JP4319387B2 - Treatment method for molten aluminum - Google Patents

Treatment method for molten aluminum Download PDF

Info

Publication number
JP4319387B2
JP4319387B2 JP2002307231A JP2002307231A JP4319387B2 JP 4319387 B2 JP4319387 B2 JP 4319387B2 JP 2002307231 A JP2002307231 A JP 2002307231A JP 2002307231 A JP2002307231 A JP 2002307231A JP 4319387 B2 JP4319387 B2 JP 4319387B2
Authority
JP
Japan
Prior art keywords
molten metal
oxide
aluminum
dross
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002307231A
Other languages
Japanese (ja)
Other versions
JP2004143483A (en
Inventor
隆章 向田
聡一郎 大間知
栄一 直井
秀人 竹田
俊 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkin Flux Inc
JATCO Ltd
Original Assignee
Nikkin Flux Inc
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkin Flux Inc, JATCO Ltd filed Critical Nikkin Flux Inc
Priority to JP2002307231A priority Critical patent/JP4319387B2/en
Publication of JP2004143483A publication Critical patent/JP2004143483A/en
Application granted granted Critical
Publication of JP4319387B2 publication Critical patent/JP4319387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明はアルミニウム又はアルミニウム合金の溶湯で水素、酸化物、非金属介在物等の不純物を除去するとともに、アルミニウムドロスを回収して再利用するアルミニウム溶湯の処理方法に関する。
【0002】
【従来の技術】
アルミニウム溶湯は大気に曝されると容易に酸化して多量の酸化物および酸化物に付着した介在物(以下、ドロスという)を形成する。介在物にはAl23,MgO,Al2MgO4,SiO2,珪酸塩、Al・Si・O,FeO,Fe23などの酸化物の他に、炭化物(Al43、Al44C、黒鉛炭素)、ボライド(AlB2、AlB12、TiB2、VB2)、Al3Ti、Al3Zr、CaSO4、AlNおよび各種のハロゲン化物がある。ドロスが懸濁によってアルミニウム溶湯中に混入すると、最終的に非金属介在物となって展伸材、鍛造品、ダイカスト品などの製品の品質低下を招く。このため溶解炉、保持炉、トリベ等の各段階において溶湯からドロスを分離除去する必要がある。
【0003】
特許文献1には、溶解炉の回転傾度を変えることによりドロスを溶湯から分離排出し、効率よく回収する技術が開示されている。このように溶解工程でドロスを効率よく回収することができるが、Al溶湯中には水素等の不純物ガス成分が含まれているので、さらに再溶解時に脱ガス処理する必要がある。
【0004】
特許文献2〜5には、処理槽内の溶湯にアルゴン、窒素、塩素等の処理ガスを吹込みガスバブリングする脱ガス処理方法がそれぞれ開示されている。すなわち、ガスバブリング中の溶湯にフラックスを吹込む方法(特許文献2)、あるいはガスバブリング中の溶湯を回転羽根により攪拌する方法(特許文献3,4,5)が従来法としてある。
【0005】
【特許文献1】
特開平10−227567号公報(4頁〜5頁)
【0006】
【特許文献2】
特開昭63−183136号公報(1頁〜4頁、図1、図2)
【0007】
【特許文献3】
特開平10−306330号公報(3頁〜4頁、図5、図6)
【0008】
【特許文献4】
特開昭62−297422号公報(1頁、図1)
【0009】
【特許文献5】
特公平7−68591号公報(1頁、図1)
【0010】
【発明が解決しようとする課題】
しかしながら、従来の脱ガス処理においても不純物を湯面に浮上させるためにアルミニウム含有量の高いドロスが発生する。この脱ガス処理で発生したドロスは、次の灰絞り工程でアルミニウム分が除去されているが、脱ガス工程は溶解工程と処理状態が異なるためにリサイクルを行う上で弊害となっている。すなわち、脱ガス工程で発生したアルミニウム分の多いドロスは定期的に除去し、灰絞り工程で再処理しなければならず、処理コスト、光熱費がかかり、リサイクル性が悪かった。
【0011】
また、脱ガス工程で発生したアルミニウム分の多いドロスは灰絞り工程で発熱反応で処理されるため、酸化物の増加、鉄分の混入など一定品質に保持することが難しく、鉄鋼用脱酸剤、セメント原料としてリサイクルするうえで問題となっていた。
【0012】
さらに、発熱したドロスは冷却キルンを通して冷却されるが、過熱冷却を繰り返すために設備コストおよび光熱コストが増大していた。
【0013】
本発明は上記の課題を解決するためになされたものであり、溶湯の品質を劣化させることなく、アルミニウム分の多い酸化物および介在物(ドロス)の持ち出しを最小限にし、一定品質のドロスを安定に回収することができるアルミニウム溶湯の処理方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明のアルミニウム溶湯の処理方法は、Al又はAl合金からなるアルミニウム溶湯を脱ガス処理するアルミニウム溶湯の処理方法において、アルミニウム溶湯を酸化物および酸化物に付着した介在物とともに溶解炉から処理槽に移す工程と、前記処理槽内の溶湯に塩化ナトリウム(NaCl)、塩化カリウム(KCl)、弗化アルミニウム(AlF )、弗化ナトリウム(NaF)、弗化カルシウム(CaF)、PAF(K AlF )、ケイ弗化ナトリウム(Na SiF )、ケイ弗化カリウム(K SiF )、炭酸カリウム(K CO )、炭酸ナトリウム(Na CO )、硝酸カリウム(KNO )、硝酸ナトリウム(NaNO )、硫酸カリウム(K SO )、硫酸ナトリウム(Na SO )、塩化マグネシウム(MgCl )、カーナリット(MgKCl)からなる群より選ばれる1種又は2種以上の化合物からなるフラックスを投入し、回転羽根およびガス吹出部を備えた攪拌機を下降させ、前記回転羽根を前記処理槽内の溶湯の湯面直下に浸漬し、前記回転羽根を回転させて湯面直下において溶湯および前記フラックスを攪拌し、溶湯と前記フラックスとの反応を促進させて溶湯中に混在する酸化物を改質し、改質した酸化物および前記酸化物に付着した介在物を溶湯から分離する工程と、さらに前記攪拌機を下降させて前記ガス吹出部および前記回転羽根を前記処理槽の底部近傍に位置させ、前記ガス吹出部から溶湯中に非酸化性ガスを吹込みつつ、前記回転羽根を回転させて非酸化性ガスを溶湯中に拡散し、溶湯中に混在する酸化物および酸化物に付着した介在物を湯面に浮上させるとともに溶湯を脱ガス処理する工程と、耐熱性のドロス掻き寄せ部材を用いて湯面に浮上した前記改質した酸化物および酸化物に付着した介在物を前記処理槽内の特定箇所に集合させ、該改質した酸化物および酸化物に付着した介在物を吸引排出装置により前記処理槽から排出し回収する工程と、を具備することを特徴とする。
【0016】
アルミニウムは溶解後に活性なため、溶湯表面で酸化物を生成するが、これらは放置すると酸素、窒素と反応し溶湯中に巻き込まれ、ドロスが発生する。このドロスは溶湯の品質を劣化させるのみならず、溶湯表面に浮遊し熱伝導性を劣化させるのみでなく、高温な状態に保持されるとアルミニウム表面が酸化されてγ−Alを生成する。一定期間この状態が保持されるとドライな状態のγ−Alはウェットな状態の酸化アルミニウム(α−Al)に変態し、溶湯中に沈降・浮遊するためその除去が極めて難しくなる。また、ウェットな状態の酸化アルミニウム(α−Al)は、周囲部材に付着しやすく、処理槽の外部に分離排出することが困難であり、これを再処理するには非常にコストと手間が掛かる。
【0017】
そこで、本発明では、脱ガス処理を開始する前に溶湯にフラックスを投入し、攪拌機の回転羽根を溶湯湯面の直下に浸漬して溶湯およびフラックスを攪拌して溶湯中のドロスをウェットな状態のα−Al 2 3 からドライな状態のγ−Al 2 3 改質し、次いで攪拌機のガス吹出部を処理槽の底部近傍まで下降させてガスバブリングし、改質ドロスを湯面に浮上させる。
【0019】
この場合に、フラックスの反応を促進させるために回転羽根方式の攪拌機を用いて上下往復運動と回転運動することと反応を促進させる。攪拌機の下部には回転羽根とガス吹出部とが近接して取り付けられ、ガス吹出部は気孔率15〜75%の平均気孔径100μm以下の多孔質素材を有し、ガス吹出部の内側にはガス溜りが形成され、ガス溜りの外周をなすガス吹出部の形状が円筒状をなしている。このような回転羽根方式の攪拌機は、外周部より非酸化性ガスの気泡を放出させ、回転羽根はガス吹出部の上部に接して溶湯の攪拌を抑制し、非酸化性ガスの分散のみを目的とした弱い攪拌力を溶湯に付与することができる。
【0020】
【発明の実施の形態】
以下、添付の図面を参照しながら本発明の好ましい実施の形態について説明する。
【0021】
溶湯処理装置としての脱ガス処理装置10は、図1に示すように、処理槽4、ガス供給/回転駆動機構30および攪拌機40を備えている。処理槽4は、耐火物が内側に張り付けられ、外周が鉄皮で覆われ、鉄皮に取り付けたフレーム3を介して架台2の上に設置されている。処理槽4は1バッチ当り最大1500kgまでのアルミニウム溶湯を脱ガスできる処理能力を備えている。
【0022】
図示しない溶解炉が処理槽4に隣接して設置され、溶解炉から処理槽4内に非酸化性雰囲気下でアルミニウム溶湯が注湯されるようになっている。溶解炉はドロス分離除去機能を備えており、溶解炉において多くのドロスが溶湯から分離され、除去されるようになっているが、それにも拘わらず溶湯5とともに少なからぬ量のドロス6が溶解炉から処理槽4内に入ってくる。この溶解炉から入ってくるドロス6は湿った状態にあり、このウェットなドロスは周囲の部材に付着しやすく、従来法では除去するのが困難であったものである。
【0023】
さらに、脱ガス処理装置10は、処理槽4内のアルミニウム溶湯5にフラックス7を投入するためのフラックス投入装置(図示せず)を備えている。フラックス投入装置は、フラックスとしてのアルミニウム除滓剤を収容した複数のホッパおよびシュータを有し、所定成分のアルミニウム除滓剤を所定の配合比に配合して所定量だけ処理槽4内に投入する機能を備えている。
【0024】
図1に示すように、攪拌機40はガス供給/回転駆動機構30に回転可能に支持され、ガス供給/回転駆動機構30はアーム20に片持ち支持されている。さらにアーム20は、図3に示すように、ポスト12内の支軸22に旋回および昇降可能に支持されている。
【0025】
ポスト12の最上部にモータユニット13が設けられている。モータユニット13において、モータ14回転軸の駆動プーリと従動プーリ15との間にベルト16が掛け渡されている。さらに、ポスト12の下部には従動プーリ17が設けられ、このプーリ17とモータユニット13内のプーリ15との間に昇降ベルト18が掛け渡されている。昇降ベルト18には複数対のナット19が固定され、これらのナット19を介してアーム20が昇降ベルト18に連結されている。
【0026】
アーム20の端部に取り付けた上下ストッパ23a,23bが接触しうる位置であって、ポスト12の上部適所と下部適所とにそれぞれリミットスイッチ21a,21bが取り付けられている。上ストッパ23aが上部リミットスイッチ21aに接触するとアーム20の上昇が停止し、下ストッパ23bが下部リミットスイッチ21bに接触するとアーム20の下降が停止するようになっている。ちなみに、アーム20(攪拌機40)の昇降ストロークは約1.5mである。なお、図3に示すように、安全装置として複数のリフトストッパ50が処理槽4の近傍の適所に配置されている。
【0027】
ポスト12は電源ユニット11の上に搭載されている。電源ユニット11内にはアーム20を支軸22まわりに旋回させる旋回駆動機構が内蔵されている。さらに電源ユニット11の回路は、フレキシブルケーブル24を介して昇降モータ13および回転駆動モータ34の電源スイッチに接続されている。ちなみに、アーム20(攪拌機40)の旋回半径は約2mである。
【0028】
攪拌機40は、中空回転軸32および回転羽根41を備えている。中空回転軸32は、フランジ継手32bより下部が焼結カーボン又はセラミックスからなり、フランジ継手32aより上部がステンレス鋼又は耐熱鋼からなる。図2に示すように、中空回転軸32の上部はガス供給/回転駆動機構30の2つの軸受39によりモータユニット31に回転可能に支持されている。中空回転軸32のさらに上部には従動プーリ33が嵌め込まれ、この従動プーリ33とモータ34の駆動プーリ35との間にベルト36が掛け渡され、モータ34の回転駆動力が中空回転軸32に伝達されるようになっている。
【0029】
中空回転軸32の最上端には遊嵌継手37を介してガス供給管38が取り付けられ、図示しないガス供給源から中空回転軸32の中空部を通って攪拌機40の最下部のガス吹出部42に処理ガスが供給されるようになっている。ちなみに中空回転軸32の外径は25mm〜50mmとし、内径は5〜45mmとする。
【0030】
ガス吹出部42は、回転羽根41の直下に取り付けられたガス溜り(ヘッダ)と多孔質部材を備えている。多孔質部材はガス溜りを取り囲むようにガス溜りの外周に取り付けられ、気孔率15〜75%、平均気孔径100μm以下である。
【0031】
なお、多孔質部材の処理ガス流出部にはテーパーをつけることが望ましい。この場合に、処理ガス流出部の形状が円筒状で外周部より処理ガスの気泡を放出させるようにすることが好ましい。
【0032】
さらに、回転羽根41は、例えば特許文献3や特許文献4に記載された形状を採用することが好ましく、溶湯の撹拌を抑えつつ、処理ガスの拡散のみを目的とした撹拌力の弱いものとすることが望ましい。この場合に、回転羽根41の側面にテーパーもしくは逆のアールを付け、処理ガスを処理槽4の下部にも拡散可能とすることが好ましい。
【0033】
図1〜図3には示していないが、図4に示したように掻き寄せ治具61および吸引排出装置62が処理槽4の上方の適所にそれぞれ設けられている。掻き寄せ治具61は、板状のカーボン、耐火材、セラミック部材からなり、その表面はドロスが付着しないように特殊加工されている。吸引排出装置62は耐熱性材料からなるラッパ状の吸引口を有し、図示しない吸引ポンプを介して回収ポット(図示せず)に連通している。なお、掻き寄せ治具61および吸引排出装置62はともに図示しない昇降機構に昇降可能に支持されている。
【0034】
次に、図4を参照しながら本発明の処理方法を説明する。
【0035】
溶解炉でアルミニウムを溶解した後に、アルミニウム溶湯5をドロス6とともに溶解炉から処理槽4に移す(工程S1)。溶解炉からのドロス6は湿ったウェット状のものであり、周囲の部材に付着しやすい状態にある。
【0036】
次いで、処理槽4内に所定成分のフラックス7を投入し、攪拌機40を下降させ、回転羽根41を処理槽内の溶湯5の湯面直下に浸漬させる。そして、回転羽根41を回転させて溶湯5、ドロス6およびフラックス7を数分間攪拌する。これによりウェット状態のドロス6(付着しやすい)がドライ状態のドロス6A(付着し難い)に改質され、ドロス6Aが溶湯5から分離した状態になる(工程S2)。この攪拌は少なくとも1分間行うことが望ましい。
【0037】
次いで、攪拌機40をさらに下降させ、ガス吹出部42および回転羽根41を処理槽4の底部近傍に位置させる。そして、ガス吹出部42から溶湯5中に非酸化性ガスとしてアルゴンまたは窒素ガスを吹込み、ガスバブリングしながら回転羽根41を回転させて溶湯5を攪拌し、溶湯5中に混在するドロス6と水素等の不純物ガス成分を湯面に浮上させる(工程S3)。このときの攪拌力はガスバブリング反応を阻害しない程度の弱いものとする。ガスバブリングを数分間続けた後に、ガス吹込みを停止し、脱ガス処理を終了させる。
【0038】
次いで、攪拌機40をさらに下降させ、回転羽根41を処理槽4の最も深いところに位置させ、溶湯5を攪拌する。耐熱性のドロス掻き寄せ部材61を下降させ、その下部を湯面に浸漬させ、ドロス6Aを処理槽4内の特定箇所に集合させる(工程S4)。集めたドロス6Aを吸引排出装置62により処理槽4から吸引排出し、回収ポットに回収する(工程S5)。
【0039】
なお、回転脱ガス装置の回転数が500rpm以上場合はアルミ飛散の危険が伴い危険であるため回転数は300〜400rpmが好ましい。回転脱ガス装置は上下往復運動と回転運動するため巻き込み防止の邪魔板(バッフル板)は必要なく回転脱ガス装置のミキサー処理ガス吐出部は低速回転でのガス分散効果があるポーラス(多孔質)を有する構造が好ましい。
【0040】
(実施例)
次に、実施例について説明する。
【0041】
合金種:AC4CH
処理温度:700℃
上記の条件でトリベ処理を行った。
【0042】
溶解炉からトリベに出湯され表面に7kgドロスが生成されたアルミニウム溶湯500kgにフラックス1kgを添加し、溶湯深さの半分程度に脱ガス機構を有する回転体を浸積させる。回転を開始し表面のドロスが巻き込まれた段階で溶解炉などから排出されたドロスを5kg添加した。
【0043】
1分後にドロスとフラックスが十分に反応しドロス中のアルミニウム分が完全に分離した。次に回転体を炉底付近まで浸積させ脱ガス処理を低速で処理ガスを2分間分散させ水素ガスを除去させた。
【0044】
通常工程で発生するドロスがトリベ内ドロス7kg+溶解炉ドロス5kg合計12kgあるのに対して本発明は1kgに低減できた。
【0045】
この処理を10回連続しておこなったところドロス中の平均アルミ残量は30%であった。また、トリベ中のH2ガス量を測定したところ従来の0.62cc/100gAlから0.11cc/100gAlに低減しており、鋳造工程での使用に全く問題ないことが確認できた。
【0046】
試料溶湯をIA500bにて所定時間ろ過し、ろ過後の試料溶湯を凝固させ、切断、研磨し、断面を顕微鏡観察した。
【0047】
ろ過時間は溶湯ろ過法(オーリンフリット法)を用いて測定した。
【0048】
溶湯ろ過法の条件を下記に示す。
【0049】
介在物判定機;1A−500b
溶湯温度;720℃±10℃
溶湯重量;2.50〜3.00kg
フィルタ気孔径;70〜80μm
フィルタ直径;14mm
圧力;0.068〜0.070MPa
図5の(a)は処理前のアルミニウム溶湯から採取した比較例サンプルの断面を示す写真、(b)は本発明方法により処理されたアルミニウム溶湯から採取した実施例サンプルの断面を示す写真である。
【0050】
図6の(a)は従来方法を用いて処理された比較例サンプルの金属組織を示す顕微鏡写真、(b)は本発明方法を用いて処理された実施例サンプルの金属組織を示す顕微鏡写真である。
【0051】
これらの写真から明らかなように本発明方法を用いることにより非金属介在物が大幅に減少することが確認された。
【0052】
(比較例)
切粉処理
合金種:ADC12
従来の方法:保持室 5000kg切粉処理槽200kgのアルミニウム切粉溶解保持炉で溶湯5000kを保持し、切粉200kg/hrの割合で投入し、溶解した。1時間後溶解炉表面のドロスを取り除き測定すると700kgあった。さらにこのドロスを灰絞りしたところ600kgのアルミニウムを回収しドロスは100kg発生した。切粉溶湯が保持室内の溶湯を酸化させ多量のドロスがを生成しており歩留まりが悪いことが確認できた。
【0053】
5200kg溶解したが保持炉内には4500kgの溶湯がのこり別工程の灰絞りで600kg回収でしたが固体の状態であるため再溶解に光熱費が必要になった。
【0054】
(実施例)
次に、本発明の方法で保持室からドロスを前炉へ移動し、仕切板で遮蔽した後、溶湯を上記の回転脱ガス装置とフラックスの上下往復、回転運動で処理を行った。このとき処理後のトリベの処理後の溶湯は保持室に戻した。本発明の方法によると前炉内で発生したドロスは10kgで5190kgの溶湯を得ることができた。比較のため平均気孔径分布70μmのフィルタ、0.1MPaの窒素ガスで、加圧ろ過テストを行ったところ図6の(a)、(b)に示すように介在物量の違いを確認できた。
【0055】
図7は、本発明の効果を説明するために本発明方法と従来方法とを比較して示す棒グラフである。図中にて比較例1は脱ガス処理前のもの、比較例2は他社の処理品、比較例3は回転羽根による攪拌を脱ガス処理と組み合せたもの、実施例1は本発明方法を用いたものをそれぞれ示した。上記の溶湯ろ過法によるろ過時間は、比較例1が150秒、比較例2が180秒、比較例3が125秒、実施例1が90秒であった。このように本発明方法を用いて処理された溶湯は、溶湯ろ過法によるろ過時間が大幅に短縮されることが確認された。
【0056】
【発明の効果】
本発明によれば、溶湯の品質を劣化させることなく、ドロスの持ち出しを最小限にし、一定品質のドロスを安定に回収することができる。
【図面の簡単な説明】
【図1】本発明方法に用いられる溶湯処理装置の一部を切り欠いて示す概略断面図。
【図2】処理槽と攪拌機を示す概略断面図。
【図3】本発明方法に用いられる溶湯処理装置を上方から見て示す平面図。
【図4】本発明の実施形態に係るアルミニウム溶湯の処理方法を示す工程図。
【図5】(a)は処理前のアルミニウム溶湯から採取した比較例サンプルの断面を示す写真、(b)は本発明方法により処理されたアルミニウム溶湯から採取した実施例サンプルの断面を示す写真。
【図6】(a)は従来方法を用いて処理された比較例サンプルの金属組織を示す顕微鏡写真、(b)は本発明方法を用いて処理された実施例サンプルの金属組織を示す顕微鏡写真。
【図7】本発明の効果を説明するために本発明方法と従来方法とを比較して示す棒グラフ。
【符号の説明】
2…架台、
3…フレーム、
4…処理槽、
5…アルミニウム溶湯、
6,6A…ドロス、
7…フラックス、
10…溶湯処理装置(脱ガス処理装置)、
11…電源ユニット、
12…ポスト、
13…モータユニット、
14…モータ、
15,17…プーリ、
16,18…ベルト、
19…ナット、
20…アーム、
21a,21b…リミットスイッチ、
22…支軸、
23a,23b…ストッパ、
24…フレキシブルケーブル、
30…ガス供給/回転駆動機構、
31…モータユニット、32…中空回転軸、32a,32b…フランジ継手、
33,35…プーリ、34…モータ、36…ベルト、
37…遊嵌継手、38…ガス供給管、39…軸受、
40…攪拌機、
41…回転羽根、42…ガス吹出部、
50…リフトストッパ、
61…掻き寄せ治具、62…吸引排出装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating molten aluminum that removes impurities such as hydrogen, oxides, and non-metallic inclusions in a molten aluminum or aluminum alloy, and collects and reuses aluminum dross.
[0002]
[Prior art]
When the molten aluminum is exposed to the atmosphere, it is easily oxidized to form a large amount of oxide and inclusions (hereinafter referred to as dross) attached to the oxide. In addition to oxides such as Al 2 O 3 , MgO, Al 2 MgO 4 , SiO 2 , silicate, Al · Si · O, FeO, Fe 2 O 3 , carbides (Al 4 C 3 , Al 4 O 4 C, graphite carbon), boride (AlB 2 , AlB 12 , TiB 2 , VB 2 ), Al 3 Ti, Al 3 Zr, CaSO 4 , AlN, and various halides. When dross is mixed in molten aluminum due to suspension, it eventually becomes non-metallic inclusions, which leads to deterioration in quality of products such as wrought materials, forged products, and die-cast products. For this reason, it is necessary to separate and remove dross from the molten metal in each stage such as a melting furnace, a holding furnace, and a ladle.
[0003]
Patent Document 1 discloses a technique for separating and discharging dross from molten metal by changing the rotational gradient of the melting furnace and efficiently recovering the dross. Thus, dross can be efficiently recovered in the melting step. However, since the Al molten metal contains an impurity gas component such as hydrogen, it is necessary to degas the remelting process.
[0004]
Patent Documents 2 to 5 each disclose a degassing treatment method in which a treatment gas such as argon, nitrogen, or chlorine is blown into a molten metal in a treatment tank and gas bubbling is performed. That is, conventional methods include blowing the flux into the molten metal during gas bubbling (Patent Document 2) or stirring the molten metal during gas bubbling with rotating blades (Patent Documents 3, 4, and 5).
[0005]
[Patent Document 1]
JP-A-10-227567 (pages 4 to 5)
[0006]
[Patent Document 2]
JP 63-183136 A (pages 1 to 4, FIGS. 1 and 2)
[0007]
[Patent Document 3]
JP-A-10-306330 (pages 3 to 4, FIGS. 5 and 6)
[0008]
[Patent Document 4]
Japanese Patent Laid-Open No. 62-297422 (1 page, FIG. 1)
[0009]
[Patent Document 5]
Japanese Patent Publication No. 7-68591 (1 page, Fig. 1)
[0010]
[Problems to be solved by the invention]
However, in the conventional degassing treatment, dross with a high aluminum content is generated because the impurities float on the molten metal surface. The dross generated by this degassing process has its aluminum content removed in the next ash-squeezing process, but the degassing process has a negative effect on recycling because it is different from the dissolving process. That is, dross containing a large amount of aluminum generated in the degassing process must be periodically removed and reprocessed in the ash squeezing process, resulting in high processing costs and utility costs, and poor recyclability.
[0011]
In addition, since the dross with a lot of aluminum generated in the degassing process is processed by an exothermic reaction in the ash drawing process, it is difficult to maintain a constant quality such as an increase in oxide and mixing of iron, deoxidizer for steel, There was a problem in recycling as a cement raw material.
[0012]
Furthermore, although the heated dross is cooled through the cooling kiln, the equipment cost and the light heat cost have increased due to repeated overheating cooling.
[0013]
The present invention has been made to solve the above-described problems, and minimizes the removal of aluminum-rich oxides and inclusions (dross) without degrading the quality of the molten metal, thereby reducing the quality of dross. It aims at providing the processing method of the molten aluminum which can be collect | recovered stably.
[0014]
[Means for Solving the Problems]
The molten aluminum treatment method of the present invention is a molten aluminum treatment method for degassing a molten aluminum made of Al or an Al alloy. The molten aluminum is moved from the melting furnace to the treatment tank together with oxides and inclusions attached to the oxide. And the sodium chloride (NaCl), potassium chloride (KCl), aluminum fluoride (AlF 3 ), sodium fluoride (NaF), calcium fluoride (CaF), PAF (K 3 AlF ) to the molten metal in the treatment tank. 6 ), sodium silicofluoride (Na 2 SiF 6 ), potassium silicofluoride (K 2 SiF 6 ), potassium carbonate (K 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), potassium nitrate (KNO 3 ), nitric acid Sodium (NaNO 3 ), potassium sulfate (K 2 SO 4 ), sodium sulfate (Na 2 SO 4 ) , A flux composed of one or more compounds selected from the group consisting of magnesium chloride (MgCl 2 ) and carnarit (MgKCl) is charged , and the agitator equipped with a rotary blade and a gas outlet is lowered, and the rotary blade Is immersed directly under the molten metal surface in the treatment tank, the rotating blades are rotated to stir the molten metal and the flux directly under the molten metal surface, and the reaction between the molten metal and the flux is promoted to be mixed in the molten metal. A step of reforming the oxide, separating the reformed oxide and inclusions adhering to the oxide from the molten metal, and further lowering the stirrer so that the gas blowing portion and the rotary blade are at the bottom of the treatment tank; The non-oxidizing gas is diffused into the molten metal by rotating the rotary blade while blowing non-oxidizing gas from the gas blowing part into the molten metal, and mixed in the molten metal. A step of degassing the molten metal with floating the oxides and inclusions attached to the oxide melt-surface, the oxide was the modified emerged in molten steel surface by using a heat-resistant dross scraper member and oxidation to A step of collecting inclusions adhering to an object at a specific location in the processing tank, and discharging and recovering the modified oxide and the oxide adhering to the oxide from the processing tank by a suction discharge device. It is characterized by doing.
[0016]
Since aluminum is active after melting, oxides are generated on the surface of the molten metal, but if left untreated, they react with oxygen and nitrogen and are entrained in the molten metal, generating dross. This dross not only deteriorates the quality of the molten metal but also floats on the surface of the molten metal to deteriorate the thermal conductivity, and when kept at a high temperature, the aluminum surface is oxidized to form γ-Al 2 O 3 . To do. If this state is maintained for a certain period of time, the dry γ-Al 2 O 3 transforms into wet aluminum oxide (α-Al 2 O 3 ) and settles and floats in the molten metal, so that removal is extremely difficult. It becomes difficult. In addition, wet aluminum oxide (α-Al 2 O 3 ) easily adheres to surrounding members and is difficult to separate and discharge outside the treatment tank. Take the trouble.
[0017]
Therefore, in the present invention, before starting the degassing process, the flux is introduced into the molten metal, and the rotating blades of the stirrer are immersed directly under the molten metal surface to stir the molten metal and the flux to wet the dross in the molten metal. The α-Al 2 O 3 was then changed to dry γ-Al 2 O 3 , and then the gas blowing part of the stirrer was lowered to the vicinity of the bottom of the treatment tank to perform gas bubbling, and the reformed dross was brought to the molten metal surface. Make it rise.
[0019]
In this case, in order to promote the reaction of the flux, the vertical blade reciprocating motion and the rotational motion and the reaction are promoted using a rotating blade type stirrer. A rotating blade and a gas blowing part are attached close to the lower part of the stirrer, the gas blowing part has a porous material with a porosity of 15 to 75% and an average pore diameter of 100 μm or less, and inside the gas blowing part A gas reservoir is formed, and the shape of the gas blowing portion forming the outer periphery of the gas reservoir is cylindrical. Such a rotating blade type stirrer discharges bubbles of non-oxidizing gas from the outer periphery, and the rotating blade contacts the upper part of the gas blowing part to suppress the stirring of the molten metal, and only for the dispersion of the non-oxidizing gas It is possible to impart a weak stirring force to the molten metal.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
[0021]
As shown in FIG. 1, the degassing apparatus 10 as a molten metal processing apparatus includes a processing tank 4, a gas supply / rotation drive mechanism 30, and a stirrer 40. The treatment tank 4 has a refractory attached to the inside, an outer periphery covered with an iron skin, and is installed on the gantry 2 via a frame 3 attached to the iron skin. The treatment tank 4 has a treatment capacity capable of degassing a molten aluminum of up to 1500 kg per batch.
[0022]
A melting furnace (not shown) is installed adjacent to the processing tank 4, and molten aluminum is poured from the melting furnace into the processing tank 4 in a non-oxidizing atmosphere. The melting furnace has a dross separation / removal function. In the melting furnace, a lot of dross is separated and removed from the molten metal. Nevertheless, a considerable amount of dross 6 together with the molten metal 5 is melted. Enters the treatment tank 4. The dross 6 entering from the melting furnace is in a wet state, and this wet dross is likely to adhere to surrounding members and difficult to remove by the conventional method.
[0023]
Further, the degassing apparatus 10 includes a flux charging device (not shown) for charging the flux 7 into the molten aluminum 5 in the processing tank 4. The flux feeding device has a plurality of hoppers and shooters that contain an aluminum scavenger as a flux, mixes a predetermined component of the aluminum scavenger in a predetermined mixing ratio, and inputs a predetermined amount into the treatment tank 4. It has a function.
[0024]
As shown in FIG. 1, the agitator 40 is rotatably supported by the gas supply / rotation drive mechanism 30, and the gas supply / rotation drive mechanism 30 is cantilevered by the arm 20. Further, as shown in FIG. 3, the arm 20 is supported by a support shaft 22 in the post 12 so as to be able to turn and ascend and descend.
[0025]
A motor unit 13 is provided on the top of the post 12. In the motor unit 13, a belt 16 is stretched between a driving pulley and a driven pulley 15 of the rotating shaft of the motor 14. Further, a driven pulley 17 is provided below the post 12, and an elevating belt 18 is stretched between the pulley 17 and the pulley 15 in the motor unit 13. A plurality of pairs of nuts 19 are fixed to the elevating belt 18, and an arm 20 is connected to the elevating belt 18 via these nuts 19.
[0026]
Limit switches 21a and 21b are attached to the upper and lower proper positions of the post 12, respectively, at positions where the upper and lower stoppers 23a and 23b attached to the ends of the arm 20 can come into contact with each other. When the upper stopper 23a comes into contact with the upper limit switch 21a, the raising of the arm 20 is stopped, and when the lower stopper 23b comes into contact with the lower limit switch 21b, the lowering of the arm 20 is stopped. Incidentally, the lifting stroke of the arm 20 (stirrer 40) is about 1.5 m. As shown in FIG. 3, a plurality of lift stoppers 50 are arranged at appropriate positions in the vicinity of the processing tank 4 as safety devices.
[0027]
The post 12 is mounted on the power supply unit 11. A turning drive mechanism for turning the arm 20 around the support shaft 22 is built in the power supply unit 11. Further, the circuit of the power supply unit 11 is connected to the power switches of the elevating motor 13 and the rotary drive motor 34 via the flexible cable 24. Incidentally, the turning radius of the arm 20 (stirrer 40) is about 2 m.
[0028]
The stirrer 40 includes a hollow rotary shaft 32 and a rotary blade 41. The hollow rotary shaft 32 is made of sintered carbon or ceramics below the flange joint 32b, and is made of stainless steel or heat-resistant steel above the flange joint 32a. As shown in FIG. 2, the upper portion of the hollow rotary shaft 32 is rotatably supported by the motor unit 31 by two bearings 39 of the gas supply / rotation drive mechanism 30. A driven pulley 33 is fitted into the upper part of the hollow rotating shaft 32, and a belt 36 is stretched between the driven pulley 33 and the driving pulley 35 of the motor 34, and the rotational driving force of the motor 34 is applied to the hollow rotating shaft 32. It is to be transmitted.
[0029]
A gas supply pipe 38 is attached to the uppermost end of the hollow rotary shaft 32 via a loose fitting joint 37, and passes through a hollow portion of the hollow rotary shaft 32 from a gas supply source (not shown) to the lowermost gas blowing portion 42 of the stirrer 40. A processing gas is supplied to the gas tank. Incidentally, the outer diameter of the hollow rotating shaft 32 is 25 mm to 50 mm, and the inner diameter is 5 to 45 mm.
[0030]
The gas blowing part 42 includes a gas reservoir (header) and a porous member attached immediately below the rotary blade 41. The porous member is attached to the outer periphery of the gas reservoir so as to surround the gas reservoir, and has a porosity of 15 to 75% and an average pore diameter of 100 μm or less.
[0031]
It is desirable to taper the processing gas outflow portion of the porous member. In this case, it is preferable that the shape of the processing gas outflow portion is cylindrical and bubbles of the processing gas are discharged from the outer peripheral portion.
[0032]
Further, the rotary blade 41 preferably adopts the shape described in, for example, Patent Document 3 and Patent Document 4, and has a weak stirring force only for the diffusion of the processing gas while suppressing stirring of the molten metal. It is desirable. In this case, it is preferable that the side surface of the rotary blade 41 be tapered or reversely rounded so that the processing gas can be diffused to the lower portion of the processing tank 4.
[0033]
Although not shown in FIGS. 1 to 3, as shown in FIG. 4, a scraping jig 61 and a suction / discharge device 62 are respectively provided at appropriate positions above the processing tank 4. The scraping jig 61 is made of plate-like carbon, a refractory material, and a ceramic member, and its surface is specially processed so that dross does not adhere. The suction / discharge device 62 has a trumpet-shaped suction port made of a heat-resistant material, and communicates with a recovery pot (not shown) via a suction pump (not shown). The scraping jig 61 and the suction / discharge device 62 are both supported by a lifting mechanism (not shown) so as to be lifted and lowered.
[0034]
Next, the processing method of the present invention will be described with reference to FIG.
[0035]
After melting aluminum in the melting furnace, the molten aluminum 5 is transferred together with the dross 6 from the melting furnace to the treatment tank 4 (step S1). The dross 6 from the melting furnace is wet and wet, and is easily attached to surrounding members.
[0036]
Next, the flux 7 having a predetermined component is charged into the treatment tank 4, the stirrer 40 is lowered, and the rotary blade 41 is immersed immediately below the molten metal surface of the molten metal 5 in the treatment tank. And the rotating blade 41 is rotated and the molten metal 5, the dross 6, and the flux 7 are stirred for several minutes. As a result, the dross 6 in the wet state (easy to adhere) is reformed to the dross 6A in the dry state (difficult to adhere), and the dross 6A is separated from the molten metal 5 (step S2). This stirring is preferably performed for at least 1 minute.
[0037]
Next, the stirrer 40 is further lowered, and the gas blowing part 42 and the rotary blade 41 are positioned in the vicinity of the bottom of the processing tank 4. Then, argon or nitrogen gas is blown into the molten metal 5 from the gas blowing portion 42 as a non-oxidizing gas, the rotating blade 41 is rotated while gas bubbling is performed, the molten metal 5 is stirred, and the dross 6 mixed in the molten metal 5 Impurity gas components such as hydrogen are floated on the hot water surface (step S3). The stirring force at this time is weak enough not to inhibit the gas bubbling reaction. After the gas bubbling is continued for several minutes, the gas blowing is stopped and the degassing process is terminated.
[0038]
Next, the stirrer 40 is further lowered, the rotary blade 41 is positioned at the deepest place in the treatment tank 4, and the molten metal 5 is stirred. The heat-resistant dross scraping member 61 is lowered, the lower part thereof is immersed in the hot water surface, and the dross 6A is gathered at a specific location in the processing tank 4 (step S4). The collected dross 6A is sucked and discharged from the processing tank 4 by the suction / discharge device 62 and collected in the recovery pot (step S5).
[0039]
In addition, when the rotation speed of a rotary degassing apparatus is 500 rpm or more, there exists a danger of aluminum scattering, and since it is dangerous, 300-400 rpm is preferable. Since the rotary degassing device rotates and reciprocates up and down, no baffle plate (baffle plate) is required to prevent entrainment, and the mixer processing gas discharge part of the rotary degassing device is porous with porous gas dispersion effect at low speed rotation A structure having
[0040]
(Example)
Next, examples will be described.
[0041]
Alloy type: AC4CH
Processing temperature: 700 ° C
The ladle treatment was performed under the above conditions.
[0042]
1 kg of flux is added to 500 kg of molten aluminum which is discharged from the melting furnace into a ladle and 7 kg dross is generated on the surface, and a rotating body having a degassing mechanism is immersed in about half of the molten metal depth. 5 kg of dross discharged from a melting furnace or the like was added at the stage where rotation started and dross on the surface was caught.
[0043]
After 1 minute, the dross and the flux sufficiently reacted and the aluminum content in the dross was completely separated. Next, the rotating body was immersed to the vicinity of the furnace bottom, and the degassing process was dispersed at a low speed for 2 minutes to remove the hydrogen gas.
[0044]
The dross generated in the normal process is 7 kg in the ladle + 5 kg in the melting furnace dross, a total of 12 kg, whereas the present invention can reduce the dross to 1 kg.
[0045]
When this treatment was repeated 10 times, the average remaining amount of aluminum in the dross was 30%. Moreover, when the amount of H 2 gas in the ladle was measured, it was reduced from the conventional 0.62 cc / 100 g Al to 0.11 cc / 100 g Al, and it was confirmed that there was no problem in use in the casting process.
[0046]
The sample melt was filtered for a predetermined time with IA500b, the sample melt after filtration was solidified, cut and polished, and the cross section was observed with a microscope.
[0047]
The filtration time was measured using a molten metal filtration method (Olin frit method).
[0048]
The conditions of the molten metal filtration method are shown below.
[0049]
Inclusion determination machine: 1A-500b
Molten metal temperature: 720 ° C ± 10 ° C
Molten metal weight: 2.50 to 3.00 kg
Filter pore diameter: 70-80 μm
Filter diameter: 14mm
Pressure; 0.068-0.070 MPa
FIG. 5A is a photograph showing a cross section of a comparative example sample taken from the molten aluminum before the treatment, and FIG. 5B is a photograph showing a cross section of the embodiment sample taken from the molten aluminum treated by the method of the present invention. .
[0050]
6A is a photomicrograph showing the metal structure of a comparative sample processed using the conventional method, and FIG. 6B is a photomicrograph showing the metal structure of an example sample processed using the method of the present invention. is there.
[0051]
As is apparent from these photographs, it was confirmed that nonmetallic inclusions were greatly reduced by using the method of the present invention.
[0052]
(Comparative example)
Chip treatment alloy type: ADC12
Conventional method: Holding chamber The molten metal 5000 k was held in a 200 kg aluminum chip melting and holding furnace of a 5000 kg chip treatment tank, and the molten metal was charged at a rate of 200 kg / hr for melting. After 1 hour, the dross on the surface of the melting furnace was removed and the measurement was 700 kg. Further, when the dross was ash-squeezed, 600 kg of aluminum was recovered and 100 kg of dross was generated. It was confirmed that the molten metal in the holding chamber oxidizes the molten metal in the holding chamber and a large amount of dross was produced, resulting in poor yield.
[0053]
Although 5200 kg was melted, 4500 kg of molten metal was recovered in the holding furnace, and 600 kg was recovered by ash drawing in a separate process. However, since it was in a solid state, a utility cost was required for remelting.
[0054]
(Example)
Next, after the dross was moved from the holding chamber to the front furnace by the method of the present invention and shielded by the partition plate, the molten metal was processed by the above-described rotary degassing apparatus and the flux by reciprocating and rotating. At this time, the molten metal after the treatment of the treated ladle was returned to the holding chamber. According to the method of the present invention, dross generated in the front furnace was 10 kg, and 5190 kg of molten metal could be obtained. For comparison, when a pressure filtration test was performed with a filter having an average pore size distribution of 70 μm and a nitrogen gas of 0.1 MPa, a difference in the amount of inclusions was confirmed as shown in FIGS.
[0055]
FIG. 7 is a bar graph showing a comparison between the method of the present invention and the conventional method in order to explain the effects of the present invention. In the figure, Comparative Example 1 is before degassing treatment, Comparative Example 2 is a processed product of another company, Comparative Example 3 is a combination of stirring with a rotary blade and degassing treatment, and Example 1 uses the method of the present invention. Each was shown. The filtration time by the molten metal filtration method was 150 seconds for Comparative Example 1, 180 seconds for Comparative Example 2, 125 seconds for Comparative Example 3, and 90 seconds for Example 1. Thus, it was confirmed that the molten metal processed using the method of the present invention significantly shortens the filtration time by the molten metal filtration method.
[0056]
【The invention's effect】
According to the present invention, dross removal can be minimized and stable quality dross can be recovered stably without deteriorating the quality of the molten metal.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a part of a molten metal treatment apparatus used in a method of the present invention.
FIG. 2 is a schematic cross-sectional view showing a treatment tank and a stirrer.
FIG. 3 is a plan view showing a molten metal treatment apparatus used in the method of the present invention as viewed from above.
FIG. 4 is a process diagram showing a method for treating molten aluminum according to an embodiment of the present invention.
5A is a photograph showing a cross section of a comparative example sample taken from a molten aluminum before the treatment, and FIG. 5B is a photograph showing a cross section of an example sample taken from the molten aluminum treated by the method of the present invention.
6A is a photomicrograph showing the metal structure of a comparative sample processed using a conventional method, and FIG. 6B is a photomicrograph showing the metal structure of an example sample processed using the method of the present invention. .
FIG. 7 is a bar graph showing a comparison between the method of the present invention and the conventional method in order to explain the effects of the present invention.
[Explanation of symbols]
2 ... the frame,
3 ... Frame,
4 ... treatment tank,
5 ... Molten aluminum,
6, 6A ... Dross,
7 ... Flux,
10 ... Molten metal treatment device (degassing treatment device),
11 ... power supply unit,
12 ... Post,
13 ... Motor unit,
14 ... motor,
15, 17 ... pulley,
16, 18 ... belt,
19 ... nuts,
20 ... arm,
21a, 21b ... limit switches,
22 ... support shaft,
23a, 23b ... stopper,
24 ... Flexible cable,
30: Gas supply / rotation drive mechanism,
31 ... motor unit, 32 ... hollow rotary shaft, 32a, 32b ... flange joint,
33, 35 ... pulley, 34 ... motor, 36 ... belt,
37 ... loose fitting joint, 38 ... gas supply pipe, 39 ... bearing,
40. Stirrer,
41 ... Rotating blades, 42 ... Gas blowing part,
50 ... Lift stopper,
61 ... scraping jig, 62 ... suction / discharge device.

Claims (1)

Al又はAl合金からなるアルミニウム溶湯を脱ガス処理するアルミニウム溶湯の処理方法において、
アルミニウム溶湯を酸化物および酸化物に付着した介在物とともに溶解炉から処理槽に移す工程と、
前記処理槽内の溶湯に塩化ナトリウム(NaCl)、塩化カリウム(KCl)、弗化アルミニウム(AlF )、弗化ナトリウム(NaF)、弗化カルシウム(CaF)、PAF(K AlF )、ケイ弗化ナトリウム(Na SiF )、ケイ弗化カリウム(K SiF )、炭酸カリウム(K CO )、炭酸ナトリウム(Na CO )、硝酸カリウム(KNO )、硝酸ナトリウム(NaNO )、硫酸カリウム(K SO )、硫酸ナトリウム(Na SO )、塩化マグネシウム(MgCl )、カーナリット(MgKCl)からなる群より選ばれる1種又は2種以上の化合物からなるフラックスを投入し、回転羽根およびガス吹出部を備えた攪拌機を下降させ、前記回転羽根を前記処理槽内の溶湯の湯面直下に浸漬し、前記回転羽根を回転させて湯面直下において溶湯および前記フラックスを攪拌し、溶湯と前記フラックスとの反応を促進させて溶湯中に混在する酸化物を改質し、改質した酸化物および前記酸化物に付着した介在物を溶湯から分離する工程と、
さらに前記攪拌機を下降させて前記ガス吹出部および前記回転羽根を前記処理槽の底部近傍に位置させ、前記ガス吹出部から溶湯中に非酸化性ガスを吹込みつつ、前記回転羽根を回転させて非酸化性ガスを溶湯中に拡散し、溶湯中に混在する酸化物および酸化物に付着した介在物を湯面に浮上させるとともに溶湯を脱ガス処理する工程と、
耐熱性のドロス掻き寄せ部材を用いて湯面に浮上した前記改質した酸化物および酸化物に付着した介在物を前記処理槽内の特定箇所に集合させ、該改質した酸化物および酸化物に付着した介在物を吸引排出装置により前記処理槽から排出し回収する工程と、
を具備することを特徴とするアルミニウム溶湯の処理方法。
In the processing method of the molten aluminum for degassing the molten aluminum made of Al or Al alloy,
Transferring the molten aluminum from the melting furnace to the treatment tank together with the oxide and inclusions attached to the oxide ;
Sodium chloride (NaCl), potassium chloride (KCl), aluminum fluoride (AlF 3 ), sodium fluoride (NaF), calcium fluoride (CaF), PAF (K 3 AlF 6 ), silicon Sodium fluoride (Na 2 SiF 6 ), potassium silicofluoride (K 2 SiF 6 ), potassium carbonate (K 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), potassium nitrate (KNO 3 ), sodium nitrate (NaNO 3) ), Potassium sulfate (K 2 SO 4 ), sodium sulfate (Na 2 SO 4 ), magnesium chloride (MgCl 2 ), and a flux composed of two or more compounds selected from the group consisting of carnarit (MgKCl). And lowering the stirrer provided with the rotary blade and the gas blowing section, and the rotary blade of the molten metal in the treatment tank Immersed just under the surface, said rotary blade is rotated to stir the molten metal and the flux immediately below molten metal surface, modify the oxide reaction to promote mixed with the molten metal of the molten metal and said flux, reforming Separating the oxides and inclusions adhering to the oxides from the melt;
Further, the stirrer is lowered so that the gas blowing part and the rotary blade are positioned in the vicinity of the bottom of the treatment tank, and the rotary blade is rotated while blowing non-oxidizing gas from the gas blowing part into the molten metal. A step of diffusing a non-oxidizing gas into the molten metal, causing oxides mixed in the molten metal and inclusions attached to the oxide to float on the molten metal surface, and degassing the molten metal;
The modified oxide that floated on the molten metal surface using a heat-resistant dross scraping member and the inclusions attached to the oxide were collected at specific locations in the treatment tank, and the modified oxide and oxide A step of discharging and collecting the inclusions adhering to the processing tank by a suction discharge device;
A method for treating molten aluminum, comprising:
JP2002307231A 2002-10-22 2002-10-22 Treatment method for molten aluminum Expired - Lifetime JP4319387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002307231A JP4319387B2 (en) 2002-10-22 2002-10-22 Treatment method for molten aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002307231A JP4319387B2 (en) 2002-10-22 2002-10-22 Treatment method for molten aluminum

Publications (2)

Publication Number Publication Date
JP2004143483A JP2004143483A (en) 2004-05-20
JP4319387B2 true JP4319387B2 (en) 2009-08-26

Family

ID=32453755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002307231A Expired - Lifetime JP4319387B2 (en) 2002-10-22 2002-10-22 Treatment method for molten aluminum

Country Status (1)

Country Link
JP (1) JP4319387B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016180362A1 (en) * 2015-05-14 2016-11-17 北京有色金属研究总院 Cutting and breaking device for homogenizing and refining metallic melts and rheological forming method
CN106270420A (en) * 2015-05-14 2017-01-04 北京有色金属研究总院 The cutting of metal bath Homogenization Treatments is broken dissipates apparatus and method
CN109182818A (en) * 2018-09-26 2019-01-11 广东华劲金属型材有限公司 A kind of aluminium alloy ingots melting slag removal and purification method
CN111702158A (en) * 2020-07-03 2020-09-25 宋丰艾 Steel ingot smelting process

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4584682B2 (en) * 2004-11-12 2010-11-24 ヤマハ発動機株式会社 Method for removing oxide from casting aluminum alloy
JP2008200739A (en) * 2007-02-22 2008-09-04 Japan Metals & Chem Co Ltd Rotary member for molten metal degassing apparatus, and molten metal degassing apparatus comprising the same
JP5451054B2 (en) * 2008-12-16 2014-03-26 株式会社Map狭山 Surface oxide discharger in molten metal pot for aluminum transport
JP2012086262A (en) * 2010-10-22 2012-05-10 Mitsui Mining & Smelting Co Ltd Flange joint for molten metal-stirring body
KR101287558B1 (en) 2011-03-07 2013-07-19 (주)디에스리퀴드 A flux for removing magnesium impurity from molten aluminium or aluminium alloy and the removing method of magnesium impurity from molten aluminium or aluminium alloy using the same
KR101287560B1 (en) 2011-07-21 2013-07-19 (주)디에스리퀴드 A flux for removing calcium impurity from molten aluminium or aluminium alloy and the removing method of calcium impurity from molten aluminium or aluminium alloy using the same
DE102014102967B4 (en) * 2013-03-15 2019-10-31 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Method of reducing old oxides in aluminum casts
KR101619197B1 (en) * 2014-06-19 2016-05-10 주식회사 트론 Apparatus for forming metal matrix composite
KR101754523B1 (en) * 2016-02-16 2017-07-06 알본동우 주식회사 Al-Mg-based alloy manufacturing method using the scrap
CN108393464B (en) * 2018-04-28 2021-05-18 广东鸿图科技股份有限公司 Non-stop feeding device and method for die-casting machine edge holding furnace
CN108823423A (en) * 2018-09-05 2018-11-16 广西玉柴机器股份有限公司 A kind of control system and method for removing copper liquid foreign gas
JP6726914B1 (en) * 2019-09-10 2020-07-22 サンコーアルミ株式会社 Aluminum recovery method and recovery device
JP2021050368A (en) * 2019-09-20 2021-04-01 株式会社Mrdc Method for removing aluminium phosphide cluster in molten metal of aluminum alloy
KR102403999B1 (en) * 2019-12-13 2022-05-30 (주)포스코엠텍 Additive for molten metal comprising aluminium, molten metal including the additive and method for treating the molten metal
JP7247917B2 (en) * 2020-02-19 2023-03-29 トヨタ自動車株式会社 Method for producing semi-solidified molten metal
CN111733341A (en) * 2020-07-07 2020-10-02 刘占国 Aluminum alloy smelting device
CN113198983B (en) * 2021-04-23 2023-06-16 上海应用技术大学 Preparation method and device of medium-cooled planetary stirring semi-solid slurry
CN113862500A (en) * 2021-09-24 2021-12-31 湖北华力科技有限公司 Refining agent for casting aluminum bar for aluminum profile and smelting process
CN115229174B (en) * 2022-08-03 2023-07-21 江苏立中新材料科技有限公司 Automatic slag removing device for aluminum alloy liquid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016180362A1 (en) * 2015-05-14 2016-11-17 北京有色金属研究总院 Cutting and breaking device for homogenizing and refining metallic melts and rheological forming method
CN106270420A (en) * 2015-05-14 2017-01-04 北京有色金属研究总院 The cutting of metal bath Homogenization Treatments is broken dissipates apparatus and method
CN109182818A (en) * 2018-09-26 2019-01-11 广东华劲金属型材有限公司 A kind of aluminium alloy ingots melting slag removal and purification method
CN111702158A (en) * 2020-07-03 2020-09-25 宋丰艾 Steel ingot smelting process
CN111702158B (en) * 2020-07-03 2021-12-21 宁波三和兴模具技术有限公司 Steel ingot smelting process

Also Published As

Publication number Publication date
JP2004143483A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JP4319387B2 (en) Treatment method for molten aluminum
US4470846A (en) Removal of alkali metals and alkaline earth metals from molten aluminum
TWI443237B (en) Method for processing silicon powder to obtain silicon crystals
JP4159994B2 (en) Method for purifying silicon, slag for silicon purification, and purified silicon
JP3668081B2 (en) Method for refining molten aluminum alloy and flux for refining molten aluminum alloy
JPH0380854B2 (en)
JPS6267190A (en) Method and apparatus for manufacturing high purity metal lithium by fused salt electrolysis
EP2450311A1 (en) Method for producing silicon, silicon, and panel for solar cell
EP0260930A1 (en) Method of alloying aluminium
EP0065854B1 (en) Removal of alkali metals and alkaline earth metals from molten aluminium
JP4264166B2 (en) Method for purifying silicon
EP0623685A1 (en) Purification of molten aluminum using upper and lower impellers
JPH0394029A (en) Manufacture of fine aluminum particle alloy
JP6954589B2 (en) Stirrer and molten metal processing equipment
JP4397714B2 (en) Raw material for aluminum purification
US4312846A (en) Method of silicon purification
JP2003238138A (en) Silicon refining method and device
JP7412754B2 (en) Stirrer and molten metal processing equipment
JP5069728B2 (en) Aluminum purification method, high-purity aluminum material, method for producing aluminum material for electrolytic capacitor electrode, and aluminum material for electrolytic capacitor electrode
WO2009150961A2 (en) Metal manufacturing method
JP2856839B2 (en) Silicon purification method
CN1161481C (en) Filter for eliminating non-metallic foreign impurity in aluminium melt
CA1215237A (en) Removal of alkali metals and alkaline earth metals from molten aluminium
JP7090959B2 (en) Stirrer and molten metal processing equipment
JP2010031334A (en) Method and apparatus for refining metal, refined metal, casting, metal product and electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4319387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term