JP3723178B2 - Water-retaining cured body - Google Patents
Water-retaining cured body Download PDFInfo
- Publication number
- JP3723178B2 JP3723178B2 JP2002376409A JP2002376409A JP3723178B2 JP 3723178 B2 JP3723178 B2 JP 3723178B2 JP 2002376409 A JP2002376409 A JP 2002376409A JP 2002376409 A JP2002376409 A JP 2002376409A JP 3723178 B2 JP3723178 B2 JP 3723178B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- retaining
- sepiolite
- cured body
- cement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Road Paving Structures (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、車道、歩道、駐車場、建造物の屋上等の表面部分を構成する硬化体に関し、特に、夏季に表面の温度上昇を抑制することができる保水性硬化体、およびその材料に関する。
【0002】
【従来の技術】
従来より、セメント等の材料に、セピオライト等のホルマイト系粘土鉱物を添加して、セメント組成物の物性を向上させることが知られている。
例えば、セメントと、セピオライトの如きホルマイト鉱物と、軽量骨材と、特定のエマルジョン系混和剤とを特定の配合割合で混合してなるグラウト材組成物は、ホルマイト鉱物が吸水性を有することから、ブリーディングの発生を防止することができ、また、ホルマイト鉱物がチキソトロピー性を有することから、良好な保形性および可塑性を有することができる(特許文献1参照)。
また、セメントと砂と水とを混練する際に、セメントが水と反応してできる水和物の結晶よりも大きな繊維状物質(例えば、セピオライト等の繊維状粘土鉱物)を添加し混入させることによって、引張り応力が著しく向上したモルタル・コンクリートを得ることができる(特許文献2参照)。
上述の特許文献1や特許文献2の技術では、セピオライト等のホルマイト系粘土鉱物は、ブリーディングの発生の防止や、引張り応力の向上等のために、モルタルやコンクリートの材料として用いられている。
しかし、従来、セピオライト等のホルマイト系粘土鉱物を含む道路の舗装体は、知られていない。
【0003】
【特許文献1】
特開2001−19528号公報(特許請求の範囲、段落番号0013〜0015)
【特許文献2】
特開平5−238800号公報(段落番号0006〜0009)
【0004】
【発明が解決しようとする課題】
都市部等においては、夏季に、コンクリート建造物や道路の舗装体が太陽光エネルギーを吸収することによって、周辺環境の温度が上昇する現象(いわゆるヒートアイランド現象)が生じている。特に、夏季の晴天時における最も温度の高い時間帯には、道路の舗装体等の表面温度が約60℃にも達することがある。そのため、舗装体の表面温度が過度に上昇するのを抑制し得るような舗装材料が求められている。
そこで、本発明は、夏季に表面温度の上昇を抑制することができる舗装体等の硬化体、よびそれに用いる材料を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者は、上記課題を解決するために鋭意検討した結果、セメントと、該セメントに対して所定の配合割合で配合される200%以上の保水率を有するセピオライトと、水とを含み、かつ所定の強度を発現しうる保水性硬化材を調製したうえで、当該保水性硬化材を、開粒度アスファルト混合物の如き多孔質硬化体の連続空隙内に充填し、硬化させることによって、表面温度の上昇を抑制し得る保水性硬化体を得ることができることを見出し、本発明を完成した。
すなわち、本発明(請求項1)の保水性硬化体は、連続空隙を有する多孔質硬化体(例えば、開粒度アスファルト混合物やポーラスコンクリート等の舗装体)と、該連続空隙内に充填された保水性硬化材とからなる保水性硬化体であって、前記保水性硬化材が、セメント100質量部と、200%以上の保水率を有する繊維状のセピオライト20〜120質量部と、水とを含む混練物を硬化させてなる、1.2N/mm 2 以上の圧縮強度、及び0.6N/mm 2 以上の曲げ強度を有する材料であることを特徴としている。
本発明で使用する保水性硬化材は、所定の物性を有するセピオライトを含むため、良好な吸水性および保水性を有し、開粒度アスファルト混合物の如き多孔質硬化体の連続空隙内に充填された状態において、当該多孔質硬化体が夏季に直射日光に曝されても、徐々に蒸発する水分の作用によって、当該多孔質硬化体の表面温度が過度に上昇するのを抑制することができる。すなわち、保水性硬化体を前記のように構成することによって、夏季の雨天時に吸水し保水した保水性硬化材が、天気の好転後の直射日光に曝露された高温の環境下においても、水分を急速に蒸散させることなく、徐々に水分を蒸発させ、その際に硬化体表面の熱を気化熱として奪うため、硬化体表面の温度の上昇を抑制することができる。
前記保水性硬化材は、保水性成分として前記セピオライトのみを含む実施形態を採ることができる(請求項2)。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の保水性硬化材は、セメント100質量部と、200%以上の保水率を有する繊維状のセピオライト20〜120質量部と、水とを含む混練物を硬化させてなる、1.2N/mm 2 以上の圧縮強度、及び0.6N/mm 2 以上の曲げ強度を有する材料である。
本発明で使用するセメントの種類は、特に限定されるものではなく、例えば、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントや、高炉セメント、フライアッシュセメント等の混合セメント等を使用することができる。
【0008】
本発明で使用するセピオライトは、ホルマイト系粘土鉱物に属する。
ここで、ホルマイト系粘土鉱物は、含水マグネシウム珪酸塩の如き含水珪酸塩を主成分とする天然無機粘土鉱物であり、乾燥固結性(水で練って乾燥すると固まる性質)を有するとともに、内部に微細な連続空隙を有することから、優れた吸水性および保水性を有するものである。
ホルマイト系粘土鉱物の形態としては、例えば、繊維状、粉末状、粒状、板状等が挙げられる。
中でも、繊維状のホルマイト系粘土鉱物は、セメント等と共に保水性硬化材を調製した場合、硬化前においては、チキソトロピー性(揺変性)を発現するため、保水性硬化材の流動性を向上させ、ブリーディングを防止し、しかも、当該保水性硬化材を充填させるべき場所(例えば、開粒度アスファルト混合物の連続空隙内)における付着性を高めるとともに、硬化後においては、当該繊維状のホルマイト系粘土鉱物の構成単位である繊維状のものが相互に絡み合ったような形となって、大きな奥行寸法を有する多数の微細な隙間を生じさせ、優れた吸水性および保水性を付与することができる。
なお、チキソトロピー性(揺変性)とは、剪断抵抗力を大きくすると粘度が小さくなり、逆に、剪断抵抗力を小さくすると粘度が大きくなる性質をいう。
【0009】
ホルマイト系粘土鉱物の具体例としては、例えば、セピオライト(主成分:含水マグネシウムシリケート;主成分の化学式:Mg4Si6O15(OH)2・6H2O)、アタパルジャイト(主成分:含水マグネシウムアルミニウムシリケート)、パリゴルスカイト(主成分:含水マグネシウムアルミニウムシリケート)等が挙げられる。
中でも、セピオライトは、原石を加工する過程で解繊することによって、繊維状の形態とすることができる。そして、繊維状のセピオライトは、セメント等と共に保水性硬化材を調製した場合、次のような利点を有する。
すなわち、第一に、繊維状のセピオライトを含む保水性硬化材は、チキソトロピー性(揺変性)を有するため、優れた流動性(施工作業の容易性)、材料分離抵抗性(ブリーディングの防止)、および付着性(施工後の連続空隙内での定着性)を示す。
第二に、繊維状のセピオライトの内部の結晶構造が、蜂の巣のようなチャンネル構造になっており、このチャンネル構造中の多数の細長い細孔が、高い吸水力および保水力を発揮するため、繊維状のセピオライトを含む保水性硬化材は、吸水性および保水性に優れる。
第三に、繊維状のセピオライトが吸水しても、当該セピオライトを含む保水性硬化材の膨張率が小さいことから、多孔質硬化体の連続空隙内で保水性硬化材が膨張して応力が発生したり、透水性が低下するおそれが少なく、多孔質硬化体に保水性硬化材を充填してなる保水性硬化体の耐久性等を向上させることができる。
【0010】
本発明で用いるセピオライト(特に繊維状のもの)を調製するには、まず、天然鉱物であるセピオライト原石を粗砕機で粉砕した後、さらに微粉砕機(例えば、ハンマーミル、レイモンドミル、竪型ローラミル、ボールミル等)で粉砕し解繊する。解繊後、必要に応じて、水簸、篩い分け、および分級の操作のいずれか単独またはこれらの2つ以上の操作の組み合わせによって、繊維形状を有するものの純度を高めるような処理を行なう。こうして得られたセピオライトを用いて、保水性硬化材を調製すれば、より一層優れた保水性を得ることができる。
【0011】
また、充分な保水性能を付与するセピオライトを得るためには、粉砕条件を打撃力から剪断力を主とするものに限定すると効果的である。例えば、チューブミルで粉砕する場合、粉砕媒体に関し、セピオライト原石等に過度の衝撃力を与えず、揉み解すような剪断力で解繊するものとなるように、条件を限定する必要がある。
また、原石を粗砕後、水中で長時間かけて解繊する方法を採ることもできる。
本発明で用いる繊維状のセピオライトの長さ(繊維長)は、1μm以上のものが好適である。繊維状のセピオライトは、粉砕による繊維の折れが少なく、結果的にアスペクト比が大きく、保水性能が大きく、本発明において好適に用い得る材料である。
【0012】
繊維状のセピオライトを10質量%のスラリーとし、その粘度をB型粘度計で測定すると、ロータが回転し始めて3回転目の粘度は、1,500cps(センチポイズ)以上である。このように1,500cps以上の粘度を有するスラリー(保水性硬化材)は、保水性能が高く、好適に用いられる。
【0013】
本発明において、セピオライトの好適な保水率は、200%以上である。
ここで、保水率とは、一定量のセピオライトを秤量し、大型濾紙上に載置した後、セピオライトがブリーディングを発生し始める時点まで水を加えて、その時点における質量の増加量を測定し、その結果算出されるセピオライトに保持された水量(質量)を、当初のセピオライトの質量で除することによって得られる値をいう。なお、水を加える際、濾紙上に挟持する形でセピオライトを支持し、ブリーディングによって発生した水は、一定の圧力を加えて、保持の不完全な水とともに濾紙に沁み込ませることによって除去される。
【0014】
本発明の保水性硬化材において、ホルマイト系粘土鉱物(セピオライト)の配合量は、セメント100質量部に対して、好ましくは3〜150質量部、より好ましくは5〜120質量部、特に好ましくは20〜60質量部である。
該配合量が3質量部未満では、当該保水性硬化材を多孔質硬化体の連続空隙内に充填しても、十分な吸水性および保水性が得られないことがある。該配合量が150質量部を超えると、保水性硬化材の材料分離が生じ易くなったり、あるいは、曲げ強度等の機械的強度が低下して、多孔質硬化体の連続空隙内に当該保水性硬化材を充填することによる剛性および耐久性の向上の効果を十分に得ることができなくなるなどの問題が生じ得る。
【0015】
セメントおよびホルマイト系粘土鉱物(セピオライト)の合計量100質量部に対する水の配合量は、セメントとホルマイト系粘土鉱物(セピオライト)の配合割合によって異なるが、通常、50〜150質量部、好ましくは60〜130質量部である。
本発明の保水性硬化材を調製するに際し、減水剤を配合することができる。減水剤を用いることによって、単位水量を増大させずに、保水性硬化材の流動性を向上させ、多孔質硬化体の連続空隙内に保水性硬化材を充填する際の作業性を向上させることができる。
減水剤の具体例としては、例えば、リグニン系、ナフタレンスルホン酸系、メラミン系、ポリカルボン酸系等の減水剤、AE減水剤、高性能減水剤または高性能AE減水剤が挙げられる。減水剤の形態は、液体でも粉末状でもよい。
減水剤の配合量は、減水剤の種類によっても異なるが、通常、セメント100質量部に対して、固形分換算で0.1〜9質量部である。
なお、減水剤以外の混和剤として、必要に応じて、凝結遅延剤等を用いてもよい。
【0016】
本発明においては、必要に応じて、シリカフューム、シリカダスト、フライアッシュ、高炉スラグ、炭酸カルシウム等の無機質微粒子を、混和材として配合することができる。
無機質微粒子の配合割合は、セメント100質量部に対して、0〜40質量部、好ましくは0〜30質量部である。
【0017】
本発明の保水性硬化材を調製するには、二軸練りミキサ、パンタイプミキサ、揺動型ミキサ等のミキサに、保水性硬化材を構成する上述の各材料を投入して混練すればよい。
この際、各材料の投入方法としては、セメント、ホルマイト系粘土鉱物(セピオライト)、減水剤、および水を一括して投入する方法や、水以外の材料(具体的には、セメント、セピオライト、粉末状の減水剤)を予め混合してプレミックス材を調製した後、このプレミックス材を水と共にミキサに投入する方法等が挙げられる。
【0018】
次に、本発明の保水性硬化体について説明する。
本発明の保水性硬化体は、多孔質硬化体の連続空隙内に、上述の保水性硬化材を充填してなるものである。
ここで、多孔質硬化体としては、例えば、開粒度アスファルト混合物や、ポーラスコンクリート等が挙げられる。
多孔質硬化体として開粒度アスファルト混合物を用いた場合、本発明の保水性硬化体は、アスファルト舗装を本体として用いることによるたわみ性と、上述の保水性硬化材(セメント質硬化体)による良好な剛性および耐久性とを備えているため、半たわみ性舗装体として、特に、道路の交差点、バス停留所、空港等において好適に用いることができる。
多孔質硬化体としてポーラスコンクリートを用いた場合、本発明の保水性硬化体は、排水性、植物植栽性等の特性を有し得る舗装体として、特に、歩道、護岸、ビルの屋上等において好適に用いることができる。
なお、ポーラスコンクリートとしては、例えば、粒径10〜40mm程度の粗骨材を含み、かつ20〜40%程度の空隙率を有するものを用いることができる。
【0019】
本発明の保水性硬化体の一例の施工方法を、図面に基づいて説明する。図1は、本発明の保水性硬化体の一例を模式的に示す断面図である。
まず、既設のアスファルト舗装体2の上に、所定の厚さ(例えば、3〜10cm)となるように開粒度アスファルト混合物3を層状に打設して締め固める。これにより、アスファルト舗装体2を基層とし、開粒度アスファルト混合物3を表層とする積層体が形成される。なお、アスファルト舗装体2の材料としては、例えば、「道路工事設計基準」の規格に合致する基層用加熱アスファルト混合物を用いることができる。
次に、開粒度アスファルト混合物3の上面に、本発明の保水性硬化材4を供給し、開粒度アスファルト混合物3の連続空隙内に保水性硬化材4を自然流下または加圧によって充填する。この際、作業の効率化を図るために、バイブレータ等の充填手段を用いることが望ましい。
保水性硬化材4の充填作業が終了すると、開粒度アスファルト混合物3の連続空隙内に保水性硬化材4を充填してなる保水性硬化体1が完成する。
【0020】
【実施例】
以下、本発明を実験例に基づいて説明する。
[1.使用材料]
▲1▼ セメント;早強ポルトランドセメント(太平洋セメント社製)
▲2▼ ホルマイト系粘土鉱物;セピオライト(太平洋セメント社製)
▲3▼ 減水剤; (ナフタレンスルホン酸系の高性能AE減水剤「マイティ150」(商品名;花王社製))
▲4▼ 水;水道水
【0021】
[2.保水性硬化材の調製および物性の評価]
セメント、ホルマイト系粘土鉱物、減水剤の各材料を、表1に示す配合割合で混練り容器に入れ、高速ハンドミキサを用いて予め空練りし、プレミックス材を得た。次いで、得られたプレミックス材に水を加えて、再度、高速ハンドミキサで混練し、試料No.1〜No.5を調製した。
なお、表1中、セピオライトの添加量を増加させるにしたがって、水の添加量も増加させているのは、保水性硬化材(試料No.1〜No.5)の流動性(フロー値)をほぼ同じにするためである(表2を参照)。
得られた試料(No.1〜No.5)の流動性(フロー値)を、「土木学会コンクリート標準示方書基準編(JSCA)のプレパックドコンクリート用注入モルタル試験方法」中の「流動性試験Pロート法」に準じて測定した。結果を表2に示す。
【0022】
[3.保水性硬化材の作製および物性の評価]
各試料(No.1〜No.5)を4cm×4cm×16cmの型枠内に充填し、24時間後に脱型して、保水性硬化材(ペースト)の試験体を得た。
脱型後、温度20℃、相対湿度65%にて保水性硬化材の試験体の気中養生を行い、材齢7日における圧縮強度および曲げ強度を、「JIS R5201」に準じて測定した。結果を表2に示す。
また、材齢7日の保水性硬化材の試験体を、60℃のエアーバス中で24時間乾燥した後、質量を測定した。次いで、乾燥後の保水性硬化材の試験体を、20℃の水中に24時間浸漬し、浸漬後の質量を測定した。エアーバスで乾燥した後の保水性硬化材の試験体の質量と、水中に浸漬した後の保水性硬化材の試験体の質量とに基づいて、以下の式によって、質量基準の吸水率(%)、および保水性硬化材試験体の単位体積当たりの吸水量(g/cm3)を算出した。
吸水率(質量%)=[(水中浸漬後の試験体の質量)−(乾燥後の試験体の質量)]×100/(乾燥後の試験体の質量)
吸水量(g/cm3)=[(水中浸漬後の試験体の質量)−(乾燥後の試験体の質量)]×100/(乾燥後の試験体の体積)
結果を表2に示す。
【0023】
【表1】
【0024】
【表2】
【0025】
表2から、セピオライトを配合していない比較例1では、吸水率(質量%)および単位体積当たりの吸水量(g/cm3)が小さいことがわかる。一方、セピオライトを配合した実施例1〜4では、大きな吸水率(質量%)および単位体積当たりの吸水量(g/cm3)を得ている。
なお、保水性硬化体で用いられる保水材の標準的な性状は、一般に、材齢7日における圧縮強度で0.5N/mm2以上、材齢7日における曲げ強度で1.0N/mm2以上とされている。実施例1〜4の保水性硬化材は、これらの条件を満たしている。
したがって、実施例1〜4の保水性硬化材は、比較例1の保水性硬化材と比べて、開粒度アスファルト混合物の如き多孔質硬化体(具体的には、道路等の表層の舗装体)の連続空隙内に充填した場合に、夏季における直射日光への曝露下において、当該多孔質硬化体の表面温度の上昇を効果的に抑制することができる。
【0026】
【発明の効果】
本発明の保水性硬化材は、ホルマイト系粘土鉱物を含むため、優れた吸水性及び保水性を有し、開粒度アスファルト混合物の如き道路等の表層を形成する多孔質硬化体の連続空隙内に充填することによって、夏季の直射日光への曝露下における当該多孔質硬化体の表面温度の上昇を効果的に抑制することができる。
【図面の簡単な説明】
【図1】本発明の保水性硬化体の一例を模式的に示す断面図である。
【符号の説明】
1 保水性硬化体
2 既設のアスファルト舗装体(基層)
3 開粒度アスファルト混合物(表層)
4 保水性硬化材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cured body that constitutes a surface portion such as a roadway, a sidewalk, a parking lot, and a rooftop of a building, and more particularly, to a water-retaining cured body that can suppress a temperature rise in the surface in summer and a material thereof.
[0002]
[Prior art]
Conventionally, it has been known that a holmite clay mineral such as sepiolite is added to a material such as cement to improve the physical properties of the cement composition.
For example, a grout composition obtained by mixing cement, a holmite mineral such as sepiolite, a lightweight aggregate, and a specific emulsion-based admixture in a specific blending ratio is because the holmite mineral has water absorption, The occurrence of bleeding can be prevented, and since the holmite mineral has thixotropic properties, it can have good shape retention and plasticity (see Patent Document 1).
Also, when kneading cement, sand, and water, add a fibrous material (for example, a fibrous clay mineral such as sepiolite) that is larger than the hydrate crystals formed by the cement reacting with water. Thus, it is possible to obtain mortar concrete in which tensile stress is remarkably improved (see Patent Document 2).
In the techniques of
However, a road pavement containing a holmite clay mineral such as sepiolite has not been known.
[0003]
[Patent Document 1]
JP 2001-19528 A (Claims, paragraph numbers 0013 to 0015)
[Patent Document 2]
JP-A-5-238800 (paragraph numbers 0006 to 0009)
[0004]
[Problems to be solved by the invention]
In urban areas and the like, a phenomenon in which the temperature of the surrounding environment rises (so-called heat island phenomenon) occurs in summer due to the absorption of sunlight energy by concrete buildings and road pavements. In particular, the surface temperature of road pavements and the like may reach as high as about 60 ° C. during the hottest time in the summer. Therefore, there is a demand for a pavement material that can suppress an excessive increase in the surface temperature of the pavement.
Then, an object of this invention is to provide hardened | cured materials, such as a paving body which can suppress the raise of surface temperature in summer, and the material used for it.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventor includes cement, sepiolite having a water retention rate of 200% or more blended at a predetermined blending ratio with respect to the cement, and water, and After preparing a water retentive curing material capable of expressing a predetermined strength, the water retentive curing material is filled in a continuous void of a porous cured body such as an open-graded asphalt mixture and cured, whereby the surface temperature is adjusted. The present inventors have found that a water-retaining cured body capable of suppressing the rise can be obtained, and the present invention has been completed.
That is, the water-retaining cured body of the present invention (Claim 1) includes a porous cured body having continuous voids (for example, a paved body such as an open particle size asphalt mixture or porous concrete), and a water retaining material filled in the continuous voids. A water-retaining cured body comprising a water-soluble curing material, wherein the water-retaining cured material includes 100 parts by mass of cement, 20 to 120 parts by mass of fibrous sepiolite having a water retention rate of 200% or more, and water. the kneaded product cured composed, it is characterized by a material having 1.2 N / mm 2 or more compression strength, and 0.6 N / mm 2 or more flexural strength.
Since the water-retaining curing material used in the present invention contains sepiolite having predetermined physical properties , the water-retaining curing material has good water absorption and water retention, and is filled in a continuous void of a porous cured body such as an open particle size asphalt mixture. In the state, even if the porous cured body is exposed to direct sunlight in summer, it is possible to suppress an excessive increase in the surface temperature of the porous cured body due to the action of moisture that gradually evaporates. That is, by configuring the water-retaining cured body as described above, the water-retaining cured material that has absorbed and retained water during the rainy season in the summer can retain moisture even in a high-temperature environment exposed to direct sunlight after the weather has improved. Since the water is gradually evaporated without rapidly evaporating, and the heat of the surface of the cured body is taken away as the heat of vaporization at that time, an increase in the temperature of the surface of the cured body can be suppressed .
The water retention hardening material can take an embodiment containing only the sepiolite as a water retention component (Claim 2).
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The water retention curing material of the present invention is obtained by curing a kneaded product containing 100 parts by mass of cement, 20 to 120 parts by mass of fibrous sepiolite having a water retention rate of 200% or more, and 1.2 N / mm 2 or more compression strength, and is a material having a 0.6 N / mm 2 or more flexural strength.
The type of cement used in the present invention is not particularly limited. For example, various portland cements such as ordinary portland cement, early-strength portland cement, medium heat portland cement, low heat portland cement, blast furnace cement, fly ash cement, etc. Or the like can be used.
[0008]
Sepiolite used in the present invention belongs to a holmite clay mineral .
Here, the holmite clay mineral is a natural inorganic clay mineral mainly composed of a hydrous silicate such as a hydrous magnesium silicate, and has a dry caking property (property that solidifies when kneaded with water) Since it has fine continuous voids, it has excellent water absorption and water retention.
Examples of the form of the holmite clay mineral include fibrous, powdery, granular, and plate-like shapes.
Among them, fibrous holmite clay minerals, when preparing a water-retaining curing material together with cement and the like, develops thixotropic properties (thixotropic properties) before curing, so improve the fluidity of the water-retaining curing material, In addition to preventing bleeding and improving the adhesion at the place where the water-retaining hardener is to be filled (for example, in the continuous voids of the open-graded asphalt mixture), after curing, the fibrous holmite clay mineral A fibrous unit as a structural unit is intertwined with each other, and a large number of fine gaps having a large depth dimension can be generated, and excellent water absorption and water retention can be imparted.
The thixotropic property (thixotropic property) refers to a property that the viscosity decreases when the shear resistance is increased, and conversely, the viscosity increases when the shear resistance is decreased.
[0009]
Specific examples of the holmite clay mineral include, for example, sepiolite (main component: hydrous magnesium silicate; main component chemical formula: Mg 4 Si 6 O 15 (OH) 2 · 6H 2 O), attapulgite (main component: hydrous magnesium aluminum) Silicate) and palygorskite (main component: hydrous magnesium aluminum silicate).
Especially, sepiolite can be made into a fibrous form by defibrating in the process of processing a rough ore. And fibrous sepiolite has the following advantages, when preparing a water retention hardening material with cement etc.
That is, firstly, the water-retaining curing material containing fibrous sepiolite has thixotropic properties (thixotropic properties), and therefore has excellent fluidity (ease of construction work), material separation resistance (preventing bleeding), And adhesion (fixability in continuous voids after construction).
Secondly, the crystalline structure of the fibrous sepiolite has a honeycomb-like channel structure, and many elongated pores in this channel structure exhibit high water absorption and water retention. The water-retaining cured material containing the sepiolite in the form is excellent in water absorption and water retention.
Thirdly, even if fibrous sepiolite absorbs water, the water retention hardening material containing the sepiolite has a small expansion coefficient, so that the water retention hardening material expands in the continuous voids of the porous cured body and stress is generated. The durability of a water-retaining cured body obtained by filling a porous cured body with a water-retaining curing material can be improved.
[0010]
In order to prepare sepiolite (particularly fibrous one) used in the present invention, first, a natural mineral sepiolite ore is pulverized by a crusher, and further pulverized (for example, a hammer mill, a Raymond mill, a vertical roller mill). Pulverize and defibrate with a ball mill). After defibration, if necessary, a treatment for increasing the purity of the fiber shape is performed by any one of the operations of syrup, sieving, and classification, or a combination of two or more of these operations. By using the sepiolite thus obtained to prepare a water-retaining curing material, even better water retention can be obtained.
[0011]
Moreover, in order to obtain sepiolite that imparts sufficient water retention performance, it is effective to limit the pulverization conditions to those mainly from shear force to shear force. For example, when pulverizing with a tube mill, it is necessary to limit the conditions with respect to the pulverizing medium so as to be defibrated with a shearing force that does not give an excessive impact force to the raw sepiolite or the like.
Moreover, after rough crushing the raw stone, it is possible to take a method of defibration in water for a long time.
The length (fiber length) of the fibrous sepiolite used in the present invention is preferably 1 μm or more. Fibrous sepiolite is a material that can be suitably used in the present invention because it causes less fiber breakage due to pulverization, results in a large aspect ratio, and a large water retention performance.
[0012]
When fibrous sepiolite is made into a slurry of 10% by mass and its viscosity is measured with a B-type viscometer, the viscosity of the third rotation after the rotor starts rotating is 1,500 cps (centipoise) or more. Thus, the slurry (water retention hardening material) which has a viscosity of 1,500 cps or more has high water retention performance, and is used suitably.
[0013]
In the present invention, the preferred water retention rate of sepiolite is 200% or more.
Here, the water retention rate is that a certain amount of sepiolite is weighed and placed on a large filter paper, and then water is added until the sepiolite begins to bleed, and the amount of increase in mass at that point is measured. The value obtained by dividing the water amount (mass) retained in the sepiolite calculated as a result by the initial mass of sepiolite. In addition, when adding water, the sepiolite is supported in the form of being sandwiched on the filter paper, and the water generated by bleeding is removed by applying a certain pressure and squeezing the filter paper together with incompletely held water. .
[0014]
In the water-retaining hardener of the present invention, the amount of holmite clay mineral (sepiolite) is preferably 3 to 150 parts by weight, more preferably 5 to 120 parts by weight, particularly preferably 20 to 100 parts by weight of cement. -60 mass parts.
If the blending amount is less than 3 parts by mass, sufficient water absorption and water retention may not be obtained even when the water retentive curing material is filled in the continuous voids of the porous cured body. When the blending amount exceeds 150 parts by mass, material separation of the water-retaining curing material is likely to occur, or mechanical strength such as bending strength is reduced, and the water retention property is retained in the continuous voids of the porous cured body. There may arise a problem that the effect of improving the rigidity and durability by filling the hardener cannot be sufficiently obtained.
[0015]
The amount of water to the total amount 100 parts by weight of cement and hormite clay mineral (sepiolite) varies depending proportion of cement and hormite clay mineral (sepiolite), usually 50 to 150 parts by weight, preferably 60 130 parts by mass.
In preparing the water-retaining curing material of the present invention, a water reducing agent can be blended. By using a water reducing agent, the fluidity of the water-retaining curing material is improved without increasing the unit water amount, and the workability when filling the water-retaining curing material into the continuous voids of the porous cured body is improved. Can do.
Specific examples of the water reducing agent include water reducing agents such as lignin, naphthalene sulfonic acid, melamine and polycarboxylic acid, AE water reducing agent, high performance water reducing agent or high performance AE water reducing agent. The form of the water reducing agent may be liquid or powder.
Although the compounding quantity of a water reducing agent changes with kinds of water reducing agent, it is 0.1-9 mass parts normally in conversion of solid content with respect to 100 mass parts of cement.
In addition, as an admixture other than the water reducing agent, a setting retarder or the like may be used as necessary.
[0016]
In the present invention, if necessary, inorganic fine particles such as silica fume, silica dust, fly ash, blast furnace slag, calcium carbonate and the like can be blended as an admixture.
The compounding ratio of the inorganic fine particles is 0 to 40 parts by mass, preferably 0 to 30 parts by mass with respect to 100 parts by mass of cement.
[0017]
In order to prepare the water-retaining hardened material of the present invention, the above-mentioned materials constituting the water-retaining hardened material may be charged into a mixer such as a biaxial kneader, a pan type mixer, or a rocking mixer and kneaded. .
At this time, as a method for charging each material, cement, holmite clay mineral (sepiolite) , a water reducing agent, and water are charged in a lump, or materials other than water (specifically, cement, sepiolite , powder) And the like, after preparing a premix material by mixing the water-reducing agent in the form of water in advance, this premix material is put into a mixer together with water.
[0018]
Next, the water-retaining cured body of the present invention will be described.
The water-retained cured body of the present invention is formed by filling the above-mentioned water-retained cured material in the continuous voids of the porous cured body.
Here, examples of the porous cured body include an open-graded asphalt mixture and porous concrete.
When an open particle size asphalt mixture is used as the porous cured body, the water-retained cured body of the present invention has good flexibility due to the use of asphalt pavement as the main body and the above-mentioned water-retained cured material (cemented cured body). Since it has rigidity and durability, it can be suitably used as a semi-flexible pavement particularly at road intersections, bus stops, airports and the like.
When porous concrete is used as the porous hardened body, the water-retaining hardened body of the present invention is a pavement that can have characteristics such as drainage and plant planting properties, particularly on sidewalks, revetments, rooftops of buildings, etc. It can be used suitably.
In addition, as porous concrete, what contains the coarse aggregate with a particle size of about 10-40 mm and has a porosity of about 20-40% can be used, for example.
[0019]
The construction method of an example of the water retention hardened | cured material of this invention is demonstrated based on drawing. FIG. 1 is a cross-sectional view schematically showing an example of the water-retaining cured body of the present invention.
First, the open-graded
Next, the water
When the filling operation of the water
[0020]
【Example】
Hereinafter, the present invention will be described based on experimental examples.
[1. Materials used]
(1) Cement; Hayashi Portland cement (manufactured by Taiheiyo Cement)
(2) Holmite clay mineral; Sepiolite (manufactured by Taiheiyo Cement)
(3) Water-reducing agent; (Naphthalenesulfonic acid-based high-performance AE water-reducing agent “Mighty 150” (trade name; manufactured by Kao Corporation))
▲ 4 ▼ Water; tap water [0021]
[2. Preparation of water-retaining hardener and evaluation of physical properties]
Each material of cement, holmite clay mineral, and water reducing agent was put into a kneading container at a blending ratio shown in Table 1, and kneaded in advance using a high-speed hand mixer to obtain a premix material. Next, water was added to the obtained premix material and kneaded again with a high-speed hand mixer. 1-No. 5 was prepared.
In Table 1, as the added amount of sepiolite is increased, the added amount of water is also increased because of the fluidity (flow value) of the water retention hardening material (sample No. 1 to No. 5). This is because they are almost the same (see Table 2).
The fluidity (flow value) of the obtained samples (No. 1 to No. 5) was measured using the “fluidity test” in the “Injection mortar test method for prepacked concrete of the Japan Society of Civil Engineers Concrete Standard Specification (JSCA)”. It measured according to "P funnel method". The results are shown in Table 2.
[0022]
[3. Preparation of water-retaining hardener and evaluation of physical properties]
Each sample (No. 1 to No. 5) was filled in a 4 cm × 4 cm × 16 cm mold and demolded after 24 hours to obtain a test specimen of a water-retaining hardener (paste).
After demolding, the test piece of the water-retaining cured material was cured in air at a temperature of 20 ° C. and a relative humidity of 65%, and the compressive strength and bending strength at age 7 days were measured according to “JIS R5201”. The results are shown in Table 2.
Moreover, after the test body of the water-retaining hardening material of the age of 7 days was dried in a 60 degreeC air bath for 24 hours, the mass was measured. Subsequently, the test piece of the water-retaining cured material after drying was immersed in water at 20 ° C. for 24 hours, and the mass after immersion was measured. Based on the mass of the specimen of the water-retaining cured material after drying with an air bath and the mass of the specimen of the water-retaining cured material after being immersed in water, the water absorption rate based on mass (% ), And the water absorption amount (g / cm 3 ) per unit volume of the water-retaining cured specimen.
Water absorption (mass%) = [(mass of specimen after immersion in water) − (mass of specimen after drying)] × 100 / (mass of specimen after drying)
Water absorption (g / cm 3 ) = [(mass of specimen after immersion in water) − (mass of specimen after drying)] × 100 / (volume of specimen after drying)
The results are shown in Table 2.
[0023]
[Table 1]
[0024]
[Table 2]
[0025]
From Table 2, it can be seen that in Comparative Example 1 in which sepiolite was not blended, the water absorption rate (% by mass) and the water absorption amount per unit volume (g / cm 3 ) were small. On the other hand, in Examples 1-4 which mix | blended sepiolite, the big water absorption (mass%) and the water absorption per unit volume (g / cm < 3 >) were obtained.
The standard properties of the water retaining material used in the water retaining cured body are generally 0.5 N / mm 2 or more in terms of compressive strength at a material age of 7 days and 1.0 N / mm 2 in bending strength at a material age of 7 days. That's it. The water retention hardening materials of Examples 1 to 4 satisfy these conditions.
Therefore, the water-retaining cured material of Examples 1 to 4 is more porous than the water-retained cured material of Comparative Example 1 (specifically, a pavement of a surface layer such as a road) such as an open particle size asphalt mixture. When it fills in the continuous space | gap of this, the increase in the surface temperature of the said porous hardening body can be effectively suppressed under the exposure to the direct sunlight in the summer.
[0026]
【The invention's effect】
Since the water-retaining hardener of the present invention contains holmite clay minerals, it has excellent water absorption and water retentivity, and is formed in a continuous void of a porous hardened body that forms a surface layer such as a road such as an open particle size asphalt mixture. By filling, an increase in the surface temperature of the porous cured body under exposure to direct sunlight in summer can be effectively suppressed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an example of a water-retaining cured body of the present invention.
[Explanation of symbols]
1 Water-retaining cured
3 Open-graded asphalt mixture (surface layer)
4 Water retention hardening material
Claims (2)
前記保水性硬化材が、セメント100質量部と、200%以上の保水率を有する繊維状のセピオライト20〜120質量部と、水とを含む混練物を硬化させてなる、1.2N/mm 2 以上の圧縮強度、及び0.6N/mm 2 以上の曲げ強度を有する材料であることを特徴とする保水性硬化体。 A water-retaining cured body comprising a porous cured body having continuous voids, and a water-retaining curing material filled in the continuous voids,
1.2 N / mm < 2 > which hardens the kneaded material in which the said water retention hardening material contains 100 mass parts of cement, 20-120 mass parts of fibrous sepiolite which has a water retention of 200% or more, and water. A water-retaining cured body characterized by being a material having the above compressive strength and a bending strength of 0.6 N / mm 2 or more .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002376409A JP3723178B2 (en) | 2002-12-26 | 2002-12-26 | Water-retaining cured body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002376409A JP3723178B2 (en) | 2002-12-26 | 2002-12-26 | Water-retaining cured body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004203693A JP2004203693A (en) | 2004-07-22 |
JP3723178B2 true JP3723178B2 (en) | 2005-12-07 |
Family
ID=32813889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002376409A Expired - Lifetime JP3723178B2 (en) | 2002-12-26 | 2002-12-26 | Water-retaining cured body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3723178B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007332684A (en) * | 2006-06-15 | 2007-12-27 | Taiheiyo Cement Corp | Water-retentive cement composition, paving block, and paving structure |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3906159B2 (en) * | 2003-01-27 | 2007-04-18 | 住友大阪セメント株式会社 | Water retentive filler and method for producing the same, water retentive pavement and method for producing the same |
JP4770443B2 (en) * | 2005-01-04 | 2011-09-14 | 宇部興産株式会社 | Iron coating cement composition and cured product obtained by blending the same |
JP4517357B2 (en) * | 2005-02-03 | 2010-08-04 | 東京電力株式会社 | Water supply type water retaining pavement structure and its construction method |
JP2007070171A (en) * | 2005-09-08 | 2007-03-22 | Shoji Seike | Natural porous solidified body, and solidifying method |
JP4707625B2 (en) * | 2006-08-02 | 2011-06-22 | 太平洋セメント株式会社 | Water-retaining cement composition and pavement structure |
JP4712660B2 (en) * | 2006-09-22 | 2011-06-29 | 株式会社竹中工務店 | Hardened concrete |
JP2008121223A (en) * | 2006-11-09 | 2008-05-29 | Sumitomo Osaka Cement Co Ltd | Cement composition for water retentive hardened body, cement milk, water retentive hardened body and method of manufacturing water retentive hardened body |
-
2002
- 2002-12-26 JP JP2002376409A patent/JP3723178B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007332684A (en) * | 2006-06-15 | 2007-12-27 | Taiheiyo Cement Corp | Water-retentive cement composition, paving block, and paving structure |
Also Published As
Publication number | Publication date |
---|---|
JP2004203693A (en) | 2004-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008184353A (en) | Mortar used for repair and tunnel maintenance and repair method using it | |
JP6866547B2 (en) | Waterproof material | |
JP3723178B2 (en) | Water-retaining cured body | |
JP5975603B2 (en) | High-strength porous concrete composition and high-strength porous concrete cured body | |
JP5271073B2 (en) | Hardened concrete and concrete composition | |
JP4235019B2 (en) | Water-retaining porous concrete molded body and method for producing the same | |
EP2930267A1 (en) | Method for placement of roller compacted concrete (rcc) on a sub-base to produce a concrete pavement | |
JP6133596B2 (en) | Expanded material and expanded concrete | |
JP5812623B2 (en) | High-strength porous concrete composition and high-strength porous concrete cured body | |
KR100230022B1 (en) | Earthen brick and its manufacturing method | |
JP6203546B2 (en) | Polymer cement mortar and method using polymer cement mortar | |
JP5308967B2 (en) | Pavement structure and pavement construction method | |
JP6617043B2 (en) | Construction method of drainage pavement | |
JP4316087B2 (en) | Early-strength on-site permeable concrete and road pavement | |
JP4140228B2 (en) | Hydraulic material for water retentive solidified body and water retentive solidified body | |
JP3828916B1 (en) | Water-retaining cured body | |
JP2004108027A (en) | Filler and water retaining pavement | |
JP2008222518A (en) | Shrinkage-reduced porous concrete and its manufacturing method | |
JP4707625B2 (en) | Water-retaining cement composition and pavement structure | |
JP2005194117A (en) | Anti-freezing hardening material and anti-freezing hardened body containing the same | |
JP4931487B2 (en) | Pavement, paving block and pavement structure | |
CN107746232A (en) | A kind of highway culvert grouting material and its production method | |
JP2007112713A (en) | Hydraulic material for water holding solidified article and water holding solidified article | |
CN107572954A (en) | A kind of admaic earth curing agent and its application method | |
JP2013204305A (en) | White topping pavement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040819 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20040820 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20041014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041019 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041220 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050510 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050707 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050818 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050913 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050914 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3723178 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080922 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090922 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090922 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090922 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100922 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100922 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110922 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120922 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130922 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |