JP4320286B2 - 電極付細胞培養マイクロアレーおよび電気的細胞計測法 - Google Patents

電極付細胞培養マイクロアレーおよび電気的細胞計測法 Download PDF

Info

Publication number
JP4320286B2
JP4320286B2 JP2004227686A JP2004227686A JP4320286B2 JP 4320286 B2 JP4320286 B2 JP 4320286B2 JP 2004227686 A JP2004227686 A JP 2004227686A JP 2004227686 A JP2004227686 A JP 2004227686A JP 4320286 B2 JP4320286 B2 JP 4320286B2
Authority
JP
Japan
Prior art keywords
agarose
cells
compartments
cell
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004227686A
Other languages
English (en)
Other versions
JP2006042671A (ja
Inventor
和宣 岡野
賢二 安田
Original Assignee
有限責任中間法人 オンチップ・セロミクス・コンソーシアム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限責任中間法人 オンチップ・セロミクス・コンソーシアム filed Critical 有限責任中間法人 オンチップ・セロミクス・コンソーシアム
Priority to JP2004227686A priority Critical patent/JP4320286B2/ja
Priority to EP05016714A priority patent/EP1626278A3/en
Priority to EP07013611A priority patent/EP1901067A3/en
Priority to US11/195,662 priority patent/US7569354B2/en
Publication of JP2006042671A publication Critical patent/JP2006042671A/ja
Priority to US12/143,156 priority patent/US20090042200A1/en
Priority to US12/143,181 priority patent/US20090042739A1/en
Priority to US12/471,993 priority patent/US20100018862A1/en
Priority to US12/471,853 priority patent/US20100021933A1/en
Priority to US12/472,037 priority patent/US20090325215A1/en
Priority to US12/472,010 priority patent/US20100016569A1/en
Priority to US12/471,947 priority patent/US20100016568A1/en
Application granted granted Critical
Publication of JP4320286B2 publication Critical patent/JP4320286B2/ja
Priority to US13/755,079 priority patent/US20130252848A1/en
Priority to US14/640,471 priority patent/US20150231635A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

本発明は、細胞の状態を顕微鏡観察しながら、1細胞単位で神経細胞を培養し、かつ、同時に細胞活動にかかわる電位変化を計測することのできる新しい細胞培養マイクロチャンバーに関する。
従来、細胞の状態の変化や、細胞の薬物等に対する応答を観察するのに、細胞集団の値の平均値をあたかも一細胞の特性であるかの様に観察してきた。しかし、実際には細胞は集団の中で細胞周期が同調しているものはまれであり、各々の細胞が異なった周期でタンパク質を発現している。
これらの問題を解決するために、同調培養等の手法が開発されているが、培養された細胞の由来が全く同一の一細胞からでは無いことから、培養前の由来細胞各々の遺伝子の違いがタンパク質発現の違いを生み出す可能性があり、実際に刺激に対する応答の結果を解析するときに、そのゆらぎが細胞の反応機構自体が普遍的に持つ応答のゆらぎに由来するものなのか、細胞の違い(すなわち遺伝情報の違い)に由来するゆらぎなのか明らかにすることは難しかった。
また、同様の理由から、細胞株についても、一般には完全に一細胞から培養したものでは無いため、刺激に対する応答の再現性が細胞各々の遺伝子の違いによってゆらぐものか明らかにするのは難しかった。
また、細胞に対する刺激(シグナル)は、細胞周辺の溶液に含まれるシグナル物質、栄養、溶存気体の量によって与えられるものと、他の細胞との物理的接触によるものの2種類があることからも、ゆらぎについての判断が難しいのが実情であった。
さらに、細胞活動をモニターするには、細胞表面に露出するタンパク質や糖鎖を蛍光標識抗体で修飾して得られる蛍光像を観察するように、細胞そのものが損傷を受ける検出法が多用されている。
細胞にそれほどダメージを与えない方法としては、細胞内のカルシウムやpHをこれらの指示薬で測定する方法が開発されている。いずれにせよ、指示薬(一般的には蛍光試薬)を細胞内に挿入して計測するのが一般的である。あるいは、細胞に電極を接触させて電位変化を追跡できるように工夫された計測法もある。
細胞の状態を測定する上で、特に神経細胞においては、人工的に少数の神経細胞からなる比較的単純な神経回路網を構築し、完全に制御した環境下で細胞ネットワークが情報処理機能を明らかにしようとする研究も盛んに行われている(非特許文献1−3)。
神経細胞を1つ1つを最小構成単位とする情報処理モデルの計測のために重要なものは、多点同時計測技術と、細胞ネットワークパターンの制御技術であるが、神経細胞の活動電位計測技術も初期の段階では、パッチクランプ法などの細胞に損傷を与える手法が主だったため、同時に3点以上の多点で計測できない、計測を開始してから数時間で測定している細胞が死んでしまうといった問題点があったが、近年、電極アレー(MEAS)基板上での神経細胞の培養計測法が開発されることで上記の問題点を克服して数週間に及ぶ長期培養も可能となっている。
また、神経細胞のネットワークパターンを化学的、あるいは物理的な手法を用いて制御する技術についても古くから多くの研究がなされている。たとえば、化学的方法では、Letourneau達が神経細胞を培養する基板表面にラミニンなどの細胞接着性の基質でパターンを描き、神経突起をパターンに沿って伸展させることに成功している(例えば、非特許文献4)。
物理学的方法では、基板表面に神経細胞の伸展にとって障壁となる段差を構築した基板上で培養することで、障壁の高さが10μm程度以上であれば神経細胞の伸展・移動を制限することが可能という報告がある(例えば、非特許文献5−6)。
発明者らのグループは、特定の一細胞のみを選択し、その一細胞を細胞株として培養する技術、及び細胞を観察する場合に、細胞の溶液環境条件を制御し、かつ、容器中での細胞濃度を一定に制御する技術、あるいは相互作用する細胞を特定しながら培養観察する技術を開発した(特許文献1)。また、細胞培養を行いながら集束光を照射して加熱した領域の細胞培養容器の形状を自在に変化させることが可能な細胞培養マイクロチャンバーを開発している(特許文献2)。
特開2004−81086号公報 特開2004−81085号公報 Dichter, M.A. Brain Res., 149, 279-293 (1978) や、Mains R.E., Patterson P. H. J. Cell. Biol., 59, 329-345 (1973) Potter S.M., DeMarse T.B., J. Neurosci. Methods, 110, 17-24 (2001) Jimbo Y., Tateno T., Robinson H.P.C., Biophys. J. 76, 670-678 (1999) Letourneau P.C.: Dev. Biol., 66, 183-196 (1975) Stopak D. et al.: Dev. Biol., 90, 383-398 (1982) Hirono T.,Torimitsu K., Kawana A., Fukuda J., Brain Res., 446, 189-194 (1988)
従来の電極アレー基板技術では、細胞が直に電極と接する構造をしている。このため、細胞そのものの電位変化を測定することはできるが、たとえば、神経細胞のようにネットワークを構成する細胞群においては、どの細胞とインタラクションを行っているかの情報が抜け落ちてしまい、すべての平均値的な実験結果しか得られない問題点がある。神経細胞のように神経突起や軸索を伸ばし、複数の細胞とインタラクションする系では、電極と細胞の方向と向きの配置関係を厳密に規定してデータをとるようにしなければ、有用なデータを得ることが難しい。
本発明は、以上のような従来技術の問題点を解消し、細胞の機能を明らかにするため、細胞間ネットワーク形状を完全に制御しながら、細胞ネットワークの刺激応答の変化を、長期間に渡って電気的な計測を行うことのできる新しい技術手段を提供することを課題としている。
本発明は、上記の課題を解決するものとして、細胞を特定の空間配置の中に閉じ込めておくための複数の細胞培養区画を有し、各区画は細胞の通り抜けることができない溝でお互いが連結されており、この溝の中に細胞の電位変化を計測するための複数の電極パターンを持つ構造としている。
電極パターンは、隣り合う細胞培養区の間の溝に設置されており、細胞間のポテンシャルの違いを測定できる構造となっている。測定細胞が、神経細胞の場合は、細胞が軸索を伸ばし、隣接する細胞とシナプスでカップルする細胞間の軸索そのものの電位変化を測定することとなる。
本発明によれば、細胞のネットワークの空間配置を1細胞単位で制御しつつ、長期培養しながら、その形態変化、電気的特性の変化を連続的に計測することが可能となる。電気特性変化を検出する電極は、細胞間に配置されているので、電極をはさむ細胞同士の情報のみを得ることができる。
(実施例1)
図1は実施例1に係る本発明の電極付細胞培養マイクロアレーの構造の1例を模式的に示した上面図、図2は、図1のA−A位置において矢印方向に見た断面図である。1は基板であり、すべての構造物は基板1の上に構築されている。2は細胞培養区画であり、所定の間隔で周期的に複数個構築されている。3は溝であり、隣接する細胞培養区画を互いに結んでいる。10は樹脂層であり、基板1の上に形成され、細胞培養区画2とこれらの間を連絡する溝3は、樹脂層10を除去して形成されている。4は電位測定用の電極であり、溝3のすべてに設けられる。電極4は100nmの厚みの金で基板1の表面に蒸着で付けてある。5は外部端子であり、基板1の周辺で電極4に対応してその近傍に設けられる。6は配線で電極4と外部端子5とを接続する。
9は半透膜であり、細胞培養区画2とこれらの間を連絡する溝3を形成した樹脂層10の上面に密着して設けられる。22は上部ハウジングであり、半透膜9の上に適当なスペースをとって樹脂層10の全面を覆う。22−1は、上部ハウジング22の立下り部である。21は半透膜9と上部ハウジング22との間に形成される培養液槽である。23は、上部ハウジング22に設けられた開口部であり、これを通して培養液が培養液槽21に供給される。14は共通電極であり、培養液槽21に設けられる。
実施例1は、ヒト由来の細胞を1細胞ずつ培養しながら計測する目的のため、各細胞培養区画2は一辺が30μmで深さが25μmとされている。溝3は幅が5μm、深さは25μmである。細胞培養区画1間の距離は30から200μmである。
具体的な作成法を述べる。基板1は100倍の対物レンズでの観察が可能な0.18mmの無蛍光ガラスであり、この上面に、まず電極4、配線6、端子5の層が蒸着により形成される。次に、電極4および端子5の領域をマスクして、全面に絶縁層を形成する。次に、層の厚さが25μmとなるように粘度を調整した光硬化性樹脂SU−8(エポキシ系フォトレジスト材料:Micro Chem Inc.製、米国特許4,882,245号)で電極4、絶縁層、端子5の面を被覆して樹脂層10を形成する。次いで、樹脂層10の細胞培養区画2と溝3に対応する位置を局所的に除去する。これにより、細胞培養区画2と溝3を形成する。溝3には露出した電極4が配置されることになるが、溝3を横切る配線6は絶縁層で隔離される。また、端子5も露出させる。
細胞培養区画2と溝3の表面にはラミニンやコラーゲンなどの細胞親和性物質を塗布するとともに、細胞培養区画2と溝3を培養液バッファで満たし、細胞培養区画2に細胞を入れる。次いで、細胞培養区画2に細胞を封入するために、細胞培養区画2と溝3の領域の上面に半透膜9の蓋をかぶせる。その後、半透膜9の蓋(樹脂層10の全面)を全面的にカバーする上部ハウジング22を取り付ける。この際、上部ハウジング22は、適当な立下り部22−1を有し、半透膜9の上に適当なスペースをとって覆い、培養液槽21を形成する。14は共通電極で、培養液槽21の上部ハウジング22内面にITOなどの光学的に透明な電極を用いて形成してある。23は、培養液槽21の開口部であり、この開口部を介して培養液槽21には、常に新鮮な培養液が供給、排出されている。
上述の半透膜9は光学的観察を妨げないように透明なセルロース膜を用いる。ここでは分画分子量3万ダルトンのものを用いている。上部ハウジング22も、光学的観察を妨げないように透明な材質の材料、例えば、プラスティックで作られる。
このようにして複数の細胞を個々に収納した細胞培養マイクロアレーが作成できる。ここで、細胞培養区画2に細胞を入れる方法についてみると、いくつかの方法が考えられる。例えば、細胞を入れた容液中にマイクロキャピラリを挿入し、先端に細胞を一つ捕らえて、これを細胞培養区画2に入れる方法がある。あるいは、細胞培養区画2と細胞のサイズがほぼ同じ程度である場合には、細胞培養区画2と溝3の領域の上面に細胞を含む液滴を垂らし、余分な液を押し出すように上面をなぞることにより、細胞培養区画2に細胞を入れることができる。
細胞培養区画2に入れられた細胞を安定に定着させるには、ビオチンアビジン反応による自立的結合形成を用いる。光硬化性樹脂SU−8は、反応性のエポキシ基を有していることから、光照射の前にプレベークして基板SU−8層を形成した後に、直ちにビオチンヒドラジドを含む溶液を塗布し、樹脂のエポキシ基とヒドラジド基を反応させてビオチンを固定する。光照射して、樹脂を固化させ構造体を形成することで、表面にビオチンを導入したSU−8パターンを得ることができる。
溝3を軸索が延伸する状態は、溝3に配置された電極4に接続された端子5と共通電極14との間で電極間のインピーダンスを測定し、あるいは、電極4に接続された端子5に検出される細胞そのものによる起電力を、共通電極14の電位を基準値として測定することで検出できる。これらはすべて顕微鏡で細胞を観察しながら行うことができる。また、本発明の電極付細胞培養マイクロアレーでは、多数ある電極を選択することで、特定の細胞に同一電極で細胞に刺激を与えたり、計測したりすることが可能である。
例えば、ラット小脳顆粒細胞を、本発明の電極付細胞培養マイクロアレーで培養した結果、細胞培養区画2に入れられた細胞は、細胞培養区画2から逃れることなく、ネットワークを形成しているのが観察される。軸索が伸び細胞同士が接触する前と後では、軸索が伸び細胞同士が接触した細胞培養区画2間の溝3に配した電極4と、細胞の反対側の軸索が伸びていない溝3に配した電極4間で起電力が生じることが確認される。これらのことから、本発明の電極付細胞培養マイクロアレーの構造は、期待された性能を発揮していることがわかる。
また、ペプチドやアミノ酸などの生体物質ないし、内分泌かく乱物質や毒性を疑われる化学物質を添加し、細胞の応答を電位変化で測定することができる。
(実施例2)
実施例2は光硬化性樹脂SU−8に代えてアガロースゲル100で、細胞培養区画2や溝3を形成する例に付いて説明する。
図3は、本発明の実施例2の平面図、図4は、図3のB−B位置で矢印方向に見た断面図である。図1,2と図3,4とを対比して明らかなように、細胞培養区画2を結ぶ溝3がトンネル3に変えられ、トンネル3に複数の電極4が設けられたことおよびトンネル3がアガロースゲル100の底面部にのみ作られている点を除けば、本質的には実施例1と同じ構造である。ただし、1−1は壁であり、基板1上に設けられ、アガロースゲル100の周辺部を、この壁で形成、保持するものとしている。
実施例2では、実施例1と同様に基板1上に、電極4、配線6、端子5を形成した後、壁1−1を基板1上面に貼り付け、壁1−1内にアガロースゲル100を入れる。2%アガロースゲル(融解温度65℃)を電子レンジで加熱し、融解させる。65℃に加熱した下部基板1の外壁の内側に融解したアガロース溶液を添加し、直ちにスピンコーターを用いて均一の厚さに広げる。ここではアガロースゲル膜が1mm厚になるようにアガロースゲルの添加量とスピンコーターの回転速度を調整する。装置やアガロースゲルのロットにより厚みが異なるが、50rpm,15秒間、続いて200rpm10秒間で良い結果を得ている。湿潤箱の中で25℃1時間放置することでアガロースゲル膜100を形成する。この時点では、アガロースゲル膜は基板1の外壁の内側全面に形成されている。次に、アガロースゲル100で細胞培養区画2を形成するために、アガロースゲル100を形成した後、細胞培養区画2の部分を取り除く。
図4には細胞培養区画2の作成が終わったアガロース製電極付細胞培養マイクロアレーの断面図と、アガロースゲル100にトンネル3を作成する光学系と制御系を模式的に示している。アガロースゲル上面は実施例1と同様にセルロース膜を貼って用いる。たとえば、加熱溶融したアガロースをスピンコーターでセルロース膜表面に塗布、片面にアガロース薄膜を形成したものを予め作成し、これを、細胞を区画2に入れた後にアガロース塗布面がアガロースゲル100に接するように乗せればよい。あるいは、アガロースゲル100を形成するときに、ストレプトアビジンコンジュゲートアガロースを少量添加して固める。このアガロースゲル誘導体の表面にはストレプトアビジンが露出している。別途、実施例1と同様に過ヨウ素酸酸化によりアルデヒド基を導入したセルロース膜にビオチンヒドラジドを反応させ、ハイドロボレーション反応で還元して得るビオチン修飾セルロース膜を調製する。アガロースゲル誘導体とビオチン修飾セルロース膜をビオチン―アビジン反応を用いて固定することで、アガロース構造体に細胞を封じ込めた構造体を形成することができる。
照射するレーザーは水に吸収される1480nmのレーザー141を用いる。レーザービーム142はエキスパンダー143を通り、740nm以上の赤外光を反射するが1480nm(±20nm)の光を透過するフィルター144を通過し、さらに700nm以上の光を透過する蒸着フィルター145を通り抜け、集光レンズ146で基板1の上面に焦点が合う。1480nmの収束光はアガロース層に含まれる水に吸収され、近傍の温度が沸点近くまで上昇する。レーザーパワーが20mWでは、収束光の当った近傍が20μm程度の線幅でアガロースが融解し、熱対流により除去される。問題は基板1の電極の有る無しでアガロースに吸収される収束光の強度が変化することである。そこで、アガロースゲル温度を推定してフィードバック制御によりレーザーパワーを制御し常に収束光照射での温度コントロールをできるように工夫してある。アガロース部に到達した収束光は熱に変換されると共に赤外光を発する。赤外光はフィルター145を通過し、フィルター144で反射され赤外カメラ160−1に到達する。赤外カメラ160−1の画像データをビデオ記録機構付き演算装置161に取り込み、光検出強度から温度を推計し、レーザー141のパワーを調する。レーザーパワーのみで温度コントロールが困難な場合は、演算装置からの出力でステージ164の移動速度をコントロールし、常に収束光照射部のアガロース温度が維持されるようにする。即ち、演算装置161によりステッピングモータ162の回転を制御し、ステッピングモータの回転は動力伝達装置163によりステージ164が動く仕掛けになっている。
ステージ164には基板1が装着されており、自在にアガロースゲルにトンネル3を形成することができる。トンネル3にはITO透明電極が予め形成されている。また、細胞観察やアガロース加工の進捗状況をモニターするために、光源170からの透過光を検出する光学系も組み込まれている。光源170からの光は透明な上部ハウジング22を透過し、アガロース部分で散乱しながら対物レンズ146を透過し、可視光を反射する蒸着フィルター(ミラー)でCCDカメラ160−2で画像として取り込まれる。画像データは演算装置161に送られ、赤外カメラ160−1とオーバーラップさせて、レーザー照射による温度上昇部と構造体のパターンの確認などに用いられる。
アガロースゲルの上面は開口部23より供給排出される培養液が常に循環している。或いは開口部23より細胞の刺激物質や内分泌かく乱物質を始めとする種々化学物質を添加し、電極や兼備観察で細胞の状態をモニターできる。
実施例2では、一つのトンネル3に電極を二つ設けたので、トンネル3内でのインピーダンスやインダクタンスの変異をとらえやすくなっている。各電極はそれぞれ配線6で端子5に結合しており、独立にあるいは対として電気的計測ができるようになっている。たとえば、神経細胞が軸索を伸ばし隣の細胞とカップリングするとき、片方の細胞と隣接した電極5の電位を他の電極を基準電位として、計測するといった使い方ができる。
また、実施例2では、トンネル3を追加的に掘ることができるから、研究の状況を見ながら、トンネル構成を変えた細胞の活動状況を評価することができる。
(実施例3)
図5は、最も実用上重要である複数の細胞培養区画2を1次元アレーとして複数隣接させた実施例3を示す平面図である。図5と図3とを対比して明らかなように、実施例3では、アガロースゲル100を用いた細胞培養区画2とこれらを繋ぐトンネル3が横方向に形成されているだけで、他は実施例2と同じである。実施例3でも、細胞培養区画2をつなぐトンネル3は最初から形成されている必要は必ずしもなく、たとえば、神経細胞が軸を延ばしたい方向のみを軸が形成されるときにあわせて開通させることができる。電極4は各トンネル或いは将来トンネルを作成するであろう位置に全てあらかじめ作成しておく。
実施例3の断面図は、実施例2と同様であるから、省略する。
(その他)
上述の実施例は、いずれも、完成された細胞培養マイクロアレーとして説明した。しかし、細胞培養マイクロアレーは、これを使用する研究者等が細胞等を細胞培養区画2に入れることが必要である。したがって、実施例1で見れば、電極4、外部端子5、配線6、細胞培養区画2および溝3を形成した基板1と、半透膜9および上部ハウジング22を細胞培養マイクロアレーキットとして供給され、これを購入した研究者等が培養液を準備し、細胞等を細胞培養区画2に入れ、半透膜9および上部ハウジング22を重ねて、完成させて使用することにするのが実用的である。実施例2,3でも、同様に、基板1上に、電極等、細胞培養区画2および必要なトンネルを形成したアガロースゲルを配した基板1と、半透膜9および上部ハウジング22を細胞培養マイクロアレーキットとして供給され、これを研究目的合わせて、使用することにするのが実用的である。
実施例1に係る本発明の電極付細胞培養マイクロアレーの構造の1例を模式的に示した上面図。 図1のA−A位置において矢印方向に見た断面図。 本発明の実施例2の平面図。 図3のB−B位置で矢印方向に見た断面図。 最も実用上重要である複数の細胞培養区画2を1次元アレーとして複数隣接させた実施例3を示す平面図。
符号の説明
1…基板、1−1…壁、2…細胞培養区画、3…溝、4…電位測定用の電極、5…外部端子、6…配線、9…半透膜、10…樹脂層、14…共通電極、21…培養液槽、22…上部ハウジング、22−1…上部ハウジングの立下り部、23…開口部、100…アガロースゲル、141…レーザー、142…レーザービーム、143…エキスパンダー、144…フィルター、145…蒸着フィルター、146…集光レンズ、160−1…赤外カメラ、160−2…CCDカメラ、161…演算装置、163…動力伝達装置、164…ステージ、170…光源。

Claims (9)

  1. 基板と、
    前記基板上に、
    細胞を1細胞ずつ保持できる複数の微小区画と、
    隣接する前記微小区画間を連絡する溝またはトンネルと、
    前記微小区画内に保持された細胞の電位変化を測定するための、前記溝またはトンネル内に設けられた電極とを備える、細胞培養マイクロアレー。
  2. 基板と、
    前記基板上に、
    複数の細胞を特定の空間配置に規定するための複数の区画であって、前記各区画に実質1個ずつの細胞が保持される複数の区画と
    隣接する前記区画間を連絡する溝またはトンネルと、
    前記溝またはトンネル内に設けられた、前記細胞の電位変化を計測するための複数の電極
    前記複数の画の上に配置された、光学的に透明な半透膜および培養液槽とを備える、神経細胞培養マイクロチャンバー。
  3. 基板と、
    前記基板上に、
    アガロースまたはアガロース誘導体のゲル層と、
    前記アガロースまたはアガロース誘導体のゲル層内に形成された、複数の細胞を特定の空間配置に規定するための複数の区画であって、前記各区画に実質1個ずつの細胞が保持される複数の区画と
    前記アガロースまたはアガロース誘導体のゲル層内に形成された隣接する前記区をつなぐトンネルと、
    前記トンネル内に設けられた、前記区画内に保持された前記細胞の電位変化を測定するための電極とを備える、
    細胞培養マイクロアレー。
  4. 基板と
    前記基板上に、
    ガロースまたはアガロース誘導体のゲル層と、
    前記アガロースまたはアガロース誘導体のゲル層内に形成された、複数の細胞を特定の空間配置に規定するための複数の区画であって、前記各区画に実質1個ずつの細胞が保持される複数の区画と
    前記アガロースまたはアガロース誘導体のゲル層内に形成された、隣接する前記複数の区画間を連絡するトンネルと、
    前記微小区画内に保持された細胞の電位変化を測定するための、前記各トンネル内に配された1個以上の電極とを備える、細胞培養マイクロアレー。
  5. アガロース上面に任意に溶液を替えることの出来る培養液槽を配した請求項3または4記載の細胞培養マイクロアレー。
  6. 基板と、
    前記基板上に、
    アガロースまたはアガロース誘導体のゲル層と、
    前記アガロースまたはアガロース誘導体のゲル層内に形成された、複数の細胞を特定の空間配置に規定するための複数の区画と、
    前記複数の区画間に設けられた電極と、を備える細胞培養マイクロアレーを用いて、
    前記区画に実質1個ずつの細胞保持させ
    前記細胞が軸などを延ばし細胞間のインタラクションを確保する方向を任意に規定すべく収束光で前記アガロースまたはアガロース誘導体のゲル層を局所熱して隣接する前記複数の区画間にトンネルを形成して前記区画を連結し、
    前記トンネルに配置された前記電極を用いて前記細胞間のインタラクションに起因する電位変化を計測する電気的細胞計測法。
  7. 基板と、
    前記基板上に
    アガロースまたはアガロース誘導体のゲル層と、
    前記アガロースまたはアガロース誘導体のゲル層内に形成された、複数の細胞を特定の空間配置に規定するための複数の区画
    前記複数の区画間に設けられた電極と、を備える細胞培養マイクロアレーを用いて、
    前記区画に実質1個ずつの細胞保持させ
    前記細胞が軸などを延ばし細胞間のインタラクションを確保する方向を任意に規定すべく収束光で前記アガロースまたはアガロース誘導体のゲル層を局所加熱して隣接する前記複数の区画間にトンネルを形成して前記区画を連結し、
    前記トンネルに配置された電極を用いて前記細胞間に電気的刺激を与え、前記細胞が応答する電位変化を計測する電気的細胞計測法。
  8. ペプチドやアミノ酸などの生体物質ないし、内分泌かく乱物質や毒性を疑われる化学物質を添加し、前記細胞の応答を電位変化で測定する請求項6または7記載の電気的細胞計測法。
  9. 基板と、
    前記基板上に、
    樹脂層またはアガロースゲル層と、
    前記樹脂層またはアガロースゲル層内に形成された、複数の細胞を特定の空間配置に規定するための複数の区画と、
    前記樹脂層またはアガロースゲル層内に形成された、隣接する前記複数の画間を結ぶ溝またはトンネル
    各前記トンネル内に設けられた、細胞の電位変化を計測するための複数の電極パターン
    前記画の上に配置された、光学的に透明な半透膜および培養液槽と、を備える神経細胞培養マイクロチャンバーを使用して、
    各前記区画に実質1個ずつの細胞を保持させ、
    前記溝またはトンネルに配置する前記電極を用いて前記細胞間に電気的刺激を与え、前記細胞が応答する電位変化を計測する電気的細胞計測法。
JP2004227686A 2004-08-03 2004-08-04 電極付細胞培養マイクロアレーおよび電気的細胞計測法 Expired - Fee Related JP4320286B2 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2004227686A JP4320286B2 (ja) 2004-08-04 2004-08-04 電極付細胞培養マイクロアレーおよび電気的細胞計測法
EP05016714A EP1626278A3 (en) 2004-08-03 2005-08-01 Cellomics system
EP07013611A EP1901067A3 (en) 2004-08-03 2005-08-01 Cellomics system
US11/195,662 US7569354B2 (en) 2004-08-03 2005-08-03 Cellomics system
US12/143,156 US20090042200A1 (en) 2004-08-03 2008-06-20 Cellomics system
US12/143,181 US20090042739A1 (en) 2004-08-03 2008-06-20 Cellomics system
US12/471,993 US20100018862A1 (en) 2004-08-03 2009-05-26 Cellomics system
US12/471,853 US20100021933A1 (en) 2004-08-03 2009-05-26 Cellomics systems
US12/472,037 US20090325215A1 (en) 2004-08-03 2009-05-26 Cellomics system
US12/472,010 US20100016569A1 (en) 2004-08-03 2009-05-26 Cellomics system
US12/471,947 US20100016568A1 (en) 2004-08-03 2009-05-26 Cellomics system
US13/755,079 US20130252848A1 (en) 2004-08-03 2013-01-31 Cellomics system
US14/640,471 US20150231635A1 (en) 2004-08-03 2015-03-06 Cellomics system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004227686A JP4320286B2 (ja) 2004-08-04 2004-08-04 電極付細胞培養マイクロアレーおよび電気的細胞計測法

Publications (2)

Publication Number Publication Date
JP2006042671A JP2006042671A (ja) 2006-02-16
JP4320286B2 true JP4320286B2 (ja) 2009-08-26

Family

ID=36021922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004227686A Expired - Fee Related JP4320286B2 (ja) 2004-08-03 2004-08-04 電極付細胞培養マイクロアレーおよび電気的細胞計測法

Country Status (1)

Country Link
JP (1) JP4320286B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008011876A2 (de) * 2006-07-24 2008-01-31 Biocer Entwicklungs Gmbh Anordnung für online-messungen an zellen
WO2010055829A1 (ja) 2008-11-11 2010-05-20 独立行政法人科学技術振興機構 三次元細胞培養体の生体シグナルの検出方法及び検出キット
JP4674337B2 (ja) * 2009-03-10 2011-04-20 国立大学法人 岡山大学 細胞観察用デバイス及び細胞観察方法
KR101118087B1 (ko) 2009-10-30 2012-03-09 (주)나비바이오텍 투명 고분자 소재를 이용한 세포 배양 및 관찰을 위한 랩온어칩 및 그 제조 방법과 이를 이용한 세포 배양 방법
JPWO2011102385A1 (ja) * 2010-02-16 2013-06-17 財団法人神奈川科学技術アカデミー 画像認識型細胞回収装置
JP5610312B2 (ja) * 2011-12-22 2014-10-22 株式会社日立製作所 包装容器
JP5837838B2 (ja) * 2012-02-08 2015-12-24 株式会社東海ヒット 顕微鏡観察用培養装置
KR101370931B1 (ko) 2012-04-26 2014-03-19 한국과학기술원 전단응력과 전기장 및 바닥의 강성조절이 가능한 미세유체 세포배양장치
TW202223378A (zh) * 2020-12-14 2022-06-16 國立中央大學 複合式細胞成像與生化檢測晶片及其使用方法
CN115895877B (zh) * 2022-11-30 2024-03-12 重庆大学 一种用于反向灭杀的微流控芯片检测系统

Also Published As

Publication number Publication date
JP2006042671A (ja) 2006-02-16

Similar Documents

Publication Publication Date Title
Neto et al. Compartmentalized microfluidic platforms: the unrivaled breakthrough of in vitro tools for neurobiological research
Liu et al. Electrophysiology, unplugged: imaging membrane potential with fluorescent indicators
JP4320286B2 (ja) 電極付細胞培養マイクロアレーおよび電気的細胞計測法
JP4192097B2 (ja) 相互作用型透明個別細胞バイオチッププロセッサー
CN101163638B (zh) 微流装置及其用途
Martinez et al. High-throughput fluorescence imaging approaches for drug discovery using in vitro and in vivo three-dimensional models
Suzuki et al. Stepwise pattern modification of neuronal network in photo-thermally-etched agarose architecture on multi-electrode array chip for individual-cell-based electrophysiological measurement
Schmid et al. Electrical impedance spectroscopy for microtissue spheroid analysis in hanging-drop networks
Sugio et al. An agar-based on-chip neural-cell-cultivation system for stepwise control of network pattern generation during cultivation
Kavand et al. Advanced materials and sensors for microphysiological systems: focus on electronic and electrooptical interfaces
US10997871B2 (en) Contractile function measuring devices, systems, and methods of use thereof
Forro et al. Electrophysiology read-out tools for brain-on-chip biotechnology
JP4370082B2 (ja) 神経細胞培養マイクロチャンバー
JP4812271B2 (ja) 心筋拍動細胞を用いた細胞バイオアッセイチップおよびこれを用いるバイオアッセイ
CN115261224A (zh) 细胞培养、运输和探究
Kaech et al. General considerations for live imaging of developing hippocampal neurons in culture
Safranyos et al. Rates of diffusion of fluorescent molecules via cell-to-cell membrane channels in a developing tissue.
JP2022500021A (ja) マイクロ電極アレイおよびその使用方法
Son et al. Electrophysiological monitoring of neurochemical-based neural signal transmission in a human brain–spinal cord assembloid
JP2013518571A (ja) 細胞変異の無標識での検出と分類、特に、細胞球状体の生成と特性解析のための統合型培養・測定装置、その構成要素及びその使用方法
JP2021511823A (ja) 細胞培養装置および方法
Brunello et al. Microtechnologies to fuel neurobiological research with nanometer precision
JP4664646B2 (ja) 細胞培養用マイクロチャンバーおよび細胞構造構築法
Chen et al. A single silicon nanowire-based ratiometric biosensor for Ca2+ at various locations in a neuron
JP4535832B2 (ja) 異種細胞を用いる細胞再構成デバイスおよびこれを用いるバイオアッセイ

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070703

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees