JP4417867B2 - Production equipment for coated fuel particles for HTGR - Google Patents

Production equipment for coated fuel particles for HTGR Download PDF

Info

Publication number
JP4417867B2
JP4417867B2 JP2005063508A JP2005063508A JP4417867B2 JP 4417867 B2 JP4417867 B2 JP 4417867B2 JP 2005063508 A JP2005063508 A JP 2005063508A JP 2005063508 A JP2005063508 A JP 2005063508A JP 4417867 B2 JP4417867 B2 JP 4417867B2
Authority
JP
Japan
Prior art keywords
gas
fluidized bed
coating
coating layer
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005063508A
Other languages
Japanese (ja)
Other versions
JP2006250544A (en
Inventor
和俊 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2005063508A priority Critical patent/JP4417867B2/en
Publication of JP2006250544A publication Critical patent/JP2006250544A/en
Application granted granted Critical
Publication of JP4417867B2 publication Critical patent/JP4417867B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

本発明は、高温ガス炉用燃料の製造装置に関し、二酸化ウランなどウランの化合物から成る燃料核に多重の被覆層を形成して被覆燃料粒子とする流動床反応装置を備えた高温ガス炉用被覆燃料粒子の製造装置において、被覆層の特性に大きな影響を与える被覆温度の炉内分布が、繰り返し製造していても変化することなく一定であり、連続生産に適したものである。   TECHNICAL FIELD The present invention relates to an apparatus for producing a fuel for a high temperature gas reactor, and relates to a coating for a high temperature gas reactor provided with a fluidized bed reactor in which multiple coating layers are formed on a fuel core made of a uranium compound such as uranium dioxide to form coated fuel particles. In the fuel particle manufacturing apparatus, the distribution in the furnace of the coating temperature, which greatly affects the characteristics of the coating layer, remains constant even when repeatedly manufactured, and is suitable for continuous production.

高温ガス炉は、燃料を含む炉心構造を熱容量が大きく高温健全性の良好な黒鉛で構成するとともに、冷却ガスとして高温下でも化学的反応の起こらないヘリウムガスなどの気体を用いることにより、固有の安全性が高く、高い出口温度のヘリウムガスを取り出すことが可能であり、約900℃の高温熱は、発電はもちろんのこと水素製造や化学プラント等幅広い分野での熱利用を可能にするものである。   The HTGR is composed of graphite, which has a large heat capacity and good high-temperature soundness, and uses a gas such as helium gas that does not cause a chemical reaction even at high temperatures as a cooling gas. Helium gas with high safety and high outlet temperature can be taken out, and the high temperature heat of about 900 ° C enables heat utilization in a wide range of fields such as hydrogen production and chemical plants as well as power generation. is there.

高温ガス炉の燃料は、一般に二酸化ウランをセラミックス状に焼結した直径約350〜650μmの燃料核を中心として計4層の被覆を施している。第1層は密度約1g/cm の低密度熱分解炭素で、ガス状の核分裂生成物(FP)のガス溜めとしての機能及び燃料核のスウェリングを吸収するバッファとしての機能を併せ持つものである。第2層は密度約1.8g/cm の高密度熱分解炭素でガス状FPの保持機能を有する。第3層は密度約3.2g/cm の炭化珪素(以下、SiCと称す)で固体FPの保持機能を有するとともに、被覆層の主要な強度部材である。第4層は、第2層と同様の密度約1.8g/cm の高密度熱分解炭素でガス状FPの保持機能とともに第3層の保護層としての機能も持っている。 The fuel in the HTGR is generally coated with a total of four layers, centering on a fuel core having a diameter of about 350 to 650 μm obtained by sintering uranium dioxide into a ceramic form. The first layer is a low-density pyrolytic carbon with a density of about 1 g / cm 3 , which has both a function as a gas reservoir for gaseous fission products (FP) and a function as a buffer for absorbing fuel swelling. is there. The second layer is a high-density pyrolytic carbon having a density of about 1.8 g / cm 3 and has a function of holding a gaseous FP. The third layer is silicon carbide (hereinafter referred to as SiC) having a density of about 3.2 g / cm 3 and has a function of holding a solid FP, and is a main strength member of the coating layer. The fourth layer is a high-density pyrolytic carbon having a density of about 1.8 g / cm 3 , which is the same as that of the second layer, and has a function of holding the gaseous FP as well as a protective layer of the third layer.

一般的な被覆燃料粒子の直径は約500〜1000μmである。この被覆燃料粒子は黒鉛マトリックス中に分散させ一定形状の燃料コンパクトの形に成型加工され、さらに黒鉛でできた筒にコンパクトを一定数量入れ、上下に栓をした燃料棒の形にされる。最終的に燃料棒は、六角柱型黒鉛ブロックの複数の挿入口に入れられ、この六角柱型黒鉛ブロックを多数個、ハニカム配列に複数段重ねて炉心を構成している。   Typical coated fuel particles have a diameter of about 500-1000 μm. The coated fuel particles are dispersed in a graphite matrix and molded into a compact fuel compact shape, and a certain amount of compact is put into a cylinder made of graphite and is shaped into a fuel rod that is plugged up and down. Finally, the fuel rod is inserted into a plurality of insertion holes of the hexagonal column type graphite block, and a large number of the hexagonal column type graphite blocks are stacked in a honeycomb array to constitute a core.

このような高温ガス炉の燃料は、一般的に以下のような工程を経て製造される。まず、酸化ウランの粉末を硝酸に溶かし硝酸ウラニル原液とする。この硝酸ウラニル原液に純水、増粘剤を加え撹拌することにより滴下原液とする。増粘剤は、滴下された硝酸ウラニルの液滴が落下中に自身の表面張力により真球状になるように添加される。増粘剤としてば、例えばポリビニルアルコール樹脂、アルカリ条件下で凝固する性質を有する樹脂、ポリエチレングリコール、メトローズなどをあげることができる。   Such a HTGR fuel is generally manufactured through the following steps. First, uranium oxide powder is dissolved in nitric acid to obtain a uranyl nitrate stock solution. Pure water and a thickener are added to this uranyl nitrate stock solution and stirred to obtain a dripping stock solution. The thickener is added so that the dropped uranyl nitrate droplet becomes a true sphere due to its surface tension during dropping. Examples of the thickener include a polyvinyl alcohol resin, a resin having a property of solidifying under an alkaline condition, polyethylene glycol, and metroses.

上記のように調整された滴下原液は所定の温度に冷却され粘度を調整した後、細径の滴下ノズルを振動させることによりアンモニア水中に滴下される。液滴は、アンモニア水溶液表面に着水するまでの空間においてアンモニアガスを掛けて表面をゲル化させることにより、着水時の変形が防止される。アンモニア水中で硝酸ウラニルはアンモニアと十分に反応させ、重ウラン酸アンモニウムの粒子となる。   The dropping stock solution adjusted as described above is cooled to a predetermined temperature to adjust the viscosity, and then dropped into ammonia water by vibrating a small-diameter dropping nozzle. The droplets are prevented from being deformed at the time of landing by applying ammonia gas in a space until landing on the surface of the aqueous ammonia solution to gel the surface. Uranyl nitrate reacts sufficiently with ammonia in ammonia water to form particles of ammonium heavy uranate.

重ウラン酸アンモニウム粒子は、大気中でばい焼され三酸化ウラン粒子となり、さらに還元・焼結されることにより高密度のセラミック状二酸化ウランからなる燃料核となる。   The ammonium heavy uranate particles are roasted in the atmosphere to become uranium trioxide particles, and further reduced and sintered to become fuel nuclei made of high-density ceramic uranium dioxide.

この燃料核を流動床に装荷し、被覆ガスを熱分解させることにより被覆を施す。第1層の低密度炭素の場合は約1400℃でアセチレン(C)を熱分解する。第2,4層の高密度熱分解炭素の場合は約1400℃でプロピレン(C)を熱分解する。第3層のSiCの場合は約1600℃でメチルトリクロロシラン(CHSiCl)を熱分解する。 The fuel nuclei are loaded onto a fluidized bed, and coating is performed by thermally decomposing the coating gas. In the case of the low density carbon of the first layer, acetylene (C 2 H 2 ) is thermally decomposed at about 1400 ° C. In the case of the second and fourth layers of high-density pyrolytic carbon, propylene (C 3 H 6 ) is pyrolyzed at about 1400 ° C. In the case of SiC of the third layer, methyltrichlorosilane (CH 3 SiCl 3 ) is thermally decomposed at about 1600 ° C.

前述の被覆ガスを使用して各被覆層を形成させる際には、被覆層を各粒子に均一に付けるため別のガスを用いて粒子を反応管内で十分に流動させた状態で行う。これが、被覆燃料粒子の製造装置を流動床と呼ぶ所以である。粒子を流動させるためのガスとしては、第1、2及び4層を被覆する場合は不活性ガスの一つであるアルゴンガスを、そして第3層を被覆する際には水素ガスまたは水素ガス+不活性ガスの一つであるアルゴンガスが一般的に使用されている。   When each coating layer is formed using the aforementioned coating gas, the particles are sufficiently flowed in the reaction tube using another gas in order to uniformly apply the coating layer to each particle. This is why the coated fuel particle production apparatus is called a fluidized bed. As a gas for flowing particles, argon gas which is one of inert gases when coating the first, second and fourth layers, and hydrogen gas or hydrogen gas when coating the third layer + Argon gas, which is one of inert gases, is generally used.

また、燃料コンパクトは、黒鉛粉末、粘結剤等からなる黒鉛マトリックス材を被覆燃料粒子の表面にコーティングし、中空円筒形または円筒形にプレス成型またはモールド成型した後、グリーンコンパクト内にバインダーとして含まれるフェノール樹脂を炭化させるために熱処理を実施し、さらにコンパクト内に含まれるガス成分を除去することを目的とした熱処理を実施して得られる(例えば、特許文献1参照)。   The fuel compact is coated with a graphite matrix material consisting of graphite powder, binder, etc. on the surface of the coated fuel particles, and is pressed or molded into a hollow cylindrical shape or cylindrical shape, and then included as a binder in the green compact. In order to carbonize the phenol resin obtained, heat treatment is carried out, and further, heat treatment aimed at removing gas components contained in the compact is carried out (for example, see Patent Document 1).

図2は従来の高温ガス炉用被覆燃料粒子の製造装置の構成を示す説明図である。高温ガス炉用被覆燃料粒子の製造装置としての流動床反応装置は図2に示すように、二酸化ウランから成る燃料核22を流動床本体の上部窓(図示せず)から入れて、流動ガス入口26からガス導入ノズル24及びガス噴出ノズル23を通して被覆ガスと流動ガスとを流すことにより被覆を施す反応管25と、この反応管25の外周に配設され燃料核を加熱する黒鉛製のヒーター21と、同じく黒鉛製でヒーター21のさらに外周に配設される断熱材28とを備える。被覆ガスや流動ガスは廃ガス排出囗27から炉外へ出される。
特開2000−284084号公報
FIG. 2 is an explanatory view showing a configuration of a conventional apparatus for producing coated fuel particles for a HTGR. As shown in FIG. 2, a fluidized bed reactor as a production apparatus for coated fuel particles for a HTGR is provided with a fuel core 22 made of uranium dioxide through an upper window (not shown) of the fluidized bed main body, and a fluidized gas inlet. 26, a reaction tube 25 for coating by flowing a coating gas and a flowing gas through a gas introduction nozzle 24 and a gas ejection nozzle 23, and a graphite heater 21 which is disposed on the outer periphery of the reaction tube 25 and heats fuel nuclei. And a heat insulating material 28, which is also made of graphite and disposed on the outer periphery of the heater 21. The coating gas and the flowing gas are discharged out of the furnace through the waste gas discharge rod 27.
JP 2000-284084 A

このような流動床反応装置では、ガス噴出ノズル23を移動させることによって、燃料核22に4層が被覆された被覆燃料粒子を流動床の下部の原料及び流動ガス入口26から取り出すために、ガス噴出ノズル23と反応管25とは、機械的に固定されていないのが一般的である。このため、被覆ガスや流動ガスはガス噴出ノズル23と反応管25との隙間から漏れ、ヒーター21や断熱材28の周りに充満することになる。   In such a fluidized bed reactor, the gas ejection nozzle 23 is moved to remove the coated fuel particles having four layers coated on the fuel core 22 from the raw material and the fluidized gas inlet 26 at the bottom of the fluidized bed. In general, the ejection nozzle 23 and the reaction tube 25 are not mechanically fixed. For this reason, the coating gas and the flowing gas leak from the gap between the gas ejection nozzle 23 and the reaction tube 25 and fill around the heater 21 and the heat insulating material 28.

第1,2,4層の被覆時には問題ないが、第3層の被覆時には、流動ガスである水素ガスが漏れると、約1600℃に加熱されているため、ヒーター21や断熱材28の材料である黒鉛と水素とが反応し、炭化水素が発生する。炭化水素が発生するということはヒーター21や断熱材28の材料である黒鉛が減少することになるため、ヒーター21の場合は抵抗値が変わり、その結果、発生熱量が変わってしまう。   There is no problem when the first, second, and fourth layers are coated, but when the third layer is coated, if hydrogen gas, which is a flowing gas, leaks, it is heated to about 1600 ° C. Certain graphite and hydrogen react to generate hydrocarbons. The generation of hydrocarbons means that the graphite that is the material of the heater 21 and the heat insulating material 28 is reduced. Therefore, in the case of the heater 21, the resistance value changes, and as a result, the amount of generated heat changes.

また、断熱材28の場合は、黒鉛が減少した部分から熱が逃げやすくなって断熱性能が低下する。結果として、被覆層の特性に大きな影響を与える被覆温度の炉内分布が変化してしまうことになる。よって、連続して生産する場合には、バッチ毎に製造条件が変わってしまうことになるため、高温ガス炉燃料の核分裂性物質の閉じ込め作用上、非常に重要な被覆層の品質が安定しなくなってしまうという重大な問題点が生じる。   In the case of the heat insulating material 28, heat easily escapes from the portion where the graphite is reduced, and the heat insulating performance is lowered. As a result, the distribution of the coating temperature in the furnace, which greatly affects the properties of the coating layer, changes. Therefore, in the case of continuous production, the production conditions will change from batch to batch, so the quality of the coating layer, which is very important for the confinement action of the fissile material in the HTGR fuel, becomes unstable. A serious problem arises.

本発明は、被覆層の特性に大きな影響を与える被覆温度の炉内分布が、繰り返し製造しても変化することなく一定であり、連続生産に適した高温ガス炉用被覆燃料粒子の製造装置を得ることを目的とする。   The present invention provides an apparatus for producing coated fuel particles for high-temperature gas furnaces suitable for continuous production, in which the distribution in the furnace of the coating temperature, which greatly affects the properties of the coating layer, remains constant even after repeated production. The purpose is to obtain.

請求項1に記載された発明に係る高温ガス炉用被覆燃料粒子の製造装置は、二酸化ウランを焼結した燃料核の表面に、低密度熱分解炭素からなりガス状核分裂生成物のガス溜め及び燃料核のスウェリングを吸収するバッファとしての機能を有する第1被覆層と、高密度熱分解炭素からなりガス状核分裂生成物の保持機能を有する第2被覆層と、炭化珪素からなり固体核分裂生成物の保持機能と被覆層の主な強度部材としての機能とを有する第3被覆層と、高密度熱分解炭素からなりガス状核分裂生成物の保持機能と第3被覆層の保護層としての機能とを有する第4被覆層との計4層の被覆層を施す流動床反応装置を備えた高温ガス炉用被覆燃料粒子の製造装置において、
前記流動床反応装置の反応管から漏れ出た被覆ガス及び/又は流動ガスを流動床反応装置外へ排出するために、流動床内における反応管の外側に被覆ガスや流動ガスとは別のスイープガスを流動床反応装置の反応管に向かって供給するスイープガス供給管を備え、反応管を超えた側にスイープガスの排出口を備えたことを特徴とするものである。
An apparatus for producing coated fuel particles for a HTGR according to the invention described in claim 1 includes a gas reservoir of a gaseous fission product made of low-density pyrolytic carbon on the surface of a fuel nucleus obtained by sintering uranium dioxide. A first coating layer that functions as a buffer that absorbs fuel nuclear swelling, a second coating layer that consists of high-density pyrolytic carbon, and that holds gaseous fission products, and a solid fission product that consists of silicon carbide A third coating layer having a function of holding an object and a function as a main strength member of the coating layer, a function of holding a gaseous fission product made of high-density pyrolytic carbon, and a function of the third coating layer as a protective layer In a device for producing coated fuel particles for a high temperature gas reactor, comprising a fluidized bed reactor for applying a total of four coating layers with a fourth coating layer having
In order to discharge the coating gas and / or fluid gas leaked from the reaction tube of the fluidized bed reactor to the outside of the fluidized bed reactor, a sweep separate from the coating gas and fluidized gas outside the reaction tube in the fluidized bed. A sweep gas supply pipe for supplying gas toward the reaction pipe of the fluidized bed reactor is provided , and a sweep gas discharge port is provided on the side beyond the reaction pipe .

請求項2に記載された発明に係る高温ガス炉用被覆燃料粒子の製造装置は、請求項1に記載のスイープガスが、窒素ガス、アルゴンガスを始めとする不活性ガスであることを特徴とするものである。   An apparatus for producing coated fuel particles for a HTGR according to claim 2 is characterized in that the sweep gas according to claim 1 is an inert gas such as nitrogen gas or argon gas. To do.

請求項3に記載された発明に係る高温ガス炉用被覆燃料粒子の製造装置は、請求項1又は2に記載の流動床内における反応管の外側の領域に流すスイープガスが反応管の中に流す被覆ガスや流動ガスと同一の出口から流動床外へ排出されることを特徴とするものである。   According to a third aspect of the present invention, there is provided an apparatus for producing HTGR coated fuel particles, wherein the sweep gas flowing in the region outside the reaction tube in the fluidized bed according to claim 1 or 2 is contained in the reaction tube. It is characterized by being discharged out of the fluidized bed from the same outlet as the flowing coating gas or flowing gas.

本発明は以上説明した通り、被覆層の特性に大きな影響を与える被覆温度の炉内分布が、繰り返し製造していても変化することなく一定であり、連続生産に適した高温ガス炉用被覆燃料粒子の製造装置を得ることができるという効果がある。   In the present invention, as described above, the distribution of the coating temperature in the furnace, which greatly affects the characteristics of the coating layer, is constant without change even if it is repeatedly manufactured, and is suitable for continuous production. There is an effect that a particle production apparatus can be obtained.

本発明においては、二酸化ウランを焼結した燃料核の表面に、低密度熱分解炭素からなりガス状核分裂生成物のガス溜め及び燃料核のスウェリングを吸収するバッファとしての機能を有する第1被覆層と、高密度熱分解炭素からなりガス状核分裂生成物の保持機能を有する第2被覆層と、炭化珪素からなり固体核分裂生成物の保持機能と被覆層の主な強度部材としての機能とを有する第3被覆層と、高密度熱分解炭素からなりガス状核分裂生成物の保持機能と第3被覆層の保護層としての機能とを有する第4被覆層との計4層の被覆層を施す流動床反応装置を備えた高温ガス炉用被覆燃料粒子の製造装置において、
前記流動床反応装置の反応管から漏れ出た被覆ガス及び/又は流動ガスを流動床反応装置外へ排出するために、流動床内における反応管の外側に被覆ガスや流動ガスとは別のスイープガスを供給するスイープガス供給管を備える。これにより、被覆層の特性に大きな影響を与える被覆温度の炉内分布が、繰り返し製造していても変化することなく一定であり、連続生産に適した高温ガス炉用被覆燃料粒子の製造装置を得ることができる。
In the present invention, on the surface of a fuel nucleus sintered with uranium dioxide, a first coating made of low-density pyrolytic carbon and serving as a buffer for absorbing gas fission product gas reservoirs and fuel nucleus swelling. A layer, a second coating layer made of high-density pyrolytic carbon and having a function of holding a gaseous fission product, a function of holding a solid fission product made of silicon carbide, and a function as a main strength member of the coating layer. A total of four coating layers are applied, including a third coating layer having a fourth coating layer made of high-density pyrolytic carbon and having a function of retaining a gaseous fission product and a function as a protective layer of the third coating layer In an apparatus for producing coated fuel particles for a HTGR equipped with a fluidized bed reactor,
In order to discharge the coating gas and / or fluid gas leaked from the reaction tube of the fluidized bed reactor to the outside of the fluidized bed reactor, a sweep separate from the coating gas and fluidized gas outside the reaction tube in the fluidized bed. A sweep gas supply pipe for supplying gas is provided. As a result, the coating temperature distribution in the furnace, which greatly affects the characteristics of the coating layer, is constant without changing even if it is repeatedly manufactured. Obtainable.

より具体的に説明するならば、本発明は、高温ガス炉燃料中に含まれる被覆燃料粒子を製造する装置で、二酸化ウランなどウランの化合物からなる燃料核に第1層の低密度炭素層から第4層の高密度熱分解炭素層までを被覆する流動床反応装置の工夫に関する。   More specifically, the present invention is an apparatus for producing coated fuel particles contained in a HTGR fuel. A fuel core made of a compound of uranium such as uranium dioxide is used as a fuel nucleus from a first low-density carbon layer. The present invention relates to a device for a fluidized bed reactor that covers up to a high-density pyrolytic carbon layer as a fourth layer.

本発明は、流動床内における反応管の外側の領域に別のガス(スイープガス)を流し、ガス噴出ノズルと反応管との隙間から漏れ出た被覆ガスや流動ガスを流動床外へ出すことを特徴とするものである。第3層被覆時に流動ガスである水素ガスがガス噴出ノズルと反応管の隙間から漏れても、別のガスの流れにより流動床外へ出されてしまうため、ヒーターや断熱材の材料である黒鉛と水素が反応し、黒鉛が減少してしまうことを防ぐことが可能になる。   The present invention allows another gas (sweep gas) to flow in a region outside the reaction tube in the fluidized bed, and discharges the coating gas and fluidized gas leaking from the gap between the gas ejection nozzle and the reaction tube to the outside of the fluidized bed. It is characterized by. Even if hydrogen gas, which is a fluid gas, leaks from the gap between the gas ejection nozzle and the reaction tube when the third layer is coated, it is discharged out of the fluidized bed by another gas flow. It is possible to prevent hydrogen from reacting with graphite and reducing graphite.

ヒーターや断熱材の減少が発生しないので、連続的に生産する場合も、炉内の温度分布は変化することなく安定しているので、高温ガス炉燃料の核分裂性物質の閉じこめ作用上、非常に重要な役割を持っている被覆層の品質を安定させることが可能になる。   Since there is no decrease in heaters and insulation, the temperature distribution in the furnace is stable without change even in continuous production, which is very constrained by the fissile material confinement action of the HTGR fuel. It becomes possible to stabilize the quality of the coating layer having an important role.

本発明のスイープガスとしては、流動床反応装置の反応管から漏れ出た被覆ガス及び/又は流動ガスを流動床反応装置外へ排出するものであり、高温で金属や黒鉛部材と反応しないものであることが必要である。例えば、窒素ガスやアルゴンを始めとする不活性ガスが挙げられる。   The sweep gas of the present invention is one that discharges the coating gas and / or fluid gas leaked from the reaction tube of the fluidized bed reactor to the outside of the fluidized bed reactor, and does not react with metals or graphite members at high temperatures. It is necessary to be. For example, an inert gas such as nitrogen gas or argon can be used.

また、本発明のスィープガスを供給する供給管は、流動床反応装置の反応管から漏れ出た被覆ガス及び/又は流動ガスを流動床反応装置外へ排出するものであるため流動床反応装置の反応管に向かって供給し、反応管を超えた側にスイープガスの排出口を備える。 Further, the supply pipe for supplying the sweep gas of the present invention discharges the coating gas and / or fluid gas leaking from the reaction pipe of the fluidized bed reactor to the outside of the fluidized bed reactor. It supplies toward the reaction tube, and a sweep gas discharge port is provided on the side beyond the reaction tube.

更に、本発明のスイープガス供給管から供給されるスイープガスの排出は、スイープガス専用の排出口を介して外部へ排出させてもよいが、スイープガスは高温で金属や黒鉛部材と反応しないものであるため、被覆ガスや流動ガスと混合されても何ら問題がない。従って、好ましくは、流動床内における反応管の外側の領域に流すスイープガスが反応管の中に流す被覆ガスや流動ガスと同一の出口から流動床外へ排出されるようにすることにより、新たな排出口や排ガス処理装置を作製する必要がなくなる。   Further, the discharge of the sweep gas supplied from the sweep gas supply pipe of the present invention may be discharged to the outside through a discharge port dedicated to the sweep gas, but the sweep gas does not react with a metal or a graphite member at a high temperature. Therefore, there is no problem even if mixed with a coating gas or a flowing gas. Therefore, preferably, the sweep gas flowing in the region outside the reaction tube in the fluidized bed is discharged from the fluidized bed through the same outlet as the coating gas and fluidized gas flowing in the reaction tube. It is not necessary to produce a simple exhaust port or exhaust gas treatment device.

図1は本発明の高温ガス炉用被覆燃料粒子の製造装置の一実施例の構成を示す説明図である。高温ガス炉用被覆燃料粒子の製造装置としての流動床反応装置は図1に示すように、二酸化ウランから成る燃料核12を流動床本体の上部に設けられた窓(図示せず)から入れて、流動ガス入口16からガス導入ノズル14及びガス噴出ノズル13を通して被覆ガスと流動ガスとを流すことにより被覆を施す反応管15と、この反応管15の外周に配設され燃料核を加熱する黒鉛製のヒーター11と、同じく黒鉛製でヒーター11のさらに外周に配設される断熱材18とを備える。より具体的な流動床反応装置の大きさはφ約700mm×H約2200mmとし、反応管の大きさはφ約200mm×H約1000mmとした。   FIG. 1 is an explanatory view showing the configuration of an embodiment of the production apparatus for coated fuel particles for a HTGR according to the present invention. As shown in FIG. 1, a fluidized bed reactor as a production apparatus for coated fuel particles for a high temperature gas reactor has a fuel core 12 made of uranium dioxide inserted through a window (not shown) provided in the upper part of the fluidized bed main body. A reaction tube 15 for coating by flowing a coating gas and a flowing gas from the flowing gas inlet 16 through the gas introduction nozzle 14 and the gas jet nozzle 13 and graphite for heating the fuel core disposed on the outer periphery of the reaction tube 15 A heater 11 made of graphite, and a heat insulating material 18 that is also made of graphite and disposed on the outer periphery of the heater 11. More specifically, the size of the fluidized bed reactor was about 700 mm × H about 2200 mm, and the size of the reaction tube was about 200 mm × H about 1000 mm.

被覆燃料粒子の製造は、平均直径0.6mmを持つ二酸化ウラン燃料核約3.8kgを流動床内に入れ、約1400℃でアセチレン(C)ガスを流入して第1層の低密度炭素を被覆した後、約1400℃でプロピレン(C)を流入して第2層の高密度熱分解炭素を被覆し、次に、約1600℃でメチルトリクロロシラン(CHSiCl)を流入して第3層のSiC層を被覆し、最後に、約1400℃でプロピレン(C)を流入して第4層の高密度熱分解炭素を被覆した。 The coated fuel particles are produced by placing about 3.8 kg of uranium dioxide fuel nuclei having an average diameter of 0.6 mm in a fluidized bed and flowing acetylene (C 2 H 2 ) gas at about 1400 ° C. After coating the density carbon, propylene (C 2 H 6 ) was introduced at about 1400 ° C. to coat the second layer of high-density pyrolytic carbon, and then at about 1600 ° C. methyltrichlorosilane (CH 2 SiCl 2). ) Was applied to coat the third layer of SiC, and finally, propylene (C 2 H 6 ) was introduced at about 1400 ° C. to coat the fourth layer of high-density pyrolytic carbon.

第1層〜第4層までの被覆を行う際、本体19と反応管15の間のヒーター11及び断熱材18が存在する領域にスイープガス供給口10を介してスイープガスとしての窒素を流した。流量は50リットル/分とした。スイープガスの窒素およびガス噴出ノズル13と反応管15の隙間から漏れ出た被覆ガスや流動ガスは廃ガス排出囗17から炉外へ出される。   When performing coating from the first layer to the fourth layer, nitrogen as a sweep gas was passed through the sweep gas supply port 10 in a region where the heater 11 and the heat insulating material 18 between the main body 19 and the reaction tube 15 existed. . The flow rate was 50 liters / minute. Nitrogen of the sweep gas and the coating gas and fluid gas leaking from the gap between the gas jet nozzle 13 and the reaction tube 15 are discharged from the waste gas discharge rod 17 to the outside of the furnace.

この被覆作業を繰り返し実施したところ、ヒーター11及び断熱材18に炭化水素が発生した事による劣化は見られず、得られた被覆燃料粒子の平均直径は0.93mmであり、各層の厚さは、第1層0.06mm、第2層0.03mm、第3層0.03mm、第4層0.045mmで非常に安定していた。   When this coating operation was repeated, no deterioration was observed due to the generation of hydrocarbons in the heater 11 and the heat insulating material 18, the average diameter of the obtained coated fuel particles was 0.93 mm, and the thickness of each layer was The first layer was 0.06 mm, the second layer was 0.03 mm, the third layer was 0.03 mm, and the fourth layer was 0.045 mm.

以上のように、第3層被覆時に流動ガスである水素ガスがガス噴出ノズル14と反応管15の隙間から漏れても、別のガスの流れにより流動床外へ出されてしまうため、ヒーター11や断熱材17の材料である黒鉛と水素が反応し、黒鉛が減少してしまうことを防ぐことが可能になる。   As described above, even when hydrogen gas, which is a flowing gas, leaks from the gap between the gas ejection nozzle 14 and the reaction tube 15 when the third layer is coated, it is discharged out of the fluidized bed by another gas flow. In addition, it is possible to prevent the graphite, which is the material of the heat insulating material 17, from reacting with hydrogen and reducing the graphite.

また、ヒーター11や断熱材17の減少が発生しないので、連続的に生産する場合も、炉内の温度分布は変化することなく安定しているので、高温ガス炉燃料の核分裂性物質閉じこめ上非常に重要な役割を持っている被覆層の品質を安定させることが可能になる。   In addition, since the heater 11 and the heat insulating material 17 are not reduced, the temperature distribution in the furnace is stable without change even in continuous production. It becomes possible to stabilize the quality of the coating layer having an important role in the process.

本発明の高温ガス炉用被覆燃料粒子の製造装置の一実施例の構成を示す説明図である。It is explanatory drawing which shows the structure of one Example of the manufacturing apparatus of the covering fuel particle | grain for high temperature gas reactors of this invention. 従来の高温ガス炉用被覆燃料粒子の製造装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the manufacturing apparatus of the conventional coating | coated fuel particle | grain for high temperature gas reactors.

符号の説明Explanation of symbols

10…スイープガス供給口、
11…ヒーター、
12…燃料核、
13…ガス噴出ノズル、
14…ガス供給ノズル、
15…反応管、
16…流動ガス入口、
17…廃ガス排出囗、
18…断熱材、
19…本体、
10 ... Sweep gas supply port,
11 ... Heater,
12. Fuel kernel,
13: Gas ejection nozzle,
14 ... Gas supply nozzle,
15 ... reaction tube,
16 ... Fluid gas inlet,
17 ... Waste gas discharge tank,
18 ... heat insulation,
19 ... body,

Claims (3)

二酸化ウランを焼結した燃料核の表面に、低密度熱分解炭素からなりガス状核分裂生成物のガス溜め及び燃料核のスウェリングを吸収するバッファとしての機能を有する第1被覆層と、高密度熱分解炭素からなりガス状核分裂生成物の保持機能を有する第2被覆層と、炭化珪素からなり固体核分裂生成物の保持機能と被覆層の主な強度部材としての機能とを有する第3被覆層と、高密度熱分解炭素からなりガス状核分裂生成物の保持機能と第3被覆層の保護層としての機能とを有する第4被覆層との計4層の被覆層を施す流動床反応装置を備えた高温ガス炉用被覆燃料粒子の製造装置において、
前記流動床反応装置の反応管から漏れ出た被覆ガス及び/又は流動ガスを流動床反応装置外へ排出するために、流動床内における反応管の外側に被覆ガスや流動ガスとは別のスイープガスを流動床反応装置の反応管に向かって供給するスイープガス供給管を備え、反応管を超えた側にスイープガスの排出口を備えたことを特徴とする高温ガス炉用被覆燃料粒子の製造装置。
A first coating layer composed of low density pyrolytic carbon and having a function as a buffer for absorbing gas fission product gas reservoirs and fuel nucleus swelling, on the surface of a fuel nucleus sintered with uranium dioxide; A second coating layer made of pyrolytic carbon and having a function of holding a gaseous fission product, and a third coating layer made of silicon carbide and having a function of holding a solid fission product and a function as a main strength member of the coating layer And a fluidized bed reactor comprising a total of four coating layers comprising a high-density pyrolytic carbon and a fourth coating layer having a function of retaining gaseous fission products and a function as a protective layer of the third coating layer In the provided high temperature gas reactor coated fuel particle manufacturing apparatus,
In order to discharge the coating gas and / or fluid gas leaked from the reaction tube of the fluidized bed reactor to the outside of the fluidized bed reactor, a sweep separate from the coating gas and fluidized gas outside the reaction tube in the fluidized bed. Production of coated fuel particles for high-temperature gas reactors, comprising a sweep gas supply pipe for supplying gas toward the reaction pipe of a fluidized bed reactor, and a sweep gas outlet on the side beyond the reaction pipe apparatus.
前記スイープガスが、窒素ガス、アルゴンガスを始めとする不活性ガスであることを特徴とする請求項1に記載の高温ガス炉用被覆燃料粒子の製造装置。   The said sweep gas is inert gas including nitrogen gas and argon gas, The manufacturing apparatus of the coated fuel particle for high temperature gas reactors of Claim 1 characterized by the above-mentioned. 流動床内における反応管の外側の領域に流すスイープガスが反応管の中に流す被覆ガスや流動ガスと同一の出口から流動床外へ排出されることを特徴とする請求項1又は2に記載の高温ガス炉用被覆燃料粒子の製造装置。   The sweep gas flowing in the region outside the reaction tube in the fluidized bed is discharged out of the fluidized bed from the same outlet as the coating gas or fluidized gas flowing in the reaction tube. Manufacturing equipment for coated fuel particles for HTGR.
JP2005063508A 2005-03-08 2005-03-08 Production equipment for coated fuel particles for HTGR Expired - Fee Related JP4417867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005063508A JP4417867B2 (en) 2005-03-08 2005-03-08 Production equipment for coated fuel particles for HTGR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005063508A JP4417867B2 (en) 2005-03-08 2005-03-08 Production equipment for coated fuel particles for HTGR

Publications (2)

Publication Number Publication Date
JP2006250544A JP2006250544A (en) 2006-09-21
JP4417867B2 true JP4417867B2 (en) 2010-02-17

Family

ID=37091229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005063508A Expired - Fee Related JP4417867B2 (en) 2005-03-08 2005-03-08 Production equipment for coated fuel particles for HTGR

Country Status (1)

Country Link
JP (1) JP4417867B2 (en)

Also Published As

Publication number Publication date
JP2006250544A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4697938B2 (en) Method for producing coated fuel particles for HTGR
JP2005308522A (en) Device for manufacturing cladding fuel particle for high-temperature gas-cooled reactor
JP4417867B2 (en) Production equipment for coated fuel particles for HTGR
JP4521763B2 (en) Production equipment for coated fuel particles for HTGR
JP4417871B2 (en) Production equipment for coated fuel particles for HTGR
JP4409460B2 (en) Production equipment for coated fuel particles for HTGR
JP4357437B2 (en) Production equipment for coated fuel particles for HTGR
JP4357441B2 (en) Apparatus and method for producing coated fuel particles for HTGR
JP4417879B2 (en) Production equipment for coated fuel particles for HTGR
JP2007003118A (en) Gas injection nozzle deposit-removing method for manufacturing device of coated fuel particle for high-temperature gas furnace and manufacturing method of coated fuel particle for high-temperature gas furnace
JP4417901B2 (en) Production equipment for coated fuel particles for HTGR
JP4415272B2 (en) Equipment for producing fuel particles for HTGR
JP4409405B2 (en) Production equipment for coated fuel particles for HTGR
JP2007147504A (en) Coated fuel particle for high-temperature gas-cooled reactor, and manufacturing method therefor
JP4583104B2 (en) Methyltrichlorosilane gas generator
JP4354903B2 (en) Production equipment for coated fuel particles for HTGR
JP2006300535A (en) Gas introduction nozzle of coated fuel particle manufacturing equipment for high-temperature gas-cooled reactor
JP2007107901A (en) Device for manufacturing coated fuel particle for high temperature gas furnace
JP4354905B2 (en) Fuel particle coating gas supply system for HTGR
JP4450762B2 (en) Gas introduction nozzle of coated fuel particle manufacturing equipment for HTGR
JP2006242694A (en) Manufacturing device of coated fuel particle for high-temperature gas reactor
JP2006112838A (en) Method for manufacturing fuel compact for high-temperature gas-cooled reactor
JP2007024841A (en) Manufacturing equipment of coated fuel particle for high-temperature gas-cooled reactor
JP2006300547A (en) Fuel for high-temperature gas-cooled reactor
JP4790257B2 (en) Method for producing molded fuel for HTGR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151204

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees