JP4321859B2 - HTGR fuel particle manufacturing apparatus and method - Google Patents

HTGR fuel particle manufacturing apparatus and method Download PDF

Info

Publication number
JP4321859B2
JP4321859B2 JP2004084835A JP2004084835A JP4321859B2 JP 4321859 B2 JP4321859 B2 JP 4321859B2 JP 2004084835 A JP2004084835 A JP 2004084835A JP 2004084835 A JP2004084835 A JP 2004084835A JP 4321859 B2 JP4321859 B2 JP 4321859B2
Authority
JP
Japan
Prior art keywords
ammonia
droplet
liquid tank
liquid
dropping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004084835A
Other languages
Japanese (ja)
Other versions
JP2005272172A (en
Inventor
真樹 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004084835A priority Critical patent/JP4321859B2/en
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to EP11175256.4A priority patent/EP2390231B9/en
Priority to CN2009102035165A priority patent/CN101596430B/en
Priority to PCT/JP2004/015278 priority patent/WO2005037715A1/en
Priority to EP11175255.6A priority patent/EP2390230B1/en
Priority to EP04792495.6A priority patent/EP1686094B1/en
Priority to CN2004800304355A priority patent/CN1867516B/en
Publication of JP2005272172A publication Critical patent/JP2005272172A/en
Application granted granted Critical
Publication of JP4321859B2 publication Critical patent/JP4321859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は、例えば高温ガス炉の装荷燃料を構成する被覆燃料粒子用の燃料粒子の製造装置および製造方法に関するものである。   The present invention relates to an apparatus and a method for manufacturing fuel particles for coated fuel particles that constitute, for example, a fuel loaded in a HTGR.

高温ガス炉は、燃料を含む炉心構造を熱容量が大きく高温健全性の良好な黒鉛で形成し、ヘリウム等の高温下でも化学的反応の起こらないガス冷却材を用いることにより、固有の安全性が高く、高い出口温度のガス冷却材を取り出すことの可能な原子炉であり、得られる約900℃の高温熱は、発電はもちろんのこと水素製造や化学プラント等幅広い分野での熱利用を可能にするものである。   High temperature gas reactors have inherent safety by using a gas coolant that does not cause chemical reactions even at high temperatures, such as helium, which is formed of graphite with a large heat capacity and good high temperature integrity. It is a high-temperature reactor that can extract gas coolant with a high outlet temperature, and the high-temperature heat of about 900 ° C can be used not only for power generation but also for hydrogen production and chemical plants. To do.

このような高温ガス炉では、燃料要素として、粒状の燃料を埋め込んだ黒鉛成型物が使用されている。この燃料は、通常、二酸化ウランをセラミックス状に焼結した直径約350〜650μmの燃料粒子の外表面に複数の被覆層を形成してなる被覆燃料粒子である。   In such a high temperature gas furnace, a graphite molded article in which granular fuel is embedded is used as a fuel element. This fuel is usually coated fuel particles formed by forming a plurality of coating layers on the outer surface of fuel particles having a diameter of about 350 to 650 μm obtained by sintering uranium dioxide into a ceramic form.

例えば、第1被覆層として密度約1g/cmの低密度熱分解炭素層を形成し、第2被覆層として密度約1.8g/cmの高密度熱分解炭素層を形成し、さらに第3被覆層として密度約3.2g/cm炭化珪素(SiC)層を、また第4被覆層として密度約1.8g/cmの高密度熱分解炭素層を形成した計4層の被覆を施されたものが一般的である。 For example, a low density pyrolytic carbon layer having a density of about 1 g / cm 3 is formed as the first coating layer, a high density pyrolytic carbon layer having a density of about 1.8 g / cm 3 is formed as the second coating layer, A total of four coating layers, in which a silicon carbide (SiC) layer having a density of about 3.2 g / cm 3 is formed as the three coating layers, and a high-density pyrolytic carbon layer having a density of about 1.8 g / cm 3 is formed as the fourth coating layer. What has been applied is common.

第1被覆層はガス状の核分裂生成物のガス留めとしての機能及び燃料粒子の変形を吸収する緩衝部としての機能を併せ持つものである。また第2被覆層はでガス状核分裂生成物の保持機能を有し、第3被覆層は固体状核分裂生成物の保持機能を有すると共に、被覆層の主要な強度部材である。第4被覆層は、第2被覆層と同様のガス状核分裂生成物の保持機能と共に第3被覆層の保護層としての機能も持っている。   The first coating layer has both a function as a gas stopper for the gaseous fission product and a function as a buffer part for absorbing deformation of the fuel particles. The second coating layer has a function of holding gaseous fission products, and the third coating layer has a function of holding solid fission products, and is a main strength member of the coating layer. The fourth coating layer has a function as a protective layer of the third coating layer as well as the function of holding the gaseous fission product similar to the second coating layer.

上記のような一般的な被覆燃料粒子の直径は約500〜1000μmである。被覆燃料粒子は黒鉛母材中に分散させ一定形状の燃料コンパクトの形に成型加工され、さらに黒鉛でできた筒にコンパクトを一定数量入れ、上下に栓をした燃料棒の形にされる。最終的に燃料棒は、六角柱型黒鉛ブロックの複数の挿入口に入れられ、この六角柱型黒鉛ブロックを多数個、ハニカム配列に複数段重ねて炉心を構成している。   The diameter of a typical coated fuel particle as described above is about 500-1000 μm. The coated fuel particles are dispersed in a graphite base material and formed into a compact fuel compact shape. Further, a fixed amount of the compact is put into a graphite tube, and the fuel rod is plugged up and down. Finally, the fuel rod is inserted into a plurality of insertion holes of the hexagonal column type graphite block, and a large number of the hexagonal column type graphite blocks are stacked in a honeycomb array to constitute a core.

また、被覆層が形成されて被覆燃料粒子とされる燃料粒子の製造には、大量形成が可能な方法として振動滴下によるゲル状の粒子を得る外部ゲル化法が用いられている(例えば、特許文献1参照。)。   In addition, in the production of fuel particles that are formed as coating fuel particles by forming a coating layer, an external gelation method that obtains gel-like particles by vibration dropping is used as a method capable of mass formation (for example, patents). Reference 1).

具体的には、まず、酸化ウランの粉末を硝酸に溶かし硝酸ウラニル原液とし、この硝酸ウラニル原液に純水、添加剤を加え撹拌することにより滴下原液とする。添加剤は、滴下された硝酸ウラニルの液滴が落下中に自身の表面張力により真球状になるようにする増粘剤であると同時にアンモニウムとの接触により原液をゲル化せしめるために添加されるものであり、例えばポリビニルアルコール樹脂、アルカリ条件下でゲル化する性質を持つ樹脂、ポリエチレングリコール、メトローズなどを挙げることができる。   Specifically, first, a powder of uranium oxide is dissolved in nitric acid to obtain a uranyl nitrate stock solution, and pure water and additives are added to the uranyl nitrate stock solution and stirred to obtain a dripping stock solution. The additive is a thickening agent that causes the dripped uranyl nitrate droplet to become spherical due to its surface tension during dropping, and at the same time is added to cause the stock solution to gel by contact with ammonium. Examples thereof include polyvinyl alcohol resins, resins having a property of gelation under alkaline conditions, polyethylene glycol, and metroses.

上記のように調製された滴下原液は所定の温度に冷却され粘度を調整した後、細径の滴下ノズルを振動させることによりアンモニア水溶液中に滴下される。アンモニア水溶液中へ液滴となって入った原液は、硝酸ウラニルがアンモニアと十分に反応させられると同時に前記添加剤がゲル化され、重ウラン酸アンモニウム(ADU)を含むゲル状の粒子となる。   The dropping stock solution prepared as described above is cooled to a predetermined temperature, adjusted in viscosity, and then dropped into an aqueous ammonia solution by vibrating a small-diameter dropping nozzle. The undiluted solution that has entered the aqueous ammonia solution as droplets is allowed to react sufficiently with the ammonia uranyl nitrate, and at the same time the additive is gelled to form gel-like particles containing ammonium heavy uranate (ADU).

また、上記のような外部ゲル化法の他に、内部ゲル化法によってもADUゲル粒子を得ることができる。この内部ゲル化法は、滴下原液中にヘキサメチレンテトラミンなどのアンモニアドナー、即ち加熱によって分解してアンモニアを発生する化学物質を添加しておき、この原液を100℃程度に加温されているパラフィンオイルやシリコンオイル等の液槽に滴下することによって、液槽中での加熱で液滴内部よりゲル化反応を生じせしめ、ゲル粒子を形成するものである。   In addition to the above external gelation method, ADU gel particles can also be obtained by an internal gelation method. In this internal gelation method, an ammonia donor such as hexamethylenetetramine, that is, a chemical substance that decomposes by heating to generate ammonia is added to the dropping stock solution, and the stock solution is heated to about 100 ° C. paraffin. By dropping it into a liquid tank of oil, silicon oil or the like, a gelation reaction is caused from the inside of the liquid droplet by heating in the liquid tank to form gel particles.

以上のようなゲル化法で得られたADUゲル粒子は、大気中で焙焼され、水分および添加剤が除去されて三酸化ウラン粒子となり、さらに還元・焼結されることにより高密度のセラミックス状二酸化ウランからなる球状の燃料粒子となる。   The ADU gel particles obtained by the gelation method as described above are roasted in the atmosphere, removed moisture and additives to become uranium trioxide particles, and further reduced and sintered to obtain high-density ceramics. Spherical fuel particles made of uranium dioxide.

さらに、この燃料粒子を用いた被覆燃料粒子の製造工程としては、該燃料粒子を流動床に装荷し、被覆ガスを熱分解させることにより被覆を施す方法が挙げられる。例えば、第1被覆層の低密度炭素層の場合は約1400℃でアセチレン(C)を熱分解して被覆を施し、第2および第4被覆層の高密度熱分解炭素層の場合は約1400℃でプロピレン(C)を熱分解して行う。第3被覆層のSiC層の場合は約1600℃でメチルトリクロロシラン(CHSiCl)を熱分解して被覆する。 Furthermore, as a manufacturing process of the coated fuel particles using the fuel particles, there is a method in which the fuel particles are loaded on a fluidized bed and coated by thermally decomposing the coating gas. For example, in the case of the low-density carbon layer of the first coating layer, acetylene (C 2 H 2 ) is thermally decomposed at about 1400 ° C., and the high-density pyrolytic carbon layer of the second and fourth coating layers. Is carried out by thermally decomposing propylene (C 3 H 6 ) at about 1400 ° C. In the case of the SiC layer of the third coating layer, methyltrichlorosilane (CH 3 SiCl 3 ) is thermally decomposed and coated at about 1600 ° C.

一般的な燃料コンパクトは、被覆燃料粒子を黒鉛粉末、粘結剤等からなる黒鉛マトリックス材とともに中空円筒形または円筒形にプレス成型またはモールド成型した後、焼成して得られる。   A general fuel compact is obtained by press-molding or molding coated fuel particles into a hollow cylindrical shape or a cylindrical shape together with a graphite matrix material made of graphite powder, a binder, and the like, and then firing.

特開平9−127291号公報(図7)JP-A-9-127291 (FIG. 7)

しかしながら、上記の様な振動滴下による外部ゲル化法又は内部ゲル化法を用いた燃料粒子の製造方法では、滴下原液をアンモニア水溶液中又はパラフィンオイル等の中に滴下した際の液面衝突時の衝撃により液滴の多くは変形してしまい、その変形状態のままゲル化された粒子となり、結果的に真球度が悪い燃料粒子しか得られなかった。   However, in the fuel particle manufacturing method using the external gelation method or the internal gelation method by vibration dropping as described above, the dripping stock solution is dropped at the time of a liquid surface collision when dropped into an aqueous ammonia solution or paraffin oil. Most of the liquid droplets were deformed by the impact, resulting in gelled particles in the deformed state. As a result, only fuel particles with poor sphericity were obtained.

そこで、このような変形を防止する手段として、硝酸ウラニル溶液の濃度を調整してアンモニア水溶液面に衝突する際の衝撃に耐える強度を与えることや、アンモニア水溶液面までの滴下距離を小さくして衝撃力を低減させること、また、液滴径を小さくすることなどが考えられた。   Therefore, as a means to prevent such deformation, the concentration of the uranyl nitrate solution is adjusted to give strength to withstand the impact when colliding with the ammonia aqueous solution surface, or the dropping distance to the ammonia aqueous solution surface is reduced to reduce the impact. It was considered to reduce the force and to reduce the droplet diameter.

しかし、硝酸ウラニル溶液の濃度等の調製を行っても、滴下の際の衝撃に完全に抗する強度は得られず、やはり完全な球形を維持することができず、あまり真球度の良くない物質しか得られなかった。   However, even when the concentration of the uranyl nitrate solution is adjusted, the strength to completely resist the impact at the time of dropping cannot be obtained, and a perfect spherical shape cannot be maintained, and the sphericity is not so good. Only material was obtained.

また、アンモニア水溶液面と滴下開始位置との距離を短くした場合、本来液滴を真球状にするのは落下中の表面張力によるものであるため、液滴を真球度の良い形状にするのに必要な落下距離が確保できなくなり、着水の衝撃を低下させることが可能でも、結果としてあまり真球度の良い物質は得られない。さらに滴下装置がアンモニア発生源に近いと、装置内部で原液のゲル化反応が発生して滴下が阻害される恐れもある。   In addition, when the distance between the ammonia aqueous solution surface and the dropping start position is shortened, it is due to the surface tension during dropping that the droplet is originally made spherical, so that the droplet has a good sphericity. However, even if it is not possible to secure the necessary falling distance and the impact of landing can be reduced, a substance with a very high sphericity cannot be obtained as a result. Furthermore, when the dropping device is close to the ammonia generation source, a gelation reaction of the stock solution may occur inside the device, and the dropping may be hindered.

また、液滴径を小さくして滴下する方法では、目的とする燃料粒子の粒径がそれに見合う大きさであれば問題無いものの、それ以外では適用できないという問題があった。以上のように、従来の外部ゲル化法では、真球度の良い燃料粒子を得るのは困難であった。   In addition, the method of dropping the droplets with a small droplet diameter has no problem as long as the target fuel particle size is commensurate with it, but it cannot be applied otherwise. As described above, it has been difficult to obtain fuel particles with good sphericity by the conventional external gelation method.

本発明の目的は、上記問題点に鑑み、外部ゲル化法又は内部ゲル化法を用いたADUゲル粒子の形成の際に、滴下液面への衝突時に液滴に変形が生じ難く、従来より真球度の良い燃料粒子の製造が可能となる高温ガス炉用燃料粒子の製造装置および製造方法を提供することにある。   In view of the above problems, the object of the present invention is that the formation of ADU gel particles using the external gelation method or the internal gelation method is unlikely to cause deformation of the droplet at the time of collision with the drop liquid surface. An object of the present invention is to provide an apparatus and a method for producing fuel particles for a HTGR capable of producing fuel particles with good sphericity.

上記目的を達成するため、請求項1に記載の発明に係る高温ガス炉用燃料粒子の製造装置は、アンモニアとの接触でゲル化反応する添加剤を含む水溶液と硝酸ウラニル液とから調製されてなる滴下原液をノズルから滴下する滴下手段と、前記ノズルから滴下された液滴を受けて前記ゲル化反応を生じせしめ、液滴をゲル粒子化させるための液槽とを備えた高温ガス炉用燃料粒子の製造装置において、
前記ノズルから滴下された液滴が前記液槽の液面に達するまでの落下経路途中で該液滴にアンモニアを接触させる液滴表面ゲル化手段を備えており、
前記液滴表面ゲル化手段は、
落下中の液滴に対してほぼ水平方向からアンモニアを吹き付けるアンモニア噴射ノズル機構と、
前記アンモニア噴射ノズルに対して前記液滴の落下経路を挟んだ対向位置に設けられ、前記アンモニア噴射ノズルから噴射されて前記落下経路を越えたアンモニア気流を排気する排気機構とを備え、
前記液槽の上面開口部の直上で、アンモニア噴射ノズルと排気機構との間に強制的にエアカーテン状のアンモニア流が形成されるものである。
In order to achieve the above object, an apparatus for producing fuel particles for a HTGR according to the invention described in claim 1 is prepared from an aqueous solution containing an additive that undergoes a gelling reaction upon contact with ammonia, and a uranyl nitrate solution. For a high temperature gas furnace comprising: a dropping means for dropping a dropping stock solution from a nozzle; and a liquid tank for receiving the droplets dropped from the nozzle to cause the gelation reaction and gelling the droplets In the fuel particle manufacturing apparatus,
A droplet surface gelling means for bringing ammonia into contact with the droplet in the middle of a dropping path until the droplet dropped from the nozzle reaches the liquid level of the liquid tank ;
The droplet surface gelling means includes:
An ammonia injection nozzle mechanism that sprays ammonia from a substantially horizontal direction on a falling droplet;
An exhaust mechanism that is provided at an opposed position across the drop path of the droplet with respect to the ammonia injection nozzle, and exhausts an ammonia stream that is injected from the ammonia injection nozzle and exceeds the drop path;
An air curtain-like ammonia flow is forcibly formed between the ammonia injection nozzle and the exhaust mechanism immediately above the upper surface opening of the liquid tank .

請求項に記載の発明に係る高温ガス炉用燃料粒子の製造方法は、請求項に記載の高温ガス炉用燃料粒子の製造装置において、前記液槽が、アンモニア水溶液を収容しているものである。 Method for producing a high-temperature gas reactor fuel particles according to the invention of claim 2 are those in the manufacturing apparatus of HTGR Fuel particles according to claim 1, wherein the liquid tank houses aqueous ammonia It is.

請求項に記載の発明に係る高温ガス炉用燃料粒子の製造方法は、請求項に記載の高温ガス炉用燃料粒子の製造方法において、前記液槽のアンモニア水溶液面上に設けられたアンモニア充満領域をさらに備え、前記アンモニア噴射ノズル機構と前記排気機構が、このアンモニア充満領域の上方に配置されているものである。 The method for producing fuel particles for a HTGR according to the invention described in claim 3 is the method for producing fuel particles for a HTGR according to claim 2 , wherein the ammonia provided on the ammonia aqueous solution surface of the liquid tank. The ammonia injection nozzle mechanism and the exhaust mechanism are further disposed above the ammonia filling region.

請求項に記載の発明に係る高温ガス炉用燃料粒子の製造装置は、請求項に記載の高温ガス炉用燃料粒子の製造装置において、前記滴下原液が加熱によりアンモニアを発生するアンモニアドナーをさらに含むものであり、前記液槽が予め定められた温度に加温されている加熱液を収容しているものである。 A high temperature gas reactor fuel particle manufacturing apparatus according to a fourth aspect of the present invention is the high temperature gas reactor fuel particle manufacturing apparatus according to the first aspect , wherein the dripping stock solution generates an ammonia donor by heating. In addition, the liquid tank contains a heating liquid heated to a predetermined temperature.

請求項に記載の発明に係る高温ガス炉用燃料粒子の製造方法は、アンモニアとの接触でゲル化反応する添加剤を含む水溶液と硝酸ウラニル液とから調製されてなる滴下原液を得る原液調製工程と、前記原液をノズルから下方の液槽に向けて滴下して前記滴下原液の球状液滴を形成させる液滴形成工程と、前記液槽中で液滴をゲル化してゲル状の重ウラン酸アンモニウム粒子を形成させる凝固工程とを備えた高温ガス炉用燃料粒子の製造方法において、
前記液滴形成工程で形成された球状液滴に対して、前記液槽の液面に達する前にアンモニアに接触させる液滴表面ゲル化工程を備え、
前記液滴表面ゲル化工程は、落下中の液滴に対してアンモニア噴射ノズルからアンモニアを吹き付けると共に、落下経路を挟んだ対向位置の排気機構から落下経路を越えたアンモニア気流を吸引する工程を含み、前記液槽の上面開口部の直上で、噴射ノズルと排気機構との間に強制的にエアカーテン状のアンモニア流を形成するものである。
The method for producing fuel particles for a HTGR according to claim 5 is a stock solution preparation for obtaining a drop stock solution prepared from an aqueous solution containing an additive that undergoes a gelation reaction upon contact with ammonia and a uranyl nitrate solution. A droplet forming step of dropping the stock solution from a nozzle toward a lower liquid tank to form spherical droplets of the dripped stock solution, and gelling the droplet in the liquid tank to form a gel-like heavy uranium In a method for producing fuel particles for a HTGR comprising a solidification step for forming ammonium acid particles,
For the spherical liquid droplets formed in the liquid droplet forming step, the liquid droplet surface gelation step is brought into contact with ammonia before reaching the liquid surface of the liquid tank,
The droplet surface gelation step includes a step of spraying ammonia from an ammonia injection nozzle to a droplet that is falling and a step of sucking an ammonia air stream that has passed the drop route from an exhaust mechanism at a position opposite to the drop route. The air curtain-like ammonia flow is forcibly formed between the injection nozzle and the exhaust mechanism immediately above the upper surface opening of the liquid tank .

請求項に記載の発明に係る高温ガス炉用燃料粒子の製造方法は、請求項に記載の高温ガス炉用燃料粒子の製造方法において、前記液滴表面ゲル化工程は、前記アンモニアの吹き付け後にアンモニア充満領域を通過させる工程をさらに含むものである。 The method for producing fuel particles for a HTGR according to claim 6 is the method for producing fuel particles for a HTGR according to claim 5 , wherein the droplet surface gelation step is performed by spraying the ammonia. The method further includes a step of passing the ammonia-filled region later.

本発明の製造装置によれば、ゲル化助剤としての添加剤と硝酸ウラニル液を含む滴下原液を滴下手段のノズルから滴下した液滴が、滴下原液にゲル化反応を生じせしめて液滴をゲル粒子化するための液槽の液面に達するまでの落下経路途中でその液滴にアンモニアを接触させる液滴表面ゲル化手段を備えたものであるため、該手段によって液滴はアンモニア水溶液面に達するまでに表面からのアンモニアとの接触によりゲル化反応が進められて液滴外表面にゲル層が形成させられるので、このゲル層によって液滴の真球形状がある程度固定される。従って、液面への衝突時の衝撃によっても液滴の変形は抑えられその真球形状が維持されたまま液槽に入ることができるため、液槽内でゲル化反応が完了すると真球度の良いゲル状重ウラン酸アンモニウム粒子(ADUゲル粒子)となり、最終的に得られる燃料粒子を真球度の良いものにできるという効果がある。   According to the production apparatus of the present invention, a droplet in which a dropping stock solution containing an additive as a gelling aid and a uranyl nitrate solution is dropped from the nozzle of the dropping means causes a gelation reaction in the dropping stock solution to form a droplet. Since the liquid droplet surface gelling means for bringing ammonia into contact with the droplet in the middle of the dropping path until reaching the liquid surface of the liquid tank for gel particle formation, the droplet is brought into contact with the aqueous ammonia surface by the means. Since the gelation reaction is advanced by contact with ammonia from the surface until reaching the point, a gel layer is formed on the outer surface of the droplet, and the true spherical shape of the droplet is fixed to some extent by this gel layer. Therefore, deformation of the droplets can be suppressed even by impact at the time of collision with the liquid surface, and the true spherical shape can be maintained and the liquid tank can be entered while the gelling reaction is completed in the liquid tank. It becomes an effective gel-like ammonium heavy uranate particle (ADU gel particle), and has an effect that fuel particles finally obtained can have a good sphericity.

また、本発明の製造方法によれば、ゲル化助剤としての添加剤と硝酸ウラニル液を含む滴下原液をノズルから下方の液槽に向けて滴下する液滴形成工程で形成された球状液滴に対して、液槽の液面に達する前にアンモニアに接触させる液滴表面ゲル化工程を設けたものであるため、該工程にて液槽の液面に達するまでにアンモニアとの接触により液滴に表面からゲル化反応を進めてその外表面にゲル層を形成させることができるので、このゲル層によって液滴の真球形状をある程度固定することができる。従って、液面への衝突時に液滴の衝撃による変形を抑えて真球形状を維持したまま液槽に入り、液槽内で真球度の良いゲル状重ウラン酸アンモニウム粒子(ADUゲル粒子)を形成することができ、最終的に真球度の良い燃料粒子を製造できるという効果がある。   Further, according to the production method of the present invention, spherical droplets formed in a droplet forming step of dropping a dropping stock solution containing an additive as a gelling aid and a uranyl nitrate solution from a nozzle toward a lower liquid tank. On the other hand, since the droplet surface gelation step is performed to contact the ammonia before reaching the liquid level of the liquid tank, the liquid is brought into contact with the ammonia until the liquid level of the liquid tank is reached in the step. Since the gelation reaction can proceed from the surface to the droplet to form a gel layer on the outer surface, the true spherical shape of the droplet can be fixed to some extent by this gel layer. Therefore, when the liquid collides with the liquid surface, the deformation due to the impact of the droplets is suppressed and the spherical shape is maintained and the liquid tank enters the liquid tank. As a result, fuel particles having a good sphericity can be produced.

本発明の高温ガス炉用燃料粒子の製造方法においては、原液調製工程にてアンモニアとの接触でゲル化反応する添加剤を含む水溶液と硝酸ウラニル液とから調製されてなる滴下原液を、液滴形成工程にてノズルから下方の液槽に向けて滴下して原液の球状液滴を形成させるものであり、液滴表面ゲル化工程として、球状液滴に対して液槽の液面に達する前にアンモニアに接触させるものであるため、球状液滴は、このアンモニアとの接触により表面でゲル化反応が進行させられて液滴外表面にゲル層が形成される。   In the method for producing fuel particles for a HTGR according to the present invention, a dripping stock solution prepared from an aqueous solution containing an additive that undergoes a gelation reaction upon contact with ammonia and a uranyl nitrate solution in a stock solution preparation step is used as a droplet. In the forming process, it drops from the nozzle toward the lower liquid tank to form spherical droplets of the stock solution. As the droplet surface gelation process, before reaching the liquid level of the liquid tank with respect to the spherical droplets Since the spherical droplets are brought into contact with ammonia, the gelation reaction proceeds on the surface by contact with the ammonia, and a gel layer is formed on the outer surface of the droplets.

従って、形成されたゲル層が外殻として液滴の真球に近い球形状を固定するため、液滴は球形状を維持したまま、液面での衝突時の衝撃で変形を生じることなく液槽内の液中に入り、凝固工程において、外部ゲル化法の場合にはアンモニア水溶液が収容された液槽中で、また内部ゲル化法の場合には滴下原液中にアンモニアドナーを含むものとして例えば100℃程度に加温されたパラフィンオイルやシリコンオイル等の液槽中で、液滴中心まで完全にゲル化され、真球度の良いゲル状の重ウラン酸アンモニウム粒子(以下、ADUゲル粒子と記す)が形成される。このようにして得られた真球度の良いADUゲル粒子から、その後の熱処理工程等の所定工程を経て、真球度の良い燃料粒子が製造される。   Therefore, since the formed gel layer fixes the spherical shape close to the true sphere of the droplet as the outer shell, the droplet remains in the spherical shape and the liquid does not deform due to the impact at the collision with the liquid surface. In the liquid in the tank, in the coagulation process, in the case of the external gelation method, in the liquid tank containing the aqueous ammonia solution, and in the case of the internal gelation method, the dripping stock solution contains an ammonia donor. For example, in a liquid bath of paraffin oil or silicon oil heated to about 100 ° C., gelled ammonium heavy uranate particles (hereinafter referred to as ADU gel particles) that are completely gelated to the center of the droplet and have a good sphericity. Will be formed). Fuel particles with good sphericity are produced from the ADU gel particles with good sphericity obtained in this manner through a predetermined process such as a subsequent heat treatment step.

また、上記のように液槽の液面に達する前に外殻としての外表面ゲル層により球形状が固定された液滴は、液滴のまま着水した場合より速やかに液槽内を沈降するため互いに接触し難く、また振動滴下により高速で多量の液滴が次々とアンモニア水溶液中へ滴下されて液滴同士が接触したとしても、互いに結合し難いため、液滴同士が結合した状態で粒子化するものは低減され、結果として粒径の均一なADUゲル粒子を得ることができる。   In addition, droplets whose spherical shape is fixed by the outer surface gel layer as the outer shell before reaching the liquid level of the liquid tank as described above settles in the liquid tank more quickly than if they landed as liquid droplets. Therefore, even if a large number of droplets are dropped into the aqueous ammonia solution one after another by vibration dripping, even if the droplets are in contact with each other, it is difficult to bond with each other. The amount of particles is reduced, and as a result, ADU gel particles having a uniform particle size can be obtained.

なお、液滴表面ゲル化工程としては、例えば、落下中の液滴に対してアンモニアを吹き付ける方法が、短時間で効率よく液滴の全表面にアンモニアを接触させる好適な方法として挙げられる。   In addition, as a droplet surface gelatinization process, the method of spraying ammonia with respect to the droplet which is falling, for example is mentioned as a suitable method which contacts ammonia to the whole surface of a droplet efficiently in a short time.

また、落下中の液滴に対するアンモニアの接触時間が長いほど、液滴外表面のゲル層の形成はより確実なものとなり、またゲル層の厚みも大きくなって外殻としての強度も向上し、アンモニア水溶液面への衝突時の衝撃に対してより真球形状維持効果が高くなることから、上記のようなアンモニアの吹き付けに加えて、アンモニア充満領域を通過させる工程をさらに設ければ、より液滴の真球形状の固定が確実となり望ましい。   In addition, the longer the contact time of ammonia with the falling droplet, the more reliable the formation of the gel layer on the outer surface of the droplet, and the thicker the gel layer, the stronger the outer shell, Since the effect of maintaining a true spherical shape becomes higher with respect to the impact at the time of collision with the ammonia aqueous solution surface, in addition to the above-described ammonia spraying, if a step of passing the ammonia-filled region is further provided, the liquid will be more liquid. It is desirable that the true spherical shape of the droplet is fixed.

以上のような製造方法を実現できる製造装置としては、アンモニアとの接触でゲル化反応する添加剤を含む水溶液と硝酸ウラニル液とから調製されてなる滴下原液を、滴下手段において前記液槽上に位置決めされるノズルから液槽へ滴下し、ノズルから滴下された液滴が液槽の液面に達するまでの落下経路途中で液滴にアンモニアを接触させる液滴表面ゲル化手段を備えたものとすれば良い。なお、液滴表面ゲル化手段による液滴へのアンモニア接触開始位置は、ノズル手段から滴下された液滴の表面張力による真球形成が充分成される落下距離を確保できる位置とする。   As a manufacturing apparatus capable of realizing the above manufacturing method, a dropping stock solution prepared from an aqueous solution containing an additive that undergoes a gelation reaction upon contact with ammonia and a uranyl nitrate solution is placed on the liquid tank in a dropping means. Droplet surface gelling means for dropping ammonia from the positioned nozzle to the liquid tank and bringing the droplet into contact with ammonia in the middle of the dropping path until the liquid droplet dropped from the nozzle reaches the liquid level of the liquid tank; Just do it. It should be noted that the ammonia contact start position on the droplet by the droplet surface gelling means is a position that can secure a drop distance at which a true sphere is sufficiently formed by the surface tension of the droplet dropped from the nozzle means.

本装置において、滴下手段のノズルから滴下された液滴は、液槽内の液面に衝突する前にアンモニアに接触させられ、表面でゲル化反応が進んで外表面にゲル層が形成されたものとなる。即ち、液滴は上記ゲル層が外殻となってその真球形状が固定されるため、液槽内の液面への衝突時に衝撃で変形することなくその真球形状が維持されたまま液槽内へ入って沈降していくことができる。   In this apparatus, the liquid droplet dropped from the nozzle of the dropping means was brought into contact with ammonia before colliding with the liquid surface in the liquid tank, and the gelation reaction proceeded on the surface to form a gel layer on the outer surface. It will be a thing. That is, since the true spherical shape of the droplet is fixed with the gel layer as an outer shell, the true spherical shape is maintained without being deformed by an impact at the time of collision with the liquid surface in the liquid tank. You can sink into the tank.

従って、液滴は液槽内で中心部までゲル化反応が進み、完了時には真球度の良いADUゲル粒子となると同時に、液槽内落下中に液滴同士が接しても既に液滴表面はゲル化されているため、液滴同士が結合することもなく、粒径の揃ったADUゲル粒子が得られる。即ち、このような真球度が良く粒径が均一なADUゲル粒子から最終的に得られる燃料粒子も、真球度が良く粒径が均一なものとなる。   Therefore, the liquid droplet undergoes a gelation reaction to the center in the liquid tank, and when completed, it becomes an ADU gel particle with good sphericity. Since it is gelled, ADU gel particles having a uniform particle size can be obtained without bonding droplets. That is, fuel particles finally obtained from such ADU gel particles having good sphericity and uniform particle size also have good sphericity and uniform particle size.

本発明は、以上のような装置において、外部ゲル化法の場合では液槽内にアンモニア水溶液が収容され、内部ゲル化法の場合では液槽内に加熱のためのオイルが収容されて且つ滴下原液に加熱によりアンモニアを発生するアンモニアドナーをさらに添加しておくという違いがあるだけでいずれの場合にも有効である。   In the case of the external gelation method, the present invention contains an aqueous ammonia solution in the liquid tank, and in the case of the internal gelation method, oil for heating is contained in the liquid tank and dropped. In any case, the difference is that an ammonia donor that generates ammonia by heating is further added to the stock solution.

また、本装置の液滴表面ゲル化手段としては、落下中の液滴にアンモニアを接触せしめる機構のものであれば広く採用可能である。例えば、落下中の液滴に対してほぼ水平方向からアンモニアを吹き付けるアンモニア噴射ノズル機構を備えたものとすれば、所定位置でノズルからアンモニアを噴射するという簡便な構成で液滴の表面全体的にアンモニアを接触させることができる。   The droplet surface gelling means of the present apparatus can be widely used as long as it has a mechanism for bringing ammonia into contact with the falling droplet. For example, if an ammonia injection nozzle mechanism that blows ammonia from a substantially horizontal direction to a falling droplet is provided, the entire surface of the droplet can be formed with a simple configuration of injecting ammonia from a nozzle at a predetermined position. Ammonia can be contacted.

また、落下中の液滴に対するアンモニアの接触時間が長いほど、液滴外表面のゲル層の形成はより確実なものとなり、またゲル層の厚みも大きくなって外殻としての強度も向上し、液槽内の液面への衝突時の衝撃に対してより真球形状維持効果が高くなる。そこで、上記のようなアンモニア噴射ノズル機構によるアンモニアの吹き付けに加えて、その下部の液滴落下領域にアンモニアとの接触領域をさらに設ければ、より液滴の真球形状の固定が確実となる。   In addition, the longer the contact time of ammonia with the falling droplet, the more reliable the formation of the gel layer on the outer surface of the droplet, and the thicker the gel layer, the stronger the outer shell, The effect of maintaining a true spherical shape becomes higher with respect to the impact at the time of collision with the liquid level in the liquid tank. Therefore, in addition to the above-described ammonia spraying by the ammonia injection nozzle mechanism, if a contact area with ammonia is further provided in the lower droplet drop area, the true spherical shape of the droplet is more reliably fixed. .

例えば、外部ゲル化法の場合、液槽内にはアンモニア水溶液が収容されているが、このアンモニア水溶液面上にアンモニア充満領域を設ける構成とすれば、アンモニアが吹き付けられた後の液滴は、槽内に入ってからアンモニア水溶液面に達するまでの間、アンモニア雰囲気中を通過することとなる。即ち、この構成では、別体の設備を設けることなく同じアンモニア水溶液収納用の液槽を利用するという簡便な構成でさらなる液滴のアンモニア接触時間を確保することができる。   For example, in the case of the external gelation method, an aqueous ammonia solution is stored in the liquid tank, but if the ammonia-filled region is provided on the surface of the aqueous ammonia solution, the droplets after the ammonia is sprayed are It passes through the ammonia atmosphere until it reaches the ammonia aqueous solution surface after entering the tank. That is, in this configuration, it is possible to secure a further ammonia contact time of the droplets with a simple configuration in which the same liquid tank for storing the aqueous ammonia solution is used without providing a separate facility.

なお、このように液槽の上部のアンモニア水溶液面上にアンモニア充満領域を形成する場合、アンモニアをできるだけ槽内に封じ込めるように、液槽は落下してくる液滴を受け入れるための上面開口部以外は閉鎖状態とすることが好ましい。   When forming an ammonia-filled region on the surface of the aqueous ammonia solution at the top of the liquid tank in this way, the liquid tank has a portion other than the top opening for receiving the falling droplets so as to contain ammonia as much as possible. Is preferably closed.

また、上記アンモニア噴射ノズル機構は、そのノズルから噴射されたアンモニアが、滴下装置内に浸入し、装置内で原液をゲル化させてしまうことのないように、滴下装置とアンモニア噴射ノズルとの位置関係を設定することや、あるいは雰囲気調整によって実質的にアンモニアの滴下装置側への移動を規制することが望ましい。   In addition, the ammonia injection nozzle mechanism has a position of the dropping device and the ammonia injection nozzle so that ammonia injected from the nozzle does not enter the dropping device and gel the stock solution in the device. It is desirable to restrict the movement of ammonia to the dropping device side by setting the relationship or adjusting the atmosphere.

例えば、アンモニア噴射ノズルに対して液滴の落下経路を挟んだ対向位置に、前記アンモニア噴射ノズルから噴射されて落下経路を越えたアンモニア気流を吸引して本装置外の所定領域へ排出する排気機構を更に設ける構成が挙げられる。このアンモニア噴射ノズルと排気機構との間には強制的にアンモニア流がエアカーテン状に形成されるため、このエアカーテンが前記アンモニア充満領域の上方で、液槽の前記開口部の直上に形成されるように装置の所定構成部位を配置すれば、アンモニア噴射ノズルから噴射されたアンモニアの滴下装置側への移動が防止できると同時に、エアカーテンによる液槽上部のアンモニア充満領域内へのアンモニアの封じ込め効果も得られる。   For example, an exhaust mechanism that sucks an ammonia stream that has been jetted from the ammonia jet nozzle and has passed through the drop path to a position opposite to the ammonia jet nozzle across the drop path to discharge it to a predetermined area outside the apparatus The structure which further provides is mentioned. Since the ammonia flow is forcibly formed in an air curtain between the ammonia injection nozzle and the exhaust mechanism, the air curtain is formed directly above the opening of the liquid tank above the ammonia filling region. If the predetermined components of the device are arranged in such a way, the ammonia injected from the ammonia injection nozzle can be prevented from moving to the dropping device side, and at the same time, the air can be sealed in the ammonia-filled area above the liquid tank by the air curtain. An effect is also obtained.

また、液槽内のアンモニア水溶液中では、ADUゲル粒子の生成反応の進行に伴ってアンモニアが消費されてその濃度が低下してしまうが、上記のように液槽上部にアンモニア充満領域が設けられていれば、該領域との接触面であるアンモニア水溶液面からアンモニアが補給されるため、振動滴下により多量の液滴を順次滴下していっても何ら反応に支障は生じない。   Further, in the aqueous ammonia solution in the liquid tank, ammonia is consumed and the concentration thereof decreases as the ADU gel particle generation reaction proceeds. As described above, an ammonia-filled region is provided in the upper part of the liquid tank. If so, ammonia is replenished from the surface of the aqueous ammonia solution that is the contact surface with the region, so that no trouble is caused in the reaction even if a large number of droplets are successively dropped by vibration dropping.

以上のような装置構成により得られたADUゲル粒子は、次の乾燥、焙焼、焼結などの所定の工程に応じた熱処理装置部を経て真球度が良く且つ粒径の揃った燃料粒子となる。   The ADU gel particles obtained by the apparatus configuration as described above are fuel particles having a good sphericity and a uniform particle diameter through a heat treatment apparatus section corresponding to a predetermined process such as subsequent drying, roasting, and sintering. It becomes.

本発明の一実施例による高温ガス炉用燃料粒子の製造装置として、外部ゲル化法によるADUゲル粒子製造部の概略構成を図1に示す。該製造部は、主に、アンモニア水溶液7を収容した液槽6と、アンモニアとの接触でゲル化反応する添加剤を含む水溶液と硝酸ウラニル液とから調整されてなる滴下原液が供給される供給源T1と、該供給源T1からの滴下原液を液槽6の上方に位置決めされる振動ノズル2から液槽へ滴下する振動滴下装置1とを備えたものである。   FIG. 1 shows a schematic configuration of an ADU gel particle production unit using an external gelation method as an apparatus for producing fuel particles for a HTGR according to an embodiment of the present invention. The production unit is mainly supplied with a dropping stock solution prepared by adjusting a liquid tank 6 containing an aqueous ammonia solution 7, an aqueous solution containing an additive that undergoes a gelation reaction upon contact with ammonia, and a uranyl nitrate solution. A source T1 and a vibration dropping device 1 for dropping the dropping stock solution from the supply source T1 to the liquid tank from the vibration nozzle 2 positioned above the liquid tank 6 are provided.

振動滴下装置1は、供給源T1から供給される滴下原液の流量を制御するためのポンプとノズル2を振動させる振動機構とを有し、所望の液滴径に応じて予め決定された振動数で発振する発振器とこの発振器の振動数を拡大するアンプと、アンプにより増幅された振動を受け取ってノズルを振動させる加振器を備えているものである。   The vibration dripping device 1 has a pump for controlling the flow rate of the dripping stock solution supplied from the supply source T1 and a vibration mechanism that vibrates the nozzle 2, and the vibration frequency determined in advance according to a desired droplet diameter. An oscillator that oscillates in (1), an amplifier that increases the frequency of the oscillator, and a vibrator that receives the vibration amplified by the amplifier and vibrates the nozzle.

また、本製造部では、液滴表面ゲル化手段として、液槽6の上で液滴10に対してほぼ水平方向からアンモニアを吹き付けるアンモニア噴射ノズル機構3と液槽6の上部のアンモニア水溶液面上に設けられたアンモニア充満領域8とを備えたものである。液槽6は、液滴を受け入れる開口部9以外は閉鎖状態としてアンモニア充満領域8を確保している。また本実施例では、これら液槽6内のアンモニア充満領域8とアンモニア噴射ノズル機構3へは同じ供給源T2からアンモニアを供給するものとした。   Further, in the present manufacturing department, as the droplet surface gelling means, the ammonia injection nozzle mechanism 3 that sprays ammonia from the substantially horizontal direction on the liquid tank 6 on the liquid tank 6 and the ammonia aqueous solution surface above the liquid tank 6. And an ammonia-filled region 8 provided on the surface. The liquid tank 6 is in a closed state except for the opening 9 for receiving the droplets, and secures the ammonia-filled region 8. In this embodiment, ammonia is supplied from the same supply source T2 to the ammonia filling region 8 and the ammonia injection nozzle mechanism 3 in the liquid tank 6.

さらに、本製造部においては、アンモニア噴射ノズル機構3に対して液滴の落下経路を挟んだ対向位置に、該機構のノズルから噴射されて液滴落下経路を越えたアンモニア流を吸引して排気する排気機構5を設けることによって、液槽6の開口9の直上にアンモニアのエアカーテン4を形成し、噴射後のアンモニアが振動滴下装置1内に入り込んで装置内で原液をゲル化させて滴下工程を阻害する問題を回避すると共に、アンモニア充満領域8のアンモニアが液槽6から出てしまうのを封じ込めるものとした。   Further, in this manufacturing unit, the ammonia flow jetted from the nozzle of the mechanism and sucked over the droplet dropping path is exhausted at a position opposed to the ammonia jet nozzle mechanism 3 across the droplet dropping path. By providing the exhaust mechanism 5 to be formed, an ammonia air curtain 4 is formed immediately above the opening 9 of the liquid tank 6, and after injection, the ammonia enters the vibration dropping device 1 to gel the stock solution and drop it. While avoiding the problem which inhibits a process, it shall contain the ammonia of the ammonia filling area | region 8 coming out of the liquid tank 6. FIG.

以上の構成を備えたADUゲル粒子製造部では、振動ノズル2から滴下され落下しながらその表面張力により球状となった液滴10は、液槽6の開口部9に入る前にアンモニア噴射ノズル機構3から噴射されるアンモニアが吹き付けられ、液滴表面でゲル化反応が生じて外表面にゲル層が形成され、その後開口部9から液槽6内へ入り、アンモニア水溶液面に達するまでのあいだアンモニア充満領域8を通過し、その間、さらに液滴表面でのゲル化反応が進んで外殻としてのゲル層が強化される。   In the ADU gel particle manufacturing unit having the above-described configuration, the droplet 10 that has been dropped from the vibrating nozzle 2 and has fallen into a spherical shape due to its surface tension is added to the ammonia injection nozzle mechanism before entering the opening 9 of the liquid tank 6. Ammonia sprayed from No. 3 is sprayed, a gelling reaction occurs on the droplet surface, a gel layer is formed on the outer surface, and then enters the liquid tank 6 through the opening 9 until reaching the ammonia aqueous solution surface. In the meantime, it passes through the full region 8, during which the gelation reaction further proceeds on the surface of the droplet, and the gel layer as the outer shell is strengthened.

このように、外表面にゲル層の外殻が形成された液滴10は、その球形状が固定されており、アンモニア水溶液面に衝突した際の衝撃でも殆ど変形することなく、真球度の良い球形状を維持したままアンモニア水溶液7中を沈降していき、中心部までのゲル化反応が進んで完了した時点でゲル状のADU粒子が得られる。   Thus, the droplet 10 having the outer shell of the gel layer formed on its outer surface has a fixed spherical shape, and hardly deforms even when it collides with the ammonia aqueous solution surface. While maintaining a good spherical shape, the solution settles in the aqueous ammonia solution 7, and gelled ADU particles are obtained when the gelation reaction to the center progresses and is completed.

このように表面ゲル層の外殻が形成された液滴10は、外殻のない液滴のまま着水する場合よりも速やかにアンモニア水溶液中を沈降するので液滴同士が接触し難く、また振動滴下により多量の液滴10が次々にアンモニア水溶液7中に入っていって液滴同士が接触しても、それそれの外殻(ゲル層)の存在により、互いに独立状態で結合することがなく、結果として得られるADUゲル粒子は真球度が良く粒径の均一なものとなる。   Since the droplet 10 having the outer shell of the surface gel layer thus formed settles in the aqueous ammonia solution more quickly than the case where the droplet does not have the outer shell, it is difficult for the droplets to contact each other. Even if a large number of droplets 10 enter the aqueous ammonia solution 7 one after another by vibration dropping and the droplets come into contact with each other, they can be bonded to each other independently due to the presence of their outer shells (gel layers). Instead, the resulting ADU gel particles have good sphericity and uniform particle size.

以上に説明した図1の製造部により実際にADUゲル粒子を形成した例を以下に説明する。まず、添加剤としてのポリビニルアルコール溶液と硝酸ウラニル液とから滴下原液を調製した。   An example in which ADU gel particles are actually formed by the manufacturing unit of FIG. 1 described above will be described below. First, a dropping stock solution was prepared from a polyvinyl alcohol solution and an uranyl nitrate solution as additives.

本実施例では、振動ノズル2としてノズル径約2mmのものを用い、約90Hzの振動数でノズルを振動させて原液を滴下する設定とした。またアンモニア噴射ノズル機構3によるアンモニア吹き付け位置は、ノズル2の下端から約40mm下方に設定し、落下中の液滴10が球形状となるのに充分な距離を確保した。さらに、液槽6の開口部9からアンモニア水溶液面までの距離、即ちアンモニア充満領域8の距離を約300mmとした。   In the present embodiment, a nozzle having a nozzle diameter of about 2 mm was used as the vibrating nozzle 2 and the stock solution was dropped by vibrating the nozzle at a frequency of about 90 Hz. The ammonia spraying position by the ammonia injection nozzle mechanism 3 was set approximately 40 mm below the lower end of the nozzle 2 to ensure a sufficient distance for the falling droplet 10 to be spherical. Furthermore, the distance from the opening 9 of the liquid tank 6 to the ammonia aqueous solution surface, that is, the distance of the ammonia filling region 8 was set to about 300 mm.

以上の条件により原液を滴下した。この滴下により直径がおおよそで約0.07mmの液滴が得られる。上記の如く、滴下後、球形状となった液滴10は、アンモニア噴射ノズル機構3によりアンモニアが吹き付けられ、その後液槽6内に開口部9から入り、アンモニア充満領域8を通過した後、アンモニア水溶液7中に入って沈降する。これら液滴10を、少なくともゲル化反応が完了するのに必要な所定凝固時間、そのまま液槽中に浸漬させることによってADUゲル粒子を得た。   The stock solution was dropped under the above conditions. By this dropping, a droplet having a diameter of approximately 0.07 mm is obtained. As described above, after dropping, the spherical droplet 10 is sprayed with ammonia by the ammonia injection nozzle mechanism 3, then enters the liquid tank 6 through the opening 9, passes through the ammonia-filled region 8, and then ammonia. It settles in the aqueous solution 7. ADU gel particles were obtained by immersing these droplets 10 in a liquid bath as they were for at least a predetermined coagulation time required for completing the gelation reaction.

ここで本実施例の比較例として、上記製造部のアンモニア噴射ノズル機構3によるアンモニア吹き付けを行うことなく、且つアンモニア充満領域8からアンモニアを除去した以外は本実施例と同じ条件で原液の滴下を行い従来タイプのADUゲル粒子を得た。   Here, as a comparative example of the present embodiment, the stock solution was dropped under the same conditions as in the present embodiment, except that ammonia was not sprayed from the ammonia injection nozzle mechanism 3 of the manufacturing unit and ammonia was removed from the ammonia filling region 8. The conventional type ADU gel particles were obtained.

それぞれのADU粒子の真球度を求めた結果、従来タイプの比較例のものが約1.2であったのに対して、本実施例で得られたADU粒子では約1.08であり、大幅に真球度が向上したことが明らかとなった。従って、このように真球度の良いADUゲル粒子から所定の熱処理工程を経て得られる燃料粒子も、従来に比べて真球度がより良好なものとなる。   As a result of obtaining the sphericity of each ADU particle, the conventional type comparative example was about 1.2, whereas the ADU particle obtained in this example was about 1.08. It became clear that the sphericity was greatly improved. Accordingly, the fuel particles obtained from the ADU gel particles having a good sphericity through a predetermined heat treatment step also have a better sphericity than the conventional one.

また、以上の実施例では、外部ゲル化法を用いた場合を説明したが、本発明は、内部ゲル化法を用いた場合も同様に有効である。内部ゲル化法の場合には、滴下原液供給源T1で調整される滴下原液にはヘキサメチレンテトラミンなどのアンモニアドナーをさらに添加し、液槽6内にはアンモニアドナーを加熱分解してアンモニアを発生せしめ得る高温に加温されているパラフィンオイル等を収容することによってADUゲル粒子製造部が構成できる。   Moreover, although the case where the external gelation method was used was demonstrated in the above Example, this invention is similarly effective when the internal gelation method is used. In the case of the internal gelation method, an ammonia donor such as hexamethylenetetramine is further added to the dropping stock solution adjusted by the dropping stock supply source T1, and ammonia is thermally decomposed in the liquid tank 6 to generate ammonia. The ADU gel particle manufacturing unit can be configured by containing paraffin oil or the like heated to a high temperature that can be damped.

この場合も、液槽6上方に配置されるアンモニア噴射ノズル機構3と排気機構5とで構成される液滴表面ゲル化手段によって、振動ノズル2から滴下されたアンモニアドナーを含む液滴10は、液槽内のオイル液面に達する前にアンモニア吹き付けで表面からゲル化反応が生じ、外表面にゲル層の外殻が形成されて、その球形状が固定される。従って液滴は液槽内のオイル液面に衝突した際の衝撃でも殆ど変形することなく、真球度の良い球形状を維持したままオイル中を沈降していき、加熱されて液滴内部でアンモニアが発生して中心部からのゲル化反応が進み、ゲル化反応がで完了した時点で真球度の良いゲル状のADU粒子が得られる。   Also in this case, the droplet 10 containing the ammonia donor dropped from the vibrating nozzle 2 by the droplet surface gelling means constituted by the ammonia injection nozzle mechanism 3 and the exhaust mechanism 5 disposed above the liquid tank 6 Before reaching the oil liquid level in the liquid tank, a gelling reaction occurs from the surface by spraying ammonia, and an outer shell of the gel layer is formed on the outer surface, and its spherical shape is fixed. Therefore, the liquid droplet hardly settles even when it collides with the oil level in the liquid tank, and settles in the oil while maintaining a spherical shape with good sphericity, and is heated and heated inside the liquid droplet. Ammonia is generated and the gelation reaction proceeds from the center, and when the gelation reaction is completed, gel-like ADU particles with good sphericity can be obtained.

なお、本発明における滴下、アンモニア吹き付け位置、液槽のアンモニア水溶液面位置、また滴下振動数、温度、時間等の条件設定は、上記実施例に示したものに限るものではなく、用いる添加剤の種類や濃度、また所望の粒径、数量等に応じて適宜選択すればよい。また上記実施例では、振動滴下法を用いた場合を示したが、本発明はこれに限らず、例えば自然滴下法などを用いた場合も有効である。   The setting of conditions such as dropping, ammonia spraying position, ammonia aqueous solution surface position of the liquid tank, dropping frequency, temperature, time, etc. in the present invention is not limited to those shown in the above-mentioned examples, and the additive used What is necessary is just to select suitably according to a kind, density | concentration, a desired particle size, quantity, etc. Moreover, although the case where the vibration dropping method was used was shown in the said Example, this invention is not limited to this, For example, the case where a natural dropping method etc. are used is also effective.

本発明に一実施例による高温ガス炉用燃料粒子の製造装置のADUゲル粒子製造部を説明する概略構成図である。It is a schematic block diagram explaining the ADU gel particle manufacturing part of the manufacturing apparatus of the fuel particle for high temperature gas reactors by one Example to this invention.

符号の説明Explanation of symbols

1:振動滴下装置
2:振動ノズル
3:アンモニア噴射ノズル機構
4:エアカーテン
5:排気機構
6:液槽
7:アンモニア水溶液
8:アンモニア充満領域
9:開口部
10:液滴
T1:滴下原液供給源
T2:アンモニア供給源
1: Vibrating dripping device 2: Vibrating nozzle 3: Ammonia injection nozzle mechanism 4: Air curtain 5: Exhaust mechanism 6: Liquid tank 7: Aqueous ammonia solution 8: Ammonia filling area 9: Opening 10: Droplet T1: Dropping stock solution supply source T2: Ammonia supply source

Claims (6)

アンモニアとの接触でゲル化反応する添加剤を含む水溶液と硝酸ウラニル液とから調製されてなる滴下原液をノズルから滴下する滴下手段と、前記ノズルから滴下された液滴を受けて前記ゲル化反応を生じせしめ、液滴をゲル粒子化させるための液槽とを備えた高温ガス炉用燃料粒子の製造装置において、
前記ノズルから滴下された液滴が前記液槽の液面に達するまでの落下経路途中で該液滴にアンモニアを接触させる液滴表面ゲル化手段を備えており、
前記液滴表面ゲル化手段は、
落下中の液滴に対してほぼ水平方向からアンモニアを吹き付けるアンモニア噴射ノズル機構と、
前記アンモニア噴射ノズルに対して前記液滴の落下経路を挟んだ対向位置に設けられ、前記アンモニア噴射ノズルから噴射されて前記落下経路を越えたアンモニア気流を排気する排気機構とを備え、
前記液槽の上面開口部の直上で、アンモニア噴射ノズルと排気機構との間に強制的にエアカーテン状のアンモニア流が形成されることを特徴とする高温ガス炉用燃料粒子の製造装置。
Dropping means for dropping a dropping stock solution prepared from an aqueous solution containing an additive that undergoes a gelling reaction upon contact with ammonia and a uranyl nitrate solution from a nozzle, and the gelation reaction upon receiving a droplet dropped from the nozzle In the apparatus for producing fuel particles for a HTGR equipped with a liquid tank for generating droplets into gel particles,
A droplet surface gelling means for bringing ammonia into contact with the droplet in the middle of a dropping path until the droplet dropped from the nozzle reaches the liquid level of the liquid tank ;
The droplet surface gelling means includes:
An ammonia injection nozzle mechanism that sprays ammonia from a substantially horizontal direction on a falling droplet;
An exhaust mechanism that is provided at an opposed position across the drop path of the droplet with respect to the ammonia injection nozzle, and exhausts an ammonia stream that is injected from the ammonia injection nozzle and exceeds the drop path;
An apparatus for producing fuel particles for a HTGR, wherein an air curtain-like ammonia flow is forcibly formed between an ammonia injection nozzle and an exhaust mechanism immediately above the upper surface opening of the liquid tank .
前記液槽が、アンモニア水溶液を収容しているものであることを特徴とする請求項に記載の高温ガス炉用燃料粒子の製造装置。 The apparatus for producing fuel particles for a HTGR according to claim 1 , wherein the liquid tank contains an aqueous ammonia solution. 前記液槽のアンモニア水溶液面上に設けられたアンモニア充満領域をさらに備え、前記アンモニア噴射ノズル機構と前記排気機構が、このアンモニア充満領域の上方に配置されていることを特徴とする請求項に記載の高温ガス炉用燃料粒子の製造装置。 Further comprising ammonia fill area provided on an aqueous ammonia solution surface of the liquid tank, the ammonia injection nozzle mechanism and the exhaust mechanism, to claim 2, characterized in that disposed above the ammonia filling region An apparatus for producing fuel particles for a HTGR as described. 前記滴下原液が加熱によりアンモニアを発生するアンモニアドナーをさらに含むものであり、前記液槽が予め定められた温度に加温されている加熱液を収容しているものであることを特徴とする請求項に記載の高温ガス炉用燃料粒子の製造装置。 The dripping stock solution further includes an ammonia donor that generates ammonia by heating, and the liquid tank contains a heating liquid heated to a predetermined temperature. Item 2. The apparatus for producing fuel particles for a HTGR according to Item 1 . アンモニアとの接触でゲル化反応する添加剤を含む水溶液と硝酸ウラニル液とから調製されてなる滴下原液を得る原液調製工程と、前記原液をノズルから下方の液槽に向けて滴下して前記滴下原液の球状液滴を形成させる液滴形成工程と、前記液槽中で液滴をゲル化してゲル状の重ウラン酸アンモニウム粒子を形成させる凝固工程とを備えた高温ガス炉用燃料粒子の製造方法において、
前記液滴形成工程で形成された球状液滴に対して、前記液槽の液面に達する前にアンモニアに接触させる液滴表面ゲル化工程を備え、
前記液滴表面ゲル化工程は、落下中の液滴に対してアンモニア噴射ノズルからアンモニアを吹き付けると共に、落下経路を挟んだ対向位置の排気機構から落下経路を越えたアンモニア気流を吸引する工程を含み、前記液槽の上面開口部の直上で、噴射ノズルと排気機構との間に強制的にエアカーテン状のアンモニア流を形成することを特徴とする請求項7に記載の高温ガス炉用燃料粒子の製造方法。
A stock solution preparation step for obtaining a drop stock solution prepared from an aqueous solution containing an additive that undergoes a gelation reaction upon contact with ammonia and a uranyl nitrate solution, and dropping the stock solution from a nozzle toward a lower liquid tank to drop the stock solution Production of fuel particles for a high temperature gas reactor comprising a droplet forming step for forming a spherical droplet of a stock solution and a solidification step for gelling the droplet in the liquid tank to form gel-like ammonium uranate particles. In the method
For the spherical liquid droplets formed in the liquid droplet forming step, the liquid droplet surface gelation step is brought into contact with ammonia before reaching the liquid surface of the liquid tank,
The droplet surface gelation step includes a step of spraying ammonia from an ammonia injection nozzle to a droplet that is falling and a step of sucking an ammonia air stream that has passed the drop route from an exhaust mechanism at a position opposite to the drop route. 8. The fuel particle for a HTGR according to claim 7, wherein an ammonia flow in the form of an air curtain is forcibly formed between the injection nozzle and the exhaust mechanism immediately above the upper surface opening of the liquid tank. Manufacturing method.
前記液滴表面ゲル化工程は、前記アンモニアの吹き付け後にアンモニア充満領域を通過させる工程をさらに含むことを特徴とする請求項に記載の高温ガス炉用燃料粒子の製造方法。 The method for producing fuel particles for a HTGR according to claim 5 , wherein the droplet surface gelation step further includes a step of passing the ammonia-filled region after the ammonia is sprayed.
JP2004084835A 2003-10-16 2004-03-23 HTGR fuel particle manufacturing apparatus and method Expired - Fee Related JP4321859B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004084835A JP4321859B2 (en) 2004-03-23 2004-03-23 HTGR fuel particle manufacturing apparatus and method
CN2009102035165A CN101596430B (en) 2003-10-16 2004-10-15 Dripping surface solidfying device and apparatus for manufacturing ammonium diuranate particle
PCT/JP2004/015278 WO2005037715A1 (en) 2003-10-16 2004-10-15 Dropping nozzle device, device for recovering dropping undiluted solution, device for supplying dropping undiluted solution, device for solidifying surface of droplet, device for circulating aqueous ammonia solution, and apparatus for producing ammonium deuterouranate particles
EP11175255.6A EP2390230B1 (en) 2003-10-16 2004-10-15 Device for supplying a feedstock liquid
EP11175256.4A EP2390231B9 (en) 2003-10-16 2004-10-15 Device for solidifying the surfaces of drops
EP04792495.6A EP1686094B1 (en) 2003-10-16 2004-10-15 Use of a device for recovering feedstock liquid in an apparatus for producing ammonium diuranate particles
CN2004800304355A CN1867516B (en) 2003-10-16 2004-10-15 Dropping supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084835A JP4321859B2 (en) 2004-03-23 2004-03-23 HTGR fuel particle manufacturing apparatus and method

Publications (2)

Publication Number Publication Date
JP2005272172A JP2005272172A (en) 2005-10-06
JP4321859B2 true JP4321859B2 (en) 2009-08-26

Family

ID=35172230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084835A Expired - Fee Related JP4321859B2 (en) 2003-10-16 2004-03-23 HTGR fuel particle manufacturing apparatus and method

Country Status (1)

Country Link
JP (1) JP4321859B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2968582B1 (en) * 2010-12-08 2018-05-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD AND DEVICE FOR GENERATING DROPS OF LOW GENERATING SPEED AND MODULAR GRANULOMETRIC SPECTRUM

Also Published As

Publication number Publication date
JP2005272172A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP4334316B2 (en) Ammonium uranate particle production equipment
JP4321859B2 (en) HTGR fuel particle manufacturing apparatus and method
JP2836711B2 (en) Method and apparatus for producing ammonium biuranate particles
JP2007024841A (en) Manufacturing equipment of coated fuel particle for high-temperature gas-cooled reactor
JP2007119298A (en) Apparatus for manufacturing ammonium diuranate particle
JP2006266805A (en) Manufacturing equipment and manufacturing method for coated fuel particle for high-temperature gas-cooled reactor
JP4583104B2 (en) Methyltrichlorosilane gas generator
JP4354903B2 (en) Production equipment for coated fuel particles for HTGR
JP2006112838A (en) Method for manufacturing fuel compact for high-temperature gas-cooled reactor
JP4636831B2 (en) Production equipment for ammonium deuterated uranate particles
JP4502397B2 (en) Apparatus and method for producing coated fuel particles for HTGR
JP2007084376A (en) Apparatus for manufacturing ammonium diuranate particle
JP4409405B2 (en) Production equipment for coated fuel particles for HTGR
JP4729344B2 (en) Continuous production method and continuous production apparatus for ammonium heavy uranate particles
JP2007147504A (en) Coated fuel particle for high-temperature gas-cooled reactor, and manufacturing method therefor
JP4318998B2 (en) Ammonium uranate particle production equipment
JP4417867B2 (en) Production equipment for coated fuel particles for HTGR
JP2010112822A (en) Method of manufacturing fuel compact for high-temperature gas-cooled reactor
JP2006199547A (en) Method and apparatus for producing ammonium diuranate particle
JP4417871B2 (en) Production equipment for coated fuel particles for HTGR
JP2005233878A (en) Method of feeding raw material for coated nuclear fuel
JP4450762B2 (en) Gas introduction nozzle of coated fuel particle manufacturing equipment for HTGR
JP4415272B2 (en) Equipment for producing fuel particles for HTGR
JP2007132728A (en) Method of manufacturing fuel compact for high-temperature gas-cooled reactor
JP2006225242A (en) Apparatus for manufacturing ammonium diuranate particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

R150 Certificate of patent or registration of utility model

Ref document number: 4321859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150612

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees