JP4317304B2 - Apparatus and method for multistage adsorption treatment of exhaust gas - Google Patents

Apparatus and method for multistage adsorption treatment of exhaust gas Download PDF

Info

Publication number
JP4317304B2
JP4317304B2 JP32425399A JP32425399A JP4317304B2 JP 4317304 B2 JP4317304 B2 JP 4317304B2 JP 32425399 A JP32425399 A JP 32425399A JP 32425399 A JP32425399 A JP 32425399A JP 4317304 B2 JP4317304 B2 JP 4317304B2
Authority
JP
Japan
Prior art keywords
adsorbent
exhaust gas
components
adsorbing
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32425399A
Other languages
Japanese (ja)
Other versions
JP2001137647A (en
Inventor
毅 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Engineering Co Ltd
Original Assignee
Kureha Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Engineering Co Ltd filed Critical Kureha Engineering Co Ltd
Priority to JP32425399A priority Critical patent/JP4317304B2/en
Publication of JP2001137647A publication Critical patent/JP2001137647A/en
Application granted granted Critical
Publication of JP4317304B2 publication Critical patent/JP4317304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、排ガスの多段吸着処理装置及び方法に関し、詳しくは、少なくとも二種類以上の有機成分等の被除去成分を含む排ガスから、それらの被除去成分を除去する排ガスの多段吸着処理装置及び方法に関する。
【0002】
【従来の技術】
従来、排ガス中の被除去成分を除去又は回収する方法又は装置としては、例えば、特公昭53−8664号公報、特開昭54−145374号公報、特公昭63−40772号公報等に記載されたものが挙げられる。これらは、いずれも排ガスを吸着材と接触させ、排ガスに含まれる単一種類の被除去成分を主として除去する方法又は装置である。
【0003】
ところで、各種溶剤を使用する設備や装置等からは二種類以上の被除去成分を含む排ガスが排出される場合が多くあり、排ガスの処理コストを低減する観点から、これらの被除去成分を一つの装置によって除去できる技術が切望されている。また、近年、環境保全に係る問題への関心が高まっており、被除去成分の環境への放出量を極力低減するべく、これらの被除去成分をより高い除去効率で排ガスから除去できる技術が望まれている。これに対し、上記従来の方法又は装置では、排ガスに含まれる二種類以上の被除去成分の全てを十分に高い除去効率で除去することは困難であった。
【0004】
【発明が解決しようとする課題】
そこで、本発明は、このような事情に鑑みてなされたものであり、排ガス中に二種類以上含まれる被除去成分を十分に高い除去効率で除去できる排ガスの多段吸着処理装置及び方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明者は鋭意研究を重ね、従来の排ガス処理装置に二種類の被除去成分を含む排ガスを供給すると、一方の被除去成分は吸着除去されるのに対し、他方の被除去成分は除去され難く、排ガス中にこの他方の成分が主として残留する傾向にあることを見出した。そして、吸着材の量等の処理条件を種々変化させて更に研究を進めた結果、
1)吸着部における排ガスの流路の上流側に位置する吸着材には、二種類の被除去成分のうち(A)吸着され易い方の成分が(B)吸着され難い成分よりも多く吸着され、
2)同下流側に位置する吸着材には、(B)成分が(A)成分よりも多く吸着される、ことを見出した。
そして、本発明者は、これらの知見に基づいて更に研究を進め、本発明を完成するに至った。
【0006】
すなわち、本発明の排ガスの多段吸着処理装置は、少なくとも二種類以上の被除去成分を含む排ガスが吸着材に接触して被除去成分が吸着材に吸着され、吸着材に吸着された被除去成分が脱着されて吸着材が再生され、再生された吸着材が再び排ガスと接触することにより排ガスを連続して処理するものであって、排ガスが順次流通され、被除去成分を吸着することが可能であり且つ被除去成分との親和力に差を有する単一種類の吸着材を有しており、吸着材が排ガスの流通方向と対向するように流動しつつ流下して吸着材と排ガスとが接触し、被除去成分が吸着材との親和力の高い順に吸着材に吸着される少なくとも二段以上の吸着部と、各吸着部に接続されており、各吸着部から吸着材が移送され、吸着材に吸着された被除去成分を脱着して吸着材を再生する一段の脱着部と、各吸着部及び脱着部に接続されており、再生された吸着材を各吸着部に返送する搬送部とを備えることを特徴とする。
【0007】
このような構成の排ガスの多段吸着処理装置においては、少なくとも二種類以上の被除去成分を含む排ガスが二段以上の吸着部を順次通過する間に単一種類の吸着材と接触し、被除去成分が吸着材に吸着される。このとき、排ガスが吸着材と接触する初期の段階には、被除去成分の吸着材への吸着され易さに差異があっても、吸着材の吸着性能及び量に応じて、各被除去成分は吸着材に吸着されていく。
【0008】
吸着が進行していくと、吸着され易い(吸着材との親和力が強い)成分が吸着され難い(吸着材との親和力が弱い)成分と置き換わって吸着される、いわゆる置換吸着が起こり、吸着材中に吸着され易い成分がより多く吸着される。すなわち、吸着され易い成分の置換吸着、逆に言えば、吸着され難い成分の置換脱着が生じる。排ガスの流通方向の最も上流側にある吸着材は、この置換吸着現象によって被除去成分のうち吸着され易い成分を選択的に吸着し得る。
【0009】
このようにして、排ガスの流通方向の下流側に向かうにつれて、被除去成分は吸着され易い順に吸着材に選択的に吸着され、最も上流側にある吸着材には、最も吸着され易い成分が主として吸着される。したがって、排ガス中の複数の被除去成分を高い効率で排ガスから除去できる。また、吸着材を、排ガスの流通する方向と対向するように吸着部内に流動させながら、吸着材と排ガスとを接触させるので、排ガスと吸着材とのいわゆる向流接触が実現され、且つ、吸着材を循環し得るので、連続処理が可能となって処理効率が向上される。
【0010】
さらに、吸着部が二段で構成されており、吸着部のうち前段の吸着部は、被除去成分のうち吸着材との親和力が高い被除去成分が主として吸着材に吸着されるものであり、吸着部のうち後段の吸着部は、上記親和力が高い被除去成分よりも吸着材との親和力が低い被除去成分が主として吸着材に吸着されるものであると好ましい。
【0011】
排ガス中に被除去成分が二種類含まれる場合には、このような簡略な構成で被除去成分の十分な除去が可能となる。また、被除去成分の種類が更に多くても、単一種類の吸着材の量や循環量等を適宜調整することにより、前段では、主として比較的吸着され易い一種類以上の成分が吸着され、後段では残りの他の成分が主として吸着され得る。
【0012】
またさらに、吸着材として球状活性炭を用いると好ましい。このようにすれば、吸着材の流動性が高められ、特に真球状とすれば流動性が一層高められる。また、破砕炭等に比して粒度の揃った小粒径のものとし易いので、吸着速度が高められて被除去成分との吸着平衡に達する時間が短縮される。
【0013】
また、本発明の排ガスの多段吸着処理方法は、本発明による排ガスの多段吸着処理装置を用いて好適に実施できる。すなわち、本発明の排ガスの多段吸着処理方法は、少なくとも二種類以上の被除去成分を含む排ガスが吸着材に接触して被除去成分が吸着材に吸着される吸着部と、吸着材に吸着された被除去成分を脱着して吸着材を再生する脱着部とを備え、再生された吸着材が再び排ガスと接触することにより排ガスを連続して処理する排ガスの多段吸着処理装置を用いた排ガスの多段吸着処理方法であって、被除去成分を吸着することが可能であり且つ被除去成分との親和力に差を有する単一種類の吸着材を有している少なくとも二段以上の吸着部に、排ガスを順次流通させ、且つ、吸着材を排ガスの流通方向と対向するように流動しつつ流下させて吸着材と排ガスとを接触させることにより、被除去成分を吸着材との親和力の高い順に吸着材に吸着せしめ、各吸着部から吸着材を一段の脱着部に移送し、吸着材に吸着された被除去成分を脱着して吸着材を再生し、再生された吸着材を各吸着部に返送することを特徴とする。
【0014】
さらに、吸着部が二段で構成されており、吸着部のうち前段の吸着部で、被除去成分のうち吸着材との親和力が高い被除去成分を主として吸着材に吸着せしめ、吸着部のうち後段の吸着部で、親和力が高い被除去成分よりも吸着材との親和力が低い被除去成分を主として吸着材に吸着せしめると好適である。またさらに、吸着材として球状活性炭を用いるとより好適である。
【0015】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して詳細に説明する。なお、同一の要素には同一の符号を付し、重複する説明を省略する。
【0016】
図1は、本発明による排ガスの多段吸着処理装置の好適な一実施形態の概略構成を示すブロック図である。図1に示すように、排ガス処理装置100(排ガスの多段吸着処理装置)は、二段で構成された吸着部11,21と一段で構成された脱着部12を備えており、脱着部12に回収部13が接続されたものである。これら吸着部11,21及び脱着部12は、後述する処理塔110内に配置されている。吸着部11,21は、それぞれの内部で吸着材90a,90bが流動されており、吸着材90a,90bが流動しつつ流下する方向と対向する方向に二種類の有機成分9a9b(被除去成分)を含む排ガス1が流通されている。すなわち、排ガス1は、吸着部11,12内で吸着材90a,90bと向流接触するようになっており、吸着材90a,90bに排ガス1中の有機成分9a,9bが吸着される。
【0017】
有機成分9a,9bを吸着した吸着材90a,90bは、ともに脱着部12へ移送され、脱着部12内で有機成分が脱着されて再生される。再生された吸着材90a,90b(以下、再生された吸着材90a,90bをまとめて「吸着材90」という)の一部は、吸着部11へ返送され、残部が吸着部21へ返送される。このようにして、吸着部11,21と脱着部12との間で吸着材90a,90bが循環される。そして、吸着部11を通過した排ガス1は、清浄ガス10となって排ガス処理装置100の外部へ排出されるようになっている。
【0018】
ここで、吸着材90a,90bは、各有機成分を吸着することが可能なものであり、且つ、各有機成分との親和力に差を有する単一種類の吸着材である。このような吸着材90a,90bとしては、活性炭が挙げられ、吸着部11,21内において良好な流動性を示す観点からは球状活性炭が好適である。
【0019】
図2は、図1に示す排ガス処理装置100の構成を示す模式断面図である。図2に示すように、排ガス処理装置100は、滞留部14、脱着部12、吸着部11、吸着部21及び排気部15が結合された処理塔110を備えている。また、処理塔110には、吸着材90a,90bのそれぞれの搬送部17,27、及び、脱着部12に接続された有機成分9aの回収部13が設けられている。
【0020】
吸着部11は、いわゆる多段流動床式の構成を成しており、吸着材90aが流動する多段トレイ11aを有している。また、吸着部11と脱着部12との結合部には、吸着材90aが流通できる流通管16a、及び、排ガス1が流通できる分散部16bが設けられている。この流通管16aの側方の処理塔110側壁には、配管41を通して排ガス1を供給するためのブロアP1が接続されている。
【0021】
脱着部12は、複数の中空管から成る熱交換部12aを有しており、中空管の外部には熱源4から配管44を通して熱媒が供給される。また、脱着部12の下端部にはブロアP5aが設けられた配管45aが接続されており、キャリアガス5が、熱交換部12a内で且つ中空管の内部へ供給されるようになっている。脱着部12の上端部には、キャリアガス5を循環させるための配管45cが設けられている。
【0022】
一方、処理塔110の上段に配置された吸着部21は、吸着部11と同様に多段流動床式の構成を成しており、吸着材90bを流動させるための多段トレイ21aを有している。また、吸着部21と吸着部11との結合部には、排ガス1が流通できる分散部16cが設けられている。さらに、吸着部21の下端部側壁には、吸着材90bを脱着部12へ移送するための配管60が接続されており、吸着材90bは、配管60を通して脱着部12の上端部に設けられた流通管60aから脱着部12の内部へ移送される。
【0023】
また、処理塔110の最下部に位置する滞留部14は、脱着部12を流下して再生された吸着材90を一時的に滞留させるためのものである。吸着材90の一部は、この滞留部14から、配管51,52,53、搬送器3a及び分離器3cで構成される搬送部17を通して吸着部11へ返送される。同様に、吸着材90の残部は、この滞留部14から、配管61,62,63、搬送器3b及び分離器3dで構成される搬送部27を通して吸着部21へ返送される。搬送器3a,3bには、吸着材90の搬送用ガス2を搬送器3a,3bへ供給するためのブロアP2a,P2bがそれぞれ接続されている。
【0024】
さらに、処理塔110に接続された回収部13は、脱着部12から配管47aを通して送気されるキャリアガス5中の有機成分9a,9bを凝縮する凝縮部7を有している。凝縮部7には、有機成分9a,9bを液化するために、冷媒6が流されている。また、回収部13は、凝縮された有機成分9a,9bを回収するための回収槽8を有している。さらに、配管48から分岐する配管47cは、キャリアガス5を脱着部12へ送気するためのものである。そして、回収槽8に回収された有機成分9a,9bは配管49を通して排ガス処理装置100の外部へ排出されるようになっている。
【0025】
次に、図2を参照して排ガス処理装置100を用いた本発明による排ガスの多段吸着処理方法の一実施形態について説明する。まず、二種類の有機成分9a,9bとしてそれぞれトルエン及び2−プロパノールを含む排ガス1を、ブロアP1によって吸着部11へ導入する(以下、有機成分9a,9bをそれぞれトルエン9a及び2−プロパノール9bと記す)。排ガス1は、分散部16bを通して、多段流動床を構成する多段トレイ11aを通って上方へ移動する。多段トレイ11aには上方から下方へ向かって吸着材90aを流動させ、排ガス1と吸着材90aとを向流接触させる。なお、本実施形態では、吸着材90a,90bともに石油ピッチ系の球状活性炭を用いる。
【0026】
ここで、有機成分の吸着材への吸着の難易は、通常、沸点が高いものほど吸着され易い(沸点が低いものほど吸着され難い)。具体例を挙げると、沸点80.1℃のベンゼン、沸点110.6℃のトルエン、沸点144.4℃のキシレンは、この順に吸着され易い。また、疎水性が高いものほど吸着され易い(疎水性が低いもの、すなわち、親水性が高いものほど吸着され難い)。アルコールを例にとると、エタノール、1−プロパノール又は2−プロパノール、1−ブタノールは、この順に吸着され易い。また、トルエンと2-プロパノールとでは、トルエンの方が吸着され易い。
【0027】
そして、吸着部11における吸着材90aと排ガス1とが接触する初期の段階では、トルエン9a及び2−プロパノール9bの吸着され易さには差があるものの、両者は吸着材90aに共に吸着されていく。そして、吸着部11に排ガス1を連続して供給すると、排ガス1中のトルエン9a(吸着され易い成分)と、吸着材90aに先に吸着されていた2−プロパノール9b(吸着され難い成分)との置換が起こる。すなわち、トルエン9aの置換吸着(逆に言えば、2−プロパノール9bの置換脱着)が生じる。
【0028】
よって、排ガス1中のトルエン9aや2−プロパノール9bといった有機成分の種類と濃度を予めサンプリング分析等によって求めておき、この値に基づいて、吸着材90a,90bの循環量等を適宜調整することにより、吸着部11内で、排ガス1中のトルエン9aのみを選択的に吸着材90aに吸着させることが可能である。
【0029】
吸着材90aを吸着部11に流動させながら排ガス1を連続して供給すると、このような置換吸着は吸着部11内で定常的に生じるようになる。その結果、吸着部11内において排ガス1の流通方向の最も上流側に流下してくる吸着材90aには、トルエン9aが主として選択的に吸着される。なお、図中黒丸で示す吸着材90a,90bは吸着状態を示し、白丸は脱着状態を示す。
【0030】
次に、トルエン9aが主として除去された排ガス1を、分散部16cを通して整流し、吸着部21へ導入し、多段流動床を構成する多段トレイ21aに沿って流通させ、排ガス1と吸着材90bとを向流接触させる。排ガス1中には主に2−プロパノールが含まれているので、置換吸着が起こらず、吸着材90bには2−プロパノール9bを主として吸着させることができる。トルエン9a及び2−プロパノール9bが除去された排ガス1は、清浄ガス10として排気部15から排ガス処理装置100の外部へ排出される。
【0031】
一方、吸着部11でトルエン9aを主に吸着した吸着材90aを、流通管16aを通して自重で脱着部12へ落下させる。他方、吸着部21で2−プロパノールを主に吸着した吸着材90bを、配管60及び流通管60aを通して自重で脱着部12へ落下させる。吸着材90a,90bは、ともに下方へ徐々に移動(流下)し、熱交換部12aへ達する。熱交換部12aには、熱源4から熱媒であるスチームやオイル等を供給し、熱交換部12a内の温度が、例えば、150〜200℃となるように加熱し、吸着材90a、90bからトルエン9a及び2−プロパノールをそれぞれ脱着させる。これにより、吸着材90a,90bを再生し、図示しない間接冷却部によって冷却した後、滞留部14へ導入する。なお、熱媒としてスチームを用いた場合に、その冷却によって生じた水は、図示しないドレインへ排出させる。
【0032】
それから、搬送部17によって、以下のようにして吸着材90(再生した吸着材90a,90b)の一部を吸着部11へ返送する。まず、滞留部14に一時的に滞留させた吸着材90の一部を搬送器3aへ移送し、ブロアP2aにより圧縮空気等の搬送用ガス2を搬送器3aに供給して吸着材90を更に分離器3cへ移送する。このとき、吸着材90の移送量は、搬送器3aの移送量調整部で調整することができる。分離器3cへ吹き上げられた搬送用ガス2及び吸着材90は分離器3cで失速し、吸着部11へ返送されて吸着材90aとして再び多段トレイ11aを流動する。一方、上述した搬送部17によるのと同様にして、滞留部14に一時的に滞留させた吸着材90の残部が搬送部27により吸着部21へ返送されて吸着材90bとして再び多段トレイ21aを流動する。
【0033】
また、ブロアP5aにより、脱着部12の下部にキャリアガス5として、被除去成分の物性に影響を及ぼさないガス、例えば窒素ガスを供給する。キャリアガス5は、熱交換部12aを流通し、脱着されたトルエン9aを伴って上方へ移動する。このキャリアガス5を凝縮部7へ導入し、凝縮部7に例えばチラー水、不凍液等の冷媒6を供給してトルエン9a及び2−プロパノール9bを液化させ、回収槽8へ導入して回収する。回収されたトルエン9a及び2−プロパノールは必要に応じて回収槽8から外部へ排出させる。
【0034】
以上説明した本発明の排ガス処理装置100及び排ガスの多段吸着処理方法によれば、単一種類の吸着材90a,90bを二段で構成される吸着部11,21へそれぞれ流動させ、二種類の被除去成分としてのトルエン9a及び2−プロパノール9bを含む排ガス1とを順次向流接触させる。これにより、置換吸着を利用して各吸着部11,21において、トルエン9a及び2−プロパノール9bを吸着材90a,90bに選択的に吸着させることができる。したがって、これらのトルエン9a及び2−プロパノール9bといった被除去成分を排ガス1から十分に高い除去効率で除去できる。したがって、排ガス1からトルエン9a及び2−プロパノール9bといった複数の被除去成分が十分に除去された清浄ガス10を得ることができる。
【0035】
また、このような複数の被除去成分の排ガス1からの高度な除去が、二段で構成された吸着部11,21と一段で構成された脱着部12とで達成されるので、装置構成の複雑化及び大規模化を抑制できる。しかも、吸着材として単一種類の吸着材90a,90bを用いるので、保守性及び操作性の低下を防止できる。さらに、吸着材90a,90bが流動性に極めて優れるので、処理塔110内の吸着材の流動が円滑となり、処理塔110の閉塞等を十分に防止できる。よって、安定した排ガス処理が可能となる。またさらに、吸着材90a,90bが良好に流動するので、排ガス1との接触の均一性が高められ、吸着効率を向上できる。さらに、吸着材90a,90bは球状なので、流動空間における吸着材の密度を増大できるとともに、一般に極めて高い吸着能を有するので、排ガス処理装置100の吸着性能が高められる。その結果、装置の小型化が図られる。
【0036】
なお、排ガス処理装置100は、二段構成の吸着部11,21を有するが、二段に限定されるものではなく、被除去成分が三種類以上であれば、その数に応じた段数以上の吸着部を設ければよい。この場合にも、吸着され易い被除去成分から順番に、各吸着部において吸着材に吸着させることができる。また、処理装置100のように二段構成であっても、前段の吸着部11で比較的吸着され易い成分を主として吸着させ、後段の吸着部21でより吸着され難い成分を主として吸着させることが可能となり、排ガス中からそれら被除去成分を十分に除去し得る。
【0037】
さらに、被除去成分は、上述した有機成分に限定されるものではなく、各種の組み合わせに対応させることが可能である。またさらに、脱着部12と吸着部11,21とが一つの処理塔110に配置されているが、これらは別々に設けられていてもよく、例えば、脱着部12を吸着部11,21とは別の処理塔に設けても構わない。さらにまた、脱着部12においては、スチームやオイル等の熱媒による間接的な加熱方法を採用しているが、スチームで熱源とキャリアガスとを兼ねるといった直接的な加熱を行ってもよい。
【0038】
また、脱着部12の異なる位置に配管47aを二つ以上接続して被除去成分を回収してもよい。一般に、吸着された被除去成分の吸着材からの脱着の難易は、吸着材への吸着の難易と逆の傾向がある。すなわち、吸着され難い(吸着材との親和力が弱い)成分は脱着され易く、吸着され易い(吸着材との親和力が強い)成分は脱着され難い。その結果、脱着部12内には、被除去成分の吸着材との親和力に応じて、被除去成分毎に異なる濃度分布が生じ得る。
【0039】
したがって、脱着部12の異なる所定の位置に配管47aを二つ以上接続して被除去成分を回収すれば、被除去成分の分別回収が可能となる。この場合、被除去成分の分離性(分離の程度)は、各被除去成分と吸着材との親和力の差に依存する傾向にある。すなわち、吸着材への吸着され易さの程度の差が大きい複数の被除去成分ほど、各被除去成分の分離性が高められる。よって、被除去成分を分別して回収するための複数の配管47aを接続する位置は、これら被除去成分の種類や脱着温度等に応じて最適化できる。
【0040】
【実施例】
以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0041】
〈実施例1〉
二種類の被除去成分として、トルエン1000volppm及び2−プロパノール1000volppmを含む温度25℃、相対湿度(RH)40%の空気を、図2に示す構成の排ガス処理装置100に連続して供給した。この空気の体積流量は3000m3/h(標準状態)とした。また、処理塔110の塔径(外径;以下同様)は、吸着部11,21ともに1100mmφとし、吸着部11,21は、それぞれ6段の多段トレイ11a,21aを有する多段流動床式の構成とした。これらの吸着部11,21に、吸着材として石油ピッチ系球状活性炭(呉羽化学工業(株)製;製品名G−BAC)を流動させた。球状活性炭の循環流量(質量流量)は、新炭換算で吸着材90aを300kg/h、同吸着材90bを130kg/hとした。
【0042】
また、脱着部12の塔径を800mmφとし、熱交換部12aには熱媒としてスチームを供給し、間接加熱を行った。このときの脱着温度は160℃であり、キャリアガス5として窒素ガスを86m3/h(標準状態)の体積流量で循環させた。さらに、凝縮部7には、冷媒6として温度7℃のチラー水を流し、脱着された被除去成分を冷却して液化させた。
【0043】
その結果、吸着部11の出口(分散部16cに対応する位置)におけるガス濃度は、トルエンが50volppm、2−プロパノールが950volppmであった。このとき、回収部13では、トルエンが11.82kg/h、2−プロパノールが7.60kg/h、及び、水が3.4kg/hの質量流量で回収された。吸着部21の出口(排気部15に対応する位置)のガス濃度は、トルエンが40volppm、2−プロパノールが50volppmであった。
【0044】
このように、空気中のトルエン及び2−プロパノールは、それぞれの原ガスの4%及び5%となり、両者とも十分に除去されることが確認された。このことから、本発明の排ガスの多段吸着処理装置及び方法によれば、二種類以上の被除去成分を含む排ガスから、これら成分を十分に高い除去効率で除去できることが確認された。
【0045】
〈比較例1〉
排ガス処理装置100の吸着部21に球状活性炭を供給せずに、吸着部を吸着部11のみで構成し、吸着部11を上方に延長して多段トレイを12段としたこと以外は、上記実施例1と同様にして排ガス処理を行った。用いた球状活性炭の全循環流量も実施例1と同量とした。なお、この装置構成は、従来の単一種類の被除去成分を含む排ガスを処理するための装置の構成と同等である。
【0046】
その結果、吸着部11の出口におけるガス濃度は、トルエンが50volppm、2−プロパノールが950volppmであり、一方、回収部13では、トルエンが11.7kg/h、2−プロパノールが0.4kg/h、水が1kg/hの質量流量で回収された。このように、従来の装置では、2−プロパノール(相対的に吸着され難い成分)が殆ど回収できないことが確認された。
【0047】
【発明の効果】
以上説明したように、本発明による排ガスの多段吸着処理装置及び方法によれば、二段以上で構成される吸着部に、二種類以上の被除去成分を含む排ガスを順次流通させることにより、各吸着部において被除去成分が吸着され易い順に吸着される。そして、これらの被除去成分を吸着した吸着材を一段で構成された脱着部で再生し、再生された吸着材を吸着部に返送して循環させることにより、排ガス中に二種類以上含まれる被除去成分を十分に高い除去効率で且つ連続して除去することが可能となる。
【図面の簡単な説明】
【図1】本発明による排ガスの多段吸着処理装置の好適な実施形態の構成を示すブロック図である。
【図2】本発明による排ガスの多段吸着処理装置の好適な実施形態の構成を示す模式断面図である。
【符号の説明】
1…排ガス、3a,3b…搬送器、3c,3d…分離器、7…凝縮部、8…回収槽、9a…トルエン(有機成分、被除去成分)、9b…2−プロパノール(有機成分、被除去成分)、10…清浄ガス、11,21…吸着部、11a,21a…多段トレイ、12…脱着部、12a…熱交換部、13…回収部、17,27…搬送部、90a,90b…吸着材、100…排ガス処理装置(排ガスの多段吸着処理装置)。
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to an exhaust gas multistage adsorption treatment apparatus and method, and more particularly, an exhaust gas multistage adsorption treatment apparatus and method that removes the components to be removed from exhaust gas containing at least two kinds of components to be removed such as organic components. About.
[0002]
[Prior art]
Conventionally, methods or apparatuses for removing or recovering components to be removed from exhaust gas have been described in, for example, Japanese Patent Publication No. 53-8664, Japanese Patent Publication No. 54-145374, Japanese Patent Publication No. 63-40772, and the like. Things. These are methods or devices that mainly remove a single type of component to be removed contained in the exhaust gas by bringing the exhaust gas into contact with the adsorbent.
[0003]
By the way, there are many cases where exhaust gas containing two or more kinds of components to be removed is discharged from facilities and equipment using various solvents, and from the viewpoint of reducing the treatment cost of exhaust gas, these components to be removed are one. A technology that can be removed by the apparatus is eagerly desired. In recent years, interest in environmental conservation issues has increased, and a technology that can remove these components to be removed from exhaust gas with higher removal efficiency is desired in order to reduce the amount of components to be removed to the environment as much as possible. It is rare. On the other hand, in the conventional method or apparatus, it has been difficult to remove all of the two or more kinds of components to be removed contained in the exhaust gas with sufficiently high removal efficiency.
[0004]
[Problems to be solved by the invention]
Therefore, the present invention has been made in view of such circumstances, and provides an exhaust gas multistage adsorption treatment apparatus and method that can remove two or more kinds of components to be removed contained in the exhaust gas with sufficiently high removal efficiency. For the purpose.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present inventor repeated earnest research, and when an exhaust gas containing two kinds of components to be removed is supplied to a conventional exhaust gas treatment apparatus, one of the components to be removed is adsorbed and removed. It has been found that the other component to be removed is difficult to remove and the other component tends to remain mainly in the exhaust gas. And as a result of further research by varying the processing conditions such as the amount of adsorbent,
1) On the adsorbent located upstream of the exhaust gas flow path in the adsorption section, (A) the more easily adsorbed component of the two types of components to be removed is adsorbed more than (B) the component that is difficult to adsorb. ,
2) It was found that the adsorbent located on the downstream side adsorbs more component (B) than component (A).
And this inventor further advanced research based on these knowledge, and came to complete this invention.
[0006]
That is, the exhaust gas multistage adsorption treatment apparatus of the present invention is configured such that exhaust gas containing at least two kinds of components to be removed comes into contact with the adsorbent, the components to be removed are adsorbed on the adsorbent, and the components to be removed adsorbed on the adsorbent. Is desorbed and the adsorbent is regenerated, and the regenerated adsorbent is in contact with the exhaust gas again to continuously treat the exhaust gas. The exhaust gas is sequentially circulated and can adsorb the components to be removed. And has a single type of adsorbent that has a difference in affinity with the component to be removed, and the adsorbent and the exhaust gas come into contact with each other as the adsorbent flows while facing the flow direction of the exhaust gas. And at least two or more stages of adsorbing parts that are adsorbed by the adsorbing material in descending order of affinity with the adsorbing material, and the adsorbing material is transferred from each adsorbing part to be adsorbed. Desorbed components removed by adsorption And one stage of desorption unit for reproducing the adsorbent Te is connected to the suction unit and desorption unit, characterized in that it comprises a conveying unit for returning the regenerated adsorbent to the adsorption unit.
[0007]
In the multi-stage adsorption treatment apparatus for exhaust gas having such a configuration, the exhaust gas containing at least two kinds of components to be removed comes into contact with a single kind of adsorbent while sequentially passing through the adsorption section of two or more stages to be removed. Components are adsorbed on the adsorbent. At this time, even if there is a difference in the ease with which the components to be removed are adsorbed at the initial stage when the exhaust gas comes into contact with the adsorbent, each component to be removed depends on the adsorption performance and amount of the adsorbent. Is adsorbed by the adsorbent.
[0008]
As adsorption progresses, so-called substitutional adsorption occurs in which components that are easily adsorbed (strong affinity with the adsorbent) are replaced with components that are difficult to adsorb (low affinity with the adsorbent) and are adsorbed. More components that are easily adsorbed inside are adsorbed. That is, substitution adsorption of components that are easily adsorbed, or conversely, substitution desorption of components that are difficult to adsorb occurs. The adsorbent on the most upstream side in the exhaust gas flow direction can selectively adsorb components that are easily adsorbed among the components to be removed by this substitution adsorption phenomenon.
[0009]
In this way, the components to be removed are selectively adsorbed to the adsorbent in the order in which they are easily adsorbed toward the downstream side in the exhaust gas flow direction, and the adsorbent on the most upstream side mainly contains the components that are most likely to be adsorbed. Adsorbed. Therefore, a plurality of components to be removed in the exhaust gas can be removed from the exhaust gas with high efficiency. Further, since the adsorbent and the exhaust gas are brought into contact with each other while the adsorbent is caused to flow in the adsorption portion so as to face the direction in which the exhaust gas flows, so-called countercurrent contact between the exhaust gas and the adsorbent is realized and the adsorption is performed. Since the material can be circulated, continuous processing is possible and processing efficiency is improved.
[0010]
Furthermore, the adsorption part is composed of two stages, and the adsorption part in the previous stage among the adsorption parts is one in which the to-be-removed component having a high affinity with the adsorbent among the to-be-removed components is mainly adsorbed to the adsorbent. Of the adsorbing parts, the latter adsorbing part is preferably such that the to-be-removed component having a lower affinity with the adsorbing material is mainly adsorbed to the adsorbing material than the to-be-removed component having a high affinity.
[0011]
When two types of components to be removed are contained in the exhaust gas, the components to be removed can be sufficiently removed with such a simple configuration. In addition, even if there are more types of components to be removed, by adjusting the amount of single-type adsorbent, circulation amount, etc. as appropriate, in the previous stage, one or more types of components that are relatively easily adsorbed are adsorbed, In the latter stage, the remaining other components can be mainly adsorbed.
[0012]
Furthermore, it is preferable to use spherical activated carbon as the adsorbent. In this way, the fluidity of the adsorbent can be improved, and the fluidity can be further enhanced if it is particularly spherical. Moreover, since it is easy to make it the thing of the small particle size in which the particle size was equal compared with crushed charcoal etc., the adsorption speed is raised and the time to reach adsorption equilibrium with a to-be-removed component is shortened.
[0013]
Further, the exhaust gas multistage adsorption treatment method of the present invention can be suitably carried out using the exhaust gas multistage adsorption treatment apparatus according to the present invention. That is, the multistage adsorption treatment method for exhaust gas according to the present invention includes an adsorption part in which exhaust gas containing at least two kinds of components to be removed comes into contact with the adsorbent, and the components to be removed are adsorbed on the adsorbent, and adsorbed on the adsorbent. And a desorption part that regenerates the adsorbent by desorbing the components to be removed, and the exhaust gas that has been continuously processed is processed by contacting the regenerated adsorbent with the exhaust gas again. In a multi-stage adsorption treatment method, it is possible to adsorb a component to be removed, and at least two or more stages of adsorption parts having a single kind of adsorbent having a difference in affinity with the component to be removed. Adsorbing the components to be removed in descending order of affinity with the adsorbent by flowing the exhaust gas in sequence and flowing down the adsorbent while facing the flow direction of the exhaust gas and bringing the adsorbent into contact with the exhaust gas Adsorb to the material Therefore, the adsorbent is transferred from each adsorbing section to the one-stage desorbing section, the to-be-removed components adsorbed on the adsorbent are desorbed to regenerate the adsorbent, and the regenerated adsorbent is returned to each adsorbing section. Features.
[0014]
Furthermore, the adsorption part is composed of two stages. Among the adsorption parts, the removal part having a high affinity with the adsorption material is mainly adsorbed to the adsorption material, and the adsorption part is mainly adsorbed. It is preferable to adsorb mainly a component to be removed, which has a lower affinity with the adsorbent than a component to be removed with a higher affinity, in the adsorbing part in the subsequent stage. Furthermore, it is more preferable to use spherical activated carbon as the adsorbent.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted.
[0016]
FIG. 1 is a block diagram showing a schematic configuration of a preferred embodiment of an exhaust gas multistage adsorption treatment apparatus according to the present invention. As shown in FIG. 1, the exhaust gas treatment apparatus 100 (exhaust gas multistage adsorption treatment apparatus) includes adsorption sections 11 and 21 configured in two stages and a desorption section 12 configured in one stage. The collection unit 13 is connected. These adsorption parts 11 and 21 and desorption part 12 are arranged in processing tower 110 mentioned below. The adsorbing parts 11 and 21 have adsorbents 90a and 90b flowing inside, and two kinds of organic components 9a9b (components to be removed) are arranged in a direction opposite to the direction in which the adsorbents 90a and 90b flow and flow down. Exhaust gas 1 containing is circulated. That is, the exhaust gas 1 comes into countercurrent contact with the adsorbents 90a and 90b in the adsorbing portions 11 and 12, and the organic components 9a and 9b in the exhaust gas 1 are adsorbed by the adsorbents 90a and 90b.
[0017]
The adsorbents 90a and 90b that have adsorbed the organic components 9a and 9b are both transferred to the desorption unit 12, and the organic components are desorbed and regenerated in the desorption unit 12. Part of the regenerated adsorbents 90 a and 90 b (hereinafter, the regenerated adsorbents 90 a and 90 b are collectively referred to as “adsorbent 90”) is returned to the adsorbing unit 11, and the rest is returned to the adsorbing unit 21. . In this way, the adsorbents 90a and 90b are circulated between the adsorbing units 11 and 21 and the desorbing unit 12. And the exhaust gas 1 which passed the adsorption | suction part 11 turns into the clean gas 10, and is discharged | emitted outside the exhaust gas processing apparatus 100. FIG.
[0018]
Here, the adsorbents 90a and 90b are capable of adsorbing each organic component, and are a single kind of adsorbent having a difference in affinity with each organic component. Examples of such adsorbents 90a and 90b include activated carbon, and spherical activated carbon is preferable from the viewpoint of exhibiting good fluidity in the adsorbing portions 11 and 21.
[0019]
FIG. 2 is a schematic cross-sectional view showing the configuration of the exhaust gas treatment apparatus 100 shown in FIG. As shown in FIG. 2, the exhaust gas treatment apparatus 100 includes a treatment tower 110 in which a staying part 14, a desorption part 12, an adsorption part 11, an adsorption part 21, and an exhaust part 15 are combined. Further, the processing tower 110 is provided with the respective conveying parts 17 and 27 of the adsorbents 90a and 90b and the recovery part 13 of the organic component 9a connected to the desorption part 12.
[0020]
The adsorption unit 11 has a so-called multistage fluidized bed type configuration, and includes a multistage tray 11a through which the adsorbent 90a flows. In addition, a connecting pipe between the adsorbing part 11 and the desorbing part 12 is provided with a flow pipe 16a through which the adsorbent 90a can flow and a dispersion part 16b through which the exhaust gas 1 can flow. A blower P1 for supplying the exhaust gas 1 through the pipe 41 is connected to the side wall of the processing tower 110 on the side of the flow pipe 16a.
[0021]
The desorption part 12 has a heat exchange part 12a composed of a plurality of hollow tubes, and a heat medium is supplied from the heat source 4 through the pipe 44 to the outside of the hollow tubes. A pipe 45a provided with a blower P5a is connected to the lower end of the detachable part 12, so that the carrier gas 5 is supplied into the heat exchange part 12a and inside the hollow tube. . A pipe 45 c for circulating the carrier gas 5 is provided at the upper end of the detachable part 12.
[0022]
On the other hand, the adsorption part 21 arranged on the upper stage of the processing tower 110 has a multi-stage fluidized bed type configuration like the adsorption part 11, and has a multi-stage tray 21a for flowing the adsorbent 90b. . Moreover, the dispersion | distribution part 16c which can distribute | circulate the waste gas 1 is provided in the coupling | bond part of the adsorption | suction part 21 and the adsorption | suction part 11. FIG. Further, a pipe 60 for transferring the adsorbent 90 b to the desorption part 12 is connected to the lower end side wall of the adsorption part 21, and the adsorbent 90 b is provided at the upper end part of the desorption part 12 through the pipe 60. It is transferred from the flow pipe 60a to the inside of the detachable part 12.
[0023]
Moreover, the retention part 14 located in the lowermost part of the processing tower 110 is for temporarily retaining the adsorbent 90 regenerated by flowing down the desorption part 12. A part of the adsorbent 90 is returned to the adsorbing unit 11 from the staying unit 14 through the conveying unit 17 constituted by the pipes 51, 52, 53, the conveying device 3a and the separator 3c. Similarly, the remaining part of the adsorbent 90 is returned from the staying part 14 to the adsorbing part 21 through the conveying part 27 composed of the pipes 61, 62, 63, the conveying device 3b and the separator 3d. Blowers P2a and P2b for supplying the transport gas 2 of the adsorbent 90 to the transporters 3a and 3b are connected to the transporters 3a and 3b, respectively.
[0024]
Further, the recovery unit 13 connected to the processing tower 110 has a condensing unit 7 that condenses the organic components 9a and 9b in the carrier gas 5 fed from the desorption unit 12 through the pipe 47a. A refrigerant 6 is passed through the condensing unit 7 in order to liquefy the organic components 9a and 9b. Moreover, the collection | recovery part 13 has the collection tank 8 for collect | recovering the condensed organic components 9a and 9b. Further, a pipe 47 c branched from the pipe 48 is for supplying the carrier gas 5 to the desorption part 12. The organic components 9a and 9b recovered in the recovery tank 8 are discharged to the outside of the exhaust gas treatment apparatus 100 through the pipe 49.
[0025]
Next, an embodiment of the multistage adsorption treatment method for exhaust gas according to the present invention using the exhaust gas treatment apparatus 100 will be described with reference to FIG. First, exhaust gas 1 containing toluene and 2-propanol as the two kinds of organic components 9a and 9b is introduced into the adsorption section 11 by the blower P1 (hereinafter, the organic components 9a and 9b are respectively toluene 9a and 2-propanol 9b and Write down). The exhaust gas 1 moves upward through the dispersion part 16b and through the multistage tray 11a constituting the multistage fluidized bed. The adsorbent 90a flows from the upper side to the lower side of the multi-stage tray 11a, and the exhaust gas 1 and the adsorbent 90a are brought into countercurrent contact. In the present embodiment, both the adsorbents 90a and 90b use petroleum pitch-based spherical activated carbon.
[0026]
Here, the difficulty of adsorbing the organic component to the adsorbent is generally more easily adsorbed as the boiling point is higher (the lower the boiling point is, the less likely it is to be adsorbed). As a specific example, benzene having a boiling point of 80.1 ° C, toluene having a boiling point of 110.6 ° C, and xylene having a boiling point of 144.4 ° C are easily adsorbed in this order. Also, the higher the hydrophobicity, the easier it is to adsorb (the lower the hydrophobicity, that is, the higher the hydrophilicity, the harder it is to adsorb). Taking alcohol as an example, ethanol, 1-propanol or 2-propanol, and 1-butanol are easily adsorbed in this order. In addition, toluene and 2-propanol are more easily adsorbed.
[0027]
At the initial stage where the adsorbent 90a and the exhaust gas 1 are in contact with each other in the adsorbing section 11, there is a difference in the ease of adsorption of toluene 9a and 2-propanol 9b, but both are adsorbed on the adsorbent 90a. Go. When the exhaust gas 1 is continuously supplied to the adsorption unit 11, toluene 9a (a component that is easily adsorbed) in the exhaust gas 1 and 2-propanol 9b (a component that is difficult to be adsorbed) previously adsorbed on the adsorbent 90a Replacement occurs. That is, substitutional adsorption of toluene 9a (in other words, substitutional desorption of 2-propanol 9b) occurs.
[0028]
Therefore, the kind and concentration of organic components such as toluene 9a and 2-propanol 9b in the exhaust gas 1 are obtained in advance by sampling analysis or the like, and the circulation amount and the like of the adsorbents 90a and 90b are appropriately adjusted based on this value. Thus, only the toluene 9a in the exhaust gas 1 can be selectively adsorbed on the adsorbent 90a in the adsorption unit 11.
[0029]
When the exhaust gas 1 is continuously supplied while causing the adsorbent 90 a to flow to the adsorption unit 11, such substitutional adsorption is steadily generated in the adsorption unit 11. As a result, toluene 9a is mainly selectively adsorbed on the adsorbent 90a flowing down to the most upstream side in the flow direction of the exhaust gas 1 in the adsorbing portion 11. In the figure, adsorbents 90a and 90b indicated by black circles indicate an adsorbed state, and white circles indicate a desorbed state.
[0030]
Next, the exhaust gas 1 from which the toluene 9a is mainly removed is rectified through the dispersion part 16c, introduced into the adsorption part 21, and circulated along the multistage tray 21a constituting the multistage fluidized bed, and the exhaust gas 1 and the adsorbent 90b In countercurrent contact. Since the exhaust gas 1 mainly contains 2-propanol, substitutional adsorption does not occur, and the adsorbent 90b can mainly adsorb 2-propanol 9b. The exhaust gas 1 from which the toluene 9a and 2-propanol 9b have been removed is discharged as clean gas 10 from the exhaust unit 15 to the outside of the exhaust gas treatment apparatus 100.
[0031]
On the other hand, the adsorbent 90a mainly adsorbing toluene 9a in the adsorbing unit 11 is dropped to the desorbing unit 12 by its own weight through the flow pipe 16a. On the other hand, the adsorbent 90b mainly adsorbing 2-propanol by the adsorbing unit 21 is dropped to the desorbing unit 12 by its own weight through the pipe 60 and the flow pipe 60a. Both adsorbents 90a and 90b gradually move downward (downflow) and reach the heat exchange section 12a. Steam or oil, which is a heat medium, is supplied from the heat source 4 to the heat exchange unit 12a, and is heated so that the temperature in the heat exchange unit 12a is, for example, 150 to 200 ° C. From the adsorbents 90a and 90b Toluene 9a and 2-propanol are desorbed respectively. As a result, the adsorbents 90 a and 90 b are regenerated, cooled by an indirect cooling unit (not shown), and then introduced into the staying unit 14. In addition, when steam is used as the heat medium, water generated by the cooling is discharged to a drain (not shown).
[0032]
Then, a part of the adsorbent 90 (regenerated adsorbents 90a and 90b) is returned to the adsorber 11 by the transport unit 17 as follows. First, a part of the adsorbent 90 temporarily retained in the retention section 14 is transferred to the transporter 3a, and the transporter gas 2 such as compressed air is supplied to the transporter 3a by the blower P2a to further increase the adsorbent 90. Transfer to separator 3c. At this time, the transfer amount of the adsorbent 90 can be adjusted by the transfer amount adjusting unit of the transporter 3a. The carrier gas 2 and the adsorbent 90 blown up to the separator 3c are stalled by the separator 3c, returned to the adsorbing unit 11, and flow through the multi-stage tray 11a again as the adsorbent 90a. On the other hand, in the same manner as that by the transport unit 17 described above, the remaining portion of the adsorbent 90 temporarily retained in the retention unit 14 is returned to the adsorber 21 by the transport unit 27 and is again used as the adsorbent 90b. To flow.
[0033]
Further, the blower P5a supplies a gas that does not affect the physical properties of the component to be removed, for example, nitrogen gas, as the carrier gas 5 to the lower part of the desorption part 12. The carrier gas 5 flows through the heat exchange unit 12a, and moves upward with the desorbed toluene 9a. The carrier gas 5 is introduced into the condensing unit 7, and a refrigerant 6 such as chiller water or antifreeze is supplied to the condensing unit 7 to liquefy the toluene 9 a and 2-propanol 9 b, and is introduced into the collection tank 8 and collected. The recovered toluene 9a and 2-propanol are discharged from the recovery tank 8 to the outside as necessary.
[0034]
According to the exhaust gas treatment apparatus 100 and the exhaust gas multistage adsorption treatment method of the present invention described above, a single kind of adsorbents 90a and 90b are caused to flow to the adsorbing sections 11 and 21 configured in two stages, respectively. Countercurrent contact is sequentially made with exhaust gas 1 containing toluene 9a and 2-propanol 9b as components to be removed. Thereby, toluene 9a and 2-propanol 9b can be selectively made to adsorb | suck to adsorption material 90a, 90b in each adsorption part 11 and 21 using substitution adsorption. Therefore, these to-be-removed components such as toluene 9a and 2-propanol 9b can be removed from the exhaust gas 1 with sufficiently high removal efficiency. Therefore, it is possible to obtain a clean gas 10 from which a plurality of components to be removed such as toluene 9a and 2-propanol 9b are sufficiently removed from the exhaust gas 1.
[0035]
Further, such a high degree of removal of a plurality of components to be removed from the exhaust gas 1 is achieved by the adsorption sections 11 and 21 configured in two stages and the desorption section 12 configured in one stage. Complexity and enlargement can be suppressed. In addition, since a single type of adsorbent 90a, 90b is used as the adsorbent, it is possible to prevent deterioration in maintainability and operability. Furthermore, since the adsorbents 90a and 90b are extremely excellent in fluidity, the adsorbent in the processing tower 110 flows smoothly, and blockage of the processing tower 110 can be sufficiently prevented. Therefore, stable exhaust gas treatment becomes possible. Furthermore, since the adsorbents 90a and 90b flow favorably, the uniformity of contact with the exhaust gas 1 can be improved and the adsorption efficiency can be improved. Furthermore, since the adsorbents 90a and 90b are spherical, the density of the adsorbent in the flow space can be increased, and generally the adsorbent performance of the exhaust gas treatment apparatus 100 is enhanced because the adsorbent 90a, 90b has an extremely high adsorbability. As a result, the apparatus can be miniaturized.
[0036]
The exhaust gas treatment apparatus 100 includes the adsorption sections 11 and 21 having a two-stage configuration, but is not limited to two stages. If there are three or more kinds of components to be removed, the number of stages or more according to the number of the components to be removed. What is necessary is just to provide an adsorption | suction part. Also in this case, it is possible to cause the adsorbent to adsorb in order from the component to be removed that is easily adsorbed. Further, even in a two-stage configuration like the processing apparatus 100, a component that is relatively easily adsorbed by the front-stage adsorption unit 11 is mainly adsorbed, and a component that is less easily adsorbed by the rear-stage adsorption unit 21 is mainly adsorbed. This makes it possible to sufficiently remove these components to be removed from the exhaust gas.
[0037]
Furthermore, the components to be removed are not limited to the organic components described above, and can be made to correspond to various combinations. Furthermore, although the desorption part 12 and the adsorption parts 11 and 21 are arranged in one processing tower 110, these may be provided separately. For example, the desorption part 12 is different from the adsorption parts 11 and 21. You may provide in another processing tower. Furthermore, although the desorption part 12 employs an indirect heating method using a heat medium such as steam or oil, direct heating may be performed such that steam serves as both a heat source and a carrier gas.
[0038]
In addition, two or more pipes 47a may be connected to different positions of the desorption part 12 to collect the components to be removed. In general, the difficulty of desorbing the adsorbed components to be removed from the adsorbent tends to be opposite to the difficulty of adsorption to the adsorbent. That is, components that are difficult to be adsorbed (weak affinity with the adsorbent) are easily desorbed, and components that are easily adsorbed (strong affinity with the adsorbent) are difficult to desorb. As a result, different concentration distributions can be generated for each component to be removed, depending on the affinity of the component to be removed with the adsorbent.
[0039]
Therefore, if two or more pipes 47a are connected to different predetermined positions of the desorption part 12 and the components to be removed are collected, the components to be removed can be collected separately. In this case, the separability (degree of separation) of the components to be removed tends to depend on the difference in affinity between each component to be removed and the adsorbent. That is, the separation property of each component to be removed increases as the plurality of components to be removed has a larger difference in the degree of ease of adsorption to the adsorbent. Therefore, the position where the plurality of pipes 47a for separating and collecting the components to be removed can be optimized according to the types of these components to be removed, the desorption temperature, and the like.
[0040]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
[0041]
<Example 1>
As two types of components to be removed, air containing 1000 volppm of toluene and 1000 volppm of 2-propanol at a temperature of 25 ° C. and a relative humidity (RH) of 40% was continuously supplied to the exhaust gas treatment apparatus 100 having the configuration shown in FIG. The volume flow of this air is 3000m Three / H (standard state). Further, the tower diameter (outer diameter; the same applies hereinafter) of the treatment tower 110 is 1100 mmφ for both the adsorption sections 11 and 21, and the adsorption sections 11 and 21 are configured in a multistage fluidized bed type having six multistage trays 11 a and 21 a, respectively. It was. Petroleum pitch-based spherical activated carbon (manufactured by Kureha Chemical Industry Co., Ltd .; product name G-BAC) was allowed to flow through these adsorbing portions 11 and 21 as adsorbents. The circulation flow rate (mass flow rate) of the spherical activated carbon was 300 kg / h for the adsorbent 90a and 130 kg / h for the adsorbent 90b in terms of fresh coal.
[0042]
Moreover, the tower diameter of the desorption part 12 was 800 mmφ, steam was supplied to the heat exchange part 12 a as a heat medium, and indirect heating was performed. The desorption temperature at this time is 160 ° C., and nitrogen gas is 86 m as the carrier gas 5. Three Circulation was performed at a volume flow rate of / h (standard state). Further, chiller water having a temperature of 7 ° C. was flowed to the condensing unit 7 as the refrigerant 6, and the desorbed components to be removed were cooled and liquefied.
[0043]
As a result, the gas concentration at the outlet of the adsorption unit 11 (the position corresponding to the dispersion unit 16c) was 50 volppm for toluene and 950 volppm for 2-propanol. At this time, the recovery unit 13 recovered toluene at a mass flow rate of 11.82 kg / h, 2-propanol at 7.60 kg / h, and water at 3.4 kg / h. The gas concentration at the outlet of the adsorption unit 21 (the position corresponding to the exhaust unit 15) was 40 volppm for toluene and 50 volppm for 2-propanol.
[0044]
Thus, toluene and 2-propanol in the air were 4% and 5% of the respective raw gases, and it was confirmed that both were sufficiently removed. From this, it was confirmed that according to the exhaust gas multistage adsorption treatment apparatus and method of the present invention, these components can be removed with sufficiently high removal efficiency from exhaust gas containing two or more kinds of components to be removed.
[0045]
<Comparative example 1>
Except that the spherical activated carbon is not supplied to the adsorption unit 21 of the exhaust gas treatment apparatus 100, the adsorption unit is configured only by the adsorption unit 11, and the adsorption unit 11 is extended upward to form a multistage tray with 12 stages. Exhaust gas treatment was performed in the same manner as in Example 1. The total circulation flow rate of the spherical activated carbon used was also the same as in Example 1. In addition, this apparatus structure is equivalent to the structure of the apparatus for processing the waste gas containing the conventional single type of to-be-removed component.
[0046]
As a result, the gas concentrations at the outlet of the adsorption unit 11 are 50 volppm for toluene and 950 volppm for 2-propanol, while in the recovery unit 13, 11.7 kg / h for toluene and 0.4 kg / h for 2-propanol, Water was recovered at a mass flow rate of 1 kg / h. Thus, it was confirmed that 2-propanol (a component that is relatively difficult to adsorb) can hardly be recovered with the conventional apparatus.
[0047]
【The invention's effect】
As described above, according to the exhaust gas multistage adsorption treatment apparatus and method according to the present invention, each of the exhaust gas containing two or more kinds of components to be removed is sequentially circulated in an adsorption section composed of two or more stages. The to-be-removed components are adsorbed in the adsorbing portion in the order in which they are easily adsorbed. Then, the adsorbent that adsorbs these components to be removed is regenerated in a desorption section configured in a single stage, and the regenerated adsorbent is returned to the adsorption section and circulated, so that two or more kinds of adsorbent contained in the exhaust gas are contained. The removal component can be removed continuously with sufficiently high removal efficiency.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the configuration of a preferred embodiment of an exhaust gas multistage adsorption treatment apparatus according to the present invention.
FIG. 2 is a schematic cross-sectional view showing the configuration of a preferred embodiment of an exhaust gas multi-stage adsorption treatment apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Exhaust gas, 3a, 3b ... Conveyor, 3c, 3d ... Separator, 7 ... Condensing part, 8 ... Recovery tank, 9a ... Toluene (organic component, to-be-removed component), 9b ... 2-propanol (Organic component, to-be-covered) Removal component), 10 ... clean gas, 11, 21 ... adsorption part, 11a, 21a ... multi-stage tray, 12 ... desorption part, 12a ... heat exchange part, 13 ... recovery part, 17, 27 ... conveyance part, 90a, 90b ... Adsorbent, 100 ... exhaust gas treatment device (exhaust gas multi-stage adsorption treatment device).

Claims (6)

少なくとも二種類以上の被除去成分を含む排ガスが吸着材に接触して該被除去成分が該吸着材に吸着され、該吸着材に吸着された該被除去成分が脱着されて該吸着材が再生され、再生された吸着材が再び前記排ガスと接触することにより該排ガスを連続して処理する排ガスの多段吸着処理装置であって、
前記排ガスが順次流通され、前記被除去成分を吸着することが可能であり且つ該被除去成分との親和力に差を有する単一種類の吸着材を有しており、該吸着材が該排ガスの流通方向と対向するように流動しつつ流下して該吸着材と該排ガスとが接触し、該被除去成分が該吸着材との親和力の高い順に該吸着材に吸着される、少なくとも二段以上の吸着部と、
前記各吸着部に接続されており、該各吸着部から前記吸着材が移送され、該吸着材に吸着された前記被除去成分を脱着して該吸着材を再生する一段の脱着部と、
前記各吸着部及び前記脱着部に接続されており、前記再生された吸着材を該各吸着部に返送する搬送部と、
を備えることを特徴とする排ガスの多段吸着処理装置。
Exhaust gas containing at least two types of components to be removed comes into contact with the adsorbent, the components to be removed are adsorbed on the adsorbent, and the components to be removed adsorbed on the adsorbent are desorbed to regenerate the adsorbent. And the regenerated adsorbent is again in contact with the exhaust gas, whereby the exhaust gas is continuously processed by the exhaust gas multi-stage adsorption treatment apparatus,
The exhaust gas is sequentially circulated, and has a single type of adsorbent capable of adsorbing the component to be removed and having a difference in affinity with the component to be removed. At least two or more stages where the adsorbent and the exhaust gas come into contact with each other while flowing so as to oppose the flow direction, and the components to be removed are adsorbed by the adsorbent in descending order of affinity with the adsorbent. Adsorbing part of
A first-stage desorption unit that is connected to each of the adsorption units, transfers the adsorbent from each of the adsorption units, desorbs the component to be removed adsorbed on the adsorbent, and regenerates the adsorbent;
A transport unit connected to each of the adsorption units and the desorption unit, and returning the regenerated adsorbent to each of the adsorption units;
A multi-stage adsorption treatment apparatus for exhaust gas, comprising:
前記吸着部が二段で構成されており、
前記吸着部のうち前段の吸着部は、前記被除去成分のうち前記吸着材との親和力が高い被除去成分が主として前記吸着材に吸着されるものであり、
前記吸着部のうち後段の吸着部は、前記親和力が高い被除去成分よりも前記吸着材との親和力が低い被除去成分が主として前記吸着材に吸着されるものである、
ことを特徴とする請求項1記載の排ガスの多段吸着処理装置。
The adsorption part is composed of two stages,
Of the adsorbing part, the former adsorbing part is one in which the to-be-removed component having a high affinity with the adsorbing material among the to-be-removed components is mainly adsorbed to the adsorbing material,
Of the adsorbing parts, the latter adsorbing part is one in which a to-be-removed component having a lower affinity with the adsorbing material is adsorbed mainly to the adsorbing material than the to-be-removed component having a high affinity.
The multistage adsorption treatment apparatus for exhaust gas according to claim 1.
前記吸着材が球状活性炭であることを特徴とする請求項1又は2に記載の排ガスの多段吸着処理装置。The exhaust gas multistage adsorption treatment apparatus according to claim 1 or 2, wherein the adsorbent is spherical activated carbon. 少なくとも二種類以上の被除去成分を含む排ガスが吸着材に接触して該被除去成分が該吸着材に吸着される吸着部と、該吸着材に吸着された該被除去成分を脱着して該吸着材を再生する脱着部とを備え、再生された吸着材が再び前記排ガスと接触することにより該排ガスを連続して処理する排ガスの多段吸着処理装置を用いた排ガスの多段吸着処理方法であって、
前記被除去成分を吸着することが可能であり且つ該被除去成分との親和力に差を有する単一種類の吸着材を有している少なくとも二段以上の吸着部に、前記排ガスを順次流通させ、且つ、該吸着材を該排ガスの流通方向と対向するように流動しつつ流下させて該吸着材と該排ガスとを接触させることにより、該被除去成分を該吸着材との親和力の高い順に該吸着材に吸着せしめ、
前記各吸着部から前記吸着材を一段の脱着部に移送し、該吸着材に吸着された前記被除去成分を脱着して該吸着材を再生し、
前記再生された吸着材を前記各吸着部に返送する、
ことを特徴とする排ガスの多段吸着処理方法。
An adsorbing part in which exhaust gas containing at least two kinds of components to be removed comes into contact with the adsorbent and the components to be removed are adsorbed on the adsorbent, and the components to be removed adsorbed on the adsorbent are desorbed and An exhaust gas multi-stage adsorption treatment method using an exhaust gas multi-stage adsorption treatment device that continuously treats the exhaust gas by bringing the regenerated adsorbent into contact with the exhaust gas again. And
The exhaust gas is sequentially circulated through at least two or more adsorbing portions having a single type of adsorbent that can adsorb the component to be removed and has a difference in affinity with the component to be removed. In addition, the adsorbent is caused to flow while facing the flow direction of the exhaust gas, and the adsorbent and the exhaust gas are contacted to bring the components to be removed in descending order of affinity with the adsorbent. Adsorb to the adsorbent,
The adsorbent is transferred from each adsorbing section to a one-stage desorbing section, the to-be-removed component adsorbed on the adsorbent is desorbed, and the adsorbent is regenerated.
Returning the regenerated adsorbent to each adsorber;
A multi-stage adsorption treatment method for exhaust gas characterized by the above.
前記吸着部が二段で構成されており、
前記吸着部のうち前段の吸着部で、前記被除去成分のうち前記吸着材との親和力が高い被除去成分を主として該吸着材に吸着せしめ、
前記吸着部のうち後段の吸着部で、前記親和力が高い被除去成分よりも前記吸着材との親和力が低い被除去成分を主として該吸着材に吸着せしめる、
ことを特徴とする請求項4記載の排ガスの多段吸着処理方法。
The adsorption part is composed of two stages,
Of the adsorbing part, the adsorbing part in the previous stage mainly adsorbs the to-be-removed component having a high affinity with the adsorbing material among the to-be-removed components to the adsorbing material,
Of the adsorbing part, in the latter adsorbing part, the to-be-removed component having lower affinity with the adsorbing material than the to-be-removed component having high affinity is mainly adsorbed to the adsorbing material.
The multistage adsorption treatment method for exhaust gas according to claim 4.
前記吸着材として球状活性炭を用いることを特徴とする請求項4又は5に記載の排ガスの多段吸着処理方法。6. The exhaust gas multistage adsorption treatment method according to claim 4, wherein spherical activated carbon is used as the adsorbent.
JP32425399A 1999-11-15 1999-11-15 Apparatus and method for multistage adsorption treatment of exhaust gas Expired - Fee Related JP4317304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32425399A JP4317304B2 (en) 1999-11-15 1999-11-15 Apparatus and method for multistage adsorption treatment of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32425399A JP4317304B2 (en) 1999-11-15 1999-11-15 Apparatus and method for multistage adsorption treatment of exhaust gas

Publications (2)

Publication Number Publication Date
JP2001137647A JP2001137647A (en) 2001-05-22
JP4317304B2 true JP4317304B2 (en) 2009-08-19

Family

ID=18163748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32425399A Expired - Fee Related JP4317304B2 (en) 1999-11-15 1999-11-15 Apparatus and method for multistage adsorption treatment of exhaust gas

Country Status (1)

Country Link
JP (1) JP4317304B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5490394B2 (en) * 2008-10-03 2014-05-14 株式会社クレハ環境 Gas purification apparatus and method
JP2010112938A (en) * 2008-11-10 2010-05-20 Daiichi Sankyo Co Ltd Online impurity removal device and method
DE202011107555U1 (en) * 2011-07-27 2012-10-29 Dürr Systems GmbH filter system
WO2024013973A1 (en) * 2022-07-15 2024-01-18 三菱電機株式会社 Carbon dioxide recovery device
CN115671957B (en) * 2023-01-03 2023-03-21 广州金鹏环保工程有限公司 Multistage merging and separating type progressive saturated adsorption purification system

Also Published As

Publication number Publication date
JP2001137647A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
US8460434B2 (en) Methane recovery from a landfill gas
JPH06510220A (en) Apparatus and method for removing organic compounds from a gas stream
CN108079740A (en) A kind of large-wind-volume low-concentration organic exhaust gas processing unit and method
CN211537130U (en) Adsorption and desorption device and system with dry gas backflow module
JP2014117638A (en) Organic solvent containing gas treatment system
JP4317304B2 (en) Apparatus and method for multistage adsorption treatment of exhaust gas
US6251164B1 (en) Fluid separation process and separation system therefor
JP6565357B2 (en) Concentrator and organic solvent recovery system
JP2012166155A (en) Organic solvent recovery system
JP2001137646A (en) Device and method for adsorption treating waste gas
CN218608714U (en) Low concentration organic waste gas&#39;s adsorption concentration system
JP4715970B2 (en) Organic solvent recovery system
JP2013128906A (en) System for treating gas containing organic solvent
JP4317303B2 (en) Exhaust gas treatment method and apparatus
JP2004243279A (en) Method and device for cleaning gas containing organic contaminant
JP4548891B2 (en) Organic solvent recovery method
CN1539544A (en) Adsorption technique
CN210448618U (en) Zero gas consumption deoiling adsorption drying system of gas
EP0495875A1 (en) Method and apparatus for the separation of one or more agents
JPH035845B2 (en)
JP4313882B2 (en) Method for removing organic impurities in methanol decomposition gas by closed TSA method
JPH0938445A (en) Method for regenerating adsorption tower
WO2020203780A1 (en) Organic solvent recovery system
JP7435367B2 (en) Organic solvent recovery system
JPH09122432A (en) Gas separator using pressure swing adsorption process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090522

R150 Certificate of patent or registration of utility model

Ref document number: 4317304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees