JP5214420B2 - Electrolyte analysis method and electrolyte analyzer - Google Patents

Electrolyte analysis method and electrolyte analyzer Download PDF

Info

Publication number
JP5214420B2
JP5214420B2 JP2008307876A JP2008307876A JP5214420B2 JP 5214420 B2 JP5214420 B2 JP 5214420B2 JP 2008307876 A JP2008307876 A JP 2008307876A JP 2008307876 A JP2008307876 A JP 2008307876A JP 5214420 B2 JP5214420 B2 JP 5214420B2
Authority
JP
Japan
Prior art keywords
diluted
internal standard
solution
standard solution
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008307876A
Other languages
Japanese (ja)
Other versions
JP2010133742A (en
Inventor
茂樹 吉原
博 松島
駿二 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&T Corp
Original Assignee
A&T Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&T Corp filed Critical A&T Corp
Priority to JP2008307876A priority Critical patent/JP5214420B2/en
Publication of JP2010133742A publication Critical patent/JP2010133742A/en
Application granted granted Critical
Publication of JP5214420B2 publication Critical patent/JP5214420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

この発明は、イオン選択性電極を用いた測定部に、希釈した試料を供して試料の電解質濃度を測定する電解質分析方法および電解質分析装置にかかり、特に尿や血清等の電解質(Na:ナトリウム、K:カリウム、Cl:塩素、Ca:カルシウムなど)濃度を測定する電解質分析方法および電解質分析装置に関する。   The present invention relates to an electrolyte analysis method and an electrolyte analyzer for measuring the electrolyte concentration of a sample by supplying a diluted sample to a measurement unit using an ion selective electrode, and particularly an electrolyte such as urine or serum (Na: sodium, (K: potassium, Cl: chlorine, Ca: calcium, etc.) The present invention relates to an electrolyte analysis method and an electrolyte analyzer.

従来、尿や血清等の電解質濃度を測定する装置として、イオン選択性電極を使用した電解質分析装置が知られている。このような装置としては、イオン選択性電極と比較電極とを用いて、試料を希釈液で希釈することによって生成した希釈試料溶液の起電力を計測し、また、比較用の基準液の起電力を計測する。そして、これら希釈試料溶液と基準液とのそれぞれの計測データを基に、希釈試料溶液に含まれる被測定成分である電解質濃度を測定するようになっている。   2. Description of the Related Art Conventionally, an electrolyte analyzer using an ion selective electrode is known as a device for measuring an electrolyte concentration such as urine and serum. As such an apparatus, an electromotive force of a diluted sample solution produced by diluting a sample with a diluent is measured using an ion selective electrode and a reference electrode, and an electromotive force of a reference liquid for comparison is measured. Measure. Then, based on the measurement data of each of the diluted sample solution and the reference solution, the electrolyte concentration that is the component to be measured contained in the diluted sample solution is measured.

具体的には、まず、尿や血清等の試料を希釈用容器にて希釈するとともに、この希釈した希釈試料溶液をイオン選択性電極が用いられた電極部に導き、試料の電解質濃度に対応した起電力を計測する。引き続き、希釈内部標準液を、希釈用容器を介して電極部へ導き、希釈内部標準液の起電力を計測する。そして、上述した試料の起電力と内部標準液の起電力との差から試料の電解質濃度を求めるものである(例えば、下記特許文献1参照)。この方法によれば常に希釈内部標準液を参照して測定を行うため、従来の希釈済みの内部標準液をボトルに充填したものを測定する方法に比べて、温度変動の影響を受けにくいというメリットを有している。   Specifically, first, a sample such as urine or serum is diluted in a dilution container, and the diluted diluted sample solution is guided to an electrode portion where an ion selective electrode is used, corresponding to the electrolyte concentration of the sample. Measure the electromotive force. Subsequently, the diluted internal standard solution is guided to the electrode section through the dilution container, and the electromotive force of the diluted internal standard solution is measured. And the electrolyte concentration of a sample is calculated | required from the difference of the electromotive force of the sample mentioned above and the electromotive force of an internal standard solution (for example, refer the following patent document 1). Since this method always performs measurements with reference to the diluted internal standard solution, it is less susceptible to temperature fluctuations than the conventional method of measuring a diluted internal standard solution filled in a bottle. have.

特開平10−62375号公報Japanese Patent Laid-Open No. 10-62375

しかしながら、このような電解質分析装置では、電極が急激に出力低下を起こした場合にその変化に追従してしまうため、異常を検出することができずに、不正確な分析結果を出力してしまうという不具合が起きていた。また、従来の電解質分析装置においては、試料や希釈液を排出するために、複数(例えば3個)のシリンジ(ポンプ)を使用するため、モータが3個必要となり、モータからのノイズや発熱などによって、測定異常を引き起こすという問題もあった。   However, in such an electrolyte analyzer, when the output of the electrode suddenly decreases, the change follows the change, so that an abnormality cannot be detected and an inaccurate analysis result is output. The problem was happening. Further, in the conventional electrolyte analyzer, since a plurality of (for example, three) syringes (pumps) are used to discharge the sample and the diluted solution, three motors are required, and noise and heat generation from the motor, etc. As a result, there was also a problem of causing measurement abnormality.

この発明は、上述した従来技術による問題点を解消するため、予め、希釈内部標準液の希釈倍率を求めておき、その値を都度参照することにより、その変動が、通常の範囲内のものなのか、異常なものなのかを判断することができる電解質分析方法および電解質分析装置を提供することを目的とする。   In order to eliminate the above-mentioned problems caused by the prior art, the present invention obtains the dilution ratio of the diluted internal standard solution in advance and refers to the value each time, so that the fluctuation is within the normal range. It is an object of the present invention to provide an electrolyte analysis method and an electrolyte analysis apparatus that can determine whether the battery is abnormal or abnormal.

上述した課題を解決し、目的を達成するため、本発明にかかる電解質分析方法は、希釈用容器に試料を供給する試料供給工程と、前記希釈用容器に、予め一定量の被測定成分と同一のイオンを含む塩を添加した希釈液を供給する希釈液供給工程と、前記希釈用容器に供給された前記試料と前記希釈液とを混合して希釈試料溶液を生成する試料希釈工程と、前記希釈用容器の前記希釈試料溶液を取り出しながら当該希釈試料溶液に含まれる被測定成分である電解質濃度を測定する希釈試料測定工程と、希釈用容器に内部標準液を供給する内部標準液供給工程と、前記希釈用容器に供給された前記内部標準液と、前記希釈液供給工程により前記希釈用容器に供給された希釈液とを混合して希釈内部標準液を生成する内部標準液希釈工程と、前記希釈用容器の前記希釈内部標準液を取り出しながら当該希釈内部標準液に含まれる被測定成分である電解質濃度を測定する希釈内部標準液測定工程と、
前記希釈内部標準液の希釈倍率を算出する算出工程と、前記算出工程にて算出された前記希釈内部標準液の希釈倍率が予め設定した所定範囲内にあるか否かを判定する判定工程と、前記判定工程にて、前記希釈内部標準液の希釈倍率が予め設定した所定範囲内にないと判定された場合に、所定の異常を通知する旨の情報を出力する通知制御工程と、を含むことを特徴とする。
In order to solve the above-described problems and achieve the object, an electrolyte analysis method according to the present invention includes a sample supply step for supplying a sample to a dilution container, and a predetermined amount of a component to be measured previously in the dilution container. A diluent supplying step for supplying a diluent added with a salt containing ions, a sample dilution step for mixing the sample supplied to the dilution container and the diluent to generate a diluted sample solution, and A diluted sample measurement step of measuring the electrolyte concentration as a component to be measured contained in the diluted sample solution while taking out the diluted sample solution from the dilution vessel; and an internal standard solution supplying step of supplying an internal standard solution to the dilution vessel; An internal standard solution diluting step for producing a diluted internal standard solution by mixing the internal standard solution supplied to the diluting vessel and the diluting solution supplied to the diluting vessel in the diluting solution supplying step; Said rare And diluting the internal standard solution measurement process which measures the electrolyte concentration to be measured component contained in the dilution internal standard solution the dilutions internal standard solution with extraction of the use container,
A calculation step of calculating a dilution rate of the diluted internal standard solution, a determination step of determining whether or not the dilution rate of the diluted internal standard solution calculated in the calculation step is within a predetermined range, at the determination step, when the dilution ratio of the dilution internal standard solution is determined not within the predetermined range set in advance, early days including a notification control step of outputting the information to the effect that reporting predetermined abnormality, the And features.

この発明によれば、希釈液供給工程を利用し、希釈液のみを取り出しながら当該希釈液に含まれる被測定成分である電解質濃度を測定する希釈液測定工程を追加し、内部標準液の希釈倍率を求め、異常値の検出を容易にすることができる。   According to the present invention, a dilution liquid measurement step for measuring an electrolyte concentration as a component to be measured contained in the dilution liquid while taking out only the dilution liquid is added using the dilution liquid supply process, and the dilution ratio of the internal standard liquid is added. Thus, the detection of abnormal values can be facilitated.

この発明によれば、希釈倍率が予め設定した所定範囲内にない場合に、異常である旨を通知することができる。   According to the present invention, when the dilution rate is not within the predetermined range set in advance, it can be notified that it is abnormal.

また、本発明にかかる電解質分析方法は、希釈用容器に試料を供給する試料供給工程と、前記希釈用容器に、予め一定量の被測定成分と同一のイオンを含む塩を添加した希釈液を供給する希釈液供給工程と、前記希釈用容器に供給された前記試料と前記希釈液とを混合して希釈試料溶液を生成する試料希釈工程と、前記希釈用容器の前記希釈試料溶液を取り出しながら当該希釈試料溶液に含まれる被測定成分である電解質濃度を測定する希釈試料測定工程と、希釈用容器に内部標準液を供給する内部標準液供給工程と、前記希釈用容器に供給された前記内部標準液と、前記希釈液供給工程により前記希釈用容器に供給された希釈液とを混合して希釈内部標準液を生成する内部標準液希釈工程と、前記希釈用容器の前記希釈内部標準液を取り出しながら当該希釈内部標準液に含まれる被測定成分である電解質濃度を測定する希釈内部標準液測定工程と、前記希釈内部標準液の希釈倍率を算出する算出工程と、前記希釈試料測定工程または前記希釈内部標準液測定工程の後に、洗浄液として希釈内部標準液を用いて洗浄を行う希釈用容器洗浄工程と、を含むことを特徴とする。 The electrolyte analysis method according to the present invention includes a sample supply step for supplying a sample to a dilution container, and a dilution liquid in which a salt containing a certain amount of the same ion as the component to be measured is added to the dilution container in advance. A diluent supply step to be supplied; a sample dilution step in which the sample supplied to the dilution container and the diluent are mixed to produce a diluted sample solution; and taking out the diluted sample solution in the dilution container A diluted sample measuring step for measuring an electrolyte concentration as a component to be measured contained in the diluted sample solution, an internal standard solution supplying step for supplying an internal standard solution to the dilution vessel, and the internal supplied to the dilution vessel An internal standard solution diluting step of mixing the standard solution and the diluting solution supplied to the diluting vessel in the diluting solution supplying step to generate a diluting internal standard solution, and the diluting internal standard solution in the diluting vessel Take out While the dilution internal standard solution measurement process which measures the electrolyte concentration to be measured component contained in the dilution internal standard solution, a calculation step of calculating a dilution ratio of the dilution internal standard solution, the diluted sample measuring step or the diluting And a dilution container cleaning step for cleaning using a diluted internal standard solution as a cleaning solution after the internal standard solution measuring step .

この発明によれば、電解質濃度測定用電極の測定起電力変化を抑制し、電極の応答性を高め、より安定した測定結果を得ることができる。   According to this invention, the measurement electromotive force change of the electrode for electrolyte concentration measurement can be suppressed, the responsiveness of the electrode can be improved, and a more stable measurement result can be obtained.

また、本発明にかかる電解質分析方法は、希釈用容器に試料を供給する試料供給工程と、前記希釈用容器に、予め一定量の被測定成分と同一のイオンを含む塩を添加した希釈液を供給する希釈液供給工程と、前記希釈用容器に供給された前記試料と前記希釈液とを混合して希釈試料溶液を生成する試料希釈工程と、前記希釈用容器の前記希釈試料溶液を取り出しながら当該希釈試料溶液に含まれる被測定成分である電解質濃度を測定する希釈試料測定工程と、希釈用容器に内部標準液を供給する内部標準液供給工程と、前記希釈用容器に供給された前記内部標準液と、前記希釈液供給工程により前記希釈用容器に供給された希釈液とを混合して希釈内部標準液を生成する内部標準液希釈工程と、前記希釈用容器の前記希釈内部標準液を取り出しながら当該希釈内部標準液に含まれる被測定成分である電解質濃度を測定する希釈内部標準液測定工程と、前記希釈内部標準液の希釈倍率を算出する算出工程と、を含み、前記内部標準液供給工程では、希釈試料溶液の被測定成分ごとに予め設定される電解質濃度に応じて、内部標準液の供給量を可変にして、希釈試料溶液の電解質濃度に近い希釈内部標準液を供給することを特徴とする。 The electrolyte analysis method according to the present invention includes a sample supply step for supplying a sample to a dilution container, and a dilution liquid in which a salt containing a certain amount of the same ion as the component to be measured is added to the dilution container in advance. A diluent supply step to be supplied; a sample dilution step in which the sample supplied to the dilution container and the diluent are mixed to produce a diluted sample solution; and taking out the diluted sample solution in the dilution container A diluted sample measuring step for measuring an electrolyte concentration as a component to be measured contained in the diluted sample solution, an internal standard solution supplying step for supplying an internal standard solution to the dilution vessel, and the internal supplied to the dilution vessel An internal standard solution diluting step of mixing the standard solution and the diluting solution supplied to the diluting vessel in the diluting solution supplying step to generate a diluting internal standard solution, and the diluting internal standard solution in the diluting vessel Take out While containing a diluent internal standard solution measurement process which measures the electrolyte concentration to be measured component contained in the dilution internal standard solution, and a calculation step of calculating a dilution ratio of the dilution internal standard solution, the internal standard solution supplied the process according to the electrolyte concentration in advance is set for each component to be measured in the diluted sample solution, and the supply amount of the internal standard solution into a variable, to supply dilution internal standard solution close to the electrolyte concentration of the diluted sample solution Features.

この発明によれば、測定起電力の差を抑制し、温度変動による測定結果への影響を抑制するとともに電極の応答性を高め、より安定した測定結果を得ることができる。   According to this invention, the difference in the measured electromotive force can be suppressed, the influence on the measurement result due to temperature fluctuation can be suppressed, and the responsiveness of the electrode can be enhanced, thereby obtaining a more stable measurement result.

また、本発明にかかる電解質分析装置は、試料または内部標準液に、予め一定量の被測定成分と同一のイオンを含む塩を添加した希釈液を混合し、希釈試料溶液または希釈内部標準液を生成するための希釈用容器と、前記希釈用容器に前記試料を供給する試料供給手段と、前記希釈用容器に前記内部標準液を供給する内部標準液供給手段と、前記希釈用容器に前記希釈液を供給する希釈液供給手段と、前記希釈用容器の前記希釈試料溶液、前記希釈内部標準液または希釈液を取り出しながら、当該希釈試料溶液、当該希釈内部標準液または当該希釈液に含まれる被測定成分である電解質濃度を測定する測定手段と、前記希釈内部標準液の希釈倍率を算出する算出手段と、前記算出手段によって算出された前記希釈内部標準液の希釈倍率が予め設定した所定範囲内にあるか否かを判定する判定手段と、前記判定手段によって前記希釈内部標準液の希釈倍率が予め設定した所定範囲内にないと判定された場合に、所定の異常を通知する旨の情報を出力する通知制御手段と、を備えたことを特徴とする。 Moreover, the electrolyte analyzer according to the present invention mixes a sample or internal standard solution with a diluted solution in which a certain amount of a salt containing the same ion as the component to be measured is added in advance, and uses the diluted sample solution or diluted internal standard solution. A dilution container for generating, a sample supply means for supplying the sample to the dilution container, an internal standard solution supply means for supplying the internal standard solution to the dilution container, and the dilution to the dilution container A diluent supply means for supplying the solution, and the diluted sample solution, the diluted internal standard solution or the diluted solution in the dilution container, while the diluted sample solution, the diluted internal standard solution or the solution contained in the diluted solution is removed. measuring means for measuring the electrolyte concentration is measured component, and calculating means for calculating a dilution ratio of the dilution internal standard solution, dilution ratio of the dilution internal standard solution calculated by said calculating means in advance A determination unit that determines whether or not the predetermined internal range is within a predetermined range, and a notification of a predetermined abnormality when the determination unit determines that the dilution factor of the diluted internal standard solution is not within a predetermined range. And a notification control means for outputting information to the effect .

この発明によれば、分析装置が異常値を出力した場合でもその検出を容易にすることができる。   According to this invention, even when the analyzer outputs an abnormal value, the detection can be facilitated.

この発明によれば、希釈倍率が予め設定した所定範囲内にない場合に、異常である旨を通知することができる。   According to the present invention, when the dilution rate is not within the predetermined range set in advance, it can be notified that it is abnormal.

また、本発明にかかる電解質分析装置は、試料または内部標準液に、予め一定量の被測定成分と同一のイオンを含む塩を添加した希釈液を混合し、希釈試料溶液または希釈内部標準液を生成するための希釈用容器と、前記希釈用容器に前記試料を供給する試料供給手段と、前記希釈用容器に前記内部標準液を供給する内部標準液供給手段と、前記希釈用容器に前記希釈液を供給する希釈液供給手段と、前記希釈用容器の前記希釈試料溶液、前記希釈内部標準液または希釈液を取り出しながら、当該希釈試料溶液、当該希釈内部標準液または当該希釈液に含まれる被測定成分である電解質濃度を測定する測定手段と、前記希釈内部標準液の希釈倍率を算出する算出手段と、希釈試料溶液測定後または希釈内部標準液測定後に、洗浄液として希釈内部標準液を用いて洗浄を行う希釈用容器洗浄手段と、を備えることを特徴とする。 Moreover, the electrolyte analyzer according to the present invention mixes a sample or internal standard solution with a diluted solution in which a certain amount of a salt containing the same ion as the component to be measured is added in advance, and uses the diluted sample solution or diluted internal standard solution. A dilution container for generating, a sample supply means for supplying the sample to the dilution container, an internal standard solution supply means for supplying the internal standard solution to the dilution container, and the dilution to the dilution container A diluent supply means for supplying the solution, and the diluted sample solution, the diluted internal standard solution or the diluted solution in the dilution container, while the diluted sample solution, the diluted internal standard solution or the solution contained in the diluted solution is removed. measuring means for measuring a measurement component electrolyte concentration, and calculating means for calculating a dilution ratio of the dilution internal standard solution, after measuring the diluted sample solution after measurement or dilution internal standard solution, diluted as cleaning fluid A diluent container washing means for cleaning Using parts standard solution, characterized in that it comprises a.

この発明によれば、電解質濃度測定用電極の測定起電力変化を抑制し、電極の応答性を高め、より安定した測定結果を得ることができる。   According to this invention, the measurement electromotive force change of the electrode for electrolyte concentration measurement can be suppressed, the responsiveness of the electrode can be improved, and a more stable measurement result can be obtained.

また、本発明にかかる電解質分析装置は、試料または内部標準液に、予め一定量の被測定成分と同一のイオンを含む塩を添加した希釈液を混合し、希釈試料溶液または希釈内部標準液を生成するための希釈用容器と、前記希釈用容器に前記試料を供給する試料供給手段と、前記希釈用容器に前記内部標準液を供給する内部標準液供給手段と、前記希釈用容器に前記希釈液を供給する希釈液供給手段と、前記希釈用容器の前記希釈試料溶液、前記希釈内部標準液または希釈液を取り出しながら、当該希釈試料溶液、当該希釈内部標準液または当該希釈液に含まれる被測定成分である電解質濃度を測定する測定手段と、前記希釈内部標準液の希釈倍率を算出する算出手段と、を備え、前記内部標準液供給手段は、希釈試料溶液の被測定成分ごとに予め設定される電解質濃度に応じて、内部標準液の供給量を可変にして、希釈試料溶液の想定される電解質濃度に近い希釈内部標準液を供給することを特徴とする。 Moreover, the electrolyte analyzer according to the present invention mixes a sample or internal standard solution with a diluted solution in which a certain amount of a salt containing the same ion as the component to be measured is added in advance, and uses the diluted sample solution or diluted internal standard solution. A dilution container for generating, a sample supply means for supplying the sample to the dilution container, an internal standard solution supply means for supplying the internal standard solution to the dilution container, and the dilution to the dilution container A diluent supply means for supplying the solution, and the diluted sample solution, the diluted internal standard solution or the diluted solution in the dilution container, while the diluted sample solution, the diluted internal standard solution or the solution contained in the diluted solution is removed. measuring means for measuring the electrolyte concentration is measured components, and a calculating means for calculating a dilution ratio of the dilution internal standard solution, the internal standard solution supplying means for each component to be measured in the diluted sample solution Depending on the electrolyte concentration to be fit set, and the supply amount of the internal standard solution into a variable, and supplying the diluting internal standard solution close to the electrolyte concentration that is assumed in the diluted sample solution.

この発明によれば、温度変動による測定結果への影響を抑制するとともに電極の応答性を高め、より安定した測定結果を得ることができる。   According to the present invention, the influence on the measurement result due to the temperature fluctuation can be suppressed and the responsiveness of the electrode can be enhanced to obtain a more stable measurement result.

また、本発明にかかる電解質分析装置は、試料または内部標準液に、予め一定量の被測定成分と同一のイオンを含む塩を添加した希釈液を混合し、希釈試料溶液または希釈内部標準液を生成するための希釈用容器と、前記希釈用容器に前記試料を供給する試料供給手段と、前記希釈用容器に前記内部標準液を供給する内部標準液供給手段と、前記希釈用容器に前記希釈液を供給する希釈液供給手段と、前記希釈用容器の前記希釈試料溶液、前記希釈内部標準液または希釈液を取り出しながら、当該希釈試料溶液、当該希釈内部標準液または当該希釈液に含まれる被測定成分である電解質濃度を測定する測定手段と、前記希釈内部標準液の希釈倍率を算出する算出手段と、測定後の希釈液、測定後の希釈試料溶液または測定後の希釈内部標準液を排出する廃液用駆動部、使用する希釈液供給駆動部および内部標準液供給用駆動部と、廃液用電磁弁、希釈液供給用電磁弁および内部標準液供給用電磁弁の動作タイミングを調節する調整手段と、を備え、前記廃液用駆動部、前記希釈液供給駆動部および前記内部標準液供給用駆動部は、単一の駆動部によって構成されることを特徴とする。
Moreover, the electrolyte analyzer according to the present invention mixes a sample or internal standard solution with a diluted solution in which a certain amount of a salt containing the same ion as the component to be measured is added in advance, and uses the diluted sample solution or diluted internal standard solution. A dilution container for generating, a sample supply means for supplying the sample to the dilution container, an internal standard solution supply means for supplying the internal standard solution to the dilution container, and the dilution to the dilution container A diluent supply means for supplying the solution, and the diluted sample solution, the diluted internal standard solution or the diluted solution in the dilution container, while the diluted sample solution, the diluted internal standard solution or the solution contained in the diluted solution is removed. measuring means for measuring a measurement component electrolyte concentration, and calculating means for calculating a dilution ratio of the dilution internal standard solution, diluting liquid after measurement, diluting the internal standard solution after dilution sample solution or measurement after measurement Adjustment to adjust the operation timing of the waste liquid drive unit to be discharged, the dilution liquid supply drive unit to be used and the internal standard liquid supply drive unit, the waste liquid solenoid valve, the dilution liquid supply solenoid valve and the internal standard liquid supply solenoid valve e Bei means, wherein the waste drive unit, the diluent supply drive portion and the internal standard solution supply driving unit may be constituted by a single drive unit.

この発明によれば、部品点数を減らし、製造コストを下げるとともに、コンパクトで、測定結果に影響を与えるモータの発熱も抑制することができる。   According to the present invention, the number of parts can be reduced, the manufacturing cost can be reduced, and the heat generation of the motor which is compact and affects the measurement result can be suppressed.

これらの発明によれば、電極が急激に出力低下を起こした場合にもその変動が、通常の範囲内のものなのか、異常であるかを判断することができるため、常に安定した測定結果を得ることができる。また、単一のモータを用いることにより、安価でシンプルかつモータの発熱を抑制した電解質分析装置を提供することが可能である。   According to these inventions, even when the output of the electrode suddenly decreases, it can be determined whether the fluctuation is within the normal range or abnormal. Can be obtained. Further, by using a single motor, it is possible to provide an electrolyte analyzer that is inexpensive, simple, and suppresses heat generation of the motor.

本発明によれば、ナトリウム、カリウム、塩素などを測定する場合に、使用する希釈液に予め一定量の塩として、ナトリウムイオン、カリウムイオン、塩素イオンが微量存在するように、添加することにより、校正時に内部標準液の希釈倍率を算出しておくことが可能となる。したがって、必要に応じてこの算出した値を参照することにより、電極が急激に出力低下を起こした場合にも、操作者は、その変動が通常の範囲内のものなのか、異常であるかを判断することができるようになるため、常に安定した測定結果を得ることができる。   According to the present invention, when measuring sodium, potassium, chlorine, etc., by adding a predetermined amount of salt as a predetermined amount of salt in the diluent to be used so that a small amount of sodium ion, potassium ion, chlorine ion is present, It is possible to calculate the dilution factor of the internal standard solution at the time of calibration. Therefore, by referring to this calculated value as necessary, even when the output of the electrode suddenly drops, the operator can check whether the fluctuation is within the normal range or abnormal. Since it becomes possible to judge, a stable measurement result can always be obtained.

また、単一のモータを用いることにより、構造が簡単になり、機器コストおよび製造コストの低減はもとより、電解質測定の妨げになりやすいノイズの低減、余計な廃熱の排除や、メンテナンスコストの低減などが可能となる。特に、ノイズの低減や、余計な廃熱の排除により、安定した測定結果を得ることができる。   In addition, the use of a single motor simplifies the structure, reduces equipment and manufacturing costs, reduces noise that tends to hinder electrolyte measurement, eliminates unnecessary waste heat, and reduces maintenance costs. It becomes possible. In particular, stable measurement results can be obtained by reducing noise and eliminating unnecessary waste heat.

また、検体種別によっては希釈試料溶液と希釈内部標準液の起電力の差が大きくなり、電極の応答性や温度変動の影響を受けやすくなるような場合でも、予め検体種別が判っていれば、内部標準液の投入量を加減し、想定される希釈試料溶液の濃度に近い希釈内部標準液を供給し、測定起電力の差を抑制することにより、温度変動による測定結果への影響を抑制し、かつ電極の応答性を高められるので、より安定した測定結果を提供することが可能である。   Also, depending on the specimen type, even if the difference in electromotive force between the diluted sample solution and the diluted internal standard solution is large, and it is easily affected by the responsiveness of electrodes and temperature fluctuations, if the specimen type is known in advance, Control the influence of temperature fluctuations on the measurement results by controlling the difference in measured electromotive force by supplying the diluted internal standard solution close to the expected concentration of the diluted sample solution by adjusting the amount of the internal standard solution. In addition, since the responsiveness of the electrode can be improved, a more stable measurement result can be provided.

さらに、希釈試料溶液測定後の洗浄に希釈内部標準液を用いることにより、通常の希釈液で洗浄を行うよりも、次の測定に対する電極の応答性を向上させることが可能である。   Further, by using the diluted internal standard solution for washing after measurement of the diluted sample solution, it is possible to improve the responsiveness of the electrode to the next measurement as compared with washing with a normal diluent.

以下に添付図面を参照して、この発明にかかる電解質分析方法および電解質分析装置の好適な実施の形態を詳細に説明する。   Exemplary embodiments of an electrolyte analysis method and an electrolyte analyzer according to the present invention will be explained below in detail with reference to the accompanying drawings.

図1は、本発明の実施の形態にかかる電解質分析装置の構成図である。電解質分析装置100は、試料供給手段110と、希釈液供給手段120と、試料希釈手段130と、測定手段140と、廃液手段150と、内部標準液供給手段160とを備えて構成されている。   FIG. 1 is a configuration diagram of an electrolyte analyzer according to an embodiment of the present invention. The electrolyte analyzer 100 includes a sample supply unit 110, a diluent supply unit 120, a sample dilution unit 130, a measurement unit 140, a waste liquid unit 150, and an internal standard solution supply unit 160.

試料供給手段110は、図中を上下左右方向に移動可能な可動式クレーン111と、可動式クレーン111に設けられた試料分注ノズル112とを備える。試料分注ノズル112は配管113に接続されている。試料供給手段110は、図示されていないが、試料分注ノズル112の内壁および外壁を洗浄する洗浄機構を併せ持つ。   The sample supply means 110 includes a movable crane 111 that can move in the vertical and horizontal directions in the drawing, and a sample dispensing nozzle 112 provided in the movable crane 111. The sample dispensing nozzle 112 is connected to the pipe 113. Although not shown, the sample supply unit 110 has a cleaning mechanism for cleaning the inner wall and the outer wall of the sample dispensing nozzle 112.

可動式クレーン111の移動途中には、試料容器114が設けられている。試料容器114には、例えば尿や血清等の試料115が収容されている。可動式クレーン111を移動させ、吸入動作することにより、試料分注ノズル112は、試料容器114から一定量だけ試料115を分取する。分取された試料115は、可動式クレーン111を移動させ、試料希釈手段130の希釈用容器131に分注される。なお、本発明の電解質分析装置が、自動分析装置のユニットとして供される場合には、試料供給手段110は自動分析装置本体に具備されている場合があり、必ずしも必要ない。   A sample container 114 is provided in the middle of movement of the movable crane 111. In the sample container 114, a sample 115 such as urine or serum is accommodated. By moving the movable crane 111 and performing a suction operation, the sample dispensing nozzle 112 dispenses the sample 115 from the sample container 114 by a certain amount. The separated sample 115 is moved to the movable crane 111 and dispensed into the dilution container 131 of the sample dilution means 130. When the electrolyte analyzer of the present invention is provided as a unit of an automatic analyzer, the sample supply means 110 may be provided in the automatic analyzer body and is not always necessary.

希釈液供給手段120は、希釈液容器121と、希釈液供給用ポンプ122と、電磁弁123と、吸入配管124と、ポンプ接続配管125と、供給配管127と、希釈液送出ノズル126とにより構成されている。希釈液には、例えばトリス(ヒドロキシメチル)アミノメタン水溶液、モノメタノールアミン水溶液、ジエタノールアミン水溶液、トリエタノールアミン水溶液の、硫酸、リン酸、硼酸緩衝液などや、MOPS、HEPES等のグッド緩衝液が用いられる。   The diluent supply means 120 includes a diluent container 121, a diluent supply pump 122, a solenoid valve 123, a suction pipe 124, a pump connection pipe 125, a supply pipe 127, and a diluent supply nozzle 126. Has been. For the diluent, for example, tris (hydroxymethyl) aminomethane aqueous solution, monomethanolamine aqueous solution, diethanolamine aqueous solution, triethanolamine aqueous solution, sulfuric acid, phosphoric acid, boric acid buffer, etc., or good buffers such as MOPS, HEPES, etc. are used. It is done.

特に、本実施の形態において、これらの希釈液に一定量の塩、例えばナトリウム、カリウム、塩素を測定する分析装置に使用する希釈液であれば、ナトリウム、カリウム、塩素を内部標準液の1%程度の濃度になるよう添加しておく。例えば、内部標準液のナトリウム濃度が140mmol/Lであれば1.4mmol/L、内部標準液のカリウム濃度が4mmol/Lであれば0.04mmol/L、内部標準液の塩素濃度が100mmol/Lであれば1mmol/L、の濃度になるよう添加しておく。なお、内部標準液は、内部標準液容器161に収容されており、試料115を計測するにあたり、比較用の基準となる液体である。   In particular, in this embodiment, if these diluents are diluents used in analyzers that measure a certain amount of salt, such as sodium, potassium, and chlorine, sodium, potassium, and chlorine are 1% of the internal standard solution. Add to a concentration of about. For example, when the sodium concentration of the internal standard solution is 140 mmol / L, 1.4 mmol / L, when the potassium concentration of the internal standard solution is 4 mmol / L, 0.04 mmol / L, and the chlorine concentration of the internal standard solution is 100 mmol / L. If so, it is added to a concentration of 1 mmol / L. The internal standard solution is contained in the internal standard solution container 161, and is a liquid that serves as a reference for comparison when the sample 115 is measured.

希釈液送出ノズル126は、希釈用容器131に向けて希釈液を送出する。希釈液供給用ポンプ122の動作により、吸入配管124を通じて、希釈液容器121から所定量の希釈液を分取し、希釈用容器131に送出する。この希釈液によって、希釈用容器131に分注された試料115を希釈することにより、例えば30倍程度に希釈された希釈試料溶液が生成される。   The dilution liquid delivery nozzle 126 delivers the dilution liquid toward the dilution container 131. By the operation of the dilution liquid supply pump 122, a predetermined amount of dilution liquid is collected from the dilution liquid container 121 through the suction pipe 124, and is sent to the dilution container 131. By diluting the sample 115 dispensed into the dilution container 131 with this diluted solution, a diluted sample solution diluted, for example, about 30 times is generated.

試料希釈手段130の希釈用容器131内部には、攪拌機構132が設けられる。攪拌機構132は、試料供給手段110によって、試料容器114から一定量だけ分注された試料115と、希釈液供給手段120によって希釈液容器121から所定量だけ送出された希釈液とを混合し、均一な希釈試料溶液を生成する。希釈試料溶液または希釈液(希釈内部標準液も併せて、これらを測定液と称する)は、希釈用容器131から取り出されて測定手段140に送り出される。   A stirring mechanism 132 is provided inside the dilution container 131 of the sample dilution means 130. The stirring mechanism 132 mixes the sample 115 dispensed from the sample container 114 by a predetermined amount by the sample supply means 110 and the diluent sent from the diluent container 121 by the diluent supply means 120 by a predetermined amount, A homogeneous diluted sample solution is produced. A diluted sample solution or a diluted solution (also referred to as a diluted internal standard solution and these are called measurement solutions) is taken out from the dilution container 131 and sent out to the measuring means 140.

測定手段140は、希釈用容器131に接続された測定液供給配管141と、測定液が通過する経路上に設けられる複数の電極部142(142a〜142d)と、電極部142の起電力を計測する起電力計測部143と、電極部142を通過後の測定液が通る排出配管144とを備えて構成されている。   The measuring unit 140 measures the measurement liquid supply pipe 141 connected to the dilution container 131, the plurality of electrode parts 142 (142a to 142d) provided on the path through which the measurement liquid passes, and the electromotive force of the electrode part 142. The electromotive force measurement unit 143 and the discharge pipe 144 through which the measurement liquid after passing through the electrode unit 142 passes are configured.

電極部142は、イオン選択性電極142a〜142cおよび比較電極142dを備えている。イオン選択性電極142a〜142cは、例えば、Na、K、Cl等の特定のイオンに感応した電位差を出力する電極である。これらイオン選択性電極142a〜142cおよび比較電極142dは、希釈用容器131から取り出されて測定液供給配管141から送られた測定液のそれぞれの電位を出力する。より詳細に説明すると、イオン選択性電極142a〜142cおよび比較電極142dは、測定液供給配管141から送られてきた測定液が電極部142を通過する際に、この通過する測定液のそれぞれのイオン選択性電極142a〜142cと比較電極142dとの間の所定の電位差を計測する。   The electrode unit 142 includes ion selective electrodes 142a to 142c and a comparison electrode 142d. The ion selective electrodes 142a to 142c are electrodes that output a potential difference sensitive to specific ions such as Na, K, and Cl, for example. The ion selective electrodes 142a to 142c and the comparison electrode 142d output the respective potentials of the measurement liquids taken out from the dilution container 131 and sent from the measurement liquid supply pipe 141. More specifically, the ion-selective electrodes 142a to 142c and the comparison electrode 142d are arranged such that when the measurement liquid sent from the measurement liquid supply pipe 141 passes through the electrode portion 142, each ion of the measurement liquid that passes therethrough. A predetermined potential difference between the selective electrodes 142a to 142c and the comparison electrode 142d is measured.

起電力計測部143は、電極部142を通じて測定液供給配管141を通過する希釈試料溶液および希釈内部標準液のそれぞれの起電力を計測する。すなわち、起電力計測部143は、測定液供給配管141を介して希釈試料溶液が送られてきたときには、イオン選択性電極142a〜142cが示した電位と、比較電極142dが示した電位との電位差を計測する。また、測定液供給配管141を介して希釈内部標準液が送られてきたときには、同様にイオン選択性電極142a〜142cが示した電位と比較電極142dが示した電位との電位差を計測する。   The electromotive force measurement unit 143 measures the electromotive force of each of the diluted sample solution and the diluted internal standard solution that passes through the measurement solution supply pipe 141 through the electrode unit 142. That is, when the diluted sample solution is sent via the measurement solution supply pipe 141, the electromotive force measurement unit 143 has a potential difference between the potential indicated by the ion selective electrodes 142a to 142c and the potential indicated by the comparison electrode 142d. Measure. Further, when the diluted internal standard solution is sent via the measurement solution supply pipe 141, the potential difference between the potential indicated by the ion selective electrodes 142a to 142c and the potential indicated by the comparison electrode 142d is measured.

さらに、内部標準液の希釈倍率を求める際は、希釈液のみを電極部142へ送出し、イオン選択性電極142a〜142cが示した電位と比較電極142dが示した電位との電位差を計測する。   Furthermore, when determining the dilution factor of the internal standard solution, only the diluted solution is sent to the electrode part 142, and the potential difference between the potential indicated by the ion selective electrodes 142a to 142c and the potential indicated by the comparison electrode 142d is measured.

ここで、希釈倍率の算出手法について、説明する。検量線作成段階で、高濃度標準液の濃度をCH、低濃度標準液の濃度をCL、内部標準液の濃度をCM、希釈液の濃度をCb、Sを測定電極のスロープ感度、E0を測定電極の標準電位、Srをリファレンス電極のスロープ感度、Erをリファレンス電極の標準電位、Crをリファレンス液の濃度、とし、高濃度標準液と低濃度標準液の希釈倍率をr、内部標準液の希釈倍率をrmとした場合、
希釈高濃度標準液の測定用電極とリファレンス電極の測定電位差EHは、
EH=E0+S・log(((r−1)・Cb+CH)/r)−Er−Sr・logCr・・・(1)式
希釈低濃度標準液の測定用電極とリファレンス電極の測定電位差ELは、
EL=E0+S・log(((r−1)・Cb+CL)/r)−Er−Sr・logCr・・・(2)式
希釈内部標準液の測定用電極とリファレンス電極の測定電位差EMは、
EM=E0+S・log(((rm−1)・Cb+CM)/rm)−Er−Sr・logCr・・・(3)式
(1)式−(3)式、および(2)式−(3)式より、上式は、
EH−EM=S・log(((r−1)・Cb+CH)/r)−S・log(((rm−1)・Cb+CM)/rm)・・・(4)式
EL−EM=S・log(((r−1)・Cb+CL)/r)−S・log(((rm−1)・Cb+CM)/rm)・・・(5)式
ここで、濃度Cbを持った希釈液の測定用電極とリファレンス電極の電位差Eb測定を行い、
Eb=E0+S・logCb−Er−Sr・logCr・・・(6)式
(3)式−(6)式より、
EM−Eb=S・log(((rm−1)・Cb+CM)/rm)−S・logCb・・・(7)式
となり
S・log(((rm−1)・Cb+CM)/rm)=EM−Eb+S・logCb・・・(8)式
(4)式、(5)式に(8)式を代入することにより、Sおよびrを求めることが可能になる。さらに求められたSと実測値のEM−Ebにより(8)式より内部標準液の希釈倍率rmを求める。分析中または分析の合間にEbを測定することによりrmを算出し、予め決めておいた閾値を外れた場合は異常として出力することが可能になる。
Here, a method for calculating the dilution rate will be described. At the calibration curve creation stage, the concentration of the high-concentration standard solution is CH, the concentration of the low-concentration standard solution is CL, the concentration of the internal standard solution is CM, the concentration of the diluted solution is Cb, and S is the slope sensitivity of the measurement electrode and E0 is measured. The standard potential of the electrode, Sr is the slope sensitivity of the reference electrode, Er is the standard potential of the reference electrode, Cr is the concentration of the reference solution, r is the dilution ratio of the high concentration standard solution and the low concentration standard solution, and the internal standard solution is diluted When the magnification is rm,
The measurement potential difference EH between the measurement electrode of the diluted high concentration standard solution and the reference electrode is
EH = E0 + S · log (((r−1) · Cb + CH) / r) −Er−Sr · logCr (1) The measurement potential difference EL between the measurement electrode of the diluted low concentration standard solution and the reference electrode is
EL = E0 + S · log (((r-1) · Cb + CL) / r) −Er−Sr · logCr (2) The measurement potential difference EM between the measurement electrode of the diluted internal standard solution and the reference electrode is
EM = E0 + S * log (((rm-1) * Cb + CM) / rm) -Er-Sr * logCr (3) Formula (1) Formula-(3) Formula and (2) Formula-(3) From the above formula, the above formula is
EH-EM = S.log (((r-1) .Cb + CH) / r) -S.log (((rm-1) .Cb + CM) / rm) (4) Formula EL-EM = S. log (((r-1) .Cb + CL) / r) -S.log (((rm-1) .Cb + CM) / rm) (5) where the measurement of the diluted solution having the concentration Cb. Measurement of the potential difference Eb between the reference electrode and the reference electrode,
Eb = E0 + S · logCb−Er−Sr · logCr (6) From the formula (3) and the formula (6),
EM-Eb = S.log (((rm-1) .Cb + CM) / rm) -S.logCb (7) and S.log (((rm-1) .Cb + CM) / rm) = EM -Eb + S · logCb (8) By substituting Equation (8) into Equation (4) and Equation (5), S and r can be obtained. Further, the dilution factor rm of the internal standard solution is obtained from the equation (8) by using the obtained S and the actually measured value EM-Eb. Rm is calculated by measuring Eb during or between analyses, and if it deviates from a predetermined threshold value, it can be output as an abnormality.

ここで、測定された電位差を元に内部標準液の希釈倍率を算出する具体例をナトリウム測定で示す。検量線作成段階で、高濃度標準液の濃度を160mmol/L、低濃度標準液の濃度を130mmol/L、内部標準液の濃度を140mmol/L、希釈液の濃度を1.4mmol/L、Sをスロープ感度、高濃度標準液と低濃度標準液の希釈倍率をr、内部標準液の希釈倍率をrmとし、
希釈高濃度標準液と希釈内部標準液との測定電位差が、EH−EM=2.2mV
希釈低濃度標準液と希釈内部標準液との測定電位差が、EL−EM=−2.0mV
希釈内部標準液と希釈液の測定電位差が、EM−Eb=37mV
であった場合、
EH−EM=S・log(((r−1)・1.4+160)/r)−S・log(((rm−1)・1.4+140)/rm)=2.2・・・(11)式
EL−EM=S・log(((r−1)・1.4+130)/r)−S・log(((rm−1)・1.4+140)/rm)=−2.0・・・(12)式
EM−Eb=S・log(((rm−1)・1.4+140)/rm)−S・log1.4=37・・・(13)式
(13)式より
S・log(((rm−1)・1.4+140)/rm)=37+S・log1.4・・・(14)式
(11)式、(12)式に(14)式を代入することにより、近似値としてS≒61.5およびr≒33.9が求められる。
S=61.5を(14)式に代入し、近似値としてrm≒33.0が求められる。
Here, a specific example of calculating the dilution rate of the internal standard solution based on the measured potential difference is shown by sodium measurement. In the calibration curve creation stage, the concentration of the high concentration standard solution is 160 mmol / L, the concentration of the low concentration standard solution is 130 mmol / L, the concentration of the internal standard solution is 140 mmol / L, the concentration of the diluted solution is 1.4 mmol / L, S Is the slope sensitivity, the dilution ratio of the high-concentration standard solution and the low-concentration standard solution is r, and the dilution ratio of the internal standard solution is rm,
The measurement potential difference between the diluted high concentration standard solution and the diluted internal standard solution is EH-EM = 2.2 mV
The measurement potential difference between the diluted low concentration standard solution and the diluted internal standard solution is EL-EM = −2.0 mV.
The measurement potential difference between the diluted internal standard solution and the diluted solution is EM-Eb = 37 mV
If
EH-EM = S * log (((r-1) * 1.4 + 160) / r) -S * log (((rm-1) * 1.4 + 140) / rm) = 2.2 (11) ) Formula EL-EM = S.log (((r-1) .1.4 + 130) / r) -S.log (((rm-1) .1.4 + 140) / rm) =-2.0 .. (12) Formula EM-Eb = S * log (((rm-1) * 1.4 + 140) / rm) -S * log1.4 = 37 (13) From Formula (13), S * log (((Rm−1) · 1.4 + 140) / rm) = 37 + S · log1.4 (14) Approximate value by substituting equation (14) into equation (11) and equation (12) S≈61.5 and r≈33.9 are obtained.
Substituting S = 61.5 into the equation (14), rm≈33.0 is obtained as an approximate value.

廃液手段150は、電磁弁151と、ポンプ接続配管152と、廃液用ポンプ153と、廃液配管154と、廃液容器155とにより構成されている。電磁弁151は、排出配管144の一端に接続されている。ポンプ接続配管152の一端は、電磁弁151に接続され、他端は、廃液用ポンプ153に接続されている。廃液配管154の一端は、電磁弁151に接続されており、他端は開放されている。この廃液配管154の開放された一端の下部には、滴下した廃液を受け止める廃液容器155が設置されている。そして、廃液用ポンプ153の動作により希釈用容器131に貯留された測定液は、測定手段140を通過するように取り出され、測定手段140により測定された後に廃液容器155に排出される。   The waste liquid means 150 includes a solenoid valve 151, a pump connection pipe 152, a waste liquid pump 153, a waste liquid pipe 154, and a waste liquid container 155. The solenoid valve 151 is connected to one end of the discharge pipe 144. One end of the pump connection pipe 152 is connected to the electromagnetic valve 151, and the other end is connected to the waste liquid pump 153. One end of the waste liquid pipe 154 is connected to the electromagnetic valve 151 and the other end is opened. A waste liquid container 155 for receiving the dropped waste liquid is installed at the lower part of the open end of the waste liquid pipe 154. The measurement liquid stored in the dilution container 131 by the operation of the waste liquid pump 153 is taken out so as to pass through the measurement means 140, measured by the measurement means 140, and then discharged to the waste liquid container 155.

すなわち、電極部142を通過した測定液は、排出配管144を通り、電磁弁151を介して、一旦廃液用ポンプ153に溜め込まれる。その後、電磁弁151を切り替えることによって、廃液用ポンプ153から送出される廃液は、電磁弁151を介して、廃液配管154を通過して廃液容器155に排出される。   That is, the measurement liquid that has passed through the electrode part 142 passes through the discharge pipe 144 and is temporarily stored in the waste liquid pump 153 via the electromagnetic valve 151. Thereafter, by switching the electromagnetic valve 151, the waste liquid sent from the waste liquid pump 153 passes through the waste liquid pipe 154 and is discharged to the waste liquid container 155 via the electromagnetic valve 151.

内部標準液供給手段160は、内部標準液容器161と、内部標準液供給用ポンプ162と、電磁弁163と、吸入配管164と、ポンプ接続配管165と、供給配管167と、内部標準液送出ノズル166とにより構成されている。電磁弁163を供給配管167側に切り替えることにより、内部標準液送出ノズル166から内部標準液容器161の内部標準液を所定量供給することができる。   The internal standard liquid supply means 160 includes an internal standard liquid container 161, an internal standard liquid supply pump 162, a solenoid valve 163, a suction pipe 164, a pump connection pipe 165, a supply pipe 167, and an internal standard liquid delivery nozzle. 166. By switching the solenoid valve 163 to the supply pipe 167 side, a predetermined amount of the internal standard solution in the internal standard solution container 161 can be supplied from the internal standard solution delivery nozzle 166.

供給された内部標準液は希釈液供給手段120によって、希釈用容器131内で所定の希釈倍率にて希釈され、希釈内部標準液として測定に供される。また、内部標準液供給手段160は希釈試料溶液測定後の試料希釈手段130および測定手段140の洗浄にも用いられる。   The supplied internal standard solution is diluted at a predetermined dilution rate in the dilution container 131 by the diluent supply means 120 and used as a diluted internal standard solution for measurement. The internal standard solution supply means 160 is also used for cleaning the sample dilution means 130 and the measurement means 140 after measurement of the diluted sample solution.

図2は、本実施の形態に用いられる制御部を示すブロック図である。制御部200は、マイクロコンピュータシステムからなり、駆動制御部201と、測定処理部202と、タイマー203とを備えている。   FIG. 2 is a block diagram showing a control unit used in the present embodiment. The control unit 200 includes a microcomputer system, and includes a drive control unit 201, a measurement processing unit 202, and a timer 203.

駆動制御部201は、操作部210からの入力情報に基づいて、予め格納されたプログラムによって、可動式クレーン111と、電磁弁123と、希釈液供給用ポンプ122と、電磁弁163と、内部標準液供給用ポンプ162と、電磁弁151と廃液用ポンプ153を駆動制御する。具体的には、駆動制御部201は、可動式クレーン111の位置を決定し、図示しない移動機構に制御信号を送出することにより、移動機構が図1に示すX方向に向かって移動し、試料分注ノズル112を所定の位置に移動させる。また、駆動制御部201は、電磁弁123、電磁弁151、電磁弁163へ弁の切替信号を送出し、希釈液供給用ポンプ122、廃液用ポンプ153、内部標準液供給用ポンプ162に対して動作の制御信号を送出する。   Based on the input information from the operation unit 210, the drive control unit 201 uses a previously stored program to move the movable crane 111, the electromagnetic valve 123, the diluent supply pump 122, the electromagnetic valve 163, and the internal standard. The liquid supply pump 162, the electromagnetic valve 151, and the waste liquid pump 153 are driven and controlled. Specifically, the drive control unit 201 determines the position of the movable crane 111 and sends a control signal to a moving mechanism (not shown), so that the moving mechanism moves in the X direction shown in FIG. The dispensing nozzle 112 is moved to a predetermined position. Further, the drive control unit 201 sends a valve switching signal to the electromagnetic valve 123, the electromagnetic valve 151, and the electromagnetic valve 163, and supplies the dilution liquid supply pump 122, the waste liquid pump 153, and the internal standard liquid supply pump 162. Sends an operation control signal.

測定処理部202には、起電力計測部143で計測した起電力が入力され希釈試料溶液の電解質濃度を測定し、ディスプレイなどの表示部220に測定結果を表示させる。具体的には、測定処理部202は、起電力計測部143で計測した起電力に基づいて、測定液供給配管141から送られてきた希釈試料溶液に含まれる被測定成分(Na、K、Cl)の電解質濃度を測定し、各成分の数値を表示部220に表示させる。   The measurement processing unit 202 receives the electromotive force measured by the electromotive force measurement unit 143, measures the electrolyte concentration of the diluted sample solution, and displays the measurement result on the display unit 220 such as a display. Specifically, the measurement processing unit 202, based on the electromotive force measured by the electromotive force measurement unit 143, the components to be measured (Na, K, Cl contained in the diluted sample solution sent from the measurement liquid supply pipe 141) ) Is measured, and the numerical value of each component is displayed on the display unit 220.

また、測定処理部202は、起電力計測部143を介して内部標準液の希釈倍率算出を行うことにより、測定結果を常時監視し、異常が認められた際は表示部220に異常であることを表示し、誤った測定結果の使用を阻止する。なお、測定処理部202は、本発明の算出手段、判定手段および通知制御手段に相当する。   In addition, the measurement processing unit 202 constantly monitors the measurement result by calculating the dilution factor of the internal standard solution via the electromotive force measurement unit 143, and if an abnormality is recognized, the display unit 220 is abnormal. Is displayed to prevent the use of incorrect measurement results. The measurement processing unit 202 corresponds to the calculation unit, determination unit, and notification control unit of the present invention.

タイマー203は、測定終了後の時間を計測する。例えば、測定液の1回の測定ごとに計測を開始する。このタイマー203は、測定処理部202から測定液の1回の測定終了の情報が送出されると、時間の計測を始め、所定の時間が経過したとき、タイムアップの計測情報を駆動制御部201に送出する。駆動制御部201は、タイムアップの計測情報が入力されると、測定が行われない待機状態になる。   The timer 203 measures the time after the end of measurement. For example, measurement is started for each measurement of the measurement liquid. The timer 203 starts measuring time when information on the end of one measurement of the measurement liquid is sent from the measurement processing unit 202. When a predetermined time elapses, the timer 203 sends time-up measurement information to the drive control unit 201. To send. When time-up measurement information is input, the drive control unit 201 enters a standby state where no measurement is performed.

図3−1および図3−2は、本実施の形態におけるキャリブレーション処理の概略例を示すフローチャートである。図3−1および図3−2において、制御部200は、キャリブレーションを行うか否かを判断する(ステップS101)。キャリブレーションの開始は、操作部210による測定開始の操作入力によって開始される。キャリブレーションを行わない場合(ステップS101:No)、図3−3以降に後述する測定処理に移行する。キャリブレーションが開始されると(ステップS101:Yes)、駆動制御部201の指示により、希釈液容器121の希釈液を希釈用容器131に送出する(ステップS102)。この希釈液は起電力計測部143に導かれ、起電力が計測される(ステップS103)。計測終了後に希釈液は排出される(ステップS104)。   FIGS. 3A and 3B are flowcharts illustrating a schematic example of the calibration process according to the present embodiment. 3A and 3B, the control unit 200 determines whether to perform calibration (step S101). The start of calibration is started by an operation input for starting measurement by the operation unit 210. When calibration is not performed (step S101: No), the process proceeds to a measurement process described later in FIG. When calibration is started (step S101: Yes), the diluent in the diluent container 121 is sent to the dilution container 131 according to an instruction from the drive control unit 201 (step S102). This diluted solution is guided to the electromotive force measuring unit 143, and the electromotive force is measured (step S103). After the measurement is completed, the diluted solution is discharged (Step S104).

次に、希釈液容器121の希釈液を希釈用容器131に送出する(ステップS105)。そして、制御部200より内部標準液吐出量情報を受信した内部標準液供給手段160は、内部標準液を当該吐出量情報に基づき希釈用容器131に送出する(ステップS106)。次に、希釈用容器131の希釈液および内部標準液を攪拌機構132により攪拌し、希釈内部標準液を生成する(ステップS107)。この希釈内部標準液は起電力計測部143に導かれ、起電力が計測される(ステップS108)。計測終了後に希釈内部標準液は排出される(ステップS109)。   Next, the diluent in the diluent container 121 is delivered to the dilution container 131 (step S105). The internal standard solution supply means 160 that has received the internal standard solution discharge amount information from the control unit 200 sends the internal standard solution to the dilution container 131 based on the discharge amount information (step S106). Next, the diluted solution and internal standard solution in the dilution container 131 are stirred by the stirring mechanism 132 to generate a diluted internal standard solution (step S107). This diluted internal standard solution is guided to the electromotive force measuring unit 143, and the electromotive force is measured (step S108). After completion of the measurement, the diluted internal standard solution is discharged (step S109).

次に、希釈液容器121の希釈液を希釈用容器131に送出し(ステップS110)、試料容器114の高濃度標準液を希釈用容器131に分注する(ステップS111)。そして、希釈用容器131内の希釈液および高濃度標準液を攪拌機構132により攪拌し、希釈高濃度標準液を生成する(ステップS112)。この希釈高濃度標準液は、起電力計測部143に導かれ、起電力が計測され(ステップS113)、計測終了後に希釈高濃度標準液は排出される(ステップS114)。   Next, the diluent in the diluent container 121 is sent to the dilution container 131 (step S110), and the high-concentration standard solution in the sample container 114 is dispensed into the dilution container 131 (step S111). Then, the diluted solution and the high-concentration standard solution in the dilution container 131 are stirred by the stirring mechanism 132 to generate a diluted high-concentration standard solution (step S112). The diluted high concentration standard solution is guided to the electromotive force measuring unit 143, the electromotive force is measured (step S113), and the diluted high concentration standard solution is discharged after the measurement is completed (step S114).

次に、ステップS110〜ステップS114の過程と同様に希釈低濃度標準液の起電力測定が行われ、計測終了後に希釈低濃度標準液は排出される(ステップS115〜ステップS119)。計測された起電力情報は、制御部200の測定処理部202によって処理され、電極のスロープおよび各標準液の希釈倍率が算出される(ステップS120)。算出されたスロープおよび希釈倍率は、測定処理部202によって予め設定された情報に基づきその妥当性が判断され(ステップS121)、妥当な場合(ステップS121:Yes)は、キャリブレーション処理を終了し、図3−3以降に後述する測定処理を行う。   Next, the electromotive force measurement of the diluted low concentration standard solution is performed in the same manner as in steps S110 to S114, and the diluted low concentration standard solution is discharged after the measurement is completed (step S115 to step S119). The measured electromotive force information is processed by the measurement processing unit 202 of the control unit 200, and the slope of the electrode and the dilution rate of each standard solution are calculated (step S120). The validity of the calculated slope and dilution factor is determined based on information set in advance by the measurement processing unit 202 (step S121). If valid (step S121: Yes), the calibration process is terminated, The measurement process described later in FIG.

また、妥当でないと判断された場合(ステップS121:No)は再度、測定処理部202によって予め設定された情報に基づきメンテナンスの必要性の有無が判断され(ステップS122)、必要であれば(ステップS122:Yes)、測定を中止し、メンテナンスを行い(ステップS123)、ステップS101に移行する。メンテナンスの必要がないと判断された場合(ステップS122:No)は、再度キャリブレーションを行うため、ステップS102に移行する。   In addition, when it is determined that it is not appropriate (step S121: No), the necessity of maintenance is determined again based on information set in advance by the measurement processing unit 202 (step S122). (S122: Yes), the measurement is stopped, maintenance is performed (step S123), and the process proceeds to step S101. If it is determined that maintenance is not necessary (step S122: No), the process proceeds to step S102 in order to perform calibration again.

図3−3および図3−4は、本実施の形態における測定処理の概略例を示すフローチャートである。図3−3および図3−4において、制御部200は、試料測定の開始か否かを判断する(ステップS124)。試料測定は、操作部210による測定開始の操作入力によって開始され、それまでの間は待機している(ステップS124:Noのループ)。測定が開始されると(ステップS124:Yes)、駆動制御部201の指示により、希釈液容器121の希釈液を希釈用容器131に送出する(ステップS125)。そして、制御部200より内部標準液吐出量情報を受信した内部標準液供給手段160は内部標準液を当該吐出量情報に基づき希釈用容器131に送出する(ステップS126)。   FIG. 3C and FIG. 3D are flowcharts illustrating a schematic example of the measurement process in the present embodiment. In FIGS. 3-3 and 3-4, the control unit 200 determines whether or not the sample measurement is started (step S124). The sample measurement is started by an operation input for starting measurement by the operation unit 210, and is on standby until that time (step S124: No loop). When the measurement is started (step S124: Yes), the diluent in the diluent container 121 is sent to the dilution container 131 in accordance with an instruction from the drive control unit 201 (step S125). The internal standard liquid supply means 160 that has received the internal standard liquid discharge amount information from the control unit 200 sends the internal standard liquid to the dilution container 131 based on the discharge amount information (step S126).

次に、希釈用容器131の希釈液および内部標準液を攪拌機構132により攪拌し、希釈内部標準液を生成する(ステップS127)。この希釈内部標準液は起電力計測部143に導かれ、起電力が計測される(ステップS128)。計測終了後に希釈内部標準液は排出される(ステップS129)。次に、希釈液容器121の希釈液を希釈用容器131に送出する(ステップS130)。そして、試料容器114の試料を希釈用容器131に分注する(ステップS131)。そして、希釈用容器131内の希釈液および試料を攪拌機構132により攪拌し、希釈試料溶液を生成する(ステップS132)。この希釈試料溶液は、起電力計測部143に導かれ、起電力が計測される(ステップS133)。計測終了後に希釈試料溶液は排出される(ステップS134)。   Next, the diluted solution and the internal standard solution in the dilution container 131 are stirred by the stirring mechanism 132 to generate a diluted internal standard solution (step S127). This diluted internal standard solution is guided to the electromotive force measuring unit 143, and the electromotive force is measured (step S128). After completion of the measurement, the diluted internal standard solution is discharged (step S129). Next, the diluent in the diluent container 121 is delivered to the dilution container 131 (step S130). Then, the sample in the sample container 114 is dispensed into the dilution container 131 (step S131). Then, the diluted solution and the sample in the dilution container 131 are stirred by the stirring mechanism 132 to generate a diluted sample solution (step S132). This diluted sample solution is guided to the electromotive force measurement unit 143, and the electromotive force is measured (step S133). After completion of the measurement, the diluted sample solution is discharged (step S134).

その後、希釈液容器121の希釈液を希釈用容器131に送出する(ステップS135)。そして、制御部200より内部標準液吐出量情報を受信した内部標準液供給手段160は、内部標準液を当該吐出量情報に基づき希釈用容器131に送出する(ステップS136)。次に、希釈用容器131の希釈液および内部標準液を攪拌機構132により攪拌し、希釈内部標準液を生成する(ステップS137)。この希釈内部標準液は、希釈用容器131と電極部142の洗浄に用いるため、起電力の計測は行わずに排出される(ステップS138)。これにより、希釈液のみを用いた洗浄よりも、イオン選択性電極142a〜142cおよび比較電極142dの測定起電力変化を抑制することにより電極の応答性を高め、安定した計測値算出に貢献することが可能になる。   Thereafter, the diluent in the diluent container 121 is sent to the dilution container 131 (step S135). The internal standard solution supply means 160 that has received the internal standard solution discharge amount information from the control unit 200 sends the internal standard solution to the dilution container 131 based on the discharge amount information (step S136). Next, the diluted solution and the internal standard solution in the dilution container 131 are stirred by the stirring mechanism 132 to generate a diluted internal standard solution (step S137). Since this diluted internal standard solution is used for cleaning the dilution container 131 and the electrode part 142, it is discharged without measuring the electromotive force (step S138). This contributes to stable measurement value calculation by improving the responsiveness of the electrodes by suppressing changes in the measured electromotive force of the ion selective electrodes 142a to 142c and the comparison electrode 142d rather than cleaning using only the diluent. Is possible.

これらの計測結果に基づき、制御部200の測定処理部202は、希釈試料溶液に含まれる被測定成分である電解質濃度を算出し(ステップS139)、予め設定された情報に基づき、その結果が妥当であるかを判断する(ステップS140)。結果が妥当な場合(ステップS140:Yes)、次の試料測定の予定がなければ(ステップS141:No)、処理を終了する。次の試料測定の予定があれば(ステップS141:Yes)、測定に備え待機状態に戻る(ステップS124:Noのループ)。また、結果が妥当でない場合(ステップS140:No)、装置の異常の有無を判断する必要があれば、すなわち、希釈倍率を測定する必要があれば(ステップS142:Yes)、希釈倍率の測定工程(ステップS144〜ステップS151)を行い、制御部200の測定処理部202によって希釈倍率を算出(ステップS152)する。   Based on these measurement results, the measurement processing unit 202 of the control unit 200 calculates the electrolyte concentration that is the component to be measured contained in the diluted sample solution (step S139), and the result is valid based on the preset information. Is determined (step S140). If the result is valid (step S140: Yes), if there is no schedule for the next sample measurement (step S141: No), the process is terminated. If there is a schedule for the next sample measurement (step S141: Yes), the process returns to the standby state in preparation for the measurement (step S124: No loop). If the result is not valid (step S140: No), if it is necessary to determine whether there is an abnormality in the apparatus, that is, if it is necessary to measure the dilution factor (step S142: Yes), the dilution factor measurement step (Steps S144 to S151) are performed, and the dilution factor is calculated by the measurement processing unit 202 of the control unit 200 (Step S152).

そして、予め設定された閾値に基づきその妥当性が判断され、閾値以内であれば(ステップS153:Yes)、試料供給手段110の異常が考えられるため、測定を中断し、試料供給手段110のメンテナンスを行う(ステップS154)。閾値から外れた場合(ステップS153:No)、測定を中断し、電解質分析装置100のメンテナンスを行う(ステップS155)。   Then, the validity is determined based on a preset threshold value, and if it is within the threshold value (step S153: Yes), the sample supply unit 110 may be abnormal. Therefore, the measurement is interrupted and the sample supply unit 110 is maintained. Is performed (step S154). When it deviates from a threshold value (step S153: No), a measurement is interrupted and the electrolyte analyzer 100 is maintained (step S155).

また、ステップS142において、希釈倍率を測定する必要がなければ(ステップS142:No)、次の試料測定の予定があるか否かを判断する(ステップS143)。次の試料測定の予定がなければ(ステップS143:No)、処理を終了する。次の試料測定の予定があれば(ステップS143:Yes)、測定に備え待機状態に戻る(ステップS124:Noのループ)。   If it is not necessary to measure the dilution rate in step S142 (step S142: No), it is determined whether or not the next sample measurement is scheduled (step S143). If there is no schedule for the next sample measurement (step S143: No), the process is terminated. If there is a schedule for the next sample measurement (step S143: Yes), it returns to the standby state in preparation for the measurement (step S124: No loop).

なお、ステップS140において、測定結果が妥当でない場合(ステップS140:No)の希釈倍率の測定判断(ステップS142)は、電解質分析装置100の操作者が行うことも可能であるし、電解質分析装置100が判断することも可能である。   In step S140, when the measurement result is not valid (step S140: No), the determination of the dilution factor (step S142) can be performed by the operator of the electrolyte analyzer 100, or the electrolyte analyzer 100 can be determined. It is also possible to judge.

上述した図3−3および図3−4に示した希釈試料溶液の測定の詳細について、図1を用いて説明する。説明の便宜上、吸入配管124につながる電磁弁123が閉状態になっているものとする。また、初期状態として、希釈液が吸入配管124に送出されてこの吸入配管124内に存在しているものとする。   Details of the measurement of the diluted sample solution shown in FIGS. 3-3 and 3-4 will be described with reference to FIG. For convenience of explanation, it is assumed that the electromagnetic valve 123 connected to the suction pipe 124 is in a closed state. Further, as an initial state, it is assumed that the diluent is sent to the suction pipe 124 and exists in the suction pipe 124.

この状態から、電磁弁123を開状態にして、希釈液供給用ポンプ122の動作により、開通状態になった供給配管127に滞留する希釈液を、希釈液送出ノズル126を通じて希釈用容器131に送出する。   From this state, the electromagnetic valve 123 is opened, and the diluent staying in the open supply pipe 127 is sent to the dilution container 131 through the diluent sending nozzle 126 by the operation of the diluent supply pump 122. To do.

次に、内部標準液を希釈用容器131に送出する動作を行う。初期状態として、吸入配管164につながる電磁弁163が閉状態になっているものとする。この状態から電磁弁163を開状態にして、内部標準液供給用ポンプ162の動作により、開通状態になった供給配管167に滞留する内部標準液を、内部標準液送出ノズル166を通じて、希釈用容器131に分注する。この後、攪拌機構132によって攪拌され、内部標準液と希釈液とが均一に混合された希釈内部標準液が生成される。   Next, an operation of sending the internal standard solution to the dilution container 131 is performed. As an initial state, it is assumed that the electromagnetic valve 163 connected to the suction pipe 164 is closed. From this state, the electromagnetic valve 163 is opened, and the internal standard solution staying in the supply pipe 167 that has been opened by the operation of the internal standard solution supply pump 162 is passed through the internal standard solution delivery nozzle 166 to the dilution container. Dispense into 131. Thereafter, the mixture is stirred by the stirring mechanism 132 to generate a diluted internal standard solution in which the internal standard solution and the diluted solution are uniformly mixed.

次に、希釈用容器131で生成された希釈内部標準液は、廃液用ポンプ153の吸引動作により測定液供給配管141へ導かれる。そして、希釈内部標準液は、測定液として電極部142を通過する。このとき、起電力計測部143がイオン選択性電極142a〜142cおよび比較電極142dを通じて希釈内部標準液の電位差を計測する。その後、希釈内部標準液は、廃液容器155に導かれて廃棄される。   Next, the diluted internal standard solution generated in the dilution container 131 is guided to the measurement solution supply pipe 141 by the suction operation of the waste solution pump 153. Then, the diluted internal standard solution passes through the electrode part 142 as a measurement solution. At this time, the electromotive force measurement unit 143 measures the potential difference of the diluted internal standard solution through the ion selective electrodes 142a to 142c and the comparison electrode 142d. Thereafter, the diluted internal standard solution is guided to the waste liquid container 155 and discarded.

この後、上述した一連のプロセスと同様の処理で希釈試料溶液の起電力を測定する。具体的には、試料分注ノズル112は、試料容器114に収容された試料115を一定量だけ分取し、この分取した試料を希釈液が送出されている希釈用容器131に分注する。この後、攪拌機構132によって攪拌され、試料と希釈液とが均一に混合された希釈試料溶液が生成される。   Thereafter, the electromotive force of the diluted sample solution is measured by the same process as the series of processes described above. Specifically, the sample dispensing nozzle 112 dispenses a predetermined amount of the sample 115 accommodated in the sample container 114, and dispenses the dispensed sample into the dilution container 131 to which the diluent is sent. . Thereafter, the sample is stirred by the stirring mechanism 132 to generate a diluted sample solution in which the sample and the diluent are uniformly mixed.

次に、希釈用容器131で生成された希釈試料溶液が希釈用容器131から廃液用ポンプ153の吸引動作により、測定液供給配管141へ導かれる。この際、希釈試料溶液は、電極部142を通過する。このとき、起電力計測部143がイオン選択性電極142a〜142cおよび比較電極142dを通じて希釈試料溶液の起電力を計測する。その後、希釈試料溶液は、廃液容器155に導かれて廃棄される。   Next, the diluted sample solution generated in the dilution container 131 is guided from the dilution container 131 to the measurement liquid supply pipe 141 by the suction operation of the waste liquid pump 153. At this time, the diluted sample solution passes through the electrode portion 142. At this time, the electromotive force measurement unit 143 measures the electromotive force of the diluted sample solution through the ion selective electrodes 142a to 142c and the comparison electrode 142d. Thereafter, the diluted sample solution is guided to the waste liquid container 155 and discarded.

そして、制御部200の測定処理部202は、電極部142および起電力計測部143によって計測された希釈試料溶液の起電力および希釈内部標準液の起電力に基づいて、希釈試料溶液に含まれる被測定成分である電解質濃度を算出する。   Then, the measurement processing unit 202 of the control unit 200 performs the measurement of the target contained in the diluted sample solution based on the electromotive force of the diluted sample solution and the electromotive force of the diluted internal standard solution measured by the electrode unit 142 and the electromotive force measuring unit 143. The concentration of electrolyte as a measurement component is calculated.

この後、可動式クレーン111が移動し、試料分注ノズル112を図示していないが、洗浄位置に配置させる。そして、試料分注ノズル112が洗浄される。一方、希釈用容器131は上述した内部標準液に対する起電力測定プロセスと同様に、希釈液と内部標準液を希釈用容器131内で混合、攪拌することにより洗浄液として希釈用容器131の洗浄に用いられるとともに、測定手段140の洗浄を行う。   Thereafter, the movable crane 111 moves, and the sample dispensing nozzle 112 is not shown, but is placed at the cleaning position. Then, the sample dispensing nozzle 112 is washed. On the other hand, the dilution container 131 is used as a cleaning liquid for washing the dilution container 131 by mixing and stirring the dilution liquid and the internal standard solution in the dilution container 131 in the same manner as the electromotive force measurement process for the internal standard solution described above. At the same time, the measuring means 140 is cleaned.

希釈用容器洗浄後さらに、制御部200により内部標準液の希釈倍率測定が必要と判断された場合は、上述の希釈試料溶液の生成プロセスまたは希釈内部標準液生成プロセス同様に、希釈液供給用ポンプ122により希釈液が希釈用容器131に供給され、起電力計測部143により希釈液のみの起電力が計測され、希釈内部標準液の起電力と希釈液の起電力の差を算出することにより、測定処理部202により内部標準液の希釈倍率算出に用いられる。   If the control unit 200 determines that the dilution ratio of the internal standard solution needs to be measured after washing the dilution container, the dilution liquid supply pump is used in the same manner as the diluted sample solution generation process or the diluted internal standard solution generation process described above. 122, the dilution liquid is supplied to the dilution container 131, the electromotive force measurement unit 143 measures the electromotive force of only the dilution liquid, and calculates the difference between the electromotive force of the diluted internal standard solution and the dilution liquid, Used by the measurement processing unit 202 to calculate the dilution factor of the internal standard solution.

この後も測定が行われる場合は、上述した測定のプロセスが繰り返される。このようにして、電解質分析装置100による1回の測定が行われる。   If the measurement is performed after this, the above-described measurement process is repeated. In this way, one measurement by the electrolyte analyzer 100 is performed.

(電解質分析装置の他の一例)
次に、図4および図5を用いて、本実施の形態に用いる電解質分析装置の他の一例について説明する。図4は、図1の電解質分析装置100における3個のポンプを単一のモータにて動作させる際の電解質分析装置の構成図である。なお、図4に示した電解質分析装置400において、図1に示した電解質分析装置100と同様の構成要素には同様の符号を付し、適宜、詳細な説明を省略する。図5は、図1に示した電解質分析装置100および図4に示した電解質分析装置400のタイミングチャートである。
(Another example of electrolyte analyzer)
Next, another example of the electrolyte analyzer used in this embodiment will be described with reference to FIGS. FIG. 4 is a configuration diagram of the electrolyte analyzer when the three pumps in the electrolyte analyzer 100 of FIG. 1 are operated by a single motor. In addition, in the electrolyte analyzer 400 shown in FIG. 4, the same code | symbol is attached | subjected to the component similar to the electrolyte analyzer 100 shown in FIG. 1, and detailed description is abbreviate | omitted suitably. FIG. 5 is a timing chart of the electrolyte analyzer 100 shown in FIG. 1 and the electrolyte analyzer 400 shown in FIG.

図4において、電解質分析装置400は、希釈液を供給するための希釈液供給用ポンプ122と、内部標準液を供給するための内部標準液供給用ポンプ162と、希釈用容器131内部の測定液を起電力計測部143へ導くとともに廃液容器155へ導く廃液用ポンプ153とを一枚の駆動板171により連結したものであり、この駆動板171が一つのモータで駆動されるように構成されている。   In FIG. 4, the electrolyte analyzer 400 includes a diluent supply pump 122 for supplying a diluent, an internal standard solution supply pump 162 for supplying an internal standard solution, and a measurement solution in the dilution container 131. Is connected to a waste liquid pump 153 that leads to the electromotive force measuring unit 143 and to the waste liquid container 155 by a single drive plate 171, and this drive plate 171 is configured to be driven by a single motor. Yes.

希釈試料溶液生成時は、電磁弁123,151および163は閉じられた状態で駆動板171が初期位置から最下点まで下降し(図5の符号501参照)、次に電磁弁123を開状態にし、希釈液供給用ポンプ122が希釈液を必要量吐出するまで駆動板171が上昇し(図5の符号502参照)、希釈液のみが希釈用容器131へ導かれる。そして、希釈液が必要量吐出されると電磁弁123が閉じられ、駆動板171が初期位置まで上昇し余剰の希釈液は希釈液容器121へ戻される。   When the diluted sample solution is generated, the drive valve 171 descends from the initial position to the lowest point with the solenoid valves 123, 151 and 163 closed (see reference numeral 501 in FIG. 5), and then the solenoid valve 123 is opened. Then, the drive plate 171 moves up (see reference numeral 502 in FIG. 5) until the diluent supply pump 122 discharges the required amount of diluent, and only the diluent is guided to the dilution container 131. When a necessary amount of the diluent is discharged, the solenoid valve 123 is closed, the drive plate 171 is raised to the initial position, and the excess diluent is returned to the diluent container 121.

一方、試料分注ノズル112は、試料容器114に収容された試料115を一定量だけ分取し、この分取した試料115を希釈液が送出されている希釈用容器131に分注する。この後、攪拌機構132によって攪拌され、試料115と希釈液とが均一に混合された希釈試料溶液が生成される。   On the other hand, the sample dispensing nozzle 112 dispenses a predetermined amount of the sample 115 accommodated in the sample container 114, and dispenses the dispensed sample 115 into the dilution container 131 to which the diluent is sent. Thereafter, the sample is stirred by the stirring mechanism 132 to generate a diluted sample solution in which the sample 115 and the diluent are uniformly mixed.

次に、希釈内部標準液生成時は、電磁弁123,151,163は閉じられた状態で駆動板171が初期位置から最下点まで下降し(図5の符号511参照)、電磁弁123および163を開状態にし、最初に吐出量の少ない内部標準液を必要量吐出するまで駆動板171が上昇する(図5の符号512参照)。そして、電磁弁163のみを閉じた後、さらに駆動板171が上昇し、希釈液が必要量吐出された後、電磁弁123を閉じ、余剰の希釈液と内部標準液はそれぞれの容器(希釈液容器121および内部標準液容器161)へ戻される。この後、攪拌機構132によって攪拌され、内部標準液と希釈液とが均一に混合された希釈内部標準液が生成される。   Next, when the diluted internal standard solution is generated, the drive plate 171 descends from the initial position to the lowest point with the solenoid valves 123, 151, and 163 closed (see reference numeral 511 in FIG. 5). 163 is opened, and the drive plate 171 rises until a required amount of internal standard solution with a small discharge amount is discharged (see reference numeral 512 in FIG. 5). Then, after closing only the solenoid valve 163, the drive plate 171 is further raised, and after the required amount of diluent is discharged, the solenoid valve 123 is closed, and the excess diluent and the internal standard solution are stored in their respective containers (diluents). It is returned to the container 121 and the internal standard solution container 161). Thereafter, the mixture is stirred by the stirring mechanism 132 to generate a diluted internal standard solution in which the internal standard solution and the diluted solution are uniformly mixed.

希釈用容器131に供給された測定液(希釈試料溶液または希釈内部標準液)を起電力計測部143へ導く際は、電磁弁123,151,163を閉じた状態で、測定液が起電力計測部143のイオン選択性電極142a〜142cおよび比較電極内部142dを満たすまで駆動板171が下降し(図5の符号503,513参照)、測定液の起電力を測定後、駆動板171は最下点まで下降し(図5の符号504,514参照)、測定液をすべて廃液用ポンプ153内に導き、その後、電磁弁151を開状態にし、測定液を廃液容器155へ導く。   When the measurement liquid (diluted sample solution or diluted internal standard solution) supplied to the dilution container 131 is guided to the electromotive force measurement unit 143, the measurement liquid is measured for electromotive force with the solenoid valves 123, 151, and 163 closed. The drive plate 171 descends until the ion selective electrodes 142a to 142c and the comparison electrode interior 142d of the part 143 are filled (see reference numerals 503 and 513 in FIG. 5), and after measuring the electromotive force of the measurement liquid, the drive plate 171 is at the bottom. The measurement liquid is lowered to the point (see reference numerals 504 and 514 in FIG. 5), and all the measurement liquid is introduced into the waste liquid pump 153. Thereafter, the electromagnetic valve 151 is opened, and the measurement liquid is guided to the waste liquid container 155.

測定液を起電力計測部143へ導く動作を行う際は、希釈試料もしくは希釈内部標準液測定用の希釈液および内部標準液を吐出するための吸引動作も同時並行で行われている(図5の符号501,511参照)。また、測定液を廃液容器155へ導く際は、希釈液もしくは希釈液と内部標準液を希釈用容器131へ導く動作も同時並行して行われている(図5の符号502,512参照)。   When performing the operation of guiding the measurement liquid to the electromotive force measurement unit 143, the suction operation for discharging the diluted sample or the diluted liquid for measuring the diluted internal standard solution and the internal standard solution is also performed in parallel (FIG. 5). No. 501, 511). Further, when the measurement liquid is guided to the waste liquid container 155, the operation of leading the dilution liquid or the dilution liquid and the internal standard liquid to the dilution container 131 is also performed in parallel (see symbols 502 and 512 in FIG. 5).

このように、図4に示した電解質分析装置400は、各電磁弁の動作タイミングを調節するようにし、3個のポンプを1個のモータにて駆動するようにしたので、図1に示した電解質分析装置100と同様に、試料の分析を行うことができるだけでなく、モータからの発熱やノイズを最小限に抑えることができ、安定した分析を行うことができる。また、このような電解質分析装置400によれば、装置のコストダウンを図ることができる。   As described above, the electrolyte analyzer 400 shown in FIG. 4 adjusts the operation timing of each electromagnetic valve and drives the three pumps by one motor. Similar to the electrolyte analyzer 100, not only can the sample be analyzed, but also heat generation and noise from the motor can be minimized, and stable analysis can be performed. Moreover, according to such an electrolyte analyzer 400, the cost of the apparatus can be reduced.

次に、図6および図7を用いて、本実施の形態にかかる電解質分析装置100(400)の電極電位と時間の関係について、説明する。図6は、試料溶液測定後の希釈用容器131の洗浄および測定手段140の洗浄に用いる洗浄液に希釈液を使用した場合の、電極電位と時間の関係を示したグラフである。電極電位Mは、希釈内部標準液測定時の電位を示している。電極電位Sは、希釈試料溶液測定時の電位を示している。電極電位Wは、洗浄時の電位を示している。図6において、洗浄時の電極電位Wは、希釈液の塩濃度が試料溶液や希釈内部標準液に比べ極端に低いため、次に測定される希釈内部標準液の電位差が大きく、応答が鈍くなる傾向にある。これは測定の順序にかかわらず、希釈試料溶液を希釈内部標準液よりも先に測定した場合でも同様である。   Next, the relationship between the electrode potential and time of the electrolyte analyzer 100 (400) according to the present embodiment will be described with reference to FIGS. FIG. 6 is a graph showing the relationship between the electrode potential and time when a diluent is used as the cleaning liquid used for cleaning the dilution container 131 and the measuring means 140 after the sample solution measurement. The electrode potential M indicates the potential when measuring the diluted internal standard solution. The electrode potential S indicates the potential when measuring the diluted sample solution. The electrode potential W indicates the potential at the time of cleaning. In FIG. 6, since the electrode potential W at the time of washing is extremely low compared to the sample solution or the diluted internal standard solution, the potential difference of the diluted internal standard solution to be measured next is large and the response becomes dull. There is a tendency. This is the same even when the diluted sample solution is measured before the diluted internal standard solution regardless of the order of measurement.

図7は、試料溶液測定後の希釈用容器131の洗浄および測定手段140の洗浄に用いる洗浄液に希釈内部標準液を使用した場合の、電極電位と時間の関係を示したグラフである。図7においては、洗浄液に希釈内部標準液を用いているために、洗浄時の電極電位Wと次測定の希釈内部標準液の電極電位Mとの電位差がほとんど無い状態で、電極の応答が非常に速いことを示している。   FIG. 7 is a graph showing the relationship between the electrode potential and time when a diluted internal standard solution is used as the cleaning solution used for cleaning the dilution container 131 and measuring unit 140 after the sample solution measurement. In FIG. 7, since the diluted internal standard solution is used as the cleaning solution, the electrode response is very good with almost no potential difference between the electrode potential W at the time of cleaning and the electrode potential M of the diluted internal standard solution in the next measurement. It shows that it is fast.

これら図6、図7での現象は、血清測定後の尿測定のように検体種別が変わる際の電極の応答速度にも関連し、例えば、血清測定後に尿測定の依頼を受けた場合は、内部標準液供給用ポンプ162から希釈用容器131への内部標準液の供給量を増やし、希釈内部標準液の濃度を高めることにより、希釈内部標準液測定時の電極電位Mと希釈試料溶液測定時の電極電位Sとの差を抑制し、電極の応答性を高め、安定した測定結果を算出することが可能になる。さらに、イオン選択性電極142a〜142cの特性上、電極電位Mと電極電位Sの差が小さいほど、温度変動の影響を受けにくく、安定した測定結果を算出することが可能である。   These phenomena in FIG. 6 and FIG. 7 are also related to the response speed of the electrode when the specimen type changes like urine measurement after serum measurement. For example, when a urine measurement request is received after serum measurement, By increasing the supply amount of the internal standard solution from the internal standard solution supply pump 162 to the dilution container 131 and increasing the concentration of the diluted internal standard solution, the electrode potential M during the diluted internal standard solution measurement and the diluted sample solution measurement It is possible to suppress the difference from the electrode potential S of the electrode, increase the responsiveness of the electrode, and calculate a stable measurement result. Furthermore, due to the characteristics of the ion selective electrodes 142a to 142c, the smaller the difference between the electrode potential M and the electrode potential S, the less affected by temperature fluctuations, and the more stable measurement results can be calculated.

このように、本実施の形態によれば、希釈試料の測定または希釈内部標準液の測定の後に、洗浄液として希釈内部標準液を用いて洗浄を行うようにしたので、電解質濃度測定用電極の測定起電力変化を抑制し、電極の応答性を高め、より安定した測定結果を得ることができる。   As described above, according to the present embodiment, after the measurement of the diluted sample or the diluted internal standard solution, the cleaning is performed using the diluted internal standard solution as the cleaning solution. Therefore, the measurement of the electrolyte concentration measuring electrode is performed. It is possible to suppress changes in electromotive force, increase the responsiveness of the electrodes, and obtain more stable measurement results.

図8は、本実施の形態にかかる内部標準液の濃度と希釈倍率の関係および閾値を示す図表である。テーブル800において、想定試料濃度801は、希釈試料溶液の想定される電解質濃度である。内部標準液量802は、想定試料濃度801の電解質濃度ごとに、希釈内部標準液を生成する際の液量である。正常希釈倍率803は、希釈内部標準液を希釈する際の倍率である。内部標準液濃度804は、内部標準液量802を正常希釈倍率803にて希釈した際の電解質濃度である。閾値下限805は、希釈倍率の下限値を示している。閾値上限806は、希釈倍率の上限値を示している。   FIG. 8 is a table showing the relationship between the concentration of the internal standard solution and the dilution factor and the threshold values according to this embodiment. In the table 800, an assumed sample concentration 801 is an assumed electrolyte concentration of the diluted sample solution. The internal standard solution volume 802 is a volume when a diluted internal standard solution is generated for each electrolyte concentration of the assumed sample concentration 801. The normal dilution factor 803 is a factor for diluting the diluted internal standard solution. The internal standard solution concentration 804 is an electrolyte concentration when the internal standard solution amount 802 is diluted at a normal dilution ratio 803. A threshold lower limit 805 indicates a lower limit value of the dilution rate. A threshold upper limit 806 indicates the upper limit of the dilution factor.

このようなテーブル800を用いることにより、想定試料濃度801の各電解質濃度に応じ、内部標準液の供給量を可変にして、希釈試料溶液の電解質濃度に近い希釈内部標準液を供給することが可能である。また、このようなテーブル800は、例えば、図3−4のステップS153において、閾値以内か否かの判断を行う際に用いられる。具体的には、図3−4のステップS153において、テーブル800の閾値下限805および閾値上限806の値を用いる。   By using such a table 800, it is possible to supply a diluted internal standard solution close to the electrolyte concentration of the diluted sample solution by changing the supply amount of the internal standard solution according to each electrolyte concentration of the assumed sample concentration 801. It is. Further, such a table 800 is used, for example, when determining whether or not it is within a threshold in step S153 of FIG. 3-4. Specifically, in step S153 of FIG. 3-4, the values of the threshold lower limit 805 and the threshold upper limit 806 of the table 800 are used.

このように、本実施の形態によれば、内部標準液の供給において、被測定成分の電解質濃度に応じて、内部標準液の供給量を可変にし、希釈試料溶液の電解質濃度に近い希釈内部標準液を供給するようにしたので、測定起電力の差を抑制し、温度変動による測定結果への影響を抑制するとともに電極の応答性を高め、より安定した測定結果を得ることができる。   Thus, according to the present embodiment, in the supply of the internal standard solution, the supply amount of the internal standard solution is made variable according to the electrolyte concentration of the component to be measured, and the diluted internal standard close to the electrolyte concentration of the diluted sample solution Since the liquid is supplied, the difference in measurement electromotive force is suppressed, the influence on the measurement result due to temperature fluctuation is suppressed, and the responsiveness of the electrode is enhanced, so that a more stable measurement result can be obtained.

以上説明したように、本実施の形態によれば、例えばナトリウム、カリウム、塩素などを測定する場合に、ナトリウムイオン、カリウムイオン、塩素イオンが微量存在するように、このような塩を一定量希釈液に添加するようにしたので、校正時に内部標準液の希釈倍率を算出しておくことが可能となる。したがって、必要に応じてこの値を参照することにより、電極が急激に出力低下を起こした場合にもその変動が、通常の範囲内のものなのか、異常であるかを操作者が判断することができるようになるため、常に安定した測定結果を得ることができる。   As described above, according to the present embodiment, for example, when measuring sodium, potassium, chlorine, etc., such a salt is diluted by a certain amount so that a trace amount of sodium ion, potassium ion, chlorine ion is present. Since it is added to the solution, the dilution rate of the internal standard solution can be calculated at the time of calibration. Therefore, by referring to this value as necessary, even when the output of the electrode suddenly drops, the operator can determine whether the fluctuation is within the normal range or abnormal. Therefore, stable measurement results can always be obtained.

以上のように、本発明にかかる電解質分析方法および電解質分析装置は、例えば尿や血清等の試料の電解質濃度の安定測定に有用である。   As described above, the electrolyte analysis method and the electrolyte analyzer according to the present invention are useful for stable measurement of the electrolyte concentration of a sample such as urine and serum.

本発明の実施の形態にかかる電解質分析装置の構成図である。It is a block diagram of the electrolyte analyzer concerning embodiment of this invention. 本実施の形態に用いられる制御部を示すブロック図である。It is a block diagram which shows the control part used for this Embodiment. 本実施の形態におけるキャリブレーション処理の概略例を示すフローチャートである。It is a flowchart which shows the schematic example of the calibration process in this Embodiment. 本実施の形態におけるキャリブレーション処理の概略例を示すフローチャートである。It is a flowchart which shows the schematic example of the calibration process in this Embodiment. 本実施の形態における測定処理の概略例を示すフローチャートである。It is a flowchart which shows the schematic example of the measurement process in this Embodiment. 本実施の形態における測定処理の概略例を示すフローチャートである。It is a flowchart which shows the schematic example of the measurement process in this Embodiment. 図1の電解質分析装置における3個のポンプを単一のモータにて動作させる際の電解質分析装置の構成図である。It is a block diagram of the electrolyte analyzer at the time of operating three pumps in the electrolyte analyzer of FIG. 1 with a single motor. 図1に示した電解質分析装置および図4に示した電解質分析装置のタイミングチャートである。5 is a timing chart of the electrolyte analyzer shown in FIG. 1 and the electrolyte analyzer shown in FIG. 4. 試料溶液測定後の希釈用容器の洗浄および測定手段の洗浄に用いる洗浄液に希釈液を使用した場合の、電極電位と時間の関係を示したグラフである。It is the graph which showed the relationship between an electrode potential and time at the time of using a diluent for the washing | cleaning liquid used for the washing | cleaning of the container for dilution after a sample solution measurement, and the washing | cleaning of a measurement means. 試料溶液測定後の希釈用容器の洗浄および測定手段の洗浄に用いる洗浄液に希釈内部標準液を使用した場合の、電極電位と時間の関係を示したグラフである。It is the graph which showed the relationship between an electrode potential and time at the time of using a dilution internal standard solution for the washing | cleaning liquid used for the washing | cleaning of the container for dilution after a sample solution measurement, and the washing | cleaning of a measurement means. 本実施の形態にかかる内部標準液の濃度と希釈倍率の関係および閾値を示す図表である。It is a graph which shows the relationship between the density | concentration of the internal standard solution concerning this Embodiment, a dilution rate, and a threshold value.

符号の説明Explanation of symbols

100 電解質分析装置
110 試料供給手段
112 試料分注ノズル
120 希釈液供給手段
122 希釈液供給用ポンプ
123 電磁弁
126 希釈液送出ノズル
130 試料希釈手段
131 希釈用容器
140 測定手段
142 電極部
143 起電力計測部
150 廃液手段
151 電磁弁
153 廃液用ポンプ
160 内部標準液供給手段
162 内部標準液供給用ポンプ
163 電磁弁
171 駆動板
200 制御部
201 駆動制御部
202 測定処理部
203 タイマー
400 電解質分析装置
DESCRIPTION OF SYMBOLS 100 Electrolyte analyzer 110 Sample supply means 112 Sample dispensing nozzle 120 Dilution liquid supply means 122 Dilution liquid supply pump 123 Solenoid valve 126 Dilution liquid delivery nozzle 130 Sample dilution means 131 Dilution container 140 Measurement means 142 Electrode part 143 Electromotive force measurement Unit 150 Waste liquid means 151 Electromagnetic valve 153 Waste liquid pump 160 Internal standard liquid supply means 162 Internal standard liquid supply pump 163 Electromagnetic valve 171 Drive plate 200 Control section 201 Drive control section 202 Measurement processing section 203 Timer 400 Electrolyte analyzer

Claims (7)

希釈用容器に試料を供給する試料供給工程と、
前記希釈用容器に、予め一定量の被測定成分と同一のイオンを含む塩を添加した希釈液を供給する希釈液供給工程と、
前記希釈用容器に供給された前記試料と前記希釈液とを混合して希釈試料溶液を生成する試料希釈工程と、
前記希釈用容器の前記希釈試料溶液を取り出しながら当該希釈試料溶液に含まれる被測定成分である電解質濃度を測定する希釈試料測定工程と、
希釈用容器に内部標準液を供給する内部標準液供給工程と、
前記希釈用容器に供給された前記内部標準液と、前記希釈液供給工程により前記希釈用容器に供給された希釈液とを混合して希釈内部標準液を生成する内部標準液希釈工程と、
前記希釈用容器の前記希釈内部標準液を取り出しながら当該希釈内部標準液に含まれる被測定成分である電解質濃度を測定する希釈内部標準液測定工程と、
前記希釈内部標準液の希釈倍率を算出する算出工程と、
前記算出工程にて算出された前記希釈内部標準液の希釈倍率が予め設定した所定範囲内にあるか否かを判定する判定工程と、
前記判定工程にて、前記希釈内部標準液の希釈倍率が予め設定した所定範囲内にないと判定された場合に、所定の異常を通知する旨の情報を出力する通知制御工程と、
を含むことを特徴とする電解質分析方法。
A sample supply step for supplying the sample to the dilution container;
A diluent supply step of supplying a dilution solution in which a salt containing the same ions as the component to be measured is previously added to the dilution container ;
A sample dilution step of mixing the sample supplied to the dilution container and the diluent to generate a diluted sample solution;
A diluted sample measurement step of measuring an electrolyte concentration as a component to be measured contained in the diluted sample solution while taking out the diluted sample solution from the dilution container;
An internal standard solution supplying step for supplying the internal standard solution to the dilution container;
An internal standard solution diluting step for producing a diluted internal standard solution by mixing the internal standard solution supplied to the diluting vessel and the diluting solution supplied to the diluting vessel in the diluting solution supplying step;
A diluted internal standard solution measuring step for measuring an electrolyte concentration which is a component to be measured contained in the diluted internal standard solution while taking out the diluted internal standard solution from the dilution container;
A calculation step of calculating a dilution ratio of the diluted internal standard solution;
A determination step of determining whether or not the dilution ratio of the diluted internal standard solution calculated in the calculation step is within a preset predetermined range;
A notification control step of outputting information to notify a predetermined abnormality when it is determined in the determination step that the dilution factor of the diluted internal standard solution is not within a predetermined range set in advance;
The electrolyte analysis wherein the early days including the.
希釈用容器に試料を供給する試料供給工程と、
前記希釈用容器に、予め一定量の被測定成分と同一のイオンを含む塩を添加した希釈液を供給する希釈液供給工程と、
前記希釈用容器に供給された前記試料と前記希釈液とを混合して希釈試料溶液を生成する試料希釈工程と、
前記希釈用容器の前記希釈試料溶液を取り出しながら当該希釈試料溶液に含まれる被測定成分である電解質濃度を測定する希釈試料測定工程と、
希釈用容器に内部標準液を供給する内部標準液供給工程と、
前記希釈用容器に供給された前記内部標準液と、前記希釈液供給工程により前記希釈用容器に供給された希釈液とを混合して希釈内部標準液を生成する内部標準液希釈工程と、
前記希釈用容器の前記希釈内部標準液を取り出しながら当該希釈内部標準液に含まれる被測定成分である電解質濃度を測定する希釈内部標準液測定工程と、
前記希釈内部標準液の希釈倍率を算出する算出工程と、
前記希釈試料測定工程または前記希釈内部標準液測定工程の後に、洗浄液として希釈内部標準液を用いて洗浄を行う希釈用容器洗浄工程と、
含むことを特徴とする電解質分析方法。
A sample supply step for supplying the sample to the dilution container;
A diluent supply step of supplying a dilution solution in which a salt containing the same ions as the component to be measured is previously added to the dilution container;
A sample dilution step of mixing the sample supplied to the dilution container and the diluent to generate a diluted sample solution;
A diluted sample measurement step of measuring an electrolyte concentration as a component to be measured contained in the diluted sample solution while taking out the diluted sample solution from the dilution container;
An internal standard solution supplying step for supplying the internal standard solution to the dilution container;
An internal standard solution diluting step for producing a diluted internal standard solution by mixing the internal standard solution supplied to the diluting vessel and the diluting solution supplied to the diluting vessel in the diluting solution supplying step;
A diluted internal standard solution measuring step for measuring an electrolyte concentration which is a component to be measured contained in the diluted internal standard solution while taking out the diluted internal standard solution from the dilution container;
A calculation step of calculating a dilution ratio of the diluted internal standard solution;
After the diluted sample measurement step or the diluted internal standard solution measurement step, a dilution container washing step for washing using a diluted internal standard solution as a washing solution ,
It characterized electrolytic electrolyte analyzing method comprises a.
希釈用容器に試料を供給する試料供給工程と、
前記希釈用容器に、予め一定量の被測定成分と同一のイオンを含む塩を添加した希釈液を供給する希釈液供給工程と、
前記希釈用容器に供給された前記試料と前記希釈液とを混合して希釈試料溶液を生成する試料希釈工程と、
前記希釈用容器の前記希釈試料溶液を取り出しながら当該希釈試料溶液に含まれる被測定成分である電解質濃度を測定する希釈試料測定工程と、
希釈用容器に内部標準液を供給する内部標準液供給工程と、
前記希釈用容器に供給された前記内部標準液と、前記希釈液供給工程により前記希釈用容器に供給された希釈液とを混合して希釈内部標準液を生成する内部標準液希釈工程と、
前記希釈用容器の前記希釈内部標準液を取り出しながら当該希釈内部標準液に含まれる被測定成分である電解質濃度を測定する希釈内部標準液測定工程と、
前記希釈内部標準液の希釈倍率を算出する算出工程と、
を含み、
前記内部標準液供給工程では、希釈試料溶液の被測定成分ごとに予め設定される電解質濃度に応じて、内部標準液の供給量を可変にして、希釈試料溶液の電解質濃度に近い希釈内部標準液を供給することを特徴とする電解質分析方法。
A sample supply step for supplying the sample to the dilution container;
A diluent supply step of supplying a dilution solution in which a salt containing the same ions as the component to be measured is previously added to the dilution container;
A sample dilution step of mixing the sample supplied to the dilution container and the diluent to generate a diluted sample solution;
A diluted sample measurement step of measuring an electrolyte concentration as a component to be measured contained in the diluted sample solution while taking out the diluted sample solution from the dilution container;
An internal standard solution supplying step for supplying the internal standard solution to the dilution container;
An internal standard solution diluting step for producing a diluted internal standard solution by mixing the internal standard solution supplied to the diluting vessel and the diluting solution supplied to the diluting vessel in the diluting solution supplying step;
A diluted internal standard solution measuring step for measuring an electrolyte concentration which is a component to be measured contained in the diluted internal standard solution while taking out the diluted internal standard solution from the dilution container;
A calculation step of calculating a dilution ratio of the diluted internal standard solution;
Including
In the internal standard solution supplying step, the supply amount of the internal standard solution is made variable according to the electrolyte concentration set in advance for each measured component of the diluted sample solution, and the diluted internal standard solution close to the electrolyte concentration of the diluted sample solution to that electrolytic electrolyte analysis method characterized by supplying.
試料または内部標準液に、予め一定量の被測定成分と同一のイオンを含む塩を添加した希釈液を混合し、希釈試料溶液または希釈内部標準液を生成するための希釈用容器と、
前記希釈用容器に前記試料を供給する試料供給手段と、
前記希釈用容器に前記内部標準液を供給する内部標準液供給手段と、
前記希釈用容器に前記希釈液を供給する希釈液供給手段と、
前記希釈用容器の前記希釈試料溶液、前記希釈内部標準液または希釈液を取り出しながら、当該希釈試料溶液、当該希釈内部標準液または当該希釈液に含まれる被測定成分である電解質濃度を測定する測定手段と、
前記希釈内部標準液の希釈倍率を算出する算出手段と、
前記算出手段によって算出された前記希釈内部標準液の希釈倍率が予め設定した所定範囲内にあるか否かを判定する判定手段と、
前記判定手段によって前記希釈内部標準液の希釈倍率が予め設定した所定範囲内にないと判定された場合に、所定の異常を通知する旨の情報を出力する通知制御手段と、
を備えたことを特徴とする電解質分析装置。
A dilution container for generating a diluted sample solution or diluted internal standard solution by mixing a sample or internal standard solution with a predetermined amount of a diluted solution containing a salt containing the same ion as the component to be measured in advance,
Sample supply means for supplying the sample to the dilution container;
An internal standard solution supply means for supplying the internal standard solution to the dilution container;
A diluent supply means for supplying the diluent to the dilution container;
Measurement for measuring the concentration of an electrolyte that is a component to be measured contained in the diluted sample solution, the diluted internal standard solution or the diluted solution while taking out the diluted sample solution, the diluted internal standard solution or the diluted solution in the dilution container Means,
A calculating means for calculating a dilution ratio of the diluted internal standard solution;
Determining means for determining whether or not the dilution ratio of the diluted internal standard solution calculated by the calculating means is within a predetermined range set in advance;
A notification control means for outputting information for notifying a predetermined abnormality when the determination means determines that the dilution factor of the diluted internal standard solution is not within a predetermined range set in advance;
An electrolyte analyzer characterized by comprising:
試料または内部標準液に、予め一定量の被測定成分と同一のイオンを含む塩を添加した希釈液を混合し、希釈試料溶液または希釈内部標準液を生成するための希釈用容器と、
前記希釈用容器に前記試料を供給する試料供給手段と、
前記希釈用容器に前記内部標準液を供給する内部標準液供給手段と、
前記希釈用容器に前記希釈液を供給する希釈液供給手段と、
前記希釈用容器の前記希釈試料溶液、前記希釈内部標準液または希釈液を取り出しながら、当該希釈試料溶液、当該希釈内部標準液または当該希釈液に含まれる被測定成分である電解質濃度を測定する測定手段と、
前記希釈内部標準液の希釈倍率を算出する算出手段と、
希釈試料溶液測定後または希釈内部標準液測定後に、洗浄液として希釈内部標準液を用いて洗浄を行う希釈用容器洗浄手段と、
備えることを特徴とする電解質分析装置。
A dilution container for generating a diluted sample solution or diluted internal standard solution by mixing a sample or internal standard solution with a predetermined amount of a diluted solution containing a salt containing the same ion as the component to be measured in advance,
Sample supply means for supplying the sample to the dilution container;
An internal standard solution supply means for supplying the internal standard solution to the dilution container;
A diluent supply means for supplying the diluent to the dilution container;
Measurement for measuring the concentration of an electrolyte that is a component to be measured contained in the diluted sample solution, the diluted internal standard solution or the diluted solution while taking out the diluted sample solution, the diluted internal standard solution or the diluted solution in the dilution container Means,
A calculating means for calculating a dilution ratio of the diluted internal standard solution;
A dilution container cleaning means for cleaning using a diluted internal standard solution as a cleaning solution after measuring a diluted sample solution or after measuring a diluted internal standard solution ,
The electrolyte analyzing apparatus, characterized in that it comprises a.
試料または内部標準液に、予め一定量の被測定成分と同一のイオンを含む塩を添加した希釈液を混合し、希釈試料溶液または希釈内部標準液を生成するための希釈用容器と、
前記希釈用容器に前記試料を供給する試料供給手段と、
前記希釈用容器に前記内部標準液を供給する内部標準液供給手段と、
前記希釈用容器に前記希釈液を供給する希釈液供給手段と、
前記希釈用容器の前記希釈試料溶液、前記希釈内部標準液または希釈液を取り出しながら、当該希釈試料溶液、当該希釈内部標準液または当該希釈液に含まれる被測定成分である電解質濃度を測定する測定手段と、
前記希釈内部標準液の希釈倍率を算出する算出手段と、
を備え、
前記内部標準液供給手段は、希釈試料溶液の被測定成分ごとに予め設定される電解質濃度に応じて、内部標準液の供給量を可変にして、希釈試料溶液の想定される電解質濃度に近い希釈内部標準液を供給することを特徴とする電解質分析装置。
A dilution container for generating a diluted sample solution or diluted internal standard solution by mixing a sample or internal standard solution with a predetermined amount of a diluted solution containing a salt containing the same ion as the component to be measured in advance,
Sample supply means for supplying the sample to the dilution container;
An internal standard solution supply means for supplying the internal standard solution to the dilution container;
A diluent supply means for supplying the diluent to the dilution container;
Measurement for measuring the concentration of an electrolyte that is a component to be measured contained in the diluted sample solution, the diluted internal standard solution or the diluted solution while taking out the diluted sample solution, the diluted internal standard solution or the diluted solution in the dilution container Means,
A calculating means for calculating a dilution ratio of the diluted internal standard solution;
With
The internal standard solution supply means varies the supply amount of the internal standard solution according to the electrolyte concentration set in advance for each component to be measured of the diluted sample solution, thereby diluting the diluted sample solution close to the assumed electrolyte concentration. you and supplying the internal standard solution electrolytic electrolyte analyzer.
試料または内部標準液に、予め一定量の被測定成分と同一のイオンを含む塩を添加した希釈液を混合し、希釈試料溶液または希釈内部標準液を生成するための希釈用容器と、
前記希釈用容器に前記試料を供給する試料供給手段と、
前記希釈用容器に前記内部標準液を供給する内部標準液供給手段と、
前記希釈用容器に前記希釈液を供給する希釈液供給手段と、
前記希釈用容器の前記希釈試料溶液、前記希釈内部標準液または希釈液を取り出しながら、当該希釈試料溶液、当該希釈内部標準液または当該希釈液に含まれる被測定成分である電解質濃度を測定する測定手段と、
前記希釈内部標準液の希釈倍率を算出する算出手段と、
測定後の希釈液、測定後の希釈試料溶液または測定後の希釈内部標準液を排出する廃液用駆動部、使用する希釈液供給駆動部および内部標準液供給用駆動部と、
廃液用電磁弁、希釈液供給用電磁弁および内部標準液供給用電磁弁の動作タイミングを調節する調整手段と、
を備え、
前記廃液用駆動部、前記希釈液供給駆動部および前記内部標準液供給用駆動部は、単一の駆動部によって構成されることを特徴とする電解質分析装置。
A dilution container for generating a diluted sample solution or diluted internal standard solution by mixing a sample or internal standard solution with a predetermined amount of a diluted solution containing a salt containing the same ion as the component to be measured in advance,
Sample supply means for supplying the sample to the dilution container;
An internal standard solution supply means for supplying the internal standard solution to the dilution container;
A diluent supply means for supplying the diluent to the dilution container;
Measurement for measuring the concentration of an electrolyte that is a component to be measured contained in the diluted sample solution, the diluted internal standard solution or the diluted solution while taking out the diluted sample solution, the diluted internal standard solution or the diluted solution in the dilution container Means,
A calculating means for calculating a dilution ratio of the diluted internal standard solution;
A waste liquid drive unit for discharging a diluted solution after measurement, a diluted sample solution after measurement or a diluted internal standard solution after measurement, a diluent supply drive unit to be used, and an internal standard solution supply drive unit;
Adjusting means for adjusting the operation timing of the solenoid valve for waste liquid, the solenoid valve for dilution liquid supply, and the solenoid valve for internal standard liquid supply;
Bei to give a,
The waste drive unit, the diluent supply drive portion and the internal standard solution supply drive unit, electrolytic electrolyte analyzer characterized in that it is constituted by a single drive unit.
JP2008307876A 2008-12-02 2008-12-02 Electrolyte analysis method and electrolyte analyzer Active JP5214420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008307876A JP5214420B2 (en) 2008-12-02 2008-12-02 Electrolyte analysis method and electrolyte analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008307876A JP5214420B2 (en) 2008-12-02 2008-12-02 Electrolyte analysis method and electrolyte analyzer

Publications (2)

Publication Number Publication Date
JP2010133742A JP2010133742A (en) 2010-06-17
JP5214420B2 true JP5214420B2 (en) 2013-06-19

Family

ID=42345183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008307876A Active JP5214420B2 (en) 2008-12-02 2008-12-02 Electrolyte analysis method and electrolyte analyzer

Country Status (1)

Country Link
JP (1) JP5214420B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109416338A (en) * 2016-07-26 2019-03-01 株式会社日立高新技术 Electrolyte concentration measurement device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189405A (en) * 2011-03-10 2012-10-04 Jeol Ltd Electrolyte measuring method and electrolyte measuring apparatus
JP5924950B2 (en) * 2012-01-20 2016-05-25 シスメックス株式会社 Sample analyzer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121655A (en) * 1990-09-13 1992-04-22 Joko:Kk Method for automatically setting dilution and analyser using the same
JPH0572168A (en) * 1991-09-13 1993-03-23 Shimadzu Corp Analysis device for electrolyte
JP2606059B2 (en) * 1992-09-30 1997-04-30 株式会社島津製作所 Electrolyte analyzer
JP3311113B2 (en) * 1993-10-19 2002-08-05 オリンパス光学工業株式会社 Analysis equipment
JPH08178885A (en) * 1994-12-26 1996-07-12 Olympus Optical Co Ltd Method and apparatus for measuring concentration of ion
JP3523741B2 (en) * 1996-02-27 2004-04-26 オリンパス株式会社 Electrolyte component analyzer
JP4323259B2 (en) * 2003-08-20 2009-09-02 オリンパス株式会社 Electrolyte analyzer
JP4887113B2 (en) * 2006-10-25 2012-02-29 株式会社エイアンドティー Electrolyte analyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109416338A (en) * 2016-07-26 2019-03-01 株式会社日立高新技术 Electrolyte concentration measurement device
EP3492913A4 (en) * 2016-07-26 2020-03-11 Hitachi High-Technologies Corporation Device for measuring electrolyte concentration
CN109416338B (en) * 2016-07-26 2020-11-27 株式会社日立高新技术 Electrolyte concentration measuring device

Also Published As

Publication number Publication date
JP2010133742A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
CN112666234B (en) Electrolyte concentration measuring device and electrolyte concentration measuring method
US20070215467A1 (en) Automatic analyzer
JP5965248B2 (en) Electrolyte analyzer
JP6250105B2 (en) Electrolyte analyzer and electrolyte analysis method
JP2011153848A (en) Reagent preparation device
JP2010230570A (en) Reagent preparing apparatus and sample analyzer
JP6654881B2 (en) Automatic analyzer and method for determining abnormality of automatic analyzer
JP5214420B2 (en) Electrolyte analysis method and electrolyte analyzer
JP2008039486A (en) Electrolyte analyzer and measuring data processing method therefor
US9841413B2 (en) Data processing device and automatic analysis device using same
WO2021053856A1 (en) Automated analysis device
JP2009031203A (en) Automatic analyzer
JP4887113B2 (en) Electrolyte analyzer
JP6986925B2 (en) Electrolyte concentration measuring device
US8888989B2 (en) Method and apparatus for electrolyte measurements
JP5492833B2 (en) Automatic analyzer and control method thereof
JP5220647B2 (en) Automatic analyzer
JP4917491B2 (en) Dilution apparatus, electrolyte analysis apparatus or biochemical analysis apparatus equipped with dilution apparatus, dilution liquid filling method, and dilution liquid filling program
JP2012093164A (en) Concentration measuring apparatus
JP7512227B2 (en) Automated Analysis Equipment
JP2012137436A (en) Automatic analyzer
JP7106376B2 (en) automatic analyzer
CN117849379A (en) Sample analyzer and control method for sample analyzer
JPH1062375A (en) Electrolytic analyzer
CN116893267A (en) Sample analyzer and control method for sample analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

R150 Certificate of patent or registration of utility model

Ref document number: 5214420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250