JP4316087B2 - Early-strength on-site permeable concrete and road pavement - Google Patents

Early-strength on-site permeable concrete and road pavement Download PDF

Info

Publication number
JP4316087B2
JP4316087B2 JP2000014287A JP2000014287A JP4316087B2 JP 4316087 B2 JP4316087 B2 JP 4316087B2 JP 2000014287 A JP2000014287 A JP 2000014287A JP 2000014287 A JP2000014287 A JP 2000014287A JP 4316087 B2 JP4316087 B2 JP 4316087B2
Authority
JP
Japan
Prior art keywords
weight
parts
strength
cement
early
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000014287A
Other languages
Japanese (ja)
Other versions
JP2001206761A (en
Inventor
聡 梶尾
信樹 小倉
勝俊 市川
一義 白井
善秀 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2000014287A priority Critical patent/JP4316087B2/en
Publication of JP2001206761A publication Critical patent/JP2001206761A/en
Application granted granted Critical
Publication of JP4316087B2 publication Critical patent/JP4316087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00284Materials permeable to liquids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction

Description

【0001】
【発明の属する技術分野】
本発明は、歩道や車道等に用いる早強型現場打ち透水性コンクリートに関し、特に、材令1日で4.5N/mm2以上の曲げ強度を発現することができ、車道に用いた場合でも早期の交通開放を可能とする早強型の現場打ち透水性コンクリートに関する。
【0002】
【従来の技術】
透水性コンクリートは、雨水の水はけが良く、吸音性を有し、草木の植栽が可能である等の特性を有することから、道路舗装、道路の側壁、河川の護岸等の種々の用途に用いられている。しかし、透水性コンクリートは、内部に空隙を有することから、通常のコンクリートに比べて曲げ強度が小さく、交通量の多い車道に適用することが困難であった。
【0003】
近年、この強度面の問題を克服すべく研究が進められた結果、優れた透水性と大きな曲げ強度を兼ね備えた透水性コンクリートが開発され、交通量の多い車道の舗装用としての用途も検討されている。例えば、特開平10−252006号公報には、粗骨材と共に用いられるペースト又はモルタルの配合量、構成成分等を特定することによって、大きな曲げ強度と良好な透水係数をもつ透水性コンクリート舗装が得られることが、開示されている。
【0004】
【発明が解決しようとする課題】
上記公報に記載の現場打ち透水性コンクリート舗装においては、舗装用組成物の混練物を敷設した後、所定の曲げ強度を発現させるには、2日間以上養生する必要がある。そのため、現場打ち透水性コンクリート舗装を車道等に適用した場合、2日間以上の養生期間中、交通を遮断しなければならなかった。
そのため、養生期間を短縮化することができ、その結果、車道等に適用した場合でも、早期に交通開放することのできるような早強型の現場打ち透水性コンクリートが望まれていた。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究を行なった結果、コンクリートの成分及びそれらの配合割合を特定することによって、一定以上の良好な透水性を有し、かつ、短い養生期間で一定以上の強度を発現する透水性コンクリートが得られることを見いだし、本発明を完成させたものである。
【0006】
すなわち、請求項1に記載の早強型現場打ち透水性コンクリートは、粗骨材と、該粗骨材に対する容積比が30〜80%のペースト又はモルタルとからなる組成物の混練物を敷設してなる透水性コンクリートであって、上記ペースト又はモルタルが、セメント又はセメントを含む粉体混合物100重量部、細骨材0〜140重量部、クリンカ粉砕物3〜15重量部、石膏0.1〜5.0重量部、減水剤0.4〜2.2重量部、水16〜29重量部を含み、上記クリンカ粉砕物が、2CaO・SiO 2 −CaO−間隙物質系クリンカ組成物からなり、かつ、CaO結晶を50〜92重量%含有することを特徴とする。
このように構成することによって、養生開始から1日後に、4.5N/mm2以上の曲げ強度が発現し、かつ、0.1cm/sec以上の透水係数を確保することができる。
ここで、上記セメント又はセメントを含む粉体混合物は、例えば、50〜100重量%のポルトランドセメントと、50〜0重量%の高炉スラグ粉末及び/又はフライアッシュとからなる(請求項2)。
上記早強型現場打ち透水性コンクリートは、例えば、車道用舗装として好適に用いられる(請求項3)。
【0007】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明の早強型現場打ち透水性コンクリートを構成する材料及びその配合割合は、次の通りである。
(1)粗骨材
粗骨材としては、粒径2.5〜20mmの砂利、砕石、及びこれらの混合物や、軽量骨材が挙げられる。
【0008】
(2)セメント又はセメントを含む粉体混合物
セメントとしては、例えば、普通、早強、中庸熱、低熱ポルトランドセメント等のポルトランドセメントや、ホワイトセメント、アルミナセメント等が用いられる。
セメントを含む粉体混合物とは、前記セメントに、高炉スラグ粉末、フライアッシュ、石灰石粉、珪石粉、シリカフューム等から選ばれる1種以上からなる無機質粉末を添加してなるものをいう。無機質粉末の中でも、高炉スラグ粉末またはフライアッシュが好ましい。
なお、セメントを含む粉体混合物中に占めるセメントの割合は、強度発現性の確保のため、50重量%以上とすることが好ましい。
【0009】
(3)細骨材
細骨材としては、川砂、海砂、山砂、砕砂、またはこれらの混合物が挙げられる。
細骨材としては、粗骨材の粒径が5mm以上の場合には、粒径5mm未満、好ましくは2.5mm以下、より好ましくは1.0mm以下の粒体が用いられ、粗骨材の粒径が2.5mm以上5mm未満の場合には、粒径2.5mm未満、好ましくは1.5mm以下、より好ましくは0.5mm以下の粒体が用いられる。細骨材の粒径が粗骨材の粒径に近すぎると、粗骨材にモルタルが被覆されにくくなり、好ましくない。
【0010】
細骨材の添加量は、セメント又はセメントを含む粉体混合物100重量部に対して、0〜140重量部であり、好ましくは40〜130重量部である。細骨材を添加することにより、硬化後の乾燥による収縮を抑制することができる。細骨材の添加量が140重量部を超えると、材令1日で4.5N/mm2以上の曲げ強度が得られ難く、車道に用いた場合の早期の交通開放が困難となる。
【0011】
(4)クリンカ粉砕物
クリンカ粉砕物は、2CaO・SiO 2 −CaO−間隙物質系クリンカ組成物からなり、かつ、CaO結晶を50〜92重量%含有するものである。
換言すれば、クリンカ粉砕物は、主要鉱物としてCaO結晶と間隙物質とビーライト(2CaO・SiO 2 を含むクリンカ組成物を粉砕したものであって、CaO結晶を50〜92重量%含有するものである。
【0012】
なお、本明細書中において「2CaO・SiO2−CaO−間隙物質系クリンカ組成物」とは、0.5重量%以上のビーライト(2CaO・SiO2)と、CaO結晶と、間隙物質とを含有し、エーライト(3CaO・SiO2)の含有率が0.5重量%未満のものとして定義される。
【0013】
クリンカ粉砕物中に含まれるCaO結晶の含有量が、50重量%未満では、材令1日で4.5N/mm2以上の曲げ強度が得られ難く、車道に用いた場合の早期の交通開放が困難となる。該含有量が92重量%を超えると、粗骨材にペースト又はモルタルが被覆されにくくなり、材令1日で4.5N/mm2以上の曲げ強度が得られ難く、車道に用いた場合の早期の交通開放が困難となる。
【0014】
間隙物質は、セメントクリンカ粉砕物中のエーライトやビーライトの間を埋める鉱物に類するものであり、具体的には、2CaO・Fe2O3等のカルシウムフェライト鉱物、3CaO・Al2O3等のカルシウムアルミネート鉱物、あるいは、6CaO・Al2O3・Fe2O3、4CaO・Al2O3・Fe2O3、6CaO・2Al2O3・Fe2O3等のカルシウムアルミノフェライト鉱物である。クリンカ粉砕物中に含まれる間隙物質の含有量は、通常、0.5重量%以上である。
【0015】
クリンカ粉砕物の添加量は、セメント又はセメントを含む粉体混合物100重量部に対して、3〜15重量部であり、好ましくは4〜12重量部である。添加量が3重量部未満では、材令1日で4.5N/mm2以上の曲げ強度が得られ難く、車道に用いた場合の早期の交通開放が困難となる。添加量が15重量部を超えると、透水係数が小さくなるとともに、コストが高くなる。
クリンカ粉砕物は、ブレーン比表面積で3,000cm2/g以上のものを使用するのが好ましく、粉砕の手間やコストの点から、4,000〜6,000cm2/gのものを使用するのが特に好ましい。
【0016】
クリンカ粉砕物の製造方法は、次の通りである。まず、石灰質原料、粘土原料、珪石、スラグ類、石膏などを混合して原料混合物を得た後、ロータリーキルンなどを用いて、1,300〜1,600℃の温度条件下で、目標とするクリンカの鉱物組成が得られるまで、上記原料混合物を充分に焼き締めて焼成し、クリンカ組成物を得る。その後、得られたクリンカ組成物を、所望のブレーン比表面積となるように、粉砕すればよい。
【0017】
(5)石膏
石膏としては、無水石膏、半水石膏、2水石膏、またはこれらの混合物が挙げられる。中でも、強度発現性の点から、無水石膏を使用するのが好ましい。
石膏の添加量は、セメント又はセメントを含む粉体混合物100重量部に対して、0.1〜5.0重量部であり、好ましくは0.1〜2.0重量部である。
添加量が0.1重量部未満では、材令1日で4.5N/mm2以上の曲げ強度が得られ難く、車道に用いた場合の早期の交通開放が困難となり、さらに、作業性も悪くなる。添加量が5.0重量部を超えると、透水係数が小さくなるとともに、コストが高くなる。
石膏は、ブレーン比表面積で2,500cm2/g以上のものを使用するのが好ましく、粉砕の手間やコストの点から、3,000〜10,000cm2/gのものを使用するのが特に好ましい。
【0018】
(6)減水剤
減水剤としては、例えば、アルキルアリルスルホン酸系、ナフタレンスルホン酸系、メラミンスルホン酸系、オキシカルボン酸系、ポリカルボン酸系等の各種減水剤(減水剤、AE減水剤、高性能減水剤、高性能AE減水剤)が挙げられる。中でも、高性能減水剤及び高性能AE減水剤は、減水効果が大きいため、好ましい。
減水剤は、1種を単独で用いても2種以上を組み合わせて用いてもよく、また、液状又は粉末状のいずれでも使用可能である。
【0019】
減水剤の添加量は、セメント又はセメントを含む粉体混合物100重量部に対して、0.4〜2.2重量部である。添加量が0.4重量部未満では、材令1日で4.5N/mm2以上の曲げ強度が得られ難く、車道に用いた場合の早期の交通開放が困難となる。添加量が2.2重量部を超えると、造粒後の粒体同士の結合が起こり、互いに独立した粒体とならず、ペースト又はモルタルの流れ落ちも起こるので、透水係数が小さくなる。
【0020】
(7)水
水の量は、セメント又はセメントを含む粉体混合物100重量部に対して、16〜29重量部である。水の量が16重量部未満では、材令1日で4.5N/mm2以上の曲げ強度が得られ難く、車道に用いた場合の早期の交通開放が困難となる。水の量が29重量部を超えると、造粒後の粒体同士の結合が起こり、互いに独立した粒体とならず、ペースト又はモルタルの流れ落ちも起こるので、透水係数が小さくなる。
【0021】
粗骨材に対するペースト又はモルタルの容積比は、粗骨材100%に対して30〜80%(外割)である。該容積比が30%未満では、材令1日で4.5N/mm2以上の曲げ強度が得られ難く、車道に用いた場合の早期の交通開放が困難となる。該容積比が80%を超えると、造粒後の粒体同士の結合が起こり、互いに独立した粒体とならず、ペースト又はモルタルの流れ落ちも起こるので、透水係数が小さくなる。
【0022】
混練に用いるミキサは、特に限定されるものではなく、パンタイプミキサ、二軸ミキサ等の慣用のミキサで混練すれば良い。
混練方法としては、材料を一括してミキサに投入して1分以上混練する方法や、減水剤と水以外の材料をミキサに投入して空練りした後に、減水剤と水を投入して1分以上混練する方法が挙げられる。
コンクリート工場から施工現場までの混練物の運搬は、ダンプトラック、アジテータトラックのいずれを用いて行なっても良い。
【0023】
施工に際しては、上記混練物を加圧振動機で締め固めて、施工現場に敷きならす。加圧振動機としては、従来からコンクリート舗装に用いられているタンピングランマー、プレートコンパクター、バイブロコンパクター、フィニッシャ等を用いることができる。
敷きならした後、コンクリート舗装表面を養生シートで覆い、1日間養生する。本発明の早強型現場打ち透水性コンクリートでは、材令1日で4.5N/mm2以上の曲げ強度を発現することができる。
コンクリート舗装の厚みは、交通量の多い車道の場合、通常、25〜30cm程度である。コンクリート舗装は、車道の他、歩道、駐車場、河川の護岸等に施工することができる。
【0024】
なお、本発明においては、目的を損わない範囲で、ペースト又はモルタルに、エチレン・酢酸ビニル系共重合体、アクリル系共重合体等の熱可塑性樹脂を添加することは差し支えない。これらの熱可塑性樹脂を配合することによって、曲げ強度の向上を図ることができる。また、目的を損わない範囲で、ベンガラ等の顔料を添加することも差し支えない。
【0025】
【実施例】
以下、実施例により本発明を説明する。
[実施例1〜15、比較例1〜11]
1.使用材料
(1)クリンカ粉砕物
石灰石、粘土、珪石、鉄原料、無水石膏を、CaO;94.7重量%、SiO2;2.3重量%、Al2O3;0.7重量%、Fe2O3;0.2重量%、MgO;0.9重量%、SO3;0.1重量%の割合で配合し、CaO結晶;89.7重量%、エーライト;0.2重量%、ビーライト;6.6重量%、間隙物質;2.2重量%の組成になるように、原料混合物を調製した。この原料混合物をロータリーキルンで焼成温度1,300〜1,600℃、滞留時間60〜120分で焼き締めて、クリンカを製造し、得られたクリンカをブレーン比表面積で4,500cm2/gになるように粉砕した。
【0026】
(2)クリンカ粉砕物以外の材料
以下に示す材料を使用した。
▲1▼セメント;普通ポルトランドセメント(太平洋セメント(株)製)
▲2▼高炉スラグ;ファインセラメント10A(第一セメント(株)製)
▲3▼高性能減水剤;「マイティ100」(商品名)(花王(株)製)
▲4▼細骨材;市原産細目山砂(粒径2.5mm以下)
▲5▼粗骨材;青梅産砕石6号(粒径5〜13mm)
▲6▼石膏;無水石膏(第一セメント(株)製、ブレーン比表面積4,000cm2/g)
▲7▼水;水道水
【0027】
2.ポーラスコンクリートの配合及び混練
前記材料を使用し、表1に示す配合にしたがって2軸強制練りミキサ(0.1m3)に一括投入し、4分間混練し、粗骨材に粗骨材以外の材料からなるペースト又はモルタルが被覆された状態の互いに独立した粒体を調製した。
【0028】
【表1】

Figure 0004316087
【0029】
3.成形
上記各粒体を、50×40×10cmの型枠に投入し、空隙率が15%となるようにプレートコンパクター(MVC-110H;三笠(株)製)で敷設した。敷設後、養生シートでコンクリート舗装表面を覆い、1日間養生して、100×60×15cmの透水性舗装版を作製した。
【0030】
上記舗装版を切断して、10×10×40cmの供試体を3本作製し、「JIS A 1106(コンクリートの曲げ強度試験方法)」に準じて、曲げ強度を測定した。
また、上記舗装版を切断して、10×10×20cmの供試体を3本作製し、「インターロッキングブロック舗装設計施工要領8-3透水性試験」に準じて、透水係数を測定した。
それらの結果を表2に示す
【0031】
【表2】
Figure 0004316087
【0032】
【発明の効果】
本発明の早強型現場打ち透水性コンクリートは、材令1日で大きな曲げ強度(4.5N/mm2以上)を発現することができ、かつ、大きな透水係数(0.1cm/sec以上)を有する。したがって、養生期間を従来の2日以上から、1日程度に短縮することができ、車道等に適用した場合、早期に交通開放することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to early-strength, on-site permeable concrete used for sidewalks, roadways, and the like, and in particular, can exhibit a bending strength of 4.5 N / mm 2 or more per day of material age, and even when used on roadways It is related to the early-strength permeable concrete that can open traffic.
[0002]
[Prior art]
Permeable concrete has good characteristics such as good drainage of rainwater, sound absorption and planting of vegetation, so it can be used for various applications such as road pavement, road side walls, river revetment, etc. It has been. However, since water-permeable concrete has voids inside, it has a lower bending strength than normal concrete and is difficult to apply to a high-traffic roadway.
[0003]
In recent years, as a result of research to overcome this problem of strength, water-permeable concrete that has both excellent water permeability and high bending strength has been developed, and its use as a paving for high-traffic roadways has also been studied. ing. For example, in Japanese Patent Laid-Open No. 10-252006, a water-permeable concrete pavement having a large bending strength and a good water permeability coefficient is obtained by specifying the blending amount and constituents of a paste or mortar used together with coarse aggregate. Is disclosed.
[0004]
[Problems to be solved by the invention]
In the in-situ permeable concrete pavement described in the above publication, after laying the kneaded product of the pavement composition, it is necessary to cure for two days or more in order to develop a predetermined bending strength. Therefore, when on-site permeable concrete pavement was applied to roadways, traffic had to be blocked during a curing period of 2 days or more.
Therefore, the curing period can be shortened. As a result, even when applied to a roadway or the like, there has been a demand for an early-strength permeable concrete that can open traffic early.
[0005]
[Means for Solving the Problems]
As a result of earnest research to solve the above-mentioned problems, the present inventors have specified a concrete component and a blending ratio thereof, have a good water permeability of a certain level or more, and have a short curing period. The inventors have found that a water-permeable concrete exhibiting a certain level of strength can be obtained, and completed the present invention.
[0006]
That is, the early-strength in-situ permeable concrete according to claim 1 lays a kneaded product of a composition comprising coarse aggregate and a paste or mortar having a volume ratio of 30 to 80% with respect to the coarse aggregate. The paste or mortar is made of cement or a powder mixture containing cement, 100 parts by weight, fine aggregate 0 to 140 parts by weight, clinker pulverized product 3 to 15 parts by weight, gypsum 0.1 to 5.0 parts by weight Part, water reducing agent 0.4-2.2 parts by weight, water 16-29 parts by weight, the clinker pulverized product is composed of 2CaO · SiO 2 -CaO-interstitial substance clinker composition , and CaO crystals 50-92 weights % Content.
By comprising in this way, the bending strength of 4.5 N / mm < 2 > or more is expressed one day after the start of curing, and a water permeability coefficient of 0.1 cm / sec or more can be secured.
Here, the cement or the powder mixture containing cement includes, for example, 50 to 100% by weight of Portland cement, and 50 to 0% by weight of blast furnace slag powder and / or fly ash (claim 2).
The early-strength in-situ permeable concrete is suitably used, for example, as road pavement (Claim 3).
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The materials constituting the early-strength in-situ permeable concrete of the present invention and the blending ratio thereof are as follows.
(1) Coarse aggregate The coarse aggregate includes gravel having a particle size of 2.5 to 20 mm, crushed stone, a mixture thereof, and lightweight aggregate.
[0008]
(2) Cement or powder mixture cement containing cement includes, for example, Portland cement such as normal, early strength, moderate heat, low heat Portland cement, white cement, alumina cement and the like.
The powder mixture containing cement is obtained by adding one or more inorganic powders selected from blast furnace slag powder, fly ash, limestone powder, silica stone powder, silica fume and the like to the cement. Among the inorganic powders, blast furnace slag powder or fly ash is preferable.
The proportion of cement in the powder mixture containing cement is preferably 50% by weight or more in order to ensure strength development.
[0009]
(3) Fine aggregate The fine aggregate includes river sand, sea sand, mountain sand, crushed sand, or a mixture thereof.
As the fine aggregate, when the particle size of the coarse aggregate is 5 mm or more, a particle having a particle size of less than 5 mm, preferably 2.5 mm or less, more preferably 1.0 mm or less is used. Is 2.5 mm or more and less than 5 mm, particles having a particle diameter of less than 2.5 mm, preferably 1.5 mm or less, more preferably 0.5 mm or less are used. When the particle size of the fine aggregate is too close to the particle size of the coarse aggregate, it becomes difficult to coat the coarse aggregate with the mortar, which is not preferable.
[0010]
The amount of fine aggregate added is 0 to 140 parts by weight, preferably 40 to 130 parts by weight, with respect to 100 parts by weight of cement or a powder mixture containing cement. By adding a fine aggregate, shrinkage due to drying after curing can be suppressed. If the amount of fine aggregate exceeds 140 parts by weight, it will be difficult to obtain a bending strength of 4.5 N / mm 2 or more in one day of material age, and it will be difficult to open traffic early when used on a roadway.
[0011]
(4) Clinker pulverized product The clinker pulverized product is composed of a 2CaO · SiO 2 -CaO-interstitial material-based clinker composition and contains 50 to 92% by weight of CaO crystals.
In other words, the clinker pulverized product is obtained by pulverizing a clinker composition containing CaO crystals, interstitial substances and belite (2CaO · SiO 2 ) as main minerals, and contains 50 to 92% by weight of CaO crystals. It is.
[0012]
In this specification , “2CaO · SiO 2 —CaO—gap material clinker composition” includes 0.5% by weight or more of belite (2CaO · SiO 2 ), CaO crystal, and gap material. The content of alite (3CaO · SiO 2 ) is defined as less than 0.5% by weight.
[0013]
If the content of CaO crystals contained in the clinker pulverized product is less than 50% by weight, it is difficult to obtain a bending strength of 4.5 N / mm 2 or more in 1 day of material age. It becomes difficult. When the content exceeds 92% by weight, it becomes difficult for the coarse aggregate to be coated with paste or mortar, and it is difficult to obtain a bending strength of 4.5 N / mm 2 or more in one day of material age. It becomes difficult to open traffic.
[0014]
The interstitial material is similar to the mineral that fills the space between alite and belite in the pulverized cement clinker, specifically, calcium ferrite minerals such as 2CaO · Fe 2 O 3 and 3CaO · Al 2 O 3 Calcium aluminate minerals such as 6CaO ・ Al 2 O 3・ Fe 2 O 3 , 4CaO ・ Al 2 O 3・ Fe 2 O 3 , 6CaO ・ 2Al 2 O 3・ Fe 2 O 3 etc. is there. The content of the interstitial material contained in the clinker pulverized product is usually 0.5% by weight or more.
[0015]
The addition amount of the clinker pulverized product is 3 to 15 parts by weight, preferably 4 to 12 parts by weight, based on 100 parts by weight of cement or a powder mixture containing cement. If the added amount is less than 3 parts by weight, it is difficult to obtain a bending strength of 4.5 N / mm 2 or more in one day of material age, and it is difficult to open traffic early when used on a roadway. When the addition amount exceeds 15 parts by weight, the water permeability becomes small and the cost becomes high.
The clinker pulverized product preferably has a Blaine specific surface area of 3,000 cm 2 / g or more, and particularly preferably 4,000 to 6,000 cm 2 / g from the viewpoint of labor and cost of pulverization.
[0016]
The manufacturing method of a clinker ground material is as follows. First, after mixing a calcareous raw material, clay raw material, silica stone, slag, gypsum, etc. to obtain a raw material mixture, using a rotary kiln, etc., the target clinker mineral composition is at a temperature of 1,300-1600 ° C. Until obtained, the raw material mixture is sufficiently baked and fired to obtain a clinker composition. Then, what is necessary is just to grind | pulverize the obtained clinker composition so that it may become a desired brain specific surface area.
[0017]
(5) The gypsum gypsum includes anhydrous gypsum, hemihydrate gypsum, dihydrate gypsum, or a mixture thereof. Of these, anhydrous gypsum is preferably used in terms of strength development.
The amount of gypsum added is 0.1 to 5.0 parts by weight, preferably 0.1 to 2.0 parts by weight, based on 100 parts by weight of cement or a powder mixture containing cement.
If the added amount is less than 0.1 parts by weight, it is difficult to obtain a bending strength of 4.5 N / mm 2 or more in one day of material age, it becomes difficult to open traffic early when used on a roadway, and workability also deteriorates. When the addition amount exceeds 5.0 parts by weight, the water permeability becomes small and the cost becomes high.
Gypsum, it is preferable to use those in Blaine specific surface area of 2,500 cm 2 / g or more, in terms of time and cost of grinding, it is particularly preferred to use those 3,000~10,000cm 2 / g.
[0018]
(6) Water reducing agent Examples of the water reducing agent include various water reducing agents such as alkyl allyl sulfonic acid, naphthalene sulfonic acid, melamine sulfonic acid, oxycarboxylic acid, and polycarboxylic acid (water reducing agent, AE water reducing agent, High performance water reducing agent, high performance AE water reducing agent). Among these, a high performance water reducing agent and a high performance AE water reducing agent are preferable because they have a large water reducing effect.
A water reducing agent may be used individually by 1 type, or may be used in combination of 2 or more type, and can be used by any of liquid form or powder form.
[0019]
The amount of water reducing agent added is 0.4 to 2.2 parts by weight with respect to 100 parts by weight of cement or a powder mixture containing cement. When the added amount is less than 0.4 parts by weight, it is difficult to obtain a bending strength of 4.5 N / mm 2 or more in one day of material age, and it is difficult to open traffic early when used on a roadway. When the added amount exceeds 2.2 parts by weight, the granules after granulation are bonded to each other, so that the granules do not become independent from each other, and the paste or mortar flows down, so that the water permeability coefficient becomes small.
[0020]
(7) The amount of water is 16 to 29 parts by weight with respect to 100 parts by weight of cement or a powder mixture containing cement. If the amount of water is less than 16 parts by weight, it is difficult to obtain a bending strength of 4.5 N / mm 2 or more in one day of material age, making it difficult to open traffic early when used on a roadway. When the amount of water exceeds 29 parts by weight, the granules after granulation are bonded to each other, so that the granules do not become independent from each other, and the paste or mortar also flows down, so that the water permeability coefficient becomes small.
[0021]
The volume ratio of the paste or mortar to the coarse aggregate is 30 to 80% (external ratio) with respect to 100% of the coarse aggregate. When the volume ratio is less than 30%, it is difficult to obtain a bending strength of 4.5 N / mm 2 or more in one day of material age, and early opening of traffic when used on a roadway becomes difficult. When the volume ratio exceeds 80%, the granules after granulation are bonded to each other, so that the granules do not become independent from each other, and the paste or mortar also flows down.
[0022]
The mixer used for kneading is not particularly limited, and may be kneaded with a conventional mixer such as a pan type mixer or a biaxial mixer.
As a kneading method, a method in which materials are put into a mixer in a lump and kneaded for 1 minute or more, a material other than a water reducing agent and water is put in a mixer and kneaded, and then a water reducing agent and water are added. The method of kneading for more than minutes is mentioned.
The kneaded material may be transported from the concrete factory to the construction site using either a dump truck or an agitator truck.
[0023]
At the time of construction, the above-mentioned kneaded material is compacted with a pressure vibrator and spread on the construction site. As the pressure vibrator, a tamping rammer, a plate compactor, a vibro compactor, a finisher or the like conventionally used for concrete pavement can be used.
After laying down, cover the concrete pavement surface with a curing sheet and cure for one day. The early-strength in-situ permeable concrete of the present invention can exhibit a bending strength of 4.5 N / mm 2 or more in one day of material age.
The thickness of the concrete pavement is usually about 25 to 30 cm in the case of a high-traffic roadway. Concrete pavement can be applied to sidewalks, parking lots, riverwalls, etc. in addition to roadways.
[0024]
In the present invention, a thermoplastic resin such as an ethylene / vinyl acetate copolymer or an acrylic copolymer may be added to the paste or mortar within a range that does not impair the purpose. By blending these thermoplastic resins, the bending strength can be improved. In addition, a pigment such as Bengala may be added as long as the purpose is not impaired.
[0025]
【Example】
Hereinafter, the present invention will be described by way of examples.
[Examples 1 to 15 and Comparative Examples 1 to 11]
1. Materials used (1) Ground clinker limestone, clay, silica, iron raw material, anhydrous gypsum, CaO: 94.7% by weight, SiO 2 ; 2.3% by weight, Al 2 O 3 ; 0.7% by weight, Fe 2 O 3 ; %, MgO: 0.9% by weight, SO 3; in proportions of 0.1 wt%, CaO crystals; 89.7 wt%, alite; 0.2 wt%, belite; 6.6 wt%, the gap material; 2.2% by weight of the composition The raw material mixture was prepared so that it might become. This raw material mixture was baked in a rotary kiln at a firing temperature of 1,300 to 1,600 ° C. and a residence time of 60 to 120 minutes to produce a clinker, and the obtained clinker was pulverized so as to have a Blaine specific surface area of 4,500 cm 2 / g.
[0026]
(2) Materials other than pulverized clinker The materials shown below were used.
(1) Cement: Ordinary Portland cement (manufactured by Taiheiyo Cement Co., Ltd.)
(2) Blast furnace slag; Fine Serament 10A (Daiichi Cement Co., Ltd.)
(3) High-performance water reducing agent; “Mighty 100” (trade name) (manufactured by Kao Corporation)
(4) Fine aggregate: Ishihara Hosomeyama sand (particle size 2.5mm or less)
(5) Coarse aggregate: Ome crushed stone No. 6 (particle size 5-13mm)
(6) Gypsum; anhydrous gypsum (Daiichi Cement Co., Ltd., Blaine specific surface area 4,000 cm 2 / g)
▲ 7 ▼ Water; tap water [0027]
2. Compounding and kneading of porous concrete Using the above materials, according to the formulation shown in Table 1, put into a biaxial forced kneading mixer (0.1m 3 ), knead for 4 minutes, and use coarse materials from materials other than coarse aggregate. Independent granules were prepared in a state where the paste or mortar was coated.
[0028]
[Table 1]
Figure 0004316087
[0029]
3. Molding Each of the above granules was put into a 50 × 40 × 10 cm mold and laid with a plate compactor (MVC-110H; manufactured by Mikasa Co., Ltd.) so that the porosity was 15%. After laying, the concrete pavement surface was covered with a curing sheet and cured for 1 day to produce a 100 × 60 × 15 cm permeable pavement plate.
[0030]
The pavement plate was cut to prepare three 10 × 10 × 40 cm specimens, and the bending strength was measured in accordance with “JIS A 1106 (concrete bending strength test method)”.
The pavement plate was cut to prepare three 10 × 10 × 20 cm specimens, and the permeability coefficient was measured according to “Interlocking Block Pavement Design and Construction Procedure 8-3 Permeability Test”.
The results are shown in Table 2. [0031]
[Table 2]
Figure 0004316087
[0032]
【The invention's effect】
The early-strength in-situ permeable concrete of the present invention can exhibit a large bending strength (4.5 N / mm 2 or more) in one day of material age and has a large water permeability coefficient (0.1 cm / sec or more). . Therefore, the curing period can be shortened from the conventional two days or more to about one day, and when applied to a roadway or the like, traffic can be opened early.

Claims (3)

粗骨材と、該粗骨材に対する容積比が30〜80%のペースト又はモルタルとからなる組成物の混練物を敷設してなる早強型現場打ち透水性コンクリートであって、
上記ペースト又はモルタルが、セメント又はセメントを含む粉体混合物100重量部、細骨材0〜140重量部、クリンカ粉砕物3〜15重量部、石膏0.1〜5.0重量部、減水剤0.4〜2.2重量部、水16〜29重量部を含み、
上記クリンカ粉砕物が、2CaO・SiO 2 −CaO−間隙物質系クリンカ組成物からなり、かつ、CaO結晶を50〜92重量%含有することを特徴とする早強型現場打ち透水性コンクリート。
An early-strength, in-situ permeable concrete formed by laying a kneaded product of a composition comprising a coarse aggregate and a paste or mortar having a volume ratio of 30 to 80% to the coarse aggregate,
The paste or mortar is 100 parts by weight of cement or a powder mixture containing cement, 0 to 140 parts by weight of fine aggregate, 3 to 15 parts by weight of clinker pulverized product, 0.1 to 5.0 parts by weight of gypsum, 0.4 to 2.2 parts by weight of water reducing agent 16 to 29 parts by weight of water,
A high-strength on-site cast-in-place concrete, wherein the pulverized clinker is made of a 2CaO · SiO 2 -CaO-interstitial material clinker composition and contains 50 to 92% by weight of CaO crystals.
上記セメント又はセメントを含む粉体混合物が、50〜100重量%のポルトランドセメントと、50〜0重量%の高炉スラグ粉末及び/又はフライアッシュとからなる請求項1に記載の早強型現場打ち透水性コンクリート。  The early-strength in-situ water penetration according to claim 1, wherein the cement or the powder mixture containing cement comprises 50 to 100% by weight of Portland cement and 50 to 0% by weight of blast furnace slag powder and / or fly ash. Concrete. 請求項1又は2に記載の早強型現場打ち透水性コンクリートからなる車道用舗装。  A pavement for a roadway comprising the early-strength on-site permeable concrete according to claim 1 or 2.
JP2000014287A 2000-01-24 2000-01-24 Early-strength on-site permeable concrete and road pavement Expired - Lifetime JP4316087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000014287A JP4316087B2 (en) 2000-01-24 2000-01-24 Early-strength on-site permeable concrete and road pavement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000014287A JP4316087B2 (en) 2000-01-24 2000-01-24 Early-strength on-site permeable concrete and road pavement

Publications (2)

Publication Number Publication Date
JP2001206761A JP2001206761A (en) 2001-07-31
JP4316087B2 true JP4316087B2 (en) 2009-08-19

Family

ID=18541765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000014287A Expired - Lifetime JP4316087B2 (en) 2000-01-24 2000-01-24 Early-strength on-site permeable concrete and road pavement

Country Status (1)

Country Link
JP (1) JP4316087B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214231A (en) * 2010-03-31 2011-10-27 Taiheiyo Cement Corp Paving concrete
JP5578678B2 (en) * 2011-03-07 2014-08-27 太平洋セメント株式会社 Concrete for paving
JP5885231B2 (en) * 2011-04-13 2016-03-15 太平洋セメント株式会社 Concrete for paving
CN106116342A (en) * 2016-06-22 2016-11-16 赵传宝 A kind of ecological permeable terrace construction technique
CN108677643B (en) * 2018-06-22 2023-03-17 杜宇 Roller compacted concrete composite pavement without cracks and expansion and contraction joints and preparation method thereof
CN112408923B (en) * 2020-11-21 2022-05-17 湖北云海混凝土有限公司 Permeable compression-resistant concrete and preparation method thereof

Also Published As

Publication number Publication date
JP2001206761A (en) 2001-07-31

Similar Documents

Publication Publication Date Title
JP5544628B2 (en) Alkali active binder, alkali active mortar using the binder, concrete, concrete product and loess wet pavement
JP5975603B2 (en) High-strength porous concrete composition and high-strength porous concrete cured body
KR101134172B1 (en) Permeability concrete block composition
JP4316087B2 (en) Early-strength on-site permeable concrete and road pavement
JP2001233662A (en) Concrete composition for draining pavement
JP5578678B2 (en) Concrete for paving
JP5005861B2 (en) On-site permeable concrete and road pavement
JP5812623B2 (en) High-strength porous concrete composition and high-strength porous concrete cured body
JP4481510B2 (en) Permeable concrete joint paste or mortar
JP2002316858A (en) Porous concrete and cast-in-site water-permeable concrete pavement
JP2018002510A (en) High-strength porous concrete composition and high-strength porous concrete cured body
JP2008223385A (en) Porous concrete and its manufacturing process
JP4456984B2 (en) Water-retaining concrete member
Thomas et al. The durability of concrete produced with portland-limestone cement: Canadian studies
JP3723178B2 (en) Water-retaining cured body
JP6617043B2 (en) Construction method of drainage pavement
JP2001181009A (en) Binder for water-permeable concrete pavement, and water-permeable concrete pavement concreted at site
JP2000230214A (en) Cast-in-place water-permeable concrete pavement
JP2001220197A (en) Cement composition
JP4387995B2 (en) Tile paving material
JPH09273105A (en) Cast-in-place water permeable concrete pavement and its execution method
JP2003286702A (en) Cast-in-place permeable concrete
JP2008222518A (en) Shrinkage-reduced porous concrete and its manufacturing method
JP2002302904A (en) Cast-in-place water permeable concrete pavement construction method
JP5885231B2 (en) Concrete for paving

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

R150 Certificate of patent or registration of utility model

Ref document number: 4316087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term