JP4409460B2 - Production equipment for coated fuel particles for HTGR - Google Patents

Production equipment for coated fuel particles for HTGR Download PDF

Info

Publication number
JP4409460B2
JP4409460B2 JP2005045371A JP2005045371A JP4409460B2 JP 4409460 B2 JP4409460 B2 JP 4409460B2 JP 2005045371 A JP2005045371 A JP 2005045371A JP 2005045371 A JP2005045371 A JP 2005045371A JP 4409460 B2 JP4409460 B2 JP 4409460B2
Authority
JP
Japan
Prior art keywords
gas
fluidized bed
leak
coating layer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005045371A
Other languages
Japanese (ja)
Other versions
JP2006234404A (en
Inventor
和俊 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2005045371A priority Critical patent/JP4409460B2/en
Publication of JP2006234404A publication Critical patent/JP2006234404A/en
Application granted granted Critical
Publication of JP4409460B2 publication Critical patent/JP4409460B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

本発明は、高温ガス炉用燃料の製造装置に関し、二酸化ウランなどウランの化合物から成る燃料核に多重の被覆層を形成して被覆燃料粒子とする流動床反応装置を備えた高温ガス炉用被覆燃料粒子の製造装置において、被覆層の特性に大きな影響を与える被覆温度の炉内分布が、繰り返し製造していても変化することなく一定であり、連続生産に適したものである。   TECHNICAL FIELD The present invention relates to an apparatus for producing a fuel for a high temperature gas reactor, and relates to a coating for a high temperature gas reactor provided with a fluidized bed reactor in which multiple coating layers are formed on a fuel core made of a uranium compound such as uranium dioxide to form coated fuel particles. In the fuel particle manufacturing apparatus, the distribution in the furnace of the coating temperature, which greatly affects the characteristics of the coating layer, remains constant even when repeatedly manufactured, and is suitable for continuous production.

高温ガス炉は、燃料を含む炉心構造を熱容量が大きく高温健全性の良好な黒鉛で構成するとともに、冷却ガスとして高温下でも化学的反応の起こらないヘリウムガスなどの気体を用いることにより、固有の安全性が高く、高い出口温度のヘリウムガスを取り出すことが可能であり、約900℃の高温熱は、発電はもちろんのこと水素製造や化学プラント等幅広い分野での熱利用を可能にするものである。   The HTGR is composed of graphite, which has a large heat capacity and good high-temperature soundness, and uses a gas such as helium gas that does not cause a chemical reaction even at high temperatures as a cooling gas. Helium gas with high safety and high outlet temperature can be taken out, and the high temperature heat of about 900 ° C enables heat utilization in a wide range of fields such as hydrogen production and chemical plants as well as power generation. is there.

高温ガス炉の燃料は、二酸化ウランをセラミックス状に焼結した直径約350〜650ミクロンの燃料核の周囲に計4層の被覆を施している。第1層は密度約1g/cm の低密度熱分解炭素で、ガス状の核分裂生成物(FP)のガス溜めとしての機能及び燃料核のスウェリングを吸収するバッファとしての機能を併せ持つものである。第2層は密度約1.8g/cm の高密度熱分解炭素でガス状FPの保持機能を有する。第3層は密度約3.2g/cm の炭化珪素(以下、SiCと称す)で固体FPの保持機能を有するとともに、被覆層の主要な強度部材である。第4層は、第2層と同様の密度約1.8g/cm の高密度熱分解炭素でガス状FPの保持機能とともに第3層の保護層としての機能も持っている。 The fuel in the HTGR has a total of four coatings around a fuel core having a diameter of about 350 to 650 microns obtained by sintering uranium dioxide into a ceramic form. The first layer is a low-density pyrolytic carbon with a density of about 1 g / cm 3 , which has both a function as a gas reservoir for gaseous fission products (FP) and a function as a buffer for absorbing fuel swelling. is there. The second layer is a high-density pyrolytic carbon having a density of about 1.8 g / cm 3 and has a function of holding a gaseous FP. The third layer is silicon carbide (hereinafter referred to as SiC) having a density of about 3.2 g / cm 3 and has a function of holding a solid FP, and is a main strength member of the coating layer. The fourth layer is a high-density pyrolytic carbon having a density of about 1.8 g / cm 3 , which is the same as that of the second layer, and has a function of holding the gaseous FP as well as a protective layer of the third layer.

一般的な被覆燃料粒子の直径は約500〜1000μmである。この被覆燃料粒子は黒鉛マトリックス中に分散させ一定形状の燃料コンパクトの形に成型加工され、さらに黒鉛でできた筒にコンパクトを一定数量入れ、上下に栓をした燃料棒の形にされる。最終的に燃料棒は、六角柱型黒鉛ブロックの複数の挿入口に入れられ、この六角柱型黒鉛ブロックを多数個、ハニカム配列に複数段重ねて炉心を構成している。   Typical coated fuel particles have a diameter of about 500-1000 μm. The coated fuel particles are dispersed in a graphite matrix and molded into a compact fuel compact shape, and a certain amount of compact is put into a cylinder made of graphite and is shaped into a fuel rod that is plugged up and down. Finally, the fuel rod is inserted into a plurality of insertion holes of the hexagonal column type graphite block, and a large number of the hexagonal column type graphite blocks are stacked in a honeycomb array to constitute a core.

このような高温ガス炉の燃料は、一般的に以下のような工程を経て製造される。まず、酸化ウランの粉末を硝酸に溶かし硝酸ウラニル原液とする。この硝酸ウラニル原液に純水、増粘剤を加え撹拌することにより滴下原液とする。増粘剤は、滴下された硝酸ウラニルの液滴が落下中に自身の表面張力により真球状になるように添加される。増粘剤としては、例えばポリビニルアルコール樹脂、アルカリ条件下で凝固する性質を有する樹脂、ポリエチレングリコール、メトローズなどをあげることができる。   Such a HTGR fuel is generally manufactured through the following steps. First, uranium oxide powder is dissolved in nitric acid to obtain a uranyl nitrate stock solution. Pure water and a thickener are added to this uranyl nitrate stock solution and stirred to obtain a dripping stock solution. The thickener is added so that the dropped uranyl nitrate droplet becomes a true sphere due to its surface tension during dropping. Examples of the thickening agent include polyvinyl alcohol resin, resin having a property of solidifying under alkaline conditions, polyethylene glycol, and metroise.

上記のように調整された滴下原液は所定の温度に冷却され粘度を調整した後、細径の滴下ノズルを振動させることによりアンモニア水中に滴下される。液滴は、アンモニア水溶液表面に着水するまでの空間においてアンモニアガスを掛けて表面をゲル化させることにより、着水時の変形が防止される。アンモニア水中で硝酸ウラニルはアンモニアと十分に反応させ、重ウラン酸アンモニウムの粒子となる。   The dropping stock solution adjusted as described above is cooled to a predetermined temperature to adjust the viscosity, and then dropped into ammonia water by vibrating a small-diameter dropping nozzle. The droplets are prevented from being deformed at the time of landing by applying ammonia gas in a space until landing on the surface of the aqueous ammonia solution to gel the surface. Uranyl nitrate reacts sufficiently with ammonia in ammonia water to form particles of ammonium heavy uranate.

重ウラン酸アンモニウム粒子は、大気中でばい焼され三酸化ウラン粒子となり、さらに還元・焼結されることにより高密度のセラミック状二酸化ウランからなる燃料核となる。   The ammonium heavy uranate particles are roasted in the atmosphere to become uranium trioxide particles, and further reduced and sintered to become fuel nuclei made of high-density ceramic uranium dioxide.

この燃料核を流動床に装荷し、被覆ガスを熱分解させることにより被覆を施す。第1層の低密度炭素の場合は約1400℃でアセチレン(C)を熱分解する。第2,4層の高密度熱分解炭素の場合は約1400℃でプロピレン(C)を熱分解する。第3層のSiCの場合は約1600℃でメチルトリクロロシラン(CHSiCl)を熱分解する。 The fuel nuclei are loaded onto a fluidized bed, and coating is performed by thermally decomposing the coating gas. In the case of the low density carbon of the first layer, acetylene (C 2 H 2 ) is thermally decomposed at about 1400 ° C. In the case of the second and fourth layers of high-density pyrolytic carbon, propylene (C 3 H 6 ) is pyrolyzed at about 1400 ° C. In the case of SiC of the third layer, methyltrichlorosilane (CH 3 SiCl 3 ) is thermally decomposed at about 1600 ° C.

前述の被覆ガスを使用して各被覆層を形成させる際には、被覆層を各粒子に均一に付けるため別のガスを用いて粒子を反応管内で十分に流動させた状態で行う。これが、被覆燃料粒子の製造装置を流動床と呼ぶ所以である。粒子を流動させるためのガスとしては、第1、2及び4層を被覆する場合は不活性ガスの一つであるアルゴンガスを、そして第3層を被覆する際には水素ガスまたは水素ガス+不活性ガスの一つであるアルゴンガスが一般的に使用されている。   When each coating layer is formed using the aforementioned coating gas, the particles are sufficiently flowed in the reaction tube using another gas in order to uniformly apply the coating layer to each particle. This is why the coated fuel particle production apparatus is called a fluidized bed. As a gas for flowing particles, argon gas which is one of inert gases when coating the first, second and fourth layers, and hydrogen gas or hydrogen gas when coating the third layer + Argon gas, which is one of inert gases, is generally used.

また、燃料コンパクトは、黒鉛粉末、粘結剤等からなる黒鉛マトリックス材を被覆燃料粒子の表面にコーティングし、中空円筒形または円筒形にプレス成型またはモールド成型した後、グリーンコンパクト内にバインダーとして含まれるフェノール樹脂を炭化させるために熱処理を実施し、さらにコンパクト内に含まれるガス成分を除去することを目的とした熱処理を実施して得られる(例えば、特許文献1参照)。   The fuel compact is coated with a graphite matrix material consisting of graphite powder, binder, etc. on the surface of the coated fuel particles, and is pressed or molded into a hollow cylindrical shape or cylindrical shape, and then included as a binder in the green compact. In order to carbonize the phenol resin obtained, heat treatment is carried out, and further, heat treatment aimed at removing gas components contained in the compact is carried out (for example, see Patent Document 1).

図3は従来の高温ガス炉用被覆燃料粒子の製造装置の構成を示す説明図である。高温ガス炉用被覆燃料粒子の製造装置としての流動床反応装置は図3に示すように、二酸化ウランから成る燃料核32を流動床本体の上部窓(図示せず)から入れて、流動ガス入口36からガス導入ノズル34及びガス噴出ノズル33を通して被覆ガスと流動ガスとを流すことにより被覆を施す反応管35と、この反応管35の外周に配設され燃料核を加熱する黒鉛製のヒーター31と、同じく黒鉛製でヒーター31のさらに外周に配設される断熱材38とを備える。
特開2000−284084号公報
FIG. 3 is an explanatory view showing a configuration of a conventional apparatus for producing coated fuel particles for a HTGR. As shown in FIG. 3, a fluidized bed reactor as an apparatus for producing coated fuel particles for a high-temperature gas reactor includes a fuel core 32 made of uranium dioxide through an upper window (not shown) of the fluidized bed main body, and a fluidized gas inlet. A reaction tube 35 for coating by flowing a coating gas and a flowing gas from 36 through a gas introduction nozzle 34 and a gas ejection nozzle 33, and a graphite heater 31 disposed on the outer periphery of the reaction tube 35 to heat fuel nuclei. And a heat insulating material 38, which is also made of graphite and disposed on the outer periphery of the heater 31.
JP 2000-284084 A

このような流動床反応装置では、ガス噴出ノズル33を移動させることによって、燃料核32に被覆層を形成して得られた被覆燃料粒子を流動床の下部の被覆ガス及び流動ガス入口36から取り出すために、ガス噴出ノズル33と反応管35とは、機械的に固定されていないのが一般的である。このため、被覆ガスや流動ガスはガス噴出ノズル33と反応管35との隙間から漏れ、ヒーター31や断熱材38の周りに充満することになる。   In such a fluidized bed reactor, by moving the gas ejection nozzle 33, the coated fuel particles obtained by forming the coating layer on the fuel core 32 are taken out from the coating gas and the fluidized gas inlet 36 at the lower part of the fluidized bed. Therefore, the gas ejection nozzle 33 and the reaction tube 35 are generally not mechanically fixed. For this reason, the coating gas and the flowing gas leak from the gap between the gas ejection nozzle 33 and the reaction tube 35 and fill around the heater 31 and the heat insulating material 38.

第1,2,4層の被覆時には問題ないが、第3層の被覆時には、流動ガスである水素ガスが漏れると、約1600℃に加熱されているため、ヒーター31や断熱材38の材料である黒鉛と水素とが反応し、炭化水素が発生する。炭化水素が発生するということはヒーター31や断熱材38の材料である黒鉛が減少することになるため、ヒーター31の場合は抵抗値が変わり、その結果、発生熱量が変わってしまう。   There is no problem when the first, second, and fourth layers are coated, but when the third layer is coated, if hydrogen gas that is a flowing gas leaks, it is heated to about 1600 ° C. Certain graphite and hydrogen react to generate hydrocarbons. The generation of hydrocarbons means that the graphite, which is the material of the heater 31 and the heat insulating material 38, decreases. In the case of the heater 31, the resistance value changes, and as a result, the amount of generated heat changes.

また、断熱材38の場合は、黒鉛が減少した部分から熱が逃げやすくなって断熱性能が低下する。結果として、被覆層の特性に大きな影響を与える被覆温度の炉内分布が変化してしまうことになる。よって、連続して生産する場合には、バッチ毎に製造条件が変わってしまうことになるため、高温ガス炉燃料の核分裂性物質の閉じ込め作用上、非常に重要な被覆層の品質が安定しなくなってしまうという重大な問題点が生じる。   In the case of the heat insulating material 38, heat easily escapes from the portion where the graphite is reduced, and the heat insulating performance is lowered. As a result, the distribution of the coating temperature in the furnace, which greatly affects the properties of the coating layer, changes. Therefore, in the case of continuous production, the production conditions will change from batch to batch, so the quality of the coating layer, which is very important for the confinement action of the fissile material in the HTGR fuel, becomes unstable. A serious problem arises.

本発明は、連続的に生産する場合も、被覆層の特性に大きな影響を与える炉内の温度分布は変化することなく安定させることができ、連続生産に適した高温ガス炉用被覆燃料粒子の製造装置を得ることを目的とする。   Even in the case of continuous production, the temperature distribution in the furnace, which greatly affects the properties of the coating layer, can be stabilized without change, and the coated fuel particles for HTGR suitable for continuous production can be obtained. It aims at obtaining a manufacturing apparatus.

請求項1に記載された発明に係る高温ガス炉用燃料粒子製造装置は、二酸化ウランを焼結した燃料核の表面に、低密度熱分解炭素からなりガス状核分裂生成物のガス溜め及び燃料核のスウェリングを吸収するバッファとしての機能を有する第1被覆層と、高密度熱分解炭素からなりガス状核分裂生成物の保持機能を有する第2被覆層と、炭化珪素からなる固体核分裂生成物の保持機能と被覆層の主な強度部材としての機能とを有する第3被覆層と、高密度熱分解炭素からなりガス状核分裂生成物の保持機能と第3被覆層の保護層としての機能を有する第4被覆層との計4層の被覆層を施す流動床反応装置を備えた高温ガス炉用被覆燃料粒子の製造装置において、
流動床反応装置本体内での被覆ガス及び/又は流動ガス流動床内の反応管へガス導入ノズルを通して流すガス導入手段が存在する空間と、流動床反応装置本体内でのヒーター及び断熱材が存在する空間とが、ガス導入ノズルの外周側に設けられた円筒形の漏れ防止筒材によって互いに隔離されていることを特徴とするものである。
The fuel particle manufacturing apparatus for a high temperature gas reactor according to the invention described in claim 1 includes a gas reservoir and a fuel nucleus of a gaseous fission product made of low density pyrolytic carbon on the surface of a fuel nucleus obtained by sintering uranium dioxide. A first coating layer that functions as a buffer that absorbs the swelling of the carbon, a second coating layer that is composed of high-density pyrolytic carbon and has a function of retaining gaseous fission products, and a solid fission product composed of silicon carbide. A third coating layer having a holding function and a function as a main strength member of the coating layer; a holding function for gaseous fission products made of high-density pyrolytic carbon; and a function as a protective layer for the third coating layer In the apparatus for producing coated fuel particles for a HTGR equipped with a fluidized bed reactor for applying a total of four coating layers with the fourth coating layer,
A space fluidized bed reactor gas introducing means for flowing through the gas introducing nozzle coating gas and / or liquid gas in the main body into the reaction tube in the fluidized bed is present, the heater and the heat insulating material in a fluidized bed reactor main body The existing spaces are separated from each other by a cylindrical leak-proof cylindrical member provided on the outer peripheral side of the gas introduction nozzle .

請求項2に記載された発明に係る高温ガス炉用被覆燃料粒子の製造装置は、請求項1に記載のガス導入手段として、ガス導入ノズルの外周側に設けられた円筒形の漏れ防止筒材を備え、
前記漏れ防止筒材の下部は、対応する反応装置本体に固定され、
前記漏れ防止筒材の上部は、対応する反応管の下部と互いに螺合するようにネジ加工されていることを特徴とするものである。
According to a second aspect of the present invention, there is provided an apparatus for producing coated fuel particles for a HTGR as a gas introduction means according to the first aspect, provided as a cylindrical leak-proof cylinder provided on the outer peripheral side of the gas introduction nozzle. With
The lower part of the leak-proof cylinder is fixed to the corresponding reactor main body,
The upper part of the leak-proof cylinder is threaded so as to be screwed together with the lower part of the corresponding reaction tube.

請求項3に記載された発明に係る高温ガス炉用被覆燃料粒子の製造装置は、請求項2に記載の漏れ防止筒材の外周側が黒鉛製の断熱材で更に覆われていることを特徴とするものである。   An apparatus for producing coated fuel particles for a HTGR according to a third aspect of the invention is characterized in that the outer peripheral side of the leak-proof tubular member according to the second aspect is further covered with a heat insulating material made of graphite. To do.

請求項4に記載された発明に係る高温ガス炉用被覆燃料粒子の製造装置は、請求項1に記載の ガス導入手段として、ガス導入ノズルの外周側に設けられた円筒形の漏れ防止筒材を備え、
前記漏れ防止筒材は、ガス導入ノズルの外周を覆うように反応管の下部から延設され、
前記漏れ防止筒材の下部は、対応する流動床反応装置の下部壁に螺合するようにネジ加工されていることを特徴とするものである。
An apparatus for producing coated fuel particles for a HTGR according to a fourth aspect of the present invention is a cylindrical leak-proof cylinder provided on the outer peripheral side of the gas introduction nozzle as the gas introduction means according to the first aspect. With
The leakage prevention cylinder is extended from the lower part of the reaction tube so as to cover the outer periphery of the gas introduction nozzle,
The lower part of the leak-proof cylinder is threaded so as to be screwed into the lower wall of the corresponding fluidized bed reactor.

本発明は以上説明した通り、連続的に生産する場合も、被覆層の特性に大きな影響を与える炉内の温度分布は変化することなく安定させることができ、連続生産に適した高温ガス炉用被覆燃料粒子の製造装置を得ることができるという効果がある。   As described above, the present invention can stabilize the temperature distribution in the furnace, which has a great influence on the properties of the coating layer, even when continuously produced, and can be stabilized without change. There is an effect that an apparatus for producing coated fuel particles can be obtained.

本発明においては、二酸化ウランを焼結した燃料核の表面に、低密度熱分解炭素からなりガス状核分裂生成物のガス溜め及び燃料核のスウェリングを吸収するバッファとしての機能を有する第1被覆層と、高密度熱分解炭素からなりガス状核分裂生成物の保持機能を有する第2被覆層と、炭化珪素からなり固体核分裂生成物の保持機能と被覆層の主な強度部材としての機能とを有する第3被覆層と、高密度熱分解炭素からなりガス状核分裂生成物の保持機能と第3被覆層の保護層としての機能とを有する第4被覆層との計4層の被覆層を施す流動床反応装置を備えた高温ガス炉用被覆燃料粒子の製造装置において、
流動床反応装置本体内での被覆ガス及び/又は流動ガスの流動床内の反応管へのガス導入手段が存在する空間と、流動床反応装置本体内でのヒーター及び断熱材が存在する空間とが互いに隔離されているものである。これにより、連続的に生産する場合も、被覆層の特性に大きな影響を与える炉内の温度分布は変化することなく安定させることができ、連続生産に適した高温ガス炉用被覆燃料粒子の製造装置を得ることができる。
In the present invention, on the surface of a fuel nucleus sintered with uranium dioxide, a first coating made of low-density pyrolytic carbon and serving as a buffer for absorbing gas fission product gas reservoirs and fuel nucleus swelling. A layer, a second coating layer made of high-density pyrolytic carbon and having a function of holding a gaseous fission product, a function of holding a solid fission product made of silicon carbide, and a function as a main strength member of the coating layer. A total of four coating layers are applied, including a third coating layer having a fourth coating layer made of high-density pyrolytic carbon and having a function of retaining a gaseous fission product and a function as a protective layer of the third coating layer In an apparatus for producing coated fuel particles for a HTGR equipped with a fluidized bed reactor,
A space in which there is a gas introduction means for the coating gas and / or fluid gas in the fluidized bed in the fluidized bed reactor main body, and a space in the fluidized bed reactor main body in which the heater and the heat insulating material are present. Are isolated from each other. This makes it possible to stabilize the temperature distribution in the furnace, which has a great influence on the characteristics of the coating layer, even when continuously produced, and to stabilize the fuel distribution for high-temperature gas reactors suitable for continuous production. A device can be obtained.

より具体的に説明するならば、本発明は、高温ガス炉燃料中に含まれる被覆燃料粒子を製造する装置で、二酸化ウランなどウランの化合物からなる燃料核に第1層の低密度炭素層から第4層の高密度熱分解炭素層までを被覆する流動床反応装置の工夫に関するものである。   More specifically, the present invention is an apparatus for producing coated fuel particles contained in a HTGR fuel. A fuel core made of a compound of uranium such as uranium dioxide is used as a fuel nucleus from a first low-density carbon layer. The present invention relates to a device for a fluidized bed reactor that covers up to the fourth high-density pyrolytic carbon layer.

本発明は、流動床反応装置本体内での被覆ガス及び/又は流動ガスの流動床内の反応管へのガス導入手段が存在する空間と、流動床反応装置本体内でのヒーター及び断熱材が存在する空間とを互いに隔離する。これにより、ガス噴出手段と反応管との隙間から漏れ出た被覆ガスや流動ガスがヒーターや断熱材の方ヘ流れないようになるため、ヒーターや断熱材の材料である黒鉛と水素が反応し、黒鉛が減少してしまうことを防ぐことが可能になる。   The present invention includes a space in which gas is introduced into a reaction tube in a fluidized bed and / or a coating gas in the fluidized bed reactor main body, a heater and a heat insulating material in the fluidized bed reactor main body. Isolate existing spaces from each other. This prevents the coating gas or fluid gas leaking from the gap between the gas jetting means and the reaction tube from flowing toward the heater or heat insulating material, so that graphite, which is the material of the heater or heat insulating material, reacts with hydrogen. It is possible to prevent the graphite from being reduced.

ヒーターや断熱材の減少が発生しないので、連続的に生産する場合も、炉内の温度分布は変化することなく安定しているので、高温ガス炉燃料の核分裂性物質の閉じこめ作用上、非常に重要な役割を持っている被覆層の品質を安定させることが可能になる。   Since there is no decrease in heaters and insulation, the temperature distribution in the furnace is stable without change even in continuous production, which is very constrained by the fissile material confinement action of the HTGR fuel. It becomes possible to stabilize the quality of the coating layer having an important role.

本発明での2つの空間の隔離としては、流動床内の反応管へのガス導入手段が存在する空間からのガスが、流動床反応装置本体内でのヒーター及び断熱材が存在する空間へと移行することを阻害するものであればよい。より好ましい態様としては、ガス導入手段として、ガス導入ノズルの外周側に設けられた円筒形の漏れ防止筒材を備え、前記漏れ防止筒材の下部は、対応する反応装置本体に固定され、前記漏れ防止筒材の上部は、対応する反応管の下部と互いに螺合するようにネジ加工されているものが挙げられる。   In the present invention, the two spaces are separated from the gas from the space where the gas introduction means to the reaction tube in the fluidized bed exists into the space where the heater and the heat insulating material exist in the fluidized bed reactor main body. Anything that inhibits migration may be used. As a more preferred embodiment, the gas introduction means includes a cylindrical leak-proof cylinder provided on the outer peripheral side of the gas introduction nozzle, and the lower part of the leak-proof cylinder is fixed to the corresponding reactor main body, The upper part of the leak-proof cylindrical material is one that is threaded so as to be screwed together with the lower part of the corresponding reaction tube.

また、好ましくは、漏れ防止筒材の外周側が黒鉛製の断熱材で更に覆われているものでは、より確実に2つの空間の隔離が行われる。更に、金属製のガス導入ノズルが溶融することを防ぐこともできる。   Preferably, in the case where the outer peripheral side of the leak-proof cylindrical material is further covered with a heat insulating material made of graphite, the two spaces are more reliably separated. Furthermore, melting of the metal gas introduction nozzle can be prevented.

本発明は、更に、ガス導入ノズルの外側に円筒形の筒を設けてこれを延長し、円筒の下部側は流動床本体に固定され外部へのガスの流出が生じないようにしたり、また、別のガス導入手段として、ガス導入ノズルの外周側に設けられた円筒形の漏れ防止筒材を備え、前記漏れ防止筒材は、ガス導入ノズルの外周を覆うように反応管の下部から延設され、前記漏れ防止筒材の下部は、対応する流動床反応装置の下部壁に螺合するようにネジ加工させることにより、ガス噴出ノズルと反応管の隙間から漏れ出た被覆ガスや流動ガスがヒーターや断熱材の方ヘ流れないようにしてもよい。   In the present invention, a cylindrical tube is further provided outside the gas introduction nozzle to extend the cylinder, and the lower side of the cylinder is fixed to the fluidized bed body so that no gas flows out to the outside. As another gas introduction means, a cylindrical leakage prevention cylinder provided on the outer peripheral side of the gas introduction nozzle is provided, and the leakage prevention cylinder extends from the lower part of the reaction tube so as to cover the outer circumference of the gas introduction nozzle. The lower part of the leakage prevention cylinder is threaded so as to be screwed into the lower wall of the corresponding fluidized bed reactor, so that the coating gas and fluidized gas leaking from the gap between the gas ejection nozzle and the reaction tube can be removed. It may be prevented from flowing toward the heater or the heat insulating material.

このような構成とすることにより、第3層被覆時に流動ガスである水素ガスがガス噴出ノズルと反応管の隙間から漏れても、円筒と反応管により囲われた空間内であり、外部側への漏れは生じないため、ヒーターや断熱材の材料である黒鉛と水素が反応し、黒鉛が減少してしまうことを防ぐことが可能になる。ヒーターや断熱材の減少が発生しないので、連続的に生産する場合も、炉内の温度分布は変化することなく安定しているので、高温ガス炉燃料の核分裂性物質の閉じこめ上非常に重要な役割を持っている被覆層の品質を安定させることが可能になる。   By adopting such a configuration, even when hydrogen gas, which is a flowing gas, leaks from the gap between the gas ejection nozzle and the reaction tube when the third layer is coated, it is in the space surrounded by the cylinder and the reaction tube, and to the outside side. Therefore, it is possible to prevent graphite and hydrogen, which are materials of the heater and the heat insulating material, from reacting with each other and reducing graphite. Since there is no reduction in heaters and insulation, the temperature distribution in the furnace remains stable even when continuously produced, so it is very important for the containment of fissile material in HTGR fuel. It becomes possible to stabilize the quality of the coating layer having a role.

図1は本発明の高温ガス炉用被覆燃料粒子の製造装置の一実施例の構成を示す説明図である。高温ガス炉用被覆燃料粒子の製造装置としての流動床反応装置は図1に示すように、二酸化ウランから成る燃料核12を流動床本体の上部に設けられた窓(図示せず)から入れて、流動ガス入口16からガス導入ノズル14及びガス噴出ノズル13を通して被覆ガスと流動ガスとを流すことにより被覆を施す反応管15と、この反応管15の外周に配設され燃料核を加熱する黒鉛製のヒーター11と、同じく黒鉛製でヒーター11のさらに外周に配設される断熱材18とを備える。   FIG. 1 is an explanatory view showing the configuration of an embodiment of the production apparatus for coated fuel particles for a HTGR according to the present invention. As shown in FIG. 1, a fluidized bed reactor as a production apparatus for coated fuel particles for a high temperature gas reactor has a fuel core 12 made of uranium dioxide inserted through a window (not shown) provided in the upper part of the fluidized bed main body. A reaction tube 15 for coating by flowing a coating gas and a flowing gas from the flowing gas inlet 16 through the gas introduction nozzle 14 and the gas jet nozzle 13 and graphite for heating the fuel core disposed on the outer periphery of the reaction tube 15 A heater 11 made of graphite, and a heat insulating material 18 that is also made of graphite and disposed on the outer periphery of the heater 11.

本実施例では、反応管15の下部側にカーボン製の円筒10を設け、円筒10の上部とこれに対向する反応管15の下部を筒状に形成させた受部にはネジ加工が施され、お互いがネジ止めされる構造になっている。また、カーボン製の円筒10の外部側には黒鉛製の断熱材20を取り付けた。これは一般に金属製のガス導入ノズル14が炉内の高い温度で溶融することを防ぐ目的とするからである。流動床反応装置本体19の大きさはφ約700mm×H約2200mmとし、反応管の大きさはφ約200mm×H約1000mmとした。   In this embodiment, a carbon cylinder 10 is provided on the lower side of the reaction tube 15, and a threaded portion is applied to the receiving portion in which the upper portion of the cylinder 10 and the lower portion of the reaction tube 15 facing the cylinder 10 are formed in a cylindrical shape. , Each other is screwed. A graphite heat insulating material 20 was attached to the outside of the carbon cylinder 10. This is because generally the purpose is to prevent the metal gas introduction nozzle 14 from melting at a high temperature in the furnace. The size of the fluidized bed reactor main body 19 was approximately 700 mm × H approximately 2200 mm, and the size of the reaction tube was approximately 200 mm × H approximately 1000 mm.

このような高温ガス炉用被覆燃料粒子の製造装置で、被覆燃料粒子の製造は、平均直径0.6mmを持つ二酸化ウラン燃料核約3.8kgを流動床内に入れ、約1400℃でアセチレン(C)ガスを流入して第1層の低密度炭素を被覆した後、約1400℃でプロピレン(C)を流入して第2層の高密度熱分解炭素を被覆し、次に、約1600℃でメチルトリクロロシラン(CHSiCl)を流入して第3層のSiC層を被覆し、最後に、約1400℃でプロピレン(C)を流入して第4層の高密度熱分解炭素を被覆した。 With such an apparatus for producing coated fuel particles for a HTGR, the coated fuel particles are produced by placing about 3.8 kg of uranium dioxide fuel nuclei having an average diameter of 0.6 mm in a fluidized bed at about 1400 ° C. after C 2 H 2) covering the low-density carbon of the first layer by flowing a gas, covering the high-density pyrolytic carbon of the second layer flows into the propylene (C 3 H 6) at about 1400 ° C., Next, methyltrichlorosilane (CH 3 SiCl 3 ) is introduced at about 1600 ° C. to cover the third SiC layer, and finally, propylene (C 3 H 6 ) is introduced at about 1400 ° C. The layer was coated with high density pyrolytic carbon.

この被覆作業を繰り返し実施したところ、ヒーター11及び断熱材18に水素との反応により炭化水素が発生した事による劣化のあとは見られず、得られた被覆燃料粒子の平均直径は0.93mmであり、各層の厚さは、第1層が0.06mm、第2層が0.03mm、第3層が0.03mm、第4層が0.045mmで非常に安定していた。   When this coating operation was repeated, no deterioration was observed due to the generation of hydrocarbons by reaction with hydrogen in the heater 11 and the heat insulating material 18, and the average diameter of the obtained coated fuel particles was 0.93 mm. The thickness of each layer was 0.06 mm for the first layer, 0.03 mm for the second layer, 0.03 mm for the third layer, and 0.045 mm for the fourth layer.

図2は別の実施例の構成を示す説明図である。図2に示す通り、図1に示したカーボン製の円筒10の代わりに、反応管15の下部側を筒状に長く伸ばした円筒30が形成されており、円筒30の下部と流動床反応装置本体19の床部とはネジ加工が施され、お互いがネジ止めされる構造になっている以外は、図1と同じである。   FIG. 2 is an explanatory diagram showing the configuration of another embodiment. As shown in FIG. 2, instead of the carbon cylinder 10 shown in FIG. 1, a cylinder 30 is formed by extending the lower side of the reaction tube 15 into a cylindrical shape. The floor portion of the main body 19 is the same as that shown in FIG. 1 except that it has a structure in which screw processing is performed and each other is screwed.

以上のように、第3層被覆時に流動ガスである水素ガスがガス噴出ノズル14と反応管15の隙間から漏れても、ヒーター11や断熱材18のある空間に流れ込まないため、ヒーター11や断熱材18の材料である黒鉛と水素が反応し、黒鉛が減少してしまうことを防ぐことが可能になる。   As described above, even when hydrogen gas, which is a flowing gas, leaks from the gap between the gas ejection nozzle 14 and the reaction tube 15 when the third layer is coated, it does not flow into the space where the heater 11 and the heat insulating material 18 are located. It is possible to prevent the graphite, which is the material of the material 18, from reacting with hydrogen and reducing the graphite.

また、ヒーター11や断熱材18の減少が発生しないので、連続的に生産する場合も、炉内の温度分布は変化することなく安定しているので、高温ガス炉燃料の核分裂性物質の閉じこめ上非常に重要な役割を持っている被覆層の品質を安定させることが可能になる。   In addition, since the heater 11 and the heat insulating material 18 are not reduced, the temperature distribution in the furnace is stable without change even in continuous production, so that the fissile material in the HTGR fuel is confined. It becomes possible to stabilize the quality of the coating layer having a very important role.

本発明の高温ガス炉用被覆燃料粒子の製造装置の一実施例の構成を示す説明図である。It is explanatory drawing which shows the structure of one Example of the manufacturing apparatus of the covering fuel particle | grain for high temperature gas reactors of this invention. 本発明の高温ガス炉用被覆燃料粒子の製造装置の別の実施例の構成を示す説明図である。It is explanatory drawing which shows the structure of another Example of the manufacturing apparatus of the coating | coated fuel particle | grain for high temperature gas reactors of this invention. 従来の高温ガス炉用被覆燃料粒子の製造装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the manufacturing apparatus of the conventional coating | coated fuel particle | grain for high temperature gas reactors.

符号の説明Explanation of symbols

10…カーボン製の円筒、
11…ヒーター、
12…燃料核、
13…ガス噴出ノズル、
14…ガス導入ノズル、
15…反応管、
16…流動ガス入口、
17…廃ガス排出口、
18…断熱材、
19…本体、
20…断熱材、
30…円筒、
10 ... carbon cylinder,
11 ... Heater,
12. Fuel kernel,
13: Gas ejection nozzle,
14 ... Gas introduction nozzle,
15 ... reaction tube,
16 ... Fluid gas inlet,
17 ... Waste gas outlet,
18 ... heat insulation,
19 ... body,
20 ... heat insulating material,
30 ... Cylinder,

Claims (4)

二酸化ウランを焼結した燃料核の表面に、低密度熱分解炭素からなりガス状核分裂生成物のガス溜め及び燃料核のスウェリングを吸収するバッファとしての機能を有する第1被覆層と、高密度熱分解炭素からなりガス状核分裂生成物の保持機能を有する第2被覆層と、炭化珪素からなる固体核分裂生成物の保持機能と被覆層の主な強度部材としての機能とを有する第3被覆層と、高密度熱分解炭素からなりガス状核分裂生成物の保持機能と第3被覆層の保護層としての機能を有する第4被覆層との計4層の被覆層を施す流動床反応装置を備えた高温ガス炉用被覆燃料粒子の製造装置において、
流動床反応装置本体内での被覆ガス及び/又は流動ガス流動床内の反応管へガス導入ノズルを通して流すガス導入手段が存在する空間と、流動床反応装置本体内でのヒーター及び断熱材が存在する空間とが、ガス導入ノズルの外周側に設けられた円筒形の漏れ防止筒材によって互いに隔離されていることを特徴とする高温ガス炉用被覆燃料粒子の製造装置。
A first coating layer comprising a low-density pyrolytic carbon surface on the surface of a fuel nucleus sintered with uranium dioxide and serving as a buffer for absorbing gas fission product gas reservoirs and fuel nucleus swelling; A second coating layer made of pyrolytic carbon and having a function of holding a gaseous fission product, and a third coating layer having a function of holding a solid fission product made of silicon carbide and a function as a main strength member of the coating layer And a fluidized bed reactor for applying a total of four coating layers comprising a high density pyrolytic carbon and a fourth coating layer having a function of retaining a gaseous fission product and having a function as a protective layer of the third coating layer. In an apparatus for producing coated fuel particles for high temperature gas reactors,
A space fluidized bed reactor gas introducing means for flowing through the gas introducing nozzle coating gas and / or liquid gas in the main body into the reaction tube in the fluidized bed is present, the heater and the heat insulating material in a fluidized bed reactor main body An apparatus for producing coated fuel particles for a high-temperature gas reactor, wherein the existing space is separated from each other by a cylindrical leak-proof cylinder provided on the outer peripheral side of the gas introduction nozzle .
前記ガス導入手段として、ガス導入ノズルの外周側に設けられた円筒形の漏れ防止筒材を備え、
前記漏れ防止筒材の下部は、対応する反応装置本体に固定され、
前記漏れ防止筒材の上部は、対応する反応管の下部と互いに螺合するようにネジ加工されていることを特徴とする請求項1に記載の高温ガス炉用被覆燃料粒子の製造装置。
As the gas introduction means, provided with a cylindrical leak-proof cylinder provided on the outer peripheral side of the gas introduction nozzle,
The lower part of the leak-proof cylinder is fixed to the corresponding reactor main body,
2. The apparatus for producing coated fuel particles for a high temperature gas reactor according to claim 1, wherein the upper part of the leak-proof cylindrical member is threaded so as to be screwed together with the lower part of the corresponding reaction tube.
前記漏れ防止筒材の外周側が黒鉛製の断熱材で更に覆われていることを特徴とする請求項2に記載の高温ガス炉用被覆燃料粒子の製造装置。   The apparatus for producing coated fuel particles for a HTGR according to claim 2, wherein the outer peripheral side of the leak-proof cylinder is further covered with a heat insulating material made of graphite. 前記ガス導入手段として、ガス導入ノズルの外周側に設けられた円筒形の漏れ防止筒材を備え、
前記漏れ防止筒材は、ガス導入ノズルの外周を覆うように反応管の下部から延設され、
前記漏れ防止筒材の下部は、対応する流動床反応装置の下部壁に螺合するようにネジ加工されていることを特徴とする請求項1に記載の高温ガス炉用被覆燃料粒子の製造装置。
As the gas introduction means, provided with a cylindrical leak-proof cylinder provided on the outer peripheral side of the gas introduction nozzle,
The leakage prevention cylinder is extended from the lower part of the reaction tube so as to cover the outer periphery of the gas introduction nozzle,
2. The apparatus for producing coated fuel particles for a high temperature gas reactor according to claim 1, wherein the lower part of the leak-proof cylinder is threaded so as to be screwed into a lower wall of a corresponding fluidized bed reactor. .
JP2005045371A 2005-02-22 2005-02-22 Production equipment for coated fuel particles for HTGR Expired - Fee Related JP4409460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045371A JP4409460B2 (en) 2005-02-22 2005-02-22 Production equipment for coated fuel particles for HTGR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045371A JP4409460B2 (en) 2005-02-22 2005-02-22 Production equipment for coated fuel particles for HTGR

Publications (2)

Publication Number Publication Date
JP2006234404A JP2006234404A (en) 2006-09-07
JP4409460B2 true JP4409460B2 (en) 2010-02-03

Family

ID=37042247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045371A Expired - Fee Related JP4409460B2 (en) 2005-02-22 2005-02-22 Production equipment for coated fuel particles for HTGR

Country Status (1)

Country Link
JP (1) JP4409460B2 (en)

Also Published As

Publication number Publication date
JP2006234404A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4697938B2 (en) Method for producing coated fuel particles for HTGR
JP2005308522A (en) Device for manufacturing cladding fuel particle for high-temperature gas-cooled reactor
JP4409460B2 (en) Production equipment for coated fuel particles for HTGR
JP4521763B2 (en) Production equipment for coated fuel particles for HTGR
JP4417867B2 (en) Production equipment for coated fuel particles for HTGR
JP2006234405A (en) Clad fuel particle, overcoat particles and method of manufacturing same
JP4417871B2 (en) Production equipment for coated fuel particles for HTGR
JP4357437B2 (en) Production equipment for coated fuel particles for HTGR
JP4583104B2 (en) Methyltrichlorosilane gas generator
JP4417901B2 (en) Production equipment for coated fuel particles for HTGR
JP4354903B2 (en) Production equipment for coated fuel particles for HTGR
JP4409405B2 (en) Production equipment for coated fuel particles for HTGR
JP2007147504A (en) Coated fuel particle for high-temperature gas-cooled reactor, and manufacturing method therefor
JP4415272B2 (en) Equipment for producing fuel particles for HTGR
JP4417879B2 (en) Production equipment for coated fuel particles for HTGR
JP2006242694A (en) Manufacturing device of coated fuel particle for high-temperature gas reactor
JP2006266805A (en) Manufacturing equipment and manufacturing method for coated fuel particle for high-temperature gas-cooled reactor
JP2007003118A (en) Gas injection nozzle deposit-removing method for manufacturing device of coated fuel particle for high-temperature gas furnace and manufacturing method of coated fuel particle for high-temperature gas furnace
JP2007084376A (en) Apparatus for manufacturing ammonium diuranate particle
JP4354905B2 (en) Fuel particle coating gas supply system for HTGR
JP2006300547A (en) Fuel for high-temperature gas-cooled reactor
JP2006064442A (en) Manufacturing device of hollow fuel compact for high-temperature gas furnace
JP2007127484A (en) Fuel assembly for high-temperature gas-cooled reactor, and manufacturing method therefor
JP2006112838A (en) Method for manufacturing fuel compact for high-temperature gas-cooled reactor
JP4450762B2 (en) Gas introduction nozzle of coated fuel particle manufacturing equipment for HTGR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

R150 Certificate of patent or registration of utility model

Ref document number: 4409460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151120

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees