JP2006266805A - Manufacturing equipment and manufacturing method for coated fuel particle for high-temperature gas-cooled reactor - Google Patents

Manufacturing equipment and manufacturing method for coated fuel particle for high-temperature gas-cooled reactor Download PDF

Info

Publication number
JP2006266805A
JP2006266805A JP2005083933A JP2005083933A JP2006266805A JP 2006266805 A JP2006266805 A JP 2006266805A JP 2005083933 A JP2005083933 A JP 2005083933A JP 2005083933 A JP2005083933 A JP 2005083933A JP 2006266805 A JP2006266805 A JP 2006266805A
Authority
JP
Japan
Prior art keywords
fuel
sample
reaction vessel
gas
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005083933A
Other languages
Japanese (ja)
Other versions
JP4357441B2 (en
Inventor
Tomoo Takayama
智生 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2005083933A priority Critical patent/JP4357441B2/en
Publication of JP2006266805A publication Critical patent/JP2006266805A/en
Application granted granted Critical
Publication of JP4357441B2 publication Critical patent/JP4357441B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To more efficiently and safely form the first coated layer to the fourth coated layer. <P>SOLUTION: In a manufacturing equipment of coated fuel particle for high-temperature gas-cooled reactors, the raw material gas is discharged for supplying from a gas discharge nozzle device into a reaction vessel and fluidizing and heating uranium dioxide fuel kernel with the discharge flow so that kernel surface of the fuel is coated with an molecule evaporation layer of a material molecule by a stuff gas thermal decomposition reaction. For a sampling mechanism for extruding the fuel kernel in the reaction vessel out to the external sample vessel during coating reaction, a sample receiver for receiving fuel kernel passing through the nozzle hole which has an inner diameter allowing passing of the fuel kernel as at least a part of the gas discharge nozzle device when the material gas discharge is stopped, and is penetrated through the bottom of the reaction vessel and falling down, a sample extrusion pipe for extruding the fuel kernel from the sample receiver to outside by natural fall, a sample vessel for containing the fuel kernel falling from the sample extrusion pipe, and an on-off valve provided to the sample extrusion pipe are provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば高温ガス炉の装荷燃料を構成する被覆燃料粒子の製造装置に関するものであり、詳しくは被覆層形成工程における燃料核のサンプリング機構に関するものである。   The present invention relates to an apparatus for producing coated fuel particles constituting, for example, a loaded fuel of a HTGR, and more particularly to a fuel nucleus sampling mechanism in a coating layer forming process.

高温ガス炉は、燃料を含む炉心構造を熱容量が大きく高温健全性の良好な黒鉛で形成し、ヘリウム等の高温下でも化学的反応の起こらないガス冷却材を用いることにより、固有の安全性が高く、高い出口温度のヘリウムガスを取り出すことの可能な原子炉であり、得られる約900℃の高温熱は、発電はもちろんのこと水素製造や化学プラント等幅広い分野での熱利用を可能にするものである。   High temperature gas reactors have inherent safety by using a gas coolant that does not cause chemical reactions even at high temperatures, such as helium, which is formed of graphite with a large heat capacity and good high temperature integrity. The reactor is capable of extracting helium gas with a high and high outlet temperature, and the resulting high-temperature heat of about 900 ° C enables heat utilization in a wide range of fields such as hydrogen production and chemical plants as well as power generation. Is.

このような高温ガス炉の燃料は、通常、ウランを含む溶液を出発原料として製造した二酸化ウランをセラミックス状に焼結した直径約350〜650μmの燃料核を基本構造とし、この燃料核の外表面に複数の被覆層を形成してなる被覆燃料粒子を用いたものである。   The fuel for such a high temperature gas reactor is generally composed of a fuel nucleus having a diameter of about 350 to 650 μm, which is obtained by sintering uranium dioxide produced from a solution containing uranium as a starting material into a ceramic form, and the outer surface of the fuel nucleus. Using coated fuel particles formed with a plurality of coating layers.

高温ガス炉で一般的な例えば、第1被覆層として密度約1g/cmの低密度熱分解炭素層を形成し、第2被覆層として密度約1.8g/cmの高密度熱分解炭素層を形成し、さらに第3被覆層として密度約3.2g/cm炭化珪素(SiC)層を、また第4被覆層として密度約1.8g/cmの高密度熱分解炭素層を形成した計4層の被覆を施されたものが一般的となっている。 For example, a low density pyrolytic carbon layer having a density of about 1 g / cm 3 is formed as a first coating layer, and a high density pyrolytic carbon having a density of about 1.8 g / cm 3 is formed as a second coating layer. Forming a layer, and further forming a silicon carbide (SiC) layer with a density of about 3.2 g / cm 3 as a third coating layer and a high-density pyrolytic carbon layer with a density of about 1.8 g / cm 3 as a fourth coating layer. In general, a coating with a total of four layers is applied.

第1被覆層は、ガス状の核分裂生成物のガス留めとしての機能及び燃料核の変形を吸収する緩衝部としての機能を併せ持つものである。また第2被覆層はガス状核分裂生成物の保持機能を有し、第3被覆層は固体状核分裂生成物の保持機能を有すると共に、被覆層の主要な強度部材である。第4被覆層は、第2被覆層と同様のガス状核分裂生成物の保持機能と共に第3被覆層の保護層としての機能も持っている。   The first coating layer has both a function as a gas stopper for gaseous fission products and a function as a buffer for absorbing deformation of the fuel nucleus. The second coating layer has a function of holding gaseous fission products, and the third coating layer has a function of holding solid fission products, and is a main strength member of the coating layer. The fourth coating layer has a function as a protective layer of the third coating layer as well as the function of holding the gaseous fission product similar to the second coating layer.

上記のような被覆燃料粒子の一般的なものは直径約500〜1000μmである。被覆燃料粒子は黒鉛母材中に分散させ一定形状の燃料コンパクトの形に成型加工され、さらに黒鉛でできた筒にコンパクトを一定数量入れ、上下に栓をした燃料棒の形にされる。最終的に燃料棒は、六角柱型黒鉛ブロックの複数の挿入口に入れられ、この六角柱型黒鉛ブロックを多数個、ハニカム配列に複数段重ねて炉心を構成している。   Typical of such coated fuel particles are about 500-1000 μm in diameter. The coated fuel particles are dispersed in a graphite base material and formed into a compact fuel compact shape. Further, a fixed amount of the compact is put into a graphite tube, and the fuel rod is plugged up and down. Finally, the fuel rod is inserted into a plurality of insertion holes of the hexagonal column type graphite block, and a large number of the hexagonal column type graphite blocks are stacked in a honeycomb array to constitute a core.

一般的な被覆燃料粒子となる被覆前の燃料核は次のような工程で製造されており、大量形成が可能な方法として振動滴下によるゲル状の粒子を得る外部ゲル化法が多く用いられている。具体的には、まず酸化ウランの粉末を硝酸に溶かし硝酸ウラニル原液とし、この硝酸ウラニル原液に純水、添加剤を加え撹拌することにより滴下原液とする。添加剤は、滴下された硝酸ウラニルの液滴が落下中に自身の表面張力により真球状になるようにする増粘剤であると同時にアンモニウムとの接触により原液をゲル化せしめるために添加されるものであり、例えばポリビニルアルコール樹脂、アルカリ条件下でゲル化する性質を持つ樹脂、ポリエチレングリコール、メトローズなどを挙げることができる。   The fuel core before coating, which is a general coated fuel particle, is manufactured by the following process, and the external gelation method that obtains gel-like particles by vibration dripping is often used as a method capable of mass formation. Yes. Specifically, first, a powder of uranium oxide is dissolved in nitric acid to obtain a uranyl nitrate stock solution, and pure water and additives are added to the uranyl nitrate stock solution and stirred to obtain a dripping stock solution. The additive is a thickening agent that causes the dripped uranyl nitrate droplet to become spherical due to its surface tension during dropping, and at the same time is added to cause the stock solution to gel by contact with ammonium. Examples thereof include polyvinyl alcohol resins, resins having a property of gelation under alkaline conditions, polyethylene glycol, and metroses.

以上のように調製された滴下原液は所定の温度に冷却され粘度を調整した後、細径の滴下ノズルを振動させることによりアンモニア水溶液中に滴下される。アンモニア水溶液中へ液滴となって入った原液は、硝酸ウラニルがアンモニアと十分に反応させられると同時に前記添加剤がゲル化され、重ウラン酸アンモニウム(ADU)を含むゲル状の粒子となる。得られたADUゲル粒子は、大気中で焙焼され、水分および添加剤が除去されて三酸化ウラン粒子となり、さらに還元・焼結されることにより高密度のセラミックス状二酸化ウランからなる球状の燃料核となる。   The dripping stock solution prepared as described above is cooled to a predetermined temperature, adjusted in viscosity, and then dropped into an aqueous ammonia solution by vibrating a small-diameter dropping nozzle. The undiluted solution that has entered the aqueous ammonia solution as droplets is allowed to react sufficiently with the ammonia uranyl nitrate, and at the same time the additive is gelled to form gel-like particles containing ammonium heavy uranate (ADU). The obtained ADU gel particles are roasted in the air, moisture and additives are removed to form uranium trioxide particles, and further reduced and sintered to form spherical fuel composed of high-density ceramic uranium dioxide. Become the nucleus.

この燃料核を用いた被覆燃料粒子の製造工程としては、燃料核を流動床の反応容器内に投入し、その燃料核を流動させるための流動ガスとしても機能する被覆層の原料ガスをガス導入管を介して反応容器底部まで送り、該底部に開口するガス噴出ノズルから反応容器内上方へ噴出させ、ここで熱分解させることにより被覆を施す方法が挙げられる(例えば、特許文献1参照。)。   As a manufacturing process of the coated fuel particles using the fuel core, the fuel core is introduced into the reaction vessel of the fluidized bed, and the raw material gas of the coating layer that also functions as a flowing gas for flowing the fuel core is introduced into the gas. There is a method in which coating is carried out by feeding to the bottom of the reaction vessel through a tube, ejecting from the gas ejection nozzle opening in the bottom to the inside of the reaction vessel, and thermally decomposing here (see, for example, Patent Document 1). .

例えば、第1被覆層の低密度炭素層の場合は約1400℃でアセチレン(C)を熱分解して被覆を施し、第2および第4被覆層の高密度熱分解炭素層の場合は約1400℃でプロピレン(C)を熱分解して行う。第3被覆層のSiC層の場合は約1600℃でメチルトリクロロシラン(CHSiCl)を熱分解して被覆する。 For example, in the case of the low-density carbon layer of the first coating layer, acetylene (C 2 H 2 ) is thermally decomposed at about 1400 ° C., and the high-density pyrolytic carbon layer of the second and fourth coating layers. Is carried out by thermally decomposing propylene (C 3 H 6 ) at about 1400 ° C. In the case of the SiC layer of the third coating layer, methyltrichlorosilane (CH 3 SiCl 3 ) is thermally decomposed and coated at about 1600 ° C.

一般的な燃料コンパクトは、被覆燃料粒子を黒鉛粉末、粘結剤等からなる黒鉛マトリックス材とともに中空円筒形または円筒形にプレス成型またはモールド成型した後、焼成して得られる。   A general fuel compact is obtained by press-molding or molding coated fuel particles into a hollow cylindrical shape or a cylindrical shape together with a graphite matrix material made of graphite powder, a binder, and the like, and then firing.

特開平5−273374号公報JP-A-5-273374

上記のような被覆燃料粒子の製造工程では、第1被覆層から第4被覆層までの形成を、それぞれ対応する原料ガスに切り換えて加熱温度を変更するだけで連続的な一連の工程として同一の流動床反応容器内において行うことができる。   In the production process of the coated fuel particles as described above, the formation from the first coating layer to the fourth coating layer is the same as a continuous series of steps by changing the heating temperature by switching to the corresponding source gas. It can be carried out in a fluidized bed reaction vessel.

しかしながら、各被覆層の外観や厚さ、密度等の性能を検査するために、各被覆層の形成終了時点で燃料核をサンプリングする必要があるため、従来は反応容器の上蓋に設けられたサンプリング用窓から容器内に柄杓状のサンプリング用容器付ステンレス棒を差し入れて、流動中の燃料核をサンプリング容器内に掬い入れて燃料核を取り出していた。   However, in order to inspect the performance such as the appearance, thickness and density of each coating layer, it is necessary to sample fuel nuclei at the end of the formation of each coating layer. A stainless steel rod with a sampling rod-like sampling container was inserted into the container through the window for use, and the fuel nucleus in the flowing state was inserted into the sampling container to remove the fuel nucleus.

このため、前記サンプリング用窓を開放する際に、作業者が非常に高温の熱気を浴びる危険があり、これを防止するためにはサンプリング毎に工程を中断し、反応容器内を冷却するなどの措置が必要であり、実質的に第1から第4被覆層までの形成工程を連続的に行うことができなかった。   For this reason, when opening the sampling window, there is a risk that the operator will be exposed to very high temperature hot air, and in order to prevent this, the process is interrupted for each sampling, and the reaction vessel is cooled. Measures were necessary, and the formation steps from the first to the fourth coating layers could not be carried out continuously.

また、アルゴンガスの流入により燃料核を流動させたままの状態でサンプリングを行っているため、被覆により生じた煤や燃料核から研削されたウランを含む埃等が同時に舞い上がり、その煤や埃等が装置外へ放出される危険性もあった。   In addition, since sampling is performed with the fuel nucleus flowing due to the inflow of argon gas, soot generated by the coating or dust containing uranium ground from the fuel core rises up at the same time. There was also a risk of being released outside the device.

本発明の目的は、上記問題点に鑑み、従来より効率よく且つ安全に第1被覆層から第4被覆層までの形成を行うことのできる高温ガス炉用被覆燃料粒子の製造装置および製造方法を提供することにある。   In view of the above problems, an object of the present invention is to provide a manufacturing apparatus and a manufacturing method for coated fuel particles for a high-temperature gas reactor capable of forming the first coating layer to the fourth coating layer more efficiently and safely than in the past. It is to provide.

上記目的を達成するため、請求項1に記載の発明に係る高温ガス炉用被覆燃料粒子製造装置では、二酸化ウラン燃料核を収容した反応容器内にガス噴出ノズル装置から被覆原料ガスを噴出供給してその噴流で燃料核を流動させながら加熱することにより原料ガスの熱分解反応によって燃料核の表面を被覆原料分子の蒸着層で被覆する高温ガス炉用被覆燃料粒子製造装置において、被覆反応中に反応容器内の燃料核を外部のサンプル容器へ導出するサンプリング機構と、前記ガス噴出ノズル装置の少なくとも一部として燃料核の通過を許容する内径で反応容器の底部に貫設されたノズル孔とを備え、前記サンプリング機構は、原料ガスの噴出が停止された状態で前記ノズル孔を通過して落下してくる燃料核を受け入れるサンプル受けと、該サンプル受けから燃料核を自然落下により外部へ導出するためのサンプル導出配管と、該サンプル導出配管から落下してくる燃料核を収容するサンプル容器と、前記サンプル導出配管に設けられた開閉弁装置とを備えているものである。   In order to achieve the above object, in the coated fuel particle manufacturing apparatus for a HTGR according to the first aspect of the present invention, a coating material gas is jetted and supplied from a gas jet nozzle device into a reaction vessel containing a uranium dioxide fuel nucleus. In the coated fuel particle manufacturing apparatus for high temperature gas reactors, in which the surface of the fuel nucleus is coated with the vapor deposition layer of the coating raw material molecule by the thermal decomposition reaction of the raw material gas by heating the fuel nucleus while flowing in the jet, A sampling mechanism for deriving fuel nuclei in the reaction vessel to an external sample vessel, and a nozzle hole penetrating in the bottom of the reaction vessel with an inner diameter allowing passage of fuel nuclei as at least part of the gas ejection nozzle device The sampling mechanism includes a sample receiver that receives fuel nuclei falling through the nozzle hole in a state where the injection of the raw material gas is stopped, and the sample receiver A sample derivation pipe for deriving fuel nuclei from the fuel receptacle to the outside by natural fall, a sample container for containing fuel nuclei falling from the sample derivation pipe, and an on-off valve device provided in the sample derivation pipe; It is equipped with.

また、請求項2に記載の発明に係る高温ガス炉用被覆燃料粒子製造装置では、請求項1に記載の高温ガス炉用被覆燃料粒子製造装置において、前記サンプル容器が、前記サンプル導出配管の端部に着脱可能に装着されるものである。   Moreover, in the coated fuel particle manufacturing apparatus for a high temperature gas reactor according to the invention described in claim 2, in the coated fuel particle manufacturing apparatus for a high temperature gas reactor according to claim 1, the sample container has an end of the sample outlet pipe. It is detachably attached to the part.

請求項3に記載の発明に係る高温ガス炉用被覆燃料粒子製造方法は、二酸化ウラン燃料核を収容した反応容器内に被覆原料ガスを噴出供給してその噴流で燃料核を流動させながら加熱することにより原料ガスの熱分解反応によって燃料核の表面を被覆原料分子の蒸着層で被覆する高温ガス炉用被覆燃料粒子の製造方法において、被覆反応中に反応容器内の燃料核を外部サンプル容器へ導出するサンプリング工程を備え、該サンプリング工程は、前記原料ガスの噴出供給を停止して反応容器内で流動中の燃料核を沈降させる工程と、この沈降する燃料核を反応容器底部に燃料核通過可能に貫設されたノズル孔を介して前記サンプル容器へ落下させて収容する工程と、を有することを特徴とするものである。   According to a third aspect of the present invention, there is provided a method for producing a coated fuel particle for a HTGR, wherein a coating material gas is jetted and supplied into a reaction vessel containing a uranium dioxide fuel nucleus, and the fuel nucleus is heated while flowing through the jet stream. In the method for producing coated fuel particles for a high-temperature gas reactor in which the surface of the fuel nucleus is coated with a vapor deposition layer of coating raw material molecules by a pyrolysis reaction of the raw material gas, the fuel nucleus in the reaction vessel is transferred to an external sample container during the coating reaction. A sampling step for deriving, wherein the sampling step stops the supply of the raw material gas to settling the fuel nuclei flowing in the reaction vessel, and the settling fuel nuclei pass through the fuel nuclei at the bottom of the reaction vessel And dropping into the sample container through a nozzle hole penetrating in a possible manner.

本発明の高温ガス炉用被覆燃料粒子製造装置においては、サンプリング機構によって、反応容器の上蓋窓を開けることなく反応容器内の燃料核を外部に取り出すことができるため、第1被覆層から第4被覆層までの各形成毎に反応容器内を冷却して被覆反応を中断する必要がなく、各被覆層形成工程をほぼ連続的に進められるため、被覆燃料粒子の製造工程の効率が全体的に向上すると共に、作業者が高温の熱気を浴びたりウランを含む煤や埃が外部に放出される危険も回避されるのでより高い安全性も確保できるという効果がある。   In the HTGR coated fuel particle manufacturing apparatus of the present invention, the fuel nucleus in the reaction vessel can be taken out by the sampling mechanism without opening the upper cover window of the reaction vessel. It is not necessary to interrupt the coating reaction by cooling the inside of the reaction vessel for each formation up to the coating layer, and each coating layer forming process can be proceeded almost continuously, so that the efficiency of the manufacturing process of the coated fuel particles is totally improved. In addition to the improvement, there is also an effect that it is possible to ensure higher safety because the danger of the operator being exposed to high-temperature hot air or the release of soot and dust containing uranium to the outside is avoided.

本発明の高温ガス炉用被覆燃料粒子製造装置では、反応容器内の燃料核を外部のサンプル容器へ導出するサンプリング機構として、反応容器内に被覆原料ガスを噴出供給するガス噴出ノズル装置の少なくとも一部のノズル孔を利用するものである。   In the coated fuel particle manufacturing apparatus for a HTGR according to the present invention, as a sampling mechanism for deriving the fuel core in the reaction vessel to an external sample vessel, at least one of the gas ejection nozzle devices for ejecting the coating raw material gas into the reaction vessel. The nozzle hole of the part is used.

即ち、本発明のサンプリング機構においては、サンプリング用に利用するノズル孔を燃料核の通過を許容する内径で反応容器底部に貫設されたものとすることによって、原料ガスの噴出停止状態にて反応容器内の燃料核を前記ノズル孔を通過してサンプル受けへ落下せしめるものであり、このサンプル受けに受け入れられた燃料核は、サンプル受けからサンプル導出配管内を自然落下して外部のサンプル容器に収容されるものである。   That is, in the sampling mechanism of the present invention, the nozzle hole used for sampling is formed in the bottom of the reaction vessel with an inner diameter that allows the passage of fuel nuclei, so that the reaction can be performed in a state where the injection of the raw material gas is stopped. The fuel core in the container passes through the nozzle hole and drops to the sample receiver, and the fuel core received in the sample receiver naturally falls in the sample outlet pipe from the sample receiver to the external sample container. It is to be accommodated.

従って、本発明では、各被覆層形成工程が終了した時点や次の被覆層形成のための原料ガスに切り換える際など、ガス噴出を停止するだけで、燃料核が前記ノズル孔から自重によりサンプル受けに落下し、自動的にサンプル容器まで取り出すことができるものであるため、容器内を冷却するなどの中断を必要とせず、直ちに次の被覆層形成のための条件設定に移行できるので、実質的に第1から第4被覆層までの形成工程を連続的に進めることができ、被覆燃料粒子の製造工程の効率が向上する。   Therefore, in the present invention, when each coating layer forming step is completed, or when switching to the source gas for forming the next coating layer, the fuel nucleus only receives the sample from the nozzle hole due to its own weight. Since the sample container can be automatically taken out to the sample container, there is no need to interrupt the cooling of the container and the process can be immediately shifted to the next condition setting for coating layer formation. In addition, the formation process from the first to the fourth coating layer can be continuously advanced, and the efficiency of the production process of the coated fuel particles is improved.

このように、本発明のサンプリング機構では、ガス噴出停止時の燃料核のノズル孔からの落下によってサンプリングが可能となるものであるため、サンプリング量は、燃料核通過可能なノズル孔の数や大きさとガス噴出停止時間を調整することによってサンプリング量を容易に制御することができる。   As described above, in the sampling mechanism of the present invention, sampling can be performed by dropping fuel nuclei from the nozzle holes when gas ejection is stopped. Therefore, the sampling amount is the number and size of nozzle holes that can pass through the fuel nuclei. The sampling amount can be easily controlled by adjusting the gas ejection stop time.

なお、サンプル容器内に収容されたサンプルとしての燃料核は、サンプル容器から直接取り出して解析に供してもよいが、サンプル容器をサンプル導出配管の端部に着脱可能に装着されるものとすれば、サンプル容器ごとサンプル用燃料核を移動でき、扱いが簡便となる。このサンプル容器をサンプル導出配管端部に装着する機構としては、例えばクランプ機構など、簡単に着脱できる方式のものであれば広く採用可能であり、特に限定されるものではない。   The fuel nucleus as a sample contained in the sample container may be directly taken out from the sample container and used for analysis. However, if the sample container is detachably attached to the end of the sample outlet pipe. The sample fuel core can be moved together with the sample container, and the handling becomes simple. As a mechanism for attaching the sample container to the end portion of the sample outlet pipe, any mechanism that can be easily attached and detached, such as a clamp mechanism, can be used widely and is not particularly limited.

また、サンプル導出配管には、開閉弁装置が設けられているため、このようにサンプル容器がサンプル導出配管に着脱されるものである場合、通常は弁を閉めておくことで、燃料核のサンプリングの際にサンプル容器の装着を忘れてしまったとしても問題ない。   Since the sample outlet pipe is provided with an on-off valve device, when the sample container is to be attached to and detached from the sample outlet pipe as described above, the fuel core sampling is usually performed by closing the valve. There is no problem if you forget to attach the sample container.

また、サンプル導出配管は、装置外部まで通じる長さをもつものであれば良いが、1400℃以上の反応容器内からサンプル受けに受け入れられた直後の燃料核も高熱を持つため、サンプル受けから自然落下していく燃料核がサンプル容器に達するまでの間に冷却されるのに充分な長さに設定するか、またはサンプル容器内で燃料核を自然冷却すれば良い。   The sample outlet pipe may be of any length that leads to the outside of the apparatus, but the fuel core immediately after being received in the sample receiver from within the reaction vessel at 1400 ° C. or higher also has high heat. The length of the fuel core may be set long enough to be cooled before reaching the sample container, or the fuel core may be naturally cooled in the sample container.

また高熱を有するままの燃料核を受け入れるサンプル受けはもちろん、サンプル導出配管やサンプル容器も、例えばステンレス等の耐熱性素材からなるものとすることが望ましい。   In addition to the sample receiver that accepts fuel nuclei with high heat, the sample outlet pipe and the sample container are preferably made of a heat-resistant material such as stainless steel.

また、燃料核を落下させるノズル孔を含むガス噴出ノズルは、原料ガスを供給する配管とも連通するものであるため、サンプル受けおよびサンプル導出配管は、原料ガス供給配管と互いに干渉しないように配設するものとする。   In addition, the gas injection nozzle including the nozzle hole for dropping the fuel core communicates with the piping for supplying the raw material gas, so the sample receiver and the sample outlet piping are arranged so as not to interfere with the raw material gas supply piping. It shall be.

なお、サンプル受けおよびサンプル容器は、サンプリングする燃料核の所定量に応じた容積を持つものとし、サンプル導出配管は、自然落下してくる燃料核を滞りなく通過させるのに充分な径のものにするなど、サンプリング機構の詳細な設計は実際のサンプリング計画に基づいて適宜選定すれば良い。   The sample receptacle and sample container shall have a volume corresponding to the predetermined amount of fuel nuclei to be sampled, and the sample outlet piping shall have a diameter sufficient to allow the naturally falling fuel nuclei to pass through without stagnation. For example, the detailed design of the sampling mechanism may be appropriately selected based on the actual sampling plan.

また、本発明による高温ガス炉用燃料粒子の製造方法では、被覆反応中に反応容器内の燃料核を外部サンプル容器へ導出するサンプリング工程として、原料ガスの噴出供給を停止することによって反応容器内の燃料核を沈降させ、この沈降する燃料核を反応容器底部に燃料核通過可能に貫設されたノズル孔を介してサンプル容器へ落下させて収容するものであるため、従来の反応容器上方から燃料核を掬い取るというサンプリング方法の場合のように、作業者に直接容器内の熱気が当たったり、ウランを含む埃や煤が外部へ放出してしまう危険が伴う上蓋窓などの反応容器の開放が必要なくなるため、作業の安全性も向上する。   Further, in the method for producing fuel particles for a HTGR according to the present invention, as a sampling step for deriving the fuel nuclei in the reaction vessel to the external sample vessel during the coating reaction, The fuel nuclei are allowed to settle and fall into the sample vessel through a nozzle hole penetrating through the bottom of the reaction vessel so that the fuel nuclei can pass through. Opening of the reaction container such as the top cover window, which may cause the operator to be directly exposed to hot air inside the container, or dust and soot containing uranium to be discharged to the outside, as in the sampling method of scooping up fuel nuclei. Work safety is also improved.

本発明の一実施例による高温ガス炉用被覆燃料粒子製造装置のサンプリング機構を図1に示す。図1は、装置本体の下方領域を示す概略構成図である。装置本体1は二重構造を持ち、内側に流動床となる反応容器2を備え、反応容器2の周縁に電熱ヒータ等の加熱手段(不図示)が設置されており、被覆原料ガスがガス供給管(不図示)を介して本体底部を貫通して噴出口が容器底面に開口するように形成されている複数個のガス噴出ノズル3から反応容器2内へ連続的に噴出供給され、本体上部の廃ガス排出口から排気されるものである。   FIG. 1 shows a sampling mechanism of a coated fuel particle manufacturing apparatus for a HTGR according to an embodiment of the present invention. FIG. 1 is a schematic configuration diagram showing a lower region of the apparatus main body. The apparatus main body 1 has a double structure, and includes a reaction vessel 2 serving as a fluidized bed inside. A heating means (not shown) such as an electric heater is installed on the periphery of the reaction vessel 2 so that a coating raw material gas is supplied as a gas. A plurality of gas jet nozzles 3 formed so as to pass through the bottom of the main body and open to the bottom of the container through a pipe (not shown) are continuously supplied and injected into the reaction container 2. It is exhausted from the waste gas outlet.

従って、反応容器2内に投入された燃料核は、ガス噴出ノズル3から供給されるガスの噴流によって流動され、この流動状態にて原料ガスが加熱分解されることによって燃料核表面に原料分子が蒸着して被覆層が形成されていく。   Therefore, the fuel nucleus charged into the reaction vessel 2 is flowed by the jet of gas supplied from the gas jet nozzle 3, and the raw material gas is thermally decomposed in this flow state, so that the raw material molecules are formed on the surface of the fuel core. The coating layer is formed by vapor deposition.

本実施例におけるサンプリング機構は、ガス噴出ノズル3のうちの少なくとも一つが、燃料核の通過を許容する内径を備えたサンプリング兼用ノズル孔とし、このノズル孔下方に設置されたサンプル受け4と、該サンプル受け4の下方から装置1の外部に亘って配設されたサンプル導出配管5と、このサンプル導出配管5の端部に設置されサンプル容器6とから主に構成されている。   In the sampling mechanism in this embodiment, at least one of the gas ejection nozzles 3 is a sampling combined nozzle hole having an inner diameter that allows passage of fuel nuclei, a sample receiver 4 installed below the nozzle hole, It is mainly composed of a sample outlet pipe 5 disposed from the lower side of the sample receiver 4 to the outside of the apparatus 1 and a sample container 6 installed at an end portion of the sample outlet pipe 5.

サンプル容器6は、クランプ7によってサンプル導出配管5の端部に着脱可能に装着されるものである。また、サンプル導出配管5には、端部近くに開閉弁装置8を備えた。通常はこの開閉弁装置8によってサンプル導出配管5を閉鎖しておくことにより、サンプル容器6の装着を忘れてサンプリング作業を開始してしまっても、サンプル受け4から自然落下してくる燃料核はこの閉鎖部分で止まり、外に放出されてしまう恐れがない。   The sample container 6 is detachably attached to the end of the sample outlet pipe 5 by a clamp 7. Further, the sample outlet pipe 5 was provided with an on-off valve device 8 near the end. Normally, by closing the sample outlet pipe 5 by the on-off valve device 8, even if the sample container 6 is forgotten to be installed and the sampling operation is started, the fuel nucleus that naturally falls from the sample receiver 4 is There is no risk of stopping at this closed part and being released outside.

以上の如き構成のサンプリング機構において、サンプリング用ノズル孔の内径をφ約4mm、サンプル受け4の大きさをφ約25mm×約15mm、サンプル導出配管5の内径φ約15mmで長さ約800mm、サンプル容器6の大きさをφ約50×100mmとした被覆燃料粒子製造装置にて第1被覆層から第4被覆層までの被覆反応工程中で、第1被覆層形成後および第2被覆層形成後にそれぞれサンプリングを行った場合を以下に示す。   In the sampling mechanism configured as described above, the inner diameter of the sampling nozzle hole is about 4 mm, the size of the sample receiver 4 is about 25 mm × about 15 mm, the inner diameter of the sample outlet pipe 5 is about 15 mm, and the length is about 800 mm. In the coating reaction process from the first coating layer to the fourth coating layer in the coated fuel particle manufacturing apparatus in which the size of the container 6 is about 50 × 100 mm, after the formation of the first coating layer and after the formation of the second coating layer The cases where sampling was performed are shown below.

まず、サンプル容器6をクランプ7でサンプル導出配管5の端部に装着し、開閉弁装置8を閉状態にしたことを確認してから、反応容器2内に二酸化ウランをセラミックス状に焼結した平均直径約0.6mmの燃料核を約3.8kg投入して第1被覆原料ガスとしてのアセチレン(C)ガスの噴出供給により燃料核を流動状態として反応容器2内を約1400℃の加熱条件下に調整することで被覆原料ガスの熱分解による、低密度炭素からなる第1被覆層の形成工程を開始した。 First, after attaching the sample container 6 to the end of the sample outlet pipe 5 with the clamp 7 and confirming that the on-off valve device 8 was closed, uranium dioxide was sintered in the reaction container 2 into a ceramic form. About 3.8 kg of fuel nuclei having an average diameter of about 0.6 mm are introduced, and the fuel nuclei are made into a fluid state by jetting and supplying acetylene (C 2 H 2 ) gas as the first coating material gas, and the inside of the reaction vessel 2 is about 1400 ° C. By adjusting under the heating conditions, a process for forming a first coating layer made of low density carbon by thermal decomposition of the coating raw material gas was started.

この形成工程の条件を所定時間維持した後の第1被覆層の形成が完了した時点で、開閉弁装置8を開放状態とし、被覆原料ガスの噴出を8秒間停止し、続いて開閉弁装置8を閉じた後、第2被覆層形成温度となるまで流動ガスを流入し、被覆粒子を流動させる。このときガス噴出を停止した8秒間に容器底部に沈降したうちから一部の第1被覆層形成済の燃料核がノズル孔3から落下してサンプル受け4に受け入れられ、さらにサンプル導出配管5内を自然落下してサンプル容器6内に収容された。   When the formation of the first coating layer after maintaining the conditions of this formation process for a predetermined time is completed, the on-off valve device 8 is opened, the spraying of the coating material gas is stopped for 8 seconds, and then the on-off valve device 8 After closing, a flowing gas is introduced until the temperature reaches the second coating layer forming temperature, and the coated particles are caused to flow. At this time, a portion of the fuel core in which the first coating layer has been formed falls from the nozzle hole 3 and is received by the sample receiver 4 after being settled to the bottom of the container in 8 seconds when the gas ejection is stopped. Was naturally dropped and stored in the sample container 6.

この取り出された第1被覆層形成済燃料核サンプルは、5分間サンプル容器6内で冷却されてから、配管5から取り外されたサンプル容器6ごと観察工程へ移動される。このときのサンプリング工程においては、約60gの第1被覆層形成済燃料核が取り出された。   The taken-out first coating layer-formed fuel core sample is cooled in the sample container 6 for 5 minutes, and then moved to the observation step together with the sample container 6 removed from the pipe 5. In the sampling step at this time, about 60 g of the first coating layer formed fuel nucleus was taken out.

一方、残りの第1被覆層形成済燃料核を流動状態として反応容器2内を約1450℃の加熱条件下とした後、第2被覆原料ガスであるプロピレン(C)を噴出することにより高密度熱分解炭素による第2被覆層の形成工程が行われる。この第2被覆層形成工程が完了するまでに、新たに空のサンプリング容器6をサンプル導出配管5の端部に装着しておく。 On the other hand, propellant (C 3 H 6 ), which is the second coating raw material gas, is jetted after the remaining first coating layer formed fuel nuclei are in a fluidized state and the reaction vessel 2 is heated to about 1450 ° C. Thereby, the formation process of the 2nd coating layer by a high-density pyrolytic carbon is performed. A new empty sampling container 6 is attached to the end of the sample outlet pipe 5 until the second coating layer forming step is completed.

所定時間の後、第2被覆層の形成が完了した時点で、開閉弁装置8を開放状態にした後、被覆原料ガスの噴出を4秒間停止し、続いて開閉弁装置8を閉じた後、第3被覆層形成温度となるまで流動ガスを流入し、被覆粒子を流動させる。このとき、4秒間のガス噴出停止状態で容器底部に沈降したうちから一部の第2被覆層形成済の燃料核がノズル孔3から落下してサンプル受け4に受け入れられ、さらにサンプル導出配管5内を自然落下してサンプル容器6内に収容された。   After a predetermined time, when the formation of the second coating layer is completed, after opening the on-off valve device 8, the spraying of the coating material gas is stopped for 4 seconds, and then the on-off valve device 8 is closed, Flowing gas is introduced until the third coating layer formation temperature is reached, and the coated particles are caused to flow. At this time, a part of the fuel core in which the second coating layer is formed falls from the nozzle hole 3 after being settled to the bottom of the container in a state where the gas ejection is stopped for 4 seconds, and is received by the sample receiver 4, and further the sample outlet pipe 5 The inside dropped naturally and was accommodated in the sample container 6.

この取り出された第2被覆層形成済燃料核サンプルは、5分間サンプル容器6内で冷却されてから、配管5から取り外されたサンプル容器6ごと観察工程へ移動される。このときのサンプリング工程においては、約10gの第2被覆層形成済燃料核が取り出された。   The taken-out fuel core sample with the second coating layer formed is cooled in the sample container 6 for 5 minutes, and then moved to the observation step together with the sample container 6 removed from the pipe 5. In the sampling process at this time, about 10 g of the second coating layer formed fuel nucleus was taken out.

また、残りの第2被覆層形成済燃料核を流動状態として反応容器2内を約1650℃の加熱条件下とした後、第3被覆原料であるメチルトリクロロシラン(CHSiCl)を噴出することにより、SiCからなる第3被覆層の形成工程が行われる。所定時間の後、第3被覆層の形成が完了した時点で原料の噴出を停止し、流動ガスのみの流入状態に切り換え、第4被覆層形成温度約1400℃の加熱条件下に調整した後、第4被覆層の原料ガスであるプロピレンを噴出供給して、所定時間その環境を維持することにより高密度熱分解炭素からなる第4被覆層の形成が完了する。 Further, after the remaining second coating layer formed fuel nuclei are in a fluidized state and the inside of the reaction vessel 2 is heated to about 1650 ° C., methyltrichlorosilane (CH 3 SiCl 3 ), which is the third coating material, is jetted. Thereby, the formation process of the 3rd coating layer which consists of SiC is performed. After a predetermined time, when the formation of the third coating layer is completed, the injection of the raw material is stopped, the flow is switched to the inflow state of only the flowing gas, and the fourth coating layer forming temperature is adjusted to the heating condition of about 1400 ° C. Formation of the fourth coating layer made of high-density pyrolytic carbon is completed by spraying and supplying propylene, which is a raw material gas for the fourth coating layer, and maintaining the environment for a predetermined time.

なお、上記2回のサンプリングにより取り出された第1被覆層形成済燃料核および第2被覆層形成済燃料核をそれぞれ観察したところ、いずれにも外観に割れや欠け等が無く良好であった。   In addition, when the first coating layer formed fuel nucleus and the second coating layer formed fuel nucleus taken out by the above two samplings were observed, they were all good without any cracks or chips.

以上のように本実施例による高温ガス炉用被覆燃料粒子製造装置では、熱気だけでなくウランを含む埃や煤の外部放出という危険を伴う容器窓の開放をすることなく安全に各被覆層形成直後の燃料核のサンプリングを行いながらも、実質的に第1被覆層から第4被覆層までの形成工程を容器内冷却などの中断なく連続的に行うことができた。   As described above, in the coated fuel particle manufacturing apparatus for a HTGR according to the present embodiment, each coating layer can be formed safely without opening the container window, which involves not only hot air but also the risk of external discharge of dust and soot containing uranium. While sampling the fuel nuclei immediately thereafter, the formation process from the first coating layer to the fourth coating layer could be performed continuously without interruption such as cooling in the container.

本発明の一実施例による高温ガス炉用燃料粒子製造装置に備えられたサンプリング機構を説明する装置下方領域の概略構成図である。It is a schematic block diagram of the apparatus lower area | region explaining the sampling mechanism with which the high temperature gas reactor fuel particle manufacturing apparatus by one Example of this invention was equipped.

符号の説明Explanation of symbols

1:装置本体
2:反応容器
3:ノズル孔
4:サンプル受け
5:サンプル導出配管
6:サンプル容器
7:クランプ
8:開閉弁装置
1: Device main body 2: Reaction vessel 3: Nozzle hole 4: Sample receptacle 5: Sample outlet piping 6: Sample vessel 7: Clamp 8: On-off valve device

Claims (3)

二酸化ウラン燃料核を収容した反応容器内にガス噴出ノズル装置から被覆原料ガスを噴出供給してその噴流で燃料核を流動させながら加熱することにより原料ガスの熱分解反応によって燃料核の表面を被覆原料分子の蒸着層で被覆する高温ガス炉用被覆燃料粒子製造装置において、
被覆反応中に反応容器内の燃料核を外部のサンプル容器へ導出するサンプリング機構と、前記ガス噴出ノズル装置の少なくとも一部として燃料核の通過を許容する内径で反応容器の底部に貫設されたノズル孔とを備え、
前記サンプリング機構は、原料ガスの噴出が停止された状態で前記ノズル孔を通過して落下してくる燃料核を受け入れるサンプル受けと、該サンプル受けから燃料核を自然落下により外部へ導出するためのサンプル導出配管と、該サンプル導出配管から落下してくる燃料核を収容するサンプル容器と、前記サンプル導出配管に設けられた開閉弁装置とを備えていることを特徴とする高温ガス炉用被覆燃料粒子製造装置。
Covering the surface of the fuel core by the pyrolysis reaction of the raw material gas by supplying the coating raw material gas from the gas jet nozzle device into the reaction vessel containing the uranium dioxide fuel core and heating it while flowing the fuel core in the jet. In the coated fuel particle manufacturing apparatus for high temperature gas reactors coated with a vapor deposition layer of raw material molecules,
A sampling mechanism for deriving fuel nuclei in the reaction vessel to an external sample vessel during the coating reaction, and an inner diameter allowing passage of the fuel nuclei as at least a part of the gas ejection nozzle device penetrated at the bottom of the reaction vessel With nozzle holes,
The sampling mechanism is configured to receive a fuel nucleus falling through the nozzle hole in a state where the injection of the raw material gas is stopped, and to lead the fuel nucleus from the sample receiver to the outside by natural fall. A coating fuel for a high temperature gas reactor, comprising: a sample outlet pipe; a sample container for storing fuel nuclei falling from the sample outlet pipe; and an on-off valve device provided in the sample outlet pipe Particle production equipment.
前記サンプル容器が、前記サンプル導出配管の端部に着脱可能に装着されることを特徴とする請求項1に記載の高温ガス炉用被覆燃料粒子製造装置。   2. The coated fuel particle manufacturing apparatus for a HTGR according to claim 1, wherein the sample container is detachably attached to an end portion of the sample outlet pipe. 二酸化ウラン燃料核を収容した反応容器内に被覆原料ガスを噴出供給してその噴流で燃料核を流動させながら加熱することにより原料ガスの熱分解反応によって燃料核の表面を被覆原料分子の蒸着層で被覆する高温ガス炉用被覆燃料粒子の製造方法において、
被覆反応中に反応容器内の燃料核を外部サンプル容器へ導出するサンプリング工程を備え、
該サンプリング工程は、前記原料ガスの噴出供給を停止して反応容器内で流動中の燃料核を沈降させる工程と、この沈降する燃料核を反応容器底部に燃料核通過可能に貫設されたノズル孔を介して前記サンプル容器へ落下させて収容する工程と、を有することを特徴とする高温ガス炉用被覆燃料粒子の製造方法。
A coating material gas is sprayed and supplied into a reaction vessel containing uranium dioxide fuel nuclei, and the fuel nuclei are heated while fluidizing the fuel nuclei by the jet flow. In the method for producing coated fuel particles for a HTGR coated with
A sampling step for deriving fuel nuclei in the reaction vessel to an external sample vessel during the coating reaction;
The sampling step includes a step of stopping the supply of the raw material gas to settling fuel nuclei flowing in the reaction vessel, and a nozzle that penetrates the settling fuel nuclei at the bottom of the reaction vessel so that the fuel nuclei can pass therethrough. A method of producing coated fuel particles for a high-temperature gas reactor, comprising the step of dropping into the sample container through a hole and storing the sample container.
JP2005083933A 2005-03-23 2005-03-23 Apparatus and method for producing coated fuel particles for HTGR Expired - Fee Related JP4357441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005083933A JP4357441B2 (en) 2005-03-23 2005-03-23 Apparatus and method for producing coated fuel particles for HTGR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005083933A JP4357441B2 (en) 2005-03-23 2005-03-23 Apparatus and method for producing coated fuel particles for HTGR

Publications (2)

Publication Number Publication Date
JP2006266805A true JP2006266805A (en) 2006-10-05
JP4357441B2 JP4357441B2 (en) 2009-11-04

Family

ID=37202953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083933A Expired - Fee Related JP4357441B2 (en) 2005-03-23 2005-03-23 Apparatus and method for producing coated fuel particles for HTGR

Country Status (1)

Country Link
JP (1) JP4357441B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101076392B1 (en) 2010-04-21 2011-10-25 한국수력원자력 주식회사 Incoming and outgoing-possible gelation apparatus and its preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101076392B1 (en) 2010-04-21 2011-10-25 한국수력원자력 주식회사 Incoming and outgoing-possible gelation apparatus and its preparation method

Also Published As

Publication number Publication date
JP4357441B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP2005308522A (en) Device for manufacturing cladding fuel particle for high-temperature gas-cooled reactor
JP4357441B2 (en) Apparatus and method for producing coated fuel particles for HTGR
JP4450814B2 (en) Coated fuel particle manufacturing equipment for HTGR
JP4697938B2 (en) Method for producing coated fuel particles for HTGR
JP2007197242A (en) Apparatus for manufacturing ammonium diuranate particle
JP4521763B2 (en) Production equipment for coated fuel particles for HTGR
JP4417867B2 (en) Production equipment for coated fuel particles for HTGR
JP2007024841A (en) Manufacturing equipment of coated fuel particle for high-temperature gas-cooled reactor
JP2007003118A (en) Gas injection nozzle deposit-removing method for manufacturing device of coated fuel particle for high-temperature gas furnace and manufacturing method of coated fuel particle for high-temperature gas furnace
JP4417901B2 (en) Production equipment for coated fuel particles for HTGR
JP4583104B2 (en) Methyltrichlorosilane gas generator
JP4502397B2 (en) Apparatus and method for producing coated fuel particles for HTGR
JP4357437B2 (en) Production equipment for coated fuel particles for HTGR
JP2005337947A (en) Device and method for manufacturing coated fuel particle for high-temperature gas-cooled reactor
JP2006300535A (en) Gas introduction nozzle of coated fuel particle manufacturing equipment for high-temperature gas-cooled reactor
JP4409460B2 (en) Production equipment for coated fuel particles for HTGR
JP4417879B2 (en) Production equipment for coated fuel particles for HTGR
JP4155580B2 (en) Gas introduction nozzle for coated fuel particle manufacturing equipment for HTGR
JP2005233878A (en) Method of feeding raw material for coated nuclear fuel
JP2007147504A (en) Coated fuel particle for high-temperature gas-cooled reactor, and manufacturing method therefor
JP4450762B2 (en) Gas introduction nozzle of coated fuel particle manufacturing equipment for HTGR
JP4417871B2 (en) Production equipment for coated fuel particles for HTGR
JP4409405B2 (en) Production equipment for coated fuel particles for HTGR
JP2006112838A (en) Method for manufacturing fuel compact for high-temperature gas-cooled reactor
JP2006064442A (en) Manufacturing device of hollow fuel compact for high-temperature gas furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4357441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150814

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees