が吸湿して成長するので、0.3μmより小さい粒子も捕集できているとの実験結果も示されている。この結果より、気体中に含まれるアルカリ金属塩化物のような親水性物質の微粒子は、コイル管、特に管内を湿潤状態にしたコイル管を使用すれば、捕集できると考えられる。 On the other hand, as shown in Non-Patent Document 2, by passing a gas through the glass coil tube, hygroscopic alkali metal chloride fine particles contained in the gas can be collected. It is also shown that the particles smaller than 0.3 μm can be collected because the fine particles absorb moisture and grow by moistening the inside of the glass coil tube. From this result, it is considered that fine particles of hydrophilic substances such as alkali metal chloride contained in the gas can be collected by using a coil tube, particularly a coil tube in which the inside of the tube is moistened.

そこで、本発明者は、ガス吸引ビンにコイル管を接続させれば、気体中に含まれるガス状汚染物質及び粒子状汚染物質を同時に捕集できると考え、インピンジャーの後段にガラスコイル管を接続した装置により、気体中に含まれる塩化アンモニウムのガス又は微粒子の捕集を行った。その結果、塩化アンモニウムのガス及び微粒子は捕集されるものの、捕集されない塩化アンモニウムのガス及び微粒子もあり、より捕集効率の高い装置の開発が望まれた。 Therefore, the present inventor thinks that if a coil tube is connected to the gas suction bin, gaseous pollutants and particulate pollutants contained in the gas can be collected at the same time, and a glass coil tube is placed after the impinger. The gas or fine particles of ammonium chloride contained in the gas were collected by the connected device. As a result, although ammonium chloride gas and fine particles are collected, some ammonium chloride gas and fine particles are not collected, and it has been desired to develop a device having higher collection efficiency.

さらに、前記のような従来の捕集・検出方法では、操作及び周辺環境に由来するブランク値が高く、検出限界値が高くなり、その結果、検出の精度が低くなる問題があった。 Further, in the conventional collection / detection method as described above, there is a problem that the blank value derived from the operation and the surrounding environment is high, the detection limit value is high, and as a result, the detection accuracy is low.

本発明は、気体中に含まれるガス状親水性物質及び/又は粒子状親水性物質を、効率よく捕集し、その検出を高い精度で行うことができる、気体中の親水性物質の捕集・検出装置及び前記捕集・検出装置により実施される気体中の親水性物質の捕集・検出方法を提供することを課題とする。 The present invention efficiently collects gaseous hydrophilic substances and / or particulate hydrophilic substances contained in a gas, and can collect the hydrophilic substances in a gas with high accuracy. -It is an object of the present invention to provide a detection device and a method for collecting / detecting a hydrophilic substance in a gas carried out by the collection / detection device.

本発明者は、前記課題を解決するために検討を重ねた結果、コイル管と前記コイル管の気体出口に接続された凝集水捕集手段とを組合せた装置に、気体を通すことにより、気体中に含まれるガス状親水性物質及び/又は粒子状親水性物質を、効率よく捕集でき、捕集された親水性物質を洗浄手段により洗浄して得られた洗液を親水性物質検出手段により検出、定量することにより、精度の高い検出、定量が可能となることを見出した。 As a result of repeated studies to solve the above problems, the present inventor has passed a gas through a device that combines a coil tube and a coagulated water collecting means connected to a gas outlet of the coil tube. The gaseous hydrophilic substance and / or the particulate hydrophilic substance contained therein can be efficiently collected, and the collected hydrophilic substance is washed by a washing means, and the obtained washing liquid is used as a hydrophilic substance detecting means. It was found that highly accurate detection and quantification are possible by detecting and quantifying with the above method.

本発明者らは、さらに、親水性物質の捕集の前に、前記洗浄手段によりコイル管等の洗浄を行うことにより、又は/及び、前記親水性物質検出手段を前記凝集水捕集手段の気体出口に接続して設けることにより、操作及び周辺環境に由来するブランク値を低くすることができ、より精度の高い検出、定量が可能となることを見出した。
すなわち、前記の本発明の課題は、下記の構成により達成される。
The present inventors further perform cleaning of the coil tube or the like by the cleaning means before collecting the hydrophilic substance, and / and the hydrophilic substance detecting means of the aggregated water collecting means. It has been found that by connecting to the gas outlet, the blank value derived from the operation and the surrounding environment can be lowered, and more accurate detection and quantification become possible.
That is, the above-mentioned problem of the present invention is achieved by the following configuration.

本発明は、気体中に含まれるガス状親水性物質及び粒子状親水性物質を捕集し検出する装置であって、前記気体を通過させるコイル管、前記コイル管の出口に接続された凝集水捕集手段、前記コイル管内に洗浄水を通過させてコイル管内を洗浄する洗浄手段、及び親水性物質検出手段を備える気体中親水性物質の捕集・検出装置を提供する。 The present invention is an apparatus for collecting and detecting a gaseous hydrophilic substance and a particulate hydrophilic substance contained in a gas, and is a coil tube through which the gas passes and agglomerated water connected to the outlet of the coil tube. The present invention provides a collecting / detecting apparatus for a hydrophilic substance in a gas, comprising a collecting means, a cleaning means for passing washing water through the coil tube to clean the inside of the coil tube, and a hydrophilic substance detecting means.

前記コイル管は、ガラスコイル管であることが好ましい。 The coil tube is preferably a glass coil tube.

前記気体中親水性物質の捕集・検出装置は、前記親水性物質検出手段を、前記凝集水捕集手段の出口に接続して備えることが好ましい。 The device for collecting / detecting a hydrophilic substance in a gas is preferably provided with the hydrophilic substance detecting means connected to the outlet of the coagulated water collecting means.

前記気体に水分を与える水分付与手段を、前記コイル管の気体入口の前段(気体が流入する方向)に設けることが好ましい。 It is preferable that the water-imparting means for imparting water to the gas is provided in front of the gas inlet of the coil tube (direction in which the gas flows in).

本発明は、又、気体中に含まれるガス状親水性物質及び粒子状親水性物質を捕集し検出する方法であって、前記気体をコイル管に通過させる工程、前記コイル管より流出する気体を凝集水捕集手段に通過させコイル管より流出する水滴を捕集し、捕集水を得る工程、前記コイル管内に洗浄水を通過させて洗浄液を得る洗浄工程、及び、前記捕集水及び前記洗浄液中に含まれるガス状親水性物質及び粒子状親水性物質を、親水性物質検出手段により検出する親水性物質検出工程、を有する気体中親水性物質の捕集・検出方法を提供する。 The present invention is also a method for collecting and detecting a gaseous hydrophilic substance and a particulate hydrophilic substance contained in a gas, in a step of passing the gas through a coil tube, and a gas flowing out from the coil tube. To obtain the collected water by passing the water droplets flowing out from the coil tube through the coagulated water collecting means, the cleaning step of passing the washing water through the coil tube to obtain the cleaning liquid, and the collected water and Provided is a method for collecting and detecting a gaseous hydrophilic substance in a gas, which comprises a hydrophilic substance detecting step of detecting the gaseous hydrophilic substance and the particulate hydrophilic substance contained in the cleaning liquid by a hydrophilic substance detecting means.

前記気体中親水性物質の捕集・検出方法は、さらに、前記気体をコイル管に通過させる工程の前に、コイル管内に洗浄水を通過させてコイル管を洗浄する工程を有することが好ましい。 The method for collecting / detecting a hydrophilic substance in a gas preferably further includes a step of passing washing water through the coil tube to wash the coil tube before the step of passing the gas through the coil tube.

前記気体中親水性物質の捕集・検出方法は、前記親水性物質検出手段が、前記捕集水及び前記洗浄液中に含まれるガス状親水性物質及び粒子状親水性物質を、オンライン(装置内に通過させるだけの操作)で検出できる手段であることが好ましい。 In the method for collecting / detecting a hydrophilic substance in a gas, the hydrophilic substance detecting means collects the gaseous hydrophilic substance and the particulate hydrophilic substance contained in the collected water and the cleaning liquid online (inside the apparatus). It is preferable that the means can be detected only by passing through the gas.

本発明の気体中親水性物質の捕集・検出装置を使用して、又は、本発明の気体中親水性物質の捕集・検出方法により、気体中に含まれるガス状親水性物質及び粒子状親水性物質を捕集すれば、前記親水性物質を効率良く捕集することができ、精度の高い検出、定量が可能となる。
特に、前記気体中親水性物質の捕集・検出装置が、親水性物質の捕集・検出よりも前に、コイル管内洗浄手段によりコイル管内の洗浄を行うことにより、又は/及び、前記凝集水捕集手段の出口に親水性物質検出手段を接続して備えることにより、操作及び周辺環境に由来するブランク値を低減することが可能となり、より高い精度で親水性物質を検出、定量することができる。
Gaseous hydrophilic substances and particles contained in the gas using the device for collecting and detecting hydrophilic substances in gas of the present invention or by the method for collecting and detecting hydrophilic substances in gas of the present invention. If the hydrophilic substance is collected, the hydrophilic substance can be efficiently collected, and highly accurate detection and quantification are possible.
In particular, the device for collecting / detecting a hydrophilic substance in a gas cleans the inside of the coil tube by a means for cleaning the inside of the coil tube before collecting / detecting the hydrophilic substance, and / or the aggregated water. By connecting a hydrophilic substance detecting means to the outlet of the collecting means, it is possible to reduce the blank value derived from the operation and the surrounding environment, and it is possible to detect and quantify the hydrophilic substance with higher accuracy. it can.

本発明の気体中親水性物質の捕集・検出装置の概略構成を示す図。The figure which shows the schematic structure of the collection / detection apparatus of a hydrophilic substance in gas of this invention. 本発明の気体中親水性物質の捕集・検出方法の概略構成を示す図。The figure which shows the schematic structure of the method of collecting / detecting a hydrophilic substance in gas of this invention. 実施例、比較例で使用した被検出気体発生装置を概略的に示す図。The figure which shows schematic the detected gas generator used in an Example and a comparative example. 実施例、比較例で使用した水分付与手段(インピンジャー)を概略的に示す図。The figure which shows typically the water addition means (impinger) used in an Example and a comparative example. 実施例、比較例で使用したコイル管、洗浄手段、凝集水捕集手段を概略的に示す図。The figure which shows typically the coil tube, the cleaning means, and the coagulated water collecting means used in an Example and a comparative example.

以下、本発明を実施するための形態について図面を参照しながら説明するが、本発明の範囲は、以下の形態に限定されない。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings, but the scope of the present invention is not limited to the following embodiments.

(捕集・検出装置の構成)
図1は、本発明の気体中親水性物質の捕集・検出装置の概略構成を示す図である。図2は、本発明の気体中親水性物質の捕集・検出方法の概略構成を示す図である。
(Configuration of collection / detection device)
FIG. 1 is a diagram showing a schematic configuration of a device for collecting / detecting a hydrophilic substance in a gas of the present invention. FIG. 2 is a diagram showing a schematic configuration of a method for collecting / detecting a hydrophilic substance in a gas of the present invention.

図1に示すように、本発明の気体中親水性物質の捕集・検出装置は、コイル管3、凝集水捕集手段5、洗浄手段4、及び親水性物質検出手段6を必須の構成として備える。排ガスの処理装置等から流出した気体7は、コイル管3のI3よりコイル管3内に導入され気体出口O3より流出する。コイル管3内では、気体7中に含まれる親水性物質の粒子は、コイル管3内を通過するときに生じる遠心力により、管壁に衝突し管壁に捕捉される。管内壁、管内が、気体7中に含まれる水で湿潤している場合は、管内壁の水に粒子が溶解したり、管内壁、管内の水により粒子が凝集して成長する等により、粒子はより補足されやすくなり、捕集効率が向上する。 As shown in FIG. 1, the device for collecting / detecting a hydrophilic substance in a gas of the present invention has a coil tube 3, a coagulated water collecting means 5, a cleaning means 4, and a hydrophilic substance detecting means 6 as essential configurations. Be prepared. The gas 7 flowing out from the exhaust gas treatment device or the like is introduced into the coil tube 3 from I3 of the coil tube 3 and flows out from the gas outlet O3. In the coil tube 3, particles of the hydrophilic substance contained in the gas 7 collide with the tube wall and are captured by the tube wall due to the centrifugal force generated when passing through the coil tube 3. When the inner wall of the pipe and the inside of the pipe are moistened with the water contained in the gas 7, the particles are dissolved in the water of the inner wall of the pipe, or the particles are aggregated and grown by the water in the inner wall of the pipe and the inside of the pipe. Is easier to capture and the collection efficiency is improved.

又、ガス状の親水性物質も、管内壁、管内が湿潤している場合は、管内壁、管内の水に溶解、吸収されたり、あるいは一旦微粒子状に成長したものが、コイル管3内を通過するときに生じる遠心力により凝縮し管内壁に捕捉される等により、捕集される。
前記のようにして、ガス状親水性物質及び/又は粒子状親水性物質は、コイル管3内に捕集されるが、親水性物質を吸収、溶解した管内壁、管内にある水の一部は、気体7の流れとともに気体出口O3より流出することがある。又、親水性物質、特にガス状親水性物質は、その一部が、コイル管3内で捕集されずに、気体7の流れに含まれて気体出口O3より流出することもある。
Further, when the inner wall of the pipe and the inside of the pipe are moist, the gaseous hydrophilic substance is also dissolved or absorbed in the inner wall of the pipe and the water in the pipe, or once grown into fine particles, the inside of the coil tube 3 is contained. It is collected by being condensed by the centrifugal force generated when passing through and being captured by the inner wall of the pipe.
As described above, the gaseous hydrophilic substance and / or the particulate hydrophilic substance is collected in the coil tube 3, but the inner wall of the tube in which the hydrophilic substance is absorbed and dissolved, and a part of the water in the tube. May flow out of the gas outlet O3 along with the flow of the gas 7. Further, a part of the hydrophilic substance, particularly the gaseous hydrophilic substance, may be contained in the flow of the gas 7 and flow out from the gas outlet O3 without being collected in the coil tube 3.

気体出口O3より流出した気体7は、凝集水捕集手段5の気体入口I5から凝集水捕集手段5内に導入される。出口O3より流出した親水性物質、すなわちコイル管3内でガス状親水性物質及び/又は粒子状親水性物質を吸収、溶解した水及び親水性物質の一部は、凝集水捕集手段5中の水と接触し、凝集水捕集手段5中の水に吸収、溶解されて捕集される。「捕集水」とは、この凝集水捕集手段中の水を意味する。
このようにして、気体7中に含まれていたガス状親水性物質及び/又は粒子状親水性物質は、高い捕集効率でコイル管3内又は凝集水捕集手段5中の捕集水中に捕集される。
The gas 7 flowing out from the gas outlet O3 is introduced into the coagulated water collecting means 5 from the gas inlet I5 of the coagulated water collecting means 5. The hydrophilic substance flowing out from the outlet O3, that is, the water in which the gaseous hydrophilic substance and / or the particulate hydrophilic substance is absorbed and dissolved in the coil tube 3, and a part of the hydrophilic substance are contained in the aggregated water collecting means 5. It comes into contact with the water of the above, is absorbed and dissolved in the water in the aggregated water collecting means 5, and is collected. The "collected water" means the water in the coagulated water collecting means.
In this way, the gaseous hydrophilic substance and / or the particulate hydrophilic substance contained in the gas 7 is put into the collected water in the coil tube 3 or the aggregated water collecting means 5 with high collection efficiency. Be collected.

洗浄手段4は、コイル管3内に水(洗浄水)を通過させてコイル管内を洗浄する手段である。この洗浄により、コイル管3内に捕集されたガス状親水性物質及び/又は粒子状親水性物質は洗浄水中に溶解する。このようにして得られたコイル管3の洗浄液及びガス状親水性物質及び/又は粒子状親水性物質を捕集した捕集水中の親水性物質を、親水性物質検出手段6により検出することにより、気体7中に含まれていたガス状親水性物質及び/又は粒子状親水性物質を高い精度で検出することができる。親水性物質検出手段6が定量機能を有している場合は、気体7中に含まれていた親水性物質の総量を定量することができる。 The cleaning means 4 is a means for cleaning the inside of the coil tube by passing water (cleaning water) through the coil tube 3. By this washing, the gaseous hydrophilic substance and / or the particulate hydrophilic substance collected in the coil tube 3 is dissolved in the washing water. By detecting the cleaning liquid of the coil tube 3 and the hydrophilic substance in the collected water in which the gaseous hydrophilic substance and / or the particulate hydrophilic substance collected in this manner are detected by the hydrophilic substance detecting means 6. , The gaseous hydrophilic substance and / or the particulate hydrophilic substance contained in the gas 7 can be detected with high accuracy. When the hydrophilic substance detecting means 6 has a quantification function, the total amount of the hydrophilic substances contained in the gas 7 can be quantified.

コイル管3の洗浄液は、コイル管3の出口O3より取り出して親水性物質検出手段6による検出に供してもよいし、コイル管3の途中に設けられた取出し口O31より取り出してもよい。又、洗浄水を出口O3側からコイル管3内に注入し、コイル管3の入口I3近傍に設けられた取出し口O32(図示されていない)より取り出してもよい。さらに、出口O3より流出させた洗浄液を凝集水捕集手段5に導入して、凝集水捕集手段5内で捕集水と合体させた後、凝集水捕集手段5の捕集水取出口O5より取り出し、親水性物質検出手段6による検出に供してもよい。
この場合、親水性物質検出手段6を、捕集水取出口O5と接続することにより、合体による操作や、コイル管3や凝集水捕集手段5と親水性物質検出手段6間の環境に由来するブランク値の上昇を防ぐことができ、より高い精度で親水性物質を検出、定量することができる。
The cleaning liquid of the coil tube 3 may be taken out from the outlet O3 of the coil tube 3 and used for detection by the hydrophilic substance detecting means 6, or may be taken out from the take-out port O31 provided in the middle of the coil tube 3. Further, the washing water may be injected into the coil tube 3 from the outlet O3 side and taken out from the take-out port O32 (not shown) provided near the inlet I3 of the coil tube 3. Further, the cleaning liquid flowing out from the outlet O3 is introduced into the coagulated water collecting means 5 and combined with the collected water in the coagulated water collecting means 5, and then the collected water outlet of the coagulated water collecting means 5. It may be taken out from O5 and used for detection by the hydrophilic substance detecting means 6.
In this case, by connecting the hydrophilic substance detecting means 6 to the collecting water outlet O5, it is derived from the operation by coalescence and the environment between the coil tube 3 or the aggregated water collecting means 5 and the hydrophilic substance detecting means 6. It is possible to prevent an increase in the blank value, and it is possible to detect and quantify hydrophilic substances with higher accuracy.

気体7を、気体中親水性物質の捕集・検出装置に供給してその捕集・検出をする前に、洗浄手段4により、コイル管3内に水(洗浄水)を通過させてコイル管3内を洗浄すると、コイル管3内の汚染等によるブランク値の上昇を低減できるので好ましい。洗浄手段4により、コイル管3内とともに凝集水捕集手段5の洗浄が可能な場合は、凝集水捕集手段5も洗浄すると、装置内の汚染等によるブランク値の上昇をより低減できるのでより好ましい。 Before supplying the gas 7 to a collecting / detecting device for a hydrophilic substance in a gas to collect / detect the gas 7, water (washing water) is passed through the coil tube 3 by the cleaning means 4 to pass the coil tube. Cleaning the inside of 3 is preferable because it can reduce an increase in the blank value due to contamination in the coil tube 3. When the cleaning means 4 can clean the coagulated water collecting means 5 together with the inside of the coil tube 3, if the coagulated water collecting means 5 is also cleaned, the increase in the blank value due to contamination in the apparatus can be further reduced. preferable.

(コイル管)
コイル管3とは、ガラス等から形成される管を螺旋状や渦巻状に巻いた管である。コイル管3の管の断面は通常円形であるが、円形に限定されず他の形状の管でもよい。
本発明の親水性物質の捕集・検出装置のコイル管を形成する材質は、外径1cm程度より細い管を形成でき、径20cm程度より小さい螺旋や渦巻を形成できる材質であれば特に限定されない。加工しやすさや強度、耐久性、価格や入手しやすさ等を考慮すると、銅、ステンレス等の金属材料やガラスを挙げることができるが、ガラスから形成されるガラス管を用いた場合は、金属材料より形成される管を用いた場合より、粒子状親水性物質の捕集効率が高いので好ましい。
(Coil tube)
The coil tube 3 is a tube formed by winding glass or the like in a spiral or spiral shape. The cross section of the coil tube 3 is usually circular, but the cross section is not limited to the circular shape and may be a tube having another shape.
The material for forming the coil tube of the hydrophilic substance collecting / detecting device of the present invention is not particularly limited as long as it can form a tube having an outer diameter smaller than about 1 cm and can form a spiral or a spiral smaller than about 20 cm in diameter. .. Considering ease of processing, strength, durability, price, availability, etc., metal materials such as copper and stainless steel and glass can be mentioned, but when a glass tube formed from glass is used, metal It is preferable to use a tube formed of a material because the collection efficiency of the particulate hydrophilic substance is higher.

本発明の親水性物質の捕集・検出装置のコイル管3は、2以上のコイル管を備えるものでもよい。特に、2以上のコイル管を直列(前段のコイル管の気体出口と後段のコイル管の気体入口を連結すること)させると、粒子状親水性物質の捕集効率が向上するので好ましい。 The coil tube 3 of the hydrophilic substance collecting / detecting device of the present invention may include two or more coil tubes. In particular, it is preferable to connect two or more coil tubes in series (connecting the gas outlet of the coil tube in the front stage and the gas inlet of the coil tube in the rear stage) because the collection efficiency of the particulate hydrophilic substance is improved.

コイル管3の全長が長いほど捕集効率が向上すると予想される。気体中の粒子の粒径が大きい程、捕集効率が向上すると予想される。コイル管3内を通過する気体の流速が同じであれば、コイル管3の巻径が小さい程、気体中の粒子に作用する遠心力が大きくなるので、捕集効率が向上すると予想される。一方、コイル管、特にガラスコイル管は、その巻径が小さいとコイル管の作製が困難になる。 It is expected that the longer the total length of the coil tube 3, the higher the collection efficiency. It is expected that the larger the particle size of the particles in the gas, the better the collection efficiency. If the flow velocity of the gas passing through the coil tube 3 is the same, the smaller the winding diameter of the coil tube 3, the greater the centrifugal force acting on the particles in the gas, and it is expected that the collection efficiency will be improved. On the other hand, when the winding diameter of a coil tube, particularly a glass coil tube, is small, it becomes difficult to manufacture the coil tube.

コイル管3の全長、その巻径(すなわち巻数)、その連結数、通過させる気体の流速は、所望の捕集効率が得られるように選択されることが好ましく、特に好ましくは、凝集水捕集手段による捕集と合わせて100%に近い捕集効率が得られるように選択される。そこで親水性物質の捕集・検出に際しては、予備実験等により、予め最適なコイル管3の全長、内径、巻径(すなわち巻数)、連結数を決定しておくことが好ましい。気体の流速や、下記のコイル管の冷却温度等の、捕集、検出の条件についても、所望の捕集効率が得られるように、予備実験等により、予め最適な条件を選択することが好ましい。 The total length of the coil tube 3, its winding diameter (that is, the number of windings), the number of connections thereof, and the flow velocity of the gas to be passed are preferably selected so as to obtain a desired collection efficiency, and particularly preferably, agglomerated water collection. It is selected so that the collection efficiency close to 100% can be obtained in combination with the collection by means. Therefore, when collecting / detecting a hydrophilic substance, it is preferable to determine in advance the optimum total length, inner diameter, winding diameter (that is, number of turns), and number of connections of the coil tube 3 by a preliminary experiment or the like. Regarding the collection and detection conditions such as the gas flow velocity and the cooling temperature of the coil tube below, it is preferable to select the optimum conditions in advance by preliminary experiments or the like so that the desired collection efficiency can be obtained. ..

(コイル管の冷却手段)
本発明の気体中親水性物質の捕集・検出装置は、コイル管の冷却手段を備えることができる。コイル管内の温度が低い程、粒子状親水性物質の捕集効率が向上する場合が多い。この場合、捕集・検出装置が設置される環境によっては、コイル管を冷却する冷却手段を備えることが好ましい。冷却手段としては、空冷式、水冷式等の種々の手段を挙げることができる。例えば、捕集・検出装置が高温の環境に設置される場合に、冷却手段として冷水を満たした水槽を設けその水槽内にコイル管を浸漬する方法を挙げることができる。
(Coil tube cooling means)
The device for collecting / detecting a hydrophilic substance in a gas of the present invention may be provided with a cooling means for a coil tube. The lower the temperature inside the coil tube, the higher the collection efficiency of particulate hydrophilic substances in many cases. In this case, depending on the environment in which the collection / detection device is installed, it is preferable to provide a cooling means for cooling the coil tube. Examples of the cooling means include various means such as an air-cooled type and a water-cooled type. For example, when the collection / detection device is installed in a high temperature environment, a method of providing a water tank filled with cold water as a cooling means and immersing the coil tube in the water tank can be mentioned.

(凝集水捕集手段)
凝集水捕集手段5としては、コイル管3より流出する親水性物質を溶解している水滴を捕集できる手段であればその構成や形状等は特に限定されない。例えば、ガラス、プラスチック又はセラミックスフリットを底部に配置したシリンジ等の容器や、インピンジャーのように、その中に充たした水中にコイル管より流出する(水滴やガス状親水性物質を含む)気体を通す容器を挙げることができる。ガラスフリットを底部に配置したシリンジの場合は、コイル管3より気体とともに流出する水滴は、ガラスフリット下部より導入されてガラスフリットにより捕捉されてシリンジ底部に溜まり捕集水となる。インピンジャー等の場合は、コイル管3より気体とともに流出する水滴は、インピンジャー内に入れられている水等と混合し、混合水が捕集水となる。インピンジャーのように、気体を水と接触させて水滴を捕捉する場合は、気体中に含まれるガス状親水性物質、すなわちコイル管3により捕捉されなかったガス状親水性物質も前記の水との接触により捕捉されると考えられる。
(Aggregated water collecting means)
The structure and shape of the aggregated water collecting means 5 are not particularly limited as long as they can collect water droplets in which the hydrophilic substance flowing out from the coil tube 3 is dissolved. For example, a container such as a syringe with a glass, plastic or ceramic frit placed on the bottom, or a gas (including water droplets and gaseous hydrophilic substances) that flows out from a coil tube into the water filled therein, such as an impinger. The container to be passed through can be mentioned. In the case of a syringe in which the glass frit is arranged at the bottom, water droplets flowing out from the coil tube 3 together with the gas are introduced from the lower part of the glass frit, captured by the glass frit, and collected at the bottom of the syringe to be collected water. In the case of an impinger or the like, the water droplets flowing out from the coil tube 3 together with the gas are mixed with the water or the like contained in the impinger, and the mixed water becomes the collected water. When a gas is brought into contact with water to capture water droplets like an impinger, a gaseous hydrophilic substance contained in the gas, that is, a gaseous hydrophilic substance not captured by the coil tube 3 is also combined with the water. It is considered to be captured by the contact of.

(洗浄手段)
コイル管3内を洗浄する洗浄手段4は、コイル管3内に所定量の洗浄水を供給するとともに、コイル管3から排出される洗浄液(前記洗浄水に、コイル管3内の水分や親水性物質が溶解した溶液)を全量回収できる手段であれば特に限定されない。例えば、注射器やポンプ等の所定量の洗浄水を供給する洗浄水供給部、前記洗浄水供給部より供給された洗浄水をコイル管に導入する洗浄水導入部、コイル管から排出される洗浄液を回収する洗浄液回収部から構成される手段を挙げることができる。
(Cleaning means)
The cleaning means 4 for cleaning the inside of the coil tube 3 supplies a predetermined amount of cleaning water into the coil tube 3 and also discharges a cleaning solution from the coil tube 3 (the cleaning water contains water and hydrophilicity in the coil tube 3). It is not particularly limited as long as it is a means capable of recovering the entire amount of the solution in which the substance is dissolved. For example, a cleaning water supply unit that supplies a predetermined amount of cleaning water such as a syringe or a pump, a cleaning water introduction unit that introduces the cleaning water supplied from the cleaning water supply unit into the coil tube, and a cleaning liquid discharged from the coil tube. A means composed of a cleaning liquid recovery unit to be recovered can be mentioned.

洗浄水導入部としては、例えばコイル管3の気体入口I3付近に設けられた3方コック及び洗浄水供給部と前記3方コックとを結ぶ洗浄水導入路からなる構成等を挙げることができる。回収部としては、例えば、コイル管3の出口O3と凝集水捕集手段5の入口I5とを結ぶ流路の途中に設けた3方コック及び前記3方コックと連結する洗浄液回収路からなる構成等を挙げることができる。
なお、洗浄水導入部と回収部を、前記の場合と逆にして、コイル管3の出口O3と凝集水捕集手段5の入口I5とを結ぶ流路の途中に設けた3方コックから洗浄水をコイル管3内へ導入して、入口I3付近に設けられた3方コックから洗浄液を回収する方法も可能である。
Examples of the cleaning water introduction unit include a configuration including a three-way cock provided near the gas inlet I3 of the coil tube 3 and a cleaning water introduction path connecting the cleaning water supply unit and the three-way cock. The recovery unit includes, for example, a three-way cock provided in the middle of the flow path connecting the outlet O3 of the coil pipe 3 and the inlet I5 of the coagulated water collecting means 5, and a cleaning liquid recovery path connected to the three-way cock. And so on.
The washing water introduction part and the recovery part are washed from a three-way cock provided in the middle of the flow path connecting the outlet O3 of the coil tube 3 and the inlet I5 of the coagulated water collecting means 5 in the reverse manner of the above case. It is also possible to introduce water into the coil tube 3 and collect the cleaning liquid from the three-way cock provided near the inlet I3.

(親水性物質検出手段)
親水性物質検出手段としては、洗浄液に溶解している検出対象の親水性物質を検出できる装置であれば特に限定されない。水中の親水性物質の濃度を、容易に、迅速に、正確、精度よく定量できる装置が好ましく、例えば、液体クロマトグラフィー、分光分析装置、質量分析装置等を挙げることができる。
又、オンラインで検出、定量を行うことができる親水性物質検出手段を用い、洗浄手段4の前記洗浄液回収部に接続すれば、検出、定量を継続的に自動的に行うことができるとともに、洗浄液回収部と検出、定量との間の操作や装置によるブランク値の上昇を抑制でき、より正確な、検出、定量を行うことができるので好ましい。
(Hydrophilic substance detection means)
The hydrophilic substance detecting means is not particularly limited as long as it is an apparatus capable of detecting the hydrophilic substance to be detected dissolved in the cleaning liquid. An apparatus capable of easily, quickly, accurately and accurately quantifying the concentration of a hydrophilic substance in water is preferable, and examples thereof include liquid chromatography, a spectroscopic analyzer, and a mass spectrometer.
Further, if a hydrophilic substance detecting means capable of detecting and quantifying online is used and connected to the cleaning liquid recovery unit of the cleaning means 4, detection and quantification can be continuously and automatically performed, and the cleaning liquid can be continuously and automatically performed. It is preferable because it is possible to suppress an increase in the blank value due to an operation between the collection unit and the detection and quantification and the device, and more accurate detection and quantification can be performed.

(その他の構成)
本発明の気体中親水性物質の捕集・検出装置には、前記の必須の構成に加えて、必要により他の構成も備えることができる。例えば、親水性物質の捕集・検出の対象である気体に水分を与える水分付与手段を、前記コイル管の気体入口の前段(気体が流入する方向)に設けることができる。前記のように、コイル管の内壁が湿潤化していると、親水性物質の捕集効率が向上する場合がある。コイル管の内壁を湿潤化させるためには、気体中に含まれる水分量が多いことが好ましいので、対象となる気体中の湿度が低い場合は、水分付与手段を捕集・検出装置の前段(装置に気体が流入する前の位置)に設け、対象の気体中に水分を付与することが好ましい。
水分付与手段としては、例えば、U字管やインピンジャー等を挙げることができる。
(Other configurations)
The device for collecting / detecting a hydrophilic substance in a gas of the present invention may be provided with other configurations, if necessary, in addition to the above-mentioned essential configurations. For example, a water-imparting means for imparting water to the gas to be collected / detected of the hydrophilic substance can be provided in front of the gas inlet of the coil tube (direction in which the gas flows in). As described above, when the inner wall of the coil tube is moistened, the collection efficiency of hydrophilic substances may be improved. In order to moisten the inner wall of the coil tube, it is preferable that the amount of water contained in the gas is large. Therefore, when the humidity in the target gas is low, the water addition means is used in the front stage of the collecting / detecting device ( It is preferable to provide the device at a position (position before the gas flows into the device) to add water to the target gas.
Examples of the water-imparting means include a U-shaped tube and an impinger.

(検出の対象)
本発明の気体中親水性物質の捕集・検出装置及び捕集・検出方法により捕集・検出される対象は、ガス状、粒子状の親水性物質を含む可能性が考えられる気体であるが、この気体としては、例えば、廃棄物の燃焼処理の排ガス、工場排ガス、汚染された大気等から有害物質を除去処理した後の気体を挙げることができ、有害物質の除去処理の効率評価のために本発明の装置、方法を使用することができる。
ここで、親水性物質とは、水に溶解可能な物質であり、ガス状又は粒子状で気体に存在できるものである。例えば、排ガス中に含まれる金属ハロゲン化物、ハロゲン化水素、ハロゲン分子、亜硫酸、硫酸等を挙げることができる。
(Target of detection)
The target to be collected / detected by the collecting / detecting device for the hydrophilic substance in the gas and the collecting / detecting method of the present invention is a gas that may contain a gaseous or particulate hydrophilic substance. Examples of this gas include a gas after removing harmful substances from exhaust gas from waste combustion treatment, factory exhaust gas, polluted air, etc., for the purpose of evaluating the efficiency of the removal treatment of harmful substances. The device and method of the present invention can be used.
Here, the hydrophilic substance is a substance that is soluble in water and can exist in a gas in the form of a gas or particles. For example, metal halides, hydrogen halides, halogen molecules, sulfurous acid, sulfuric acid and the like contained in exhaust gas can be mentioned.

さらに、大気中の親水性ウイルスも、本発明の気体中親水性物質の捕集・検出装置により捕集・検出される親水性物質と考えられる。親水性ウイルスとしては、例えばエンテロウィルス等が挙げられる。
気中のウイルス量を調べる方法として、冷却コイル管を用いて、湿潤増大・遠心分離捕集・凝縮水保持を行う方法、フィルターを用いる方法が知られているが、これらの方法によれば、ウイルスにダメージを与える問題があると考えられている。しかし、本発明の気体中親水性物質の捕集・検出装置によれば、親水性ウイルスにダメージを与えることなく、その捕集・検出ができると考えられる。
Further, the hydrophilic virus in the atmosphere is also considered to be a hydrophilic substance collected / detected by the hydrophilic substance collecting / detecting device in the gas of the present invention. Examples of the hydrophilic virus include enterovirus and the like.
As a method for examining the amount of virus in the air, a method of increasing wetness, centrifuging and collecting, and retaining condensed water using a cooling coil tube, and a method using a filter are known. According to these methods, It is believed that there is a problem that damages the virus. However, according to the device for collecting / detecting a hydrophilic substance in a gas of the present invention, it is considered that the hydrophilic virus can be collected / detected without being damaged.

(実施例、比較例の実験概要)
捕集される親水性物質を、塩化アンモニウムとし、捕集効率を評価した。先ず、図3に示す装置により、塩酸とアンモニアを反応させて塩化アンモニウムを発生させ、発生した塩化アンモニウムの微粒子又は微粒子とガスを含む大気(以下、「被検出気体」と言う。)を、図4に示すインピンジャー(ガス状親水性物質捕集手段:水分付与手段)、図5に示すガラスコイル管、洗浄手段、凝集水捕集手段を、表1に示す組合せにより構成した装置に通し、インピンジャー、ガラスコイル管、凝集水捕集手段により塩化アンモニウムを捕集した。捕集後、図5に示す洗浄手段により、ガラスコイル管を洗浄し、洗浄手段の出口より回収された洗浄液や、凝集水捕集手段に捕集された捕集水中の塩化アンモニウムの濃度を電気電導率計により測定し、捕集された洗浄液、捕集水の量と測定により得られた濃度より、捕集された塩化アンモニウムの総量を求めた。得られた総量の、塩化アンモニウムの発生量に対する比率により捕集効率を評価した。
(Experimental outline of Examples and Comparative Examples)
The hydrophilic substance to be collected was ammonium chloride, and the collection efficiency was evaluated. First, the apparatus shown in FIG. 3 is used to react hydrochloric acid with ammonia to generate ammonium chloride, and the generated fine particles of ammonium chloride or the atmosphere containing the fine particles and gas (hereinafter referred to as “detected gas”) is shown in FIG. The impinger (gas-like hydrophilic substance collecting means: water-imparting means) shown in No. 4, the glass coil tube shown in FIG. 5, the cleaning means, and the coagulated water collecting means are passed through an apparatus configured by the combination shown in Table 1. Ammonium chloride was collected by an impinger, a glass coil tube, and a coagulated water collecting means. After collection, the glass coil tube is cleaned by the cleaning means shown in FIG. 5, and the concentration of the cleaning liquid collected from the outlet of the cleaning means and the concentration of ammonium chloride in the collected water collected by the coagulated water collecting means is charged. The total amount of collected ammonium chloride was determined from the amount of collected washing liquid and collected water and the concentration obtained by the measurement, which was measured by a conductivity meter. The collection efficiency was evaluated by the ratio of the total amount obtained to the amount of ammonium chloride generated.

(実施例、比較例で使用した装置)
1)被検出気体発生装置
図3は、塩化アンモニウムのヒューム(微粒子)を発生させる装置、及び発生した塩化アンモニウムのヒューム(微粒子)をガス化するために加熱する装置を示す。これらの装置は、塩酸とアンモニア水が混合される密閉瓶101、密閉瓶101の出口(気体が吸引される側)に直結した真空吸引ビン102、真空吸引ビン102の出口に直結したアルミナチューブ103(径25mm、長さ700mm)、及びアルミナチューブ103の出口側に直結したガラスチューブ104から構成され、ガラスチューブ104の出口側に装置内の被検出気体、すなわち塩化アンモニウムを含む大気が吸引される。アルミナチューブ103には管状電気炉(加熱手段)105が設けられている。
(Equipment used in Examples and Comparative Examples)
1) Detected gas generator FIG. 3 shows a device for generating ammonium chloride fume (fine particles) and a device for heating the generated ammonium chloride fume (fine particles) to gasify. These devices include a closed bottle 101 in which hydrochloric acid and aqueous ammonia are mixed, a vacuum suction bin 102 directly connected to the outlet of the closed bottle 101 (the side where gas is sucked), and an alumina tube 103 directly connected to the outlet of the vacuum suction bin 102. It is composed of a glass tube 104 (diameter 25 mm, length 700 mm) and directly connected to the outlet side of the alumina tube 103, and the gas to be detected in the device, that is, the atmosphere containing ammonium chloride is sucked into the outlet side of the glass tube 104. .. The alumina tube 103 is provided with a tubular electric furnace (heating means) 105.

30μLのビンA中の12M塩酸と30μLのビンB中のアンモニア水は、密閉瓶101に加えられて混合され、塩化アンモニウムのヒューム(微粒子)が発生した。発生した塩化アンモニウムの微粒子は、真空吸引ビン102に吸引され、その後さらにアルミナチューブ103に吸引される。下記表1の加熱の有無の欄で「有」と示されている場合は、アルミナチューブ103に吸引された被検出気体は、管状電気炉105により約900℃に加熱されて、塩化アンモニウムの微粒子はガス化する。 12M hydrochloric acid in 30 μL bottle A and ammonia water in 30 μL bottle B were added to the closed bottle 101 and mixed to generate ammonium chloride fume (fine particles). The generated ammonium chloride fine particles are sucked into the vacuum suction bin 102 and then further sucked into the alumina tube 103. When "Yes" is indicated in the column of presence or absence of heating in Table 1 below, the gas to be detected sucked into the alumina tube 103 is heated to about 900 ° C. by the tubular electric furnace 105, and is fine particles of ammonium chloride. Gasifies.

アルミナチューブ103から流出した被検出気体は、ガラスチューブ104に導入される。なお、図3の例では、アルミナチューブ103とガラスチューブ104の結合部は弾性体からなるOリングにより密閉されている。被検出気体が約900℃に加熱されガス化された場合、被検出気体は、ガラスチューブ104内で220℃程度まで冷却され、ガス化した塩化アンモニウムの一部は微粒子となる。すなわち、被検出気体が約900℃に加熱された場合、ガラスチューブ104の出口O1からは、ガス状及び微粒子状の塩化アンモニウムを共に含む被検出気体が流出し、加熱がされなかった場合は、(ガス化されていないので)微粒子状の塩化アンモニウムのみを含む被検出気体が流出する。 The gas to be detected flowing out of the alumina tube 103 is introduced into the glass tube 104. In the example of FIG. 3, the joint portion between the alumina tube 103 and the glass tube 104 is sealed by an O-ring made of an elastic body. When the gas to be detected is heated to about 900 ° C. and gasified, the gas to be detected is cooled to about 220 ° C. in the glass tube 104, and a part of the gasified ammonium chloride becomes fine particles. That is, when the gas to be detected is heated to about 900 ° C., the gas to be detected containing both gaseous and fine particle ammonium chloride flows out from the outlet O1 of the glass tube 104, and if it is not heated, The gas to be detected containing only fine particles of ammonium chloride (because it is not gasified) flows out.

2)水分付与手段(ガス状親水性物質捕集手段)
図4は、実験で使用した2本のガスインピンジャー201、202を直列に連結した装置を表す。ガスインピンジャー201、202のそれぞれには10mlの精製水が入れられている。ガラスチューブ104の出口O1から流出した被検出気体は、ガスインピンジャー201の入口I2から流入し、ガスインピンジャー201、202内の水と接触した後、ガスインピンジャー202の出口O2から流出する。被検出気体と水との接触により、被検出気体中の塩化アンモニウム(親水性物質)、特にガス状の塩化アンモニウムが水中に捕集されるとともに、被検出気体中に水分が蒸発し水分が付与される。すなわち、ガスインピンジャー201、202は、水分付与手段として機能するとともに、ガス状親水性物質捕集手段としても機能する。
2) Moisture-imparting means (gas-like hydrophilic substance collecting means)
FIG. 4 shows a device in which two gas impingeres 201 and 202 used in the experiment are connected in series. Each of the gas impinger 201 and 202 contains 10 ml of purified water. The gas to be detected flowing out from the outlet O1 of the glass tube 104 flows in from the inlet I2 of the gas impinger 201, comes into contact with the water in the gas impinger 201, 202, and then flows out from the outlet O2 of the gas impinger 202. By contact between the gas to be detected and water, ammonium chloride (hydrophilic substance) in the gas to be detected, especially gaseous ammonium chloride, is collected in water, and water evaporates into the gas to be detected to add water. Will be done. That is, the gas impingers 201 and 202 function not only as a means for imparting water, but also as a means for collecting gaseous hydrophilic substances.

3)コイル管
図5は、実験で使用したコイル管、及びこのコイル管内を洗浄して洗浄液を得る装置を表す。コイル管は、直列に連結された2本のガラスコイル管301、302からなる。それぞれのガラスコイル管は、内径1.8mm、外径3mmのガラス管を、巻径68mm、7重に巻いて形成されている。実験に際して、ガラスコイル管301、302は、5〜10℃に保たれている。
ガラスチューブ104の出口O1又はガスインピンジャー202の出口O2から流出する被検出気体は、ガラスコイル管301の入口I3からコイル管に流入し、コイル管内で塩化アンモニウム(親水性物質)の捕集がされた後、ガラスコイル管302の出口O3から流出する。
3) Coil tube FIG. 5 shows the coil tube used in the experiment and a device for cleaning the inside of the coil tube to obtain a cleaning liquid. The coil tube is composed of two glass coil tubes 301 and 302 connected in series. Each glass coil tube is formed by winding a glass tube having an inner diameter of 1.8 mm and an outer diameter of 3 mm in seven layers with a winding diameter of 68 mm. During the experiment, the glass coil tubes 301 and 302 were kept at 5 to 10 ° C.
The gas to be detected flowing out from the outlet O1 of the glass tube 104 or the outlet O2 of the gas impinger 202 flows into the coil tube from the inlet I3 of the glass coil tube 301, and ammonium chloride (hydrophilic substance) is collected in the coil tube. After that, it flows out from the outlet O3 of the glass coil tube 302.

4)凝集水捕集手段
図5中の501は、下部にガラスフリット502を設置したシリンジを表す。ガラスコイル管302の出口O3から流出した被検出気体は、入口I5よりシリンジ501内に吸引される。ガラスコイル管302からは、被検出気体とともに、ガラスコイル管302内で凝集し塩化アンモニウムを溶解している水滴、水分が流出するが、この水滴、水分は、ガラスフリット502に捕捉され、シリンジ501内に貯留し捕集水となる。すなわち、シリンジ501は、凝集水捕集手段として機能する。
シリンジ501の上部には、吸引口503が設けられている。吸引口503は、吸引ポンプ等の気体を吸引する手段(図示されていない)とつながっており、吸引口503より被検出気体が吸引される。
塩化アンモニウムの捕集後、シリンジ501から捕集水が取り出され、(親水性物質検出手段6による)塩化アンモニウムの濃度の測定に供せられる。捕集水は、吸引口503から取り出すことができるが、シリンジ501が、捕集水を取り出すための取出口(図示されていない)を別途設けて、その取出口から捕集水を取り出してもよい。
4) Aggregated water collecting means 501 in FIG. 5 represents a syringe in which a glass frit 502 is installed at the bottom. The gas to be detected flowing out from the outlet O3 of the glass coil tube 302 is sucked into the syringe 501 from the inlet I5. Water droplets and water that aggregate in the glass coil tube 302 and dissolve ammonium chloride flow out from the glass coil tube 302 together with the gas to be detected. These water droplets and water are captured by the glass frit 502 and are captured by the glass frit 502, and the syringe 501 It is stored inside and becomes water collection. That is, the syringe 501 functions as a coagulated water collecting means.
A suction port 503 is provided on the upper part of the syringe 501. The suction port 503 is connected to a means (not shown) for sucking gas such as a suction pump, and the gas to be detected is sucked from the suction port 503.
After collecting the ammonium chloride, the collected water is taken out from the syringe 501 and used for measuring the concentration of ammonium chloride (by the hydrophilic substance detecting means 6). The collected water can be taken out from the suction port 503, but even if the syringe 501 is provided with a separate outlet (not shown) for taking out the collected water and the collected water is taken out from the outlet. Good.

5)洗浄手段
図5中の401及び402は精製水(洗浄水)をそれぞれ10mL入れたシリンジを表し、403は、水を吸引するためのシリンジを表す。図5中の404、405及び406は三方コックであり、図5に記載の装置ではこれらにより洗浄手段4が構成されている。三方コックの向きを変えて、シリンジ401、402内に貯留している洗浄水をシリンジ403内に吸引することにより、前記洗浄水がガラスコイル管301、302を通過し、管内の塩化アンモニウムを洗浄水中に溶解する。
5) Washing means 401 and 402 in FIG. 5 represent syringes containing 10 mL each of purified water (washing water), and 403 represents a syringe for sucking water. Reference numerals 404, 405, and 406 in FIG. 5 are three-way cocks, and in the apparatus shown in FIG. 5, the cleaning means 4 is configured by these. By changing the direction of the three-way cock and sucking the washing water stored in the syringes 401 and 402 into the syringe 403, the washing water passes through the glass coil tubes 301 and 302 to wash the ammonium chloride in the tubes. Dissolves in water.

6)親水性物質の検出
下記実験1〜8では、親水性物質検出手段6として電気電導率計を用いて、シリンジ403内に吸引された洗浄液に含まれる塩化アンモニウム、インピンジャー201、202やシリンジ501内の水(捕集水等)に含まれる塩化アンモニウムの検出・定量を行った。
6) Detection of hydrophilic substances In the following experiments 1 to 8, ammonium chloride, impinger 201, 202 and syringes contained in the cleaning liquid sucked into the syringe 403 were used as the hydrophilic substance detecting means 6 using an electric conductivity meter. Ammonium chloride contained in the water (collected water, etc.) in 501 was detected and quantified.

実験1〜8
(捕集工程)
図3に示す被検出気体発生装置で、ビンA中の12M塩酸とビンB中のアンモニア水を、密閉瓶101に加えて混合し、塩化アンモニウムのヒューム(微粒子)が発生させ、発生した塩化アンモニウムの微粒子を、真空吸引ビン102に吸引させた後、アルミナチューブ103、ガラスチューブ104を通して、O1より流出させた。
塩化アンモニウムの発生総量は、同条件(同じ量、濃度の塩酸、アンモニア水)で塩化アンモニウムを発生させ、真空吸引ビン102に吸引させた後、真空吸引ビン102内に所定量の精製水を加えて塩化アンモニウムの微粒子を溶解させ、その後、得られた水溶液中の塩化アンモニウムの濃度を電気電導率計により測定し、使用した精製水の量と測定により得られた濃度より求めた。測定は、3〜5回行いその平均値を総量とした。
Experiments 1-8
(Collection process)
In the gas generator to be detected shown in FIG. 3, 12M hydrochloric acid in bottle A and aqueous ammonia in bottle B are added to the closed bottle 101 and mixed to generate ammonium chloride fume (fine particles), and the generated ammonium chloride is generated. After being sucked into the vacuum suction bin 102, the fine particles were discharged from O1 through the alumina tube 103 and the glass tube 104.
As for the total amount of ammonium chloride generated, ammonium chloride is generated under the same conditions (same amount, concentration of hydrochloric acid, aqueous ammonia), sucked into the vacuum suction bin 102, and then a predetermined amount of purified water is added to the vacuum suction bin 102. Then, the fine particles of ammonium chloride were dissolved, and then the concentration of ammonium chloride in the obtained aqueous solution was measured with an electric conductivity meter, and the concentration was determined from the amount of purified water used and the concentration obtained by the measurement. The measurement was performed 3 to 5 times, and the average value was taken as the total amount.

実験2、4、6及び8(表1中の「加熱」の欄が「有」)では、アルミナチューブ103を約900℃に加熱して塩化アンモニウムの微粒子をガス化した後、ガラスチューブ104で約220℃に冷却して一部を微粒子状としガス状及び微粒子状の塩化アンモニウムを共に含む被検出気体とし、図3に示す被検出気体発生装置から流出させた。実験1、3、5及び7(表1中の「加熱」の欄が「無」)では、アルミナチューブ103を加熱せず(すなわちガス化はせずに)、微粒子状の塩化アンモニウムのみを含む被検出気体を被検出気体発生装置から流出させた。 In Experiments 2, 4, 6 and 8 (the column of "heating" in Table 1 is "Yes"), the alumina tube 103 was heated to about 900 ° C. to gasify the fine particles of ammonium chloride, and then the glass tube 104 was used. It was cooled to about 220 ° C. to form a part of the gas to be detected, which contained both gaseous and fine particles of ammonium chloride, and was discharged from the gas generator to be detected shown in FIG. In Experiments 1, 3, 5 and 7 (the "heating" column in Table 1 is "none"), the alumina tube 103 was not heated (ie, not gasified) and contained only particulate ammonium chloride. The gas to be detected was discharged from the gas generator to be detected.

被検出気体発生装置から流出した塩化アンモニウムを含む被検出気体を、図4に示すガスインピンジャー201、202(水分付与手段(ガス状親水性物質捕集手段))、図5に示すコイル管301、302、図5に示すシリンジ501(凝集水捕集手段)を、この記載の順序で、下記表1に示すように組合せた装置内に導入し、塩化アンモニウムを装置内に捕集した。 The gas to be detected containing ammonium chloride that has flowed out of the gas generator to be detected is the gas impinger 201, 202 (moisture imparting means (gaseous hydrophilic substance collecting means)) shown in FIG. 4, and the coil tube 301 shown in FIG. , 302, Syringe 501 (aggregated water collecting means) shown in FIG. 5 was introduced into the combined apparatus as shown in Table 1 below in the order described in this manner, and ammonium chloride was collected in the apparatus.

(コイル管の洗浄及び塩化アンモニウムの検出)
塩化アンモニウムを前記装置内に捕集した後、図5に示す三方コック404、405及び406の向きを変え、シリンジ403によりシリンジ401又は402内の洗浄水を吸引した。この吸引によりシリンジ401内の洗浄水はコイル管301を通過し、管内に捕集されている塩化アンモニウムを洗浄してシリンジ403内に流入する。又、吸引によりシリンジ402内の洗浄水はコイル管302を通過し、管内に捕集されている塩化アンモニウムを洗浄してシリンジ403内に流入する。
前記のようにしてコイル管301又は302をそれぞれ洗浄した後、シリンジ403内に流入した洗浄液(塩化アンモニウムを含んでいる洗浄水)中の塩化アンモニウムの濃度を電気電導率計により測定し、測定された濃度とシリンジ403内の洗浄液の量から、コイル管301及びコイル管302に捕集された塩化アンモニウムの量を計算し、計算値1とした。
(Cleaning of coil tube and detection of ammonium chloride)
After collecting ammonium chloride in the apparatus, the three-way cocks 404, 405 and 406 shown in FIG. 5 were turned and the washing water in the syringe 401 or 402 was sucked by the syringe 403. By this suction, the washing water in the syringe 401 passes through the coil tube 301, cleans the ammonium chloride collected in the tube, and flows into the syringe 403. Further, the washing water in the syringe 402 passes through the coil tube 302 by suction, cleans the ammonium chloride collected in the tube, and flows into the syringe 403.
After cleaning the coil tubes 301 or 302 as described above, the concentration of ammonium chloride in the cleaning solution (washing water containing ammonium chloride) flowing into the syringe 403 is measured and measured by an electric conductivity meter. The amount of ammonium chloride collected in the coil tube 301 and the coil tube 302 was calculated from the concentration and the amount of the cleaning liquid in the syringe 403, and the calculated value was 1.

シリンジ501(凝集水捕集手段)、ガスインピンジャー201、202を使用した例では、塩化アンモニウムをそれぞれの装置内に捕集した後、装置内に貯留した水中の塩化アンモニウムの濃度を電気電導率計により測定し、測定された濃度と各装置内の水の量から、各装置内に捕集された塩化アンモニウムの量を計算し、計算値2とした。計算値1+計算値2を捕集量として表1に示した。 In the example using the syringe 501 (cohesive water collecting means) and the gas impingers 201 and 202, after collecting ammonium chloride in each device, the concentration of ammonium chloride in the water stored in the device is determined by the electric conductivity. The amount of ammonium chloride collected in each device was calculated from the measured concentration and the amount of water in each device, and the calculated value was 2. The calculated value 1 + calculated value 2 are shown in Table 1 as the collected amount.

なお、実験5〜8では、前記のコイル管内に洗浄水を通過させる操作と同様の操作を、塩化アンモニウムの捕集前に行い、シリンジ403内に流入した洗浄液中の塩化アンモニウムの量を測定、計算しブランク値1を求めた。又、実験5〜6では、塩化アンモニウムの捕集を行わない場合の、ガスインピンジャー201、202に貯留した水中の塩化アンモニウムの量を前記と同様にして測定、計算しブランク値2を求めた。実験5〜8では、前記計算値1+計算値2からブランク値1+ブランク値2を引いた値を捕集量として表1に示した。ブランク値1は2.0〜3.0μg、ブランク値2は12〜18μgであった。ガラスコイル管は、ガスインピンジャーよりブランク値を抑制しやすいと考えられる。 In Experiments 5 to 8, the same operation as the operation of passing the washing water through the coil tube was performed before collecting the ammonium chloride, and the amount of ammonium chloride in the washing liquid flowing into the syringe 403 was measured. It was calculated and a blank value of 1 was obtained. Further, in Experiments 5 to 6, the amount of ammonium chloride in the water stored in the gas impingeres 201 and 202 when the ammonium chloride was not collected was measured and calculated in the same manner as described above to obtain a blank value 2. .. In Experiments 5 to 8, the value obtained by subtracting the blank value 1 + the blank value 2 from the calculated value 1 + the calculated value 2 is shown in Table 1 as the collected amount. The blank value 1 was 2.0 to 3.0 μg, and the blank value 2 was 12 to 18 μg. It is considered that the glass coil tube is easier to suppress the blank value than the gas impinger.

Figure 2020204553
Figure 2020204553

表1に示されるように、捕集手段が、ガスインピンジャーとガラスコイル管からなる場合、又はガラスコイル管のみからなる場合である実験1〜4(比較例)では、捕集率は低い。一方、ガラスコイル管の後段に凝集水捕集手段を設けた実験5〜8(実施例:本発明の例)では、捕集率は高く、ガス状の親水性物質、粒子状の親水性物質のいずれについても優れた捕集効率が得られている。特に、ガラスコイル管と凝集水捕集手段からなり、塩化アンモニウム微粒子のガス化を行わなかった(すなわち微粒子の捕集の場合である)実施例7では、捕集率は100%であった。ガラスコイル管の内部で凝縮して生成する水滴を凝集水捕集手段により捕集でき、塩化アンモニウムの捕集効率を格段に高めることができたと考えられる。
すなわち、前記の結果により、本発明によれば、ガス状と微粒子状の親水性物質を同時に効率よく捕集できることが示されている。又、本発明によれば、親水性物質の捕集をフィルター以外の方法で行えるので、排ガスを処理する方法と、それを評価する方法の両方がフィルター法であった従来に比べ、本発明では、全く異なる原理でガスと微粒子を捕集するので、評価の信頼性を格段に高めることができると考えられる。
As shown in Table 1, in Experiments 1 to 4 (comparative example) in which the collecting means consists of a gas impinger and a glass coil tube, or only a glass coil tube, the collection rate is low. On the other hand, in Experiments 5 to 8 (Example: Example of the present invention) in which the coagulated water collecting means was provided in the subsequent stage of the glass coil tube, the collection rate was high, and the gaseous hydrophilic substance and the particulate hydrophilic substance were obtained. Excellent collection efficiency has been obtained for all of the above. In particular, in Example 7, which was composed of a glass coil tube and a means for collecting aggregated water and did not gasify the ammonium chloride fine particles (that is, in the case of collecting fine particles), the collection rate was 100%. It is considered that the water droplets generated by condensing inside the glass coil tube could be collected by the agglomerated water collecting means, and the collecting efficiency of ammonium chloride could be significantly improved.
That is, from the above results, it is shown that according to the present invention, gaseous and fine particle hydrophilic substances can be efficiently collected at the same time. Further, according to the present invention, since the collection of hydrophilic substances can be performed by a method other than the filter, in the present invention, as compared with the conventional method in which both the method of treating the exhaust gas and the method of evaluating the exhaust gas are the filter method. Since gas and fine particles are collected by a completely different principle, it is considered that the reliability of evaluation can be significantly improved.

さらに、コイル管を使用する本発明によれば、現場で試料導入直前まで精製水を通じてコイル管を洗浄することができ、さらに被検出気体を通じた直後にオンラインで分析することも可能となるので、「ブランク値」を容易に低下させることができ、検出の精度を大きく向上できると考えられる。 Further, according to the present invention using the coil tube, the coil tube can be washed with purified water at the site until just before the sample is introduced, and further, it is possible to analyze online immediately after passing through the gas to be detected. It is considered that the "blank value" can be easily lowered and the detection accuracy can be greatly improved.

3 コイル管
4 洗浄手段
5 凝集水捕集手段
6 親水性物質検出手段
7 気体
101 密閉瓶
102 真空吸引ビン
103 アルミナチューブ
104 ガラスチューブ
105 管状電気炉(加熱手段)
201、202 ガスインピンジャー
301、302 ガラスコイル管
401、402、403 シリンジ
404、405、406 三方コック
501 シリンジ(凝集水捕集手段)
502 ガラスフリット
503 吸引口
3 Coil tube 4 Cleaning means 5 Aggregated water collecting means 6 Hydrophilic substance detecting means 7 Gas 101 Sealed bottle 102 Vacuum suction bottle 103 Alumina tube 104 Glass tube 105 Tubular electric furnace (heating means)
201, 202 Gas Impinger 301, 302 Glass Coil Tube 401, 402, 403 Syringe 404, 405, 406 Three-way Cock 501 Syringe (Coagulated Water Collection Means)
502 Glass frit 503 Suction port

Claims (7)

気体中に含まれるガス状親水性物質及び粒子状親水性物質を捕集し検出する装置であって、前記気体を通過させるコイル管、前記コイル管の出口に接続された凝集水捕集手段、前記コイル管内に洗浄水を通過させてコイル管内を洗浄する洗浄手段、及び親水性物質検出手段を備える気体中親水性物質の捕集・検出装置。 A device that collects and detects gaseous hydrophilic substances and particulate hydrophilic substances contained in a gas, and is a coil tube that allows the gas to pass through, a coagulated water collecting means connected to the outlet of the coil tube, and the like. A device for collecting / detecting a hydrophilic substance in a gas, comprising a cleaning means for passing cleaning water through the coil tube to clean the inside of the coil tube, and a hydrophilic substance detecting means. 前記コイル管が、ガラスコイル管である請求項1に記載の気体中親水性物質の捕集・検出装置。 The apparatus for collecting / detecting a hydrophilic substance in a gas according to claim 1, wherein the coil tube is a glass coil tube. 前記親水性物質検出手段を、前記凝集水捕集手段の出口に接続して備える請求項1又は請求項2に記載の気体中親水性物質の捕集・検出装置。 The device for collecting / detecting a hydrophilic substance in a gas according to claim 1 or 2, wherein the hydrophilic substance detecting means is connected to an outlet of the coagulated water collecting means. さらに、前記気体に水分を与える水分付与手段を、前記コイル管の気体入口の前段に設ける請求項1ないし請求項3のいずれか1項に記載の気体中親水性物質の捕集・検出装置。 The device for collecting and detecting a hydrophilic substance in a gas according to any one of claims 1 to 3, wherein a water-imparting means for imparting water to the gas is provided in front of the gas inlet of the coil tube. 気体中に含まれるガス状親水性物質及び粒子状親水性物質を捕集し検出する方法であって、前記気体をコイル管に通過させる工程、前記コイル管より流出する気体を凝集水捕集手段に通過させコイル管より流出する水滴を捕集し、捕集水を得る工程、前記コイル管内に洗浄水を通過させて洗浄液を得る洗浄工程、及び、前記捕集水及び前記洗浄液中に含まれるガス状親水性物質及び粒子状親水性物質を、親水性物質検出手段により検出する親水性物質検出工程、を有する気体中親水性物質の捕集・検出方法。 A method for collecting and detecting a gaseous hydrophilic substance and a particulate hydrophilic substance contained in a gas, in which the gas is passed through a coil tube, and the gas flowing out from the coil tube is collected by agglomerated water. It is included in the collected water and the cleaning liquid, a step of collecting water droplets flowing out from the coil tube to obtain the collected water, a cleaning step of passing the cleaning water through the coil tube to obtain a cleaning liquid, and the collected water and the cleaning liquid. A method for collecting and detecting a hydrophilic substance in a gas, which comprises a hydrophilic substance detecting step of detecting a gaseous hydrophilic substance and a particulate hydrophilic substance by a hydrophilic substance detecting means. さらに、前記気体をコイル管に通過させる工程の前に、コイル管内に洗浄水を通過させてコイル管を洗浄する工程を有する請求項5に記載の気体中親水性物質の捕集・検出方法。 The method for collecting and detecting a hydrophilic substance in a gas according to claim 5, further comprising a step of passing washing water through the coil tube to wash the coil tube before the step of passing the gas through the coil tube. 前記親水性物質検出手段が、前記捕集水及び前記洗浄液中に含まれるガス状親水性物質及び粒子状親水性物質を、オンラインで検出できる手段である請求項5又は請求項6に記載の気体中親水性物質の捕集・検出方法。 The gas according to claim 5 or 6, wherein the hydrophilic substance detecting means is a means for detecting a gaseous hydrophilic substance and a particulate hydrophilic substance contained in the collected water and the cleaning liquid online. A method for collecting and detecting medium-hydrophilic substances.
JP2019112647A 2019-06-18 2019-06-18 Device and method for collecting and detecting hydrophilic substance in gas Pending JP2020204553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019112647A JP2020204553A (en) 2019-06-18 2019-06-18 Device and method for collecting and detecting hydrophilic substance in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019112647A JP2020204553A (en) 2019-06-18 2019-06-18 Device and method for collecting and detecting hydrophilic substance in gas

Publications (1)

Publication Number Publication Date
JP2020204553A true JP2020204553A (en) 2020-12-24

Family

ID=73837931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019112647A Pending JP2020204553A (en) 2019-06-18 2019-06-18 Device and method for collecting and detecting hydrophilic substance in gas

Country Status (1)

Country Link
JP (1) JP2020204553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176251A1 (en) * 2021-02-22 2022-08-25 株式会社島津製作所 Air measurement method using gas chromatograph and gas chromatograph analysis system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176251A1 (en) * 2021-02-22 2022-08-25 株式会社島津製作所 Air measurement method using gas chromatograph and gas chromatograph analysis system

Similar Documents

Publication Publication Date Title
JP5762273B2 (en) Mist-containing gas analyzer
US7850901B2 (en) Conditioning system and method for use in the measurement of mercury in gaseous emissions
WO2005100947A1 (en) Method for sampling flue gas for analysis containing gas component having high susceptibility to adsorption
JP3540995B2 (en) Method and apparatus for continuous separation analysis of metallic mercury and water-soluble mercury in gas
CN109959538B (en) Device and method for testing sulfur trioxide and condensable particles emitted by fixed pollution source
CN110346190B (en) Device and method for testing soluble salt discharged by fixed source flue gas
JP2007127585A (en) Simultaneous collection device for tritium and carbon 14 in atmosphere
US20080198382A1 (en) Method And Assembly For Determining Soot Particles In A Gas Stream
CN109342284A (en) A kind of detection system and detection method for harmful substances from flue gases
JP2004233061A (en) Continuous concentrated gas sampling apparatus by nebulizer-denuder interlocking, and gas analysis apparatus incorporating the gas sampling apparatus and analysis method
CN105352784A (en) Sampling method and device for testing concentration of SO3 acid mist in wet desulfuration flue gas
CN107941718A (en) flue gas pollutant environment monitoring system
JP2020204553A (en) Device and method for collecting and detecting hydrophilic substance in gas
JP2010156592A (en) Exhaust gas sampling device
JP3892319B2 (en) Method and apparatus for measuring mercury concentration in exhaust gas
CN208512224U (en) The on-line monitoring system of VOCs exhaust gas lower explosion limit
CN208334331U (en) One kind of multiple exhaust gas on-line measuring devices
CN208366946U (en) The device that gas is analyzed in a kind of pair of high-sulfur atmosphere
CN206671290U (en) A kind of VOCs detection means
CN108760997A (en) A kind of flue gas processing device suitable for nitrogen oxides detection
JP5465737B2 (en) Sample gas sampling device
CN107462532A (en) A kind of method for carrying out gas mercury measurement of concetration using modified high sulfur petroleum coke
JP5466870B2 (en) Method and apparatus for measuring mercury concentration
CN208607201U (en) A kind of flue gas processing device suitable for nitrogen oxides detection
CN112414795A (en) Integrated collection method and system for polymorphic ammonia of fixed pollution source