JP4314948B2 - Production method of glycidyl phthalimide - Google Patents

Production method of glycidyl phthalimide Download PDF

Info

Publication number
JP4314948B2
JP4314948B2 JP2003331875A JP2003331875A JP4314948B2 JP 4314948 B2 JP4314948 B2 JP 4314948B2 JP 2003331875 A JP2003331875 A JP 2003331875A JP 2003331875 A JP2003331875 A JP 2003331875A JP 4314948 B2 JP4314948 B2 JP 4314948B2
Authority
JP
Japan
Prior art keywords
phthalimide
optically active
alkali metal
epihalohydrin
active substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003331875A
Other languages
Japanese (ja)
Other versions
JP2004292425A (en
Inventor
喜朗 古川
康史 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP2003331875A priority Critical patent/JP4314948B2/en
Publication of JP2004292425A publication Critical patent/JP2004292425A/en
Application granted granted Critical
Publication of JP4314948B2 publication Critical patent/JP4314948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)

Description

本発明は、医薬品や農薬、生理活性物質の合成中間体として重要なグリシジルフタルイミド、殊にグリシジルフタルイミドの光学活性体の製造法に関する。   The present invention relates to a method for producing an optically active glycidyl phthalimide, particularly an optically active glycidyl phthalimide, which is important as a synthetic intermediate for pharmaceuticals, agricultural chemicals and physiologically active substances.

グリシジルフタルイミド、殊にグリシジルフタルイミドの光学活性体は、各種光学活性な医薬品製造において重要な合成中間体としての利用が見込まれる。
一般に光学活性な医薬品およびその中間体には98%ee以上の光学純度が求められている。従って、グリシジルフタルイミドの光学活性体を高い光学純度でかつ容易に製造する方法の確立が重要な課題である。
これまでに、グリシジルフタルイミドのラセミ体の一般的な製造手法として、フタルイミドカリウムをエピクロロヒドリンのラセミ体溶媒中で還流させる方法(非特許文献1参照)や、DMF溶媒中、フタルイミドカリウムとエピクロロヒドリンのラセミ体を等量ずつ用いて反応させる方法(非特許文献2参照)などが開発されている。更に、ヨウ化テトラn−ブチルアンモニウムおよび炭酸カリウム存在下、フタルイミドとエピクロロヒドリンを反応させる際にマイクロ波オーブンを用いられることを特徴とする製造法(非特許文献3参照)も開発されている。
一方、グリシジルフタルイミドの光学活性体の製造方法としては、フタルイミドを光学活性なエピクロロヒドリン溶媒中で還流することによって光学活性なN-(3-クロロ-2-ヒドロキシプロピル)フタルイミドを得て、これを単離精製し、更にテトラヒドロフラン溶媒中、水素化ナトリウムを加えて環化させる方法(例えば、特許文献1参照)が報告されている。また、(S)−グリシジルフタルイミドについて、特許文献2に開示はあるものの、その具体的製法が示されていない。
米国特許第5608110号明細書 国際公開第99/24393号パンフレット Yoshihito HAYASHI等著 ジャーナル オブ ザ アメリカン ケミカル ソサイエティ(J.Am.Chem.Soc.)117巻,p11220-11229(1995年) Maryam ZAKERINIA等著 ヘルベチカ キミカ アクタ(Helv.Chim.Acta)73巻,p912-915(1990年) Dariusz Bogdal等著 シンレット(Synlett),p873-874(1996年)
The optically active form of glycidyl phthalimide, particularly glycidyl phthalimide, is expected to be used as an important synthetic intermediate in the production of various optically active pharmaceuticals.
In general, optically active pharmaceuticals and intermediates thereof are required to have an optical purity of 98% ee or higher. Accordingly, establishment of a method for easily producing an optically active substance of glycidylphthalimide with high optical purity is an important issue.
So far, as a general method for producing a racemic glycidyl phthalimide, a method in which potassium phthalimide is refluxed in a racemic solvent of epichlorohydrin (see Non-Patent Document 1), or potassium phthalimide and epi in a DMF solvent are used. A method of reacting by using equal amounts of racemic chlorohydrin (see Non-Patent Document 2) has been developed. Furthermore, a production method (see Non-Patent Document 3) characterized in that a microwave oven is used when phthalimide and epichlorohydrin are reacted in the presence of tetra-n-butylammonium iodide and potassium carbonate. Yes.
On the other hand, as a method for producing an optically active glycidylphthalimide, optically active N- (3-chloro-2-hydroxypropyl) phthalimide is obtained by refluxing phthalimide in an optically active epichlorohydrin solvent. A method of isolating and purifying this and further cyclizing by adding sodium hydride in a tetrahydrofuran solvent has been reported (for example, see Patent Document 1). Moreover, although (S) -glycidyl phthalimide is disclosed in Patent Document 2, a specific production method thereof is not shown.
US Pat. No. 5,608,110 International Publication No. 99/24393 Pamphlet Yoshihito HAYASHI et al. Journal of the American Chemical Society (J.Am.Chem.Soc.) 117, p11220-11229 (1995) By Maryam ZAKERINIA, etc. Helvetica Kimika Acta 73, p912-915 (1990) By Dariusz Bogdal et al. Synlett, p873-874 (1996)

上記のラセミ体合成の手法を用いて、フタルイミドカリウムと溶媒量のエピハロヒドリンの光学活性体を還流させる(非特許文献1)と、エピハロヒドリンの光学純度が低下し、その結果グリシジルフタルイミドの光学純度が低下する。またDMF溶媒中、エピクロロヒドリンの光学活性体(99%ee)とフタルイミドカリウムを反応させるとラセミ化が進行するため、得られたグリシジルフタルイミドの光学活性体の光学純度(63%ee)は満足できるものではない(比較例1参照)。
一方、フタルイミドを用いてマイクロ波オーブン中で反応させる手法(非特許文献3)は、満足できる収率(50%)で得られていない。
エピクロロヒドリンの光学活性体とフタルイミドを還流下で反応させる手法(例えば、特許文献1参照)では、中間体のN-(3-クロロ-2-ヒドロキシプロピル)フタルイミドを単離精製する必要があるのみならず、その収率およびグリシジルフタルイミドの収率も低く、満足できるものではない。
When the optically active form of potassium phthalimide and a solvent amount of epihalohydrin is refluxed using the above-mentioned method of racemic synthesis (Non-patent Document 1), the optical purity of epihalohydrin is lowered, and as a result, the optical purity of glycidylphthalimide is lowered. To do. In addition, racemization proceeds when an optically active substance of epichlorohydrin (99% ee) is reacted with potassium phthalimide in a DMF solvent. Therefore, the optical purity (63% ee) of the obtained optically active substance of glycidyl phthalimide is It is not satisfactory (see Comparative Example 1).
On the other hand, the method of reacting in a microwave oven using phthalimide (Non-Patent Document 3) has not been obtained with a satisfactory yield (50%).
In the method of reacting an optically active substance of epichlorohydrin with phthalimide under reflux (for example, see Patent Document 1), it is necessary to isolate and purify the intermediate N- (3-chloro-2-hydroxypropyl) phthalimide. Not only that, but the yield and the yield of glycidyl phthalimide are also low and not satisfactory.

本発明者らは、上記の課題を解決すべく鋭意検討を行った結果、アルコール溶媒存在下、エピクロロヒドリンの光学活性体とフタルイミドのアルカリ金属塩を反応させることにより、グリシジルフタルイミドの光学活性体が高収率、かつ高光学純度で得られることを見出した。また、同様にして、エピクロロヒドリンのラセミ体とフタルイミドのアルカリ金属塩を反応させることにより、グリシジルフタルイミドのラセミ体を簡便に収率良く得ることができることも判明した。
また、フタルイミドとエピハロヒドリンを有機溶媒中で、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩または4級アンモニウム塩の存在下反応させ、得られるN-(3-ハロ-2-ヒドロキシプロピル)フタルイミドに金属アルコキシドを用いて閉環させることにより、グリシジルフタルイミドのラセミ体または光学活性体を簡便に収率良く、そして光学活性体においては高光学純度で得ることができることも判明した。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have reacted the optically active substance of epichlorohydrin with an alkali metal salt of phthalimide in the presence of an alcohol solvent, thereby allowing the optical activity of glycidylphthalimide. It was found that the product was obtained in high yield and high optical purity. Similarly, it was also found that a racemic glycidyl phthalimide can be easily obtained in a high yield by reacting a racemic epichlorohydrin with an alkali metal salt of phthalimide.
In addition, phthalimide and epihalohydrin are reacted in an organic solvent in the presence of an alkali metal carbonate, alkali metal hydrogen carbonate or quaternary ammonium salt, and the resulting N- (3-halo-2-hydroxypropyl) phthalimide is converted to a metal alkoxide. It was also found that the racemic or optically active form of glycidylphthalimide can be easily obtained in good yield and high optical purity in the optically active form.

即ち、本発明は、下記式(1)

Figure 0004314948
で表わされるグリシジルフタルイミドの製造法において、
下記式(2)
Figure 0004314948
(式中、Mはアルカリ金属原子を表す。)
で表されるフタルイミドのアルカリ金属塩と、下記式(3)
Figure 0004314948
(式中、Xはハロゲン原子を表す。)
で表されるエピハロヒドリンをアルコール溶媒中で反応させるか;あるいは
フタルイミドとエピハロヒドリン(3)を有機溶媒中で、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩または下記式(4)
1234+- (4)
(式中、R、R、RおよびRは互いに異なっていてもよい炭素数1〜16のアルキル基、アルケニル基、アラルキル基またはアリール基を表し、そしてXは塩素イオン、臭素イオン、よう素イオン、硫酸水素イオンまたは水酸イオンを表す。)
で表される第4級アンモニウム塩の存在下、反応させ、下記式(5)
Figure 0004314948
(式中、Xは前掲と同じ。)
で表されるN-(3-ハロ-2-ヒドロキシプロピル)フタルイミドを得、次いで、アルカリ金属アルコキシドにより環化反応させることを特徴とする該グリシジルフタルイミド(1)の製造法に関する。 That is, the present invention provides the following formula (1)
Figure 0004314948
In the process for producing glycidylphthalimide represented by:
Following formula (2)
Figure 0004314948
(In the formula, M represents an alkali metal atom.)
An alkali metal salt of phthalimide represented by the following formula (3)
Figure 0004314948
(In the formula, X represents a halogen atom.)
Or an phthalimide and an epihalohydrin (3) in an organic solvent, an alkali metal carbonate, an alkali metal bicarbonate, or the following formula (4):
R 1 R 2 R 3 R 4 N + X - (4)
(Wherein R 1 , R 2 , R 3 and R 4 each represent an optionally substituted alkyl group, alkenyl group, aralkyl group or aryl group, and X represents a chlorine ion, bromine Represents ion, iodine ion, hydrogen sulfate ion or hydroxide ion.)
In the presence of a quaternary ammonium salt represented by the following formula (5):
Figure 0004314948
(In the formula, X is the same as above.)
And N- (3-halo-2-hydroxypropyl) phthalimide represented by the formula (1), followed by cyclization reaction with an alkali metal alkoxide.

本発明は、またフタルイミドのアルカリ金属塩(2)とエピハロヒドリン(3)をアルコール溶媒中で反応させることを特徴とするグリシジルフタルイミド(1)の製造法に関する(以下この発明を便宜上、方法Aに関する発明と略記する。)。
本発明は、特にフタルイミドのアルカリ金属塩(2)に対して、エピハロヒドリン(3)の光学活性体をアルコール溶媒中で反応させることを特徴とするグリシジルフタルイミド(1)の光学活性体の製造法に関する。
The present invention also relates to a process for producing glycidyl phthalimide (1), characterized in that an alkali metal salt of phthalimide (2) and epihalohydrin (3) are reacted in an alcohol solvent. Abbreviated.)
The present invention relates to a method for producing an optically active substance of glycidylphthalimide (1), which comprises reacting an optically active substance of epihalohydrin (3) in an alcohol solvent with an alkali metal salt (2) of phthalimide. .

本発明は、また方法Aにおいて、第4級アンモニウム塩(4)を添加することを特徴とするグリシジルフタルイミド(1)またはその光学活性体の製造法にも関する。   The present invention also relates to a process for producing glycidyl phthalimide (1) or an optically active substance thereof characterized in that a quaternary ammonium salt (4) is added in Method A.

本発明は、またフタルイミドとエピハロヒドリン(3)を有機溶媒中で、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩または第4級アンモニウム塩(4)の存在下、反応させ、N-(3-ハロ-2-ヒドロキシプロピル)フタルイミド(5)を得、次いで、アルカリ金属アルコキシドにより環化反応を行うことを特徴とするグリシジルフタルイミド(1)の製造法にも関する(以下この発明を便宜上、方法Bに関する発明と略記する。)。
また、本発明は、上記方法Bの第一のステップにより得られるN-(3-ハロ-2-ヒドロキシプロピル)フタルイミド(5)を単離することなく、反応系にアルカリ金属アルコキシドを加えて、いわゆるワンポットで第二のステップである環化反応を行うことを特徴とする、グリシジルフタルイミド(1)の製造法に関する。
The present invention also includes reacting phthalimide and epihalohydrin (3) in an organic solvent in the presence of an alkali metal carbonate, alkali metal hydrogencarbonate or quaternary ammonium salt (4) to produce N- (3-halo- The present invention also relates to a process for producing glycidylphthalimide (1), characterized in that 2-hydroxypropyl) phthalimide (5) is obtained and then cyclized with an alkali metal alkoxide. Abbreviated.)
Further, the present invention adds an alkali metal alkoxide to the reaction system without isolating N- (3-halo-2-hydroxypropyl) phthalimide (5) obtained by the first step of the method B, It is related with the manufacturing method of glycidyl phthalimide (1) characterized by performing cyclization reaction which is a 2nd step by what is called a one pot.

更に、本発明は、有機溶媒中において、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩または第4級アンモニウム塩(4)の存在下、フタルイミドとエピハロヒドリン(3)とを縮合反応させることを特徴とするN-(3-ハロ-2-ヒドロキシプロピル)フタルイミド(5)の製造法にも関する。   Furthermore, the present invention is characterized in that a phthalimide and an epihalohydrin (3) are subjected to a condensation reaction in an organic solvent in the presence of an alkali metal carbonate, an alkali metal hydrogencarbonate or a quaternary ammonium salt (4). The present invention also relates to a process for producing N- (3-halo-2-hydroxypropyl) phthalimide (5).

本発明は、特に方法Bにおいて、エピハロヒドリン(3)が光学活性体であること、あるいは光学活性なエピハロヒドリンがエピクロロヒドリンであることを特徴とするグリシジルフタルイミド(1)の光学活性体の製造法に関する。更には、これらの光学活性なエピハロヒドリンを用いるN-(3-ハロ-2-ヒドロキシプロピル)フタルイミド(5)の光学活性体の製造方法に関する。   The present invention relates to a process for producing an optically active substance of glycidylphthalimide (1), characterized in that epihalohydrin (3) is an optically active substance in Method B, or the optically active epihalohydrin is epichlorohydrin. About. Furthermore, the present invention relates to a method for producing an optically active form of N- (3-halo-2-hydroxypropyl) phthalimide (5) using these optically active epihalohydrins.

本発明によれば、グリシジルフタルイミド、特にその光学活性体を高収率、高光学純度で製造することができる。   According to the present invention, glycidyl phthalimide, particularly its optically active substance, can be produced in high yield and high optical purity.

方法(A)で用いられるフタルイミドのアルカリ金属塩(2)は、イミドの窒素原子にアルカリ金属原子が結合したものであり、フタルイミドナトリウム、フタルイミドカリウム、フタルイミドセシウムなどが挙げられるが、フタルイミドカリウムが望ましい。
方法(A)で用いられるエピハロヒドリン(3)としては、エピクロロヒドリン、エピブロモヒドリンおよびエピヨードヒドリン、特にそれらの光学活性体が挙げられるが、特に好ましくはエピクロロヒドリンの光学活性体である。
エピハロヒドリンの使用量は、フタルイミドのアルカリ金属塩(2)に対して1〜4当量であり、好ましくは2〜3当量である。
方法(A)で用いられるアルコール溶媒としては、メタノール、エタノール、1−プロパノール、1−ブタノール、1−ペンタノール、1−ヘキサノールなどの1級アルコール類、イソプロパノール、2−ブタノール、2−ペンタノール、3−ペンタノール、2−ヘキサノール、シクロヘキサノール、2−ヘプタノール、3−ヘプタノールなどの2級アルコール類や、tert−ブタノール、tert−ペンタノールなどの3級アルコール類などが挙げられるが、好ましくは2級および3級アルコール類であり、更に好ましくはイソプロパノール、2−ブタノールおよびtert−ブタノールである。
アルコール溶媒の使用量は、フタルイミドのアルカリ金属塩(2)に対して2〜20倍(w/w)が適量である。
The alkali metal salt (2) of phthalimide used in the method (A) is a compound in which an alkali metal atom is bonded to the nitrogen atom of the imide, and examples thereof include sodium phthalimide, potassium phthalimide, phthalimide cesium, and the like, but potassium phthalimide is desirable. .
Examples of the epihalohydrin (3) used in the method (A) include epichlorohydrin, epibromohydrin and epiiodohydrin, particularly their optically active isomers, particularly preferably optical activity of epichlorohydrin. Is the body.
The usage-amount of epihalohydrin is 1-4 equivalent with respect to the alkali metal salt (2) of phthalimide, Preferably it is 2-3 equivalent.
As the alcohol solvent used in the method (A), primary alcohols such as methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, isopropanol, 2-butanol, 2-pentanol, Secondary alcohols such as 3-pentanol, 2-hexanol, cyclohexanol, 2-heptanol, and 3-heptanol, and tertiary alcohols such as tert-butanol and tert-pentanol, and the like are preferable. Secondary and tertiary alcohols, more preferably isopropanol, 2-butanol and tert-butanol.
The amount of the alcohol solvent used is appropriately 2 to 20 times (w / w) with respect to the alkali metal salt (2) of phthalimide.

方法(A)で用いられる第4級アンモニウム塩(4)の具体例としては、塩化ベンジルトリメチルアンモニウム、塩化ジアリルジメチルアンモニウム、臭化ベンジルトリメチルアンモニウム、臭化n−オクチルトリメチルアンモニウム、臭化ステアリルトリメチルアンモニウム、臭化セチルジメチルエチルアンモニウム、よう化テトラn−ブチルアンモニウム、よう化β−メチルコリン、硫酸水素テトラ−n−ブチルアンモニウムおよびフェニルトリメチルアンモニウムヒドロキシドなどが挙げられるが、これらに限定されない。
方法(A)の反応は、第4級アンモニウム塩(4)を添加することにより反応が加速され、目的物のグリシジルフタルイミド(1)あるいはその光学活性体の収率を向上させることができる。
第4級アンモニウム塩(4)の量は、フタルイミドのアルカリ金属塩(2)に対して触媒量でよく、0.005〜0.1当量が好ましい。
Specific examples of the quaternary ammonium salt (4) used in the method (A) include benzyltrimethylammonium chloride, diallyldimethylammonium chloride, benzyltrimethylammonium bromide, n-octyltrimethylammonium bromide, stearyltrimethylammonium bromide. , Cetyldimethylethylammonium bromide, tetra-n-butylammonium iodide, β-methylcholine iodide, tetra-n-butylammonium hydrogen sulfate, and phenyltrimethylammonium hydroxide, but are not limited thereto.
The reaction of the method (A) is accelerated by adding the quaternary ammonium salt (4), and the yield of the target glycidyl phthalimide (1) or its optically active substance can be improved.
The amount of the quaternary ammonium salt (4) may be a catalytic amount with respect to the alkali metal salt (2) of phthalimide, and is preferably 0.005 to 0.1 equivalent.

方法(A)の反応温度は−10〜60℃が好ましく、更に好ましくは0〜30℃である。−10℃未満では反応が抑制されるので適切ではない。また、反応温度が60℃を超えると、副反応が進行して収率低下の原因となったり、使用されるエピハロヒドリンが光学活性体の場合、エピハロヒドリンの光学活性体のラセミ化が進行して、得られるグリシジルフタルイミド(1)の光学活性体の光学純度が低下するなど、好ましくない。
方法(A)に関する発明の利点は、反応終了後にアルコール溶媒を留去し、抽出溶媒を加えて水洗するという、非常に簡便な操作で目的のグリシジルフタルイミド(1)、殊にその光学活性体が高収率で、かつ高光学純度で得られることにある。抽出溶媒としては、目的物(1)が溶解する非水溶性有機溶媒であれば特に限定されず、酢酸メチル、酢酸エチルなどの酢酸エステルや、塩化メチレン、クロロホルム、1,2−ジクロロエタンなどのハロゲン系溶媒などが挙げられる。必要であれば、晶析およびカラムクロマトグラフィーなどの精製を行ってもよい。
The reaction temperature of the method (A) is preferably −10 to 60 ° C., more preferably 0 to 30 ° C. Less than −10 ° C. is not appropriate because the reaction is suppressed. Further, when the reaction temperature exceeds 60 ° C., side reaction proceeds to cause a decrease in yield, or when the epihalohydrin used is an optically active substance, racemization of the optically active substance of epihalohydrin proceeds, The optical purity of the obtained optically active glycidyl phthalimide (1) is not preferable.
The advantage of the invention relating to the method (A) is that the alcoholic solvent is distilled off after completion of the reaction, and the target glycidyl phthalimide (1), particularly its optically active substance, is obtained by a very simple operation of adding an extraction solvent and washing with water. It is to be obtained with high yield and high optical purity. The extraction solvent is not particularly limited as long as it is a water-insoluble organic solvent in which the target product (1) is dissolved, and is an acetate such as methyl acetate or ethyl acetate, or a halogen such as methylene chloride, chloroform or 1,2-dichloroethane. System solvents and the like. If necessary, purification such as crystallization and column chromatography may be performed.

次に方法(B)について説明する。
方法(B)で用いられる式(3)で表されるエピハロヒドリンの具体例としては、発明方法Aで用いられるものと同じである。エピハロヒドリン(3)の使用量は、フタルイミドに対して好ましくは1〜3当量であり、より好ましくは1〜2当量である。
Next, the method (B) will be described.
Specific examples of the epihalohydrin represented by the formula (3) used in the method (B) are the same as those used in the invention method A. The usage-amount of epihalohydrin (3) becomes like this. Preferably it is 1-3 equivalent with respect to phthalimide, More preferably, it is 1-2 equivalent.

方法(B)で用いられるアルカリ金属炭酸塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、および炭酸セシウムなどが挙げられ、アルカリ炭酸水素塩としては、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、および炭酸水素セシウムなどが挙げられるが、これらに限定されない。アルカリ金属炭酸塩およびアルカリ金属炭酸水素塩は、含水物または無水物のどちらを用いてもよいが、グリシジルフタルイミド(1)の光学活性体が所望であれば、無水物が好ましい。
アルカリ金属炭酸塩またはアルカリ金属炭酸水素塩の量は、フタルイミドに対して化学量論量または触媒量のどちらでもよく、0.01〜3当量が好ましい。
方法Bで用いられる第4級アンモニウム塩(4)の具体例としては、発明方法Aで用いられるものと同じである。
第4級アンモニウム塩(4)の量は、フタルイミドに対して触媒量でよく、0.005〜0.1当量が好ましい。第4級アンモニウム塩(4)を上記アルカリ金属炭酸塩またはアルカリ金属炭酸水素塩と併用することにより、本反応(B)がより促進され、より高収率で目的物(1)を得ることができる。
Examples of the alkali metal carbonate used in the method (B) include lithium carbonate, sodium carbonate, potassium carbonate, and cesium carbonate. Examples of the alkali hydrogen carbonate include lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, And cesium hydrogen carbonate and the like, but are not limited thereto. As the alkali metal carbonate and the alkali metal hydrogen carbonate, either a hydrate or an anhydride may be used, but an anhydride is preferable if an optically active substance of glycidyl phthalimide (1) is desired.
The amount of alkali metal carbonate or alkali metal bicarbonate may be either a stoichiometric amount or a catalytic amount with respect to phthalimide, and is preferably 0.01 to 3 equivalents.
Specific examples of the quaternary ammonium salt (4) used in Method B are the same as those used in Invention Method A.
The amount of the quaternary ammonium salt (4) may be a catalytic amount with respect to phthalimide, and is preferably 0.005 to 0.1 equivalent. By using the quaternary ammonium salt (4) in combination with the above alkali metal carbonate or alkali metal bicarbonate, this reaction (B) is further promoted, and the target product (1) can be obtained in a higher yield. it can.

方法(B)で用いられる有機溶媒は、フタルイミドやエピハロヒドリン(3)と反応するもの(アミン類、カルボン酸類、グリシジル基)以外であれば特に限定されないが、グリシジルフタルイミド(1)の光学活性体が所望であれば、アルコール類、エーテル類またはこれらの混合溶媒が好ましく用いられる。アルコール系溶媒としては、メタノール、エタノール、1-プロパノール、1-ブタノール、1-ペンタノール、1-ヘキサノールなどの1級アルコール類、イソプロパノール、2-ブタノール、2-ペンタノール、3-ペンタノール、2-ヘキサノール、シクロヘキサノール、2-ヘプタノール、3-ヘプタノールなどの2級アルコール類や、tert-ブタノール、tert-ペンタノールなどの3級アルコール類などが挙げられるが、好ましくはメタノール、イソプロパノール、およびtert-ブタノールである。一方、エーテル系溶媒としては、ジエチルエーテル、ジブチルエーテル、tert-ブチルメチルエーテル、1,2-ジメトキシエタン、1,4-ジオキサン、テトラヒドロフラン(THF)などが挙げられるが、好ましくはTHFおよび1,4-ジオキサンである。   The organic solvent used in the method (B) is not particularly limited as long as it is other than those that react with phthalimide or epihalohydrin (3) (amines, carboxylic acids, glycidyl groups), but the optically active substance of glycidylphthalimide (1) is If desired, alcohols, ethers or mixed solvents thereof are preferably used. As alcohol solvents, primary alcohols such as methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, isopropanol, 2-butanol, 2-pentanol, 3-pentanol, 2 Secondary alcohols such as hexanol, cyclohexanol, 2-heptanol, and 3-heptanol, and tertiary alcohols such as tert-butanol and tert-pentanol, etc. are preferable, but methanol, isopropanol, and tert- Butanol. On the other hand, examples of the ether solvent include diethyl ether, dibutyl ether, tert-butyl methyl ether, 1,2-dimethoxyethane, 1,4-dioxane, tetrahydrofuran (THF), etc., preferably THF and 1,4. -Dioxane.

溶媒の混合比については特に限定されない。溶媒の量は、フタルイミドに対して2〜20倍(w/w)が好ましい。   The mixing ratio of the solvent is not particularly limited. The amount of the solvent is preferably 2 to 20 times (w / w) with respect to phthalimide.

方法(B)の第二ステップで用いられるアルカリ金属アルコキシドとしては、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウムn-プロポキシド、カリウムn-プロポキシド、ナトリウムイソプロポキシド、カリウムイソプロポキシド、ナトリウムn-ブトキシド、カリウムn-ブトキシド、ナトリウムtert-ブトキシド、カリウムtert-ブトキシド、ナトリウムtert-アミラート、カリウムtert-アミラート、ナトリウムn-ヘキシラート、およびカリウムn-ヘキシラートなどが好ましく挙げられるが、これらに限定されない。   Examples of the alkali metal alkoxide used in the second step of the method (B) include sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, sodium n-propoxide, potassium n-propoxide, sodium isopropoxide, Preferred examples include potassium isopropoxide, sodium n-butoxide, potassium n-butoxide, sodium tert-butoxide, potassium tert-butoxide, sodium tert-amylate, potassium tert-amylate, sodium n-hexylate and potassium n-hexylate. However, it is not limited to these.

アルカリ金属アルコキシドは、フタルイミドとエピハロヒドリン(3)との縮合反応が完結してN-(3-ハロ-2-ヒドロキシプロピル)フタルイミド(5)得られてから添加される。フタルイミドとエピハロヒドリン(3)との縮合反応時にアルカリ金属アルコキシドを添加すると、副生成物の増加により目的物の収率が低下し、特に光学活性体が所望の場合は光学純度が低下する(比較例5参照)。アルカリ金属アルコキシド添加方法は、そのまま数回に分けて加える方法や、本反応で使用するアルコール系またはエーテル系に溶解させてからゆっくりと加える方法などが挙げられる。
方法(B)の反応温度は−10〜60℃が好ましく、更に好ましくは0〜50℃である。
The alkali metal alkoxide is added after the condensation reaction between phthalimide and epihalohydrin (3) is completed to obtain N- (3-halo-2-hydroxypropyl) phthalimide (5). When an alkali metal alkoxide is added during the condensation reaction of phthalimide and epihalohydrin (3), the yield of the target product decreases due to an increase in by-products, and optical purity decreases particularly when an optically active substance is desired (Comparative Example). 5). Examples of the alkali metal alkoxide addition method include a method of adding as it is divided into several times as it is, a method of adding it slowly after being dissolved in the alcohol or ether used in this reaction, and the like.
The reaction temperature of the method (B) is preferably -10 to 60 ° C, more preferably 0 to 50 ° C.

アルカリ金属炭酸塩、アルカリ金属炭酸水素塩または第4級アンモニウム塩(4)の存在下、有機溶媒中で、好ましくはアルコール系またはエーテル溶媒中でフタルイミドとエピハロヒドリン(3)またはその光学活性体とを反応させ、生成物を晶析または、カラムクロマトグラフィ等の手段により単離精製することによってN-(3-ハロ-2-ヒドロキシプロピル)フタルイミド(5)を高収率またはその光学活性体を高収率、高光学純度で得ることができる。従って、この化合物(5)は、グリシジルフタルイミドおよび他の有用な物質の中間製造原料として極めて重要である。   Phthalimide and epihalohydrin (3) or an optically active substance thereof in an organic solvent, preferably an alcohol or ether solvent, in the presence of an alkali metal carbonate, alkali metal hydrogen carbonate or quaternary ammonium salt (4) By reacting and isolating and purifying the product by means of crystallization or column chromatography, N- (3-halo-2-hydroxypropyl) phthalimide (5) can be obtained in high yield or its optically active substance in high yield. And high optical purity. Therefore, this compound (5) is extremely important as an intermediate production raw material of glycidyl phthalimide and other useful substances.

方法(B)に関する発明の第一の利点は、比較的安価な原料を安価な溶媒中で反応を行うことができ、反応終了後は溶媒を留去した後に抽出溶媒を加えて水洗するという、非常に簡便な後処理操作で目的のグリシジルフタルイミド(1)、殊にその光学活性体が高純度かつ高光学純度で得ることができることである。この場合、抽出溶媒としては、目的物(1)が溶解する非水溶性有機溶媒であれば特に限定されず、酢酸メチル、酢酸エチルなどの酢酸エステルや、塩化メチレン、クロロホルム、1,2-ジクロロエタンなどのハロゲン系溶媒などを用いることができ、必要に応じ、晶析およびカラムクロマトグラフィーなどの精製を行うことができる。
また、第二の利点として、フタルイミドとエピハロヒドリン(3)またはその光学活性体を反応させることによって得られるN-(3-ハロ-2-ヒドロキシプロピル)フタルイミド(5)またはその光学活性体の単離精製を行わずに、そのままアルカリ金属アルコキシドを加えることによって目的のグリシジルフタルイミド(1)またはその光学活性体を得ることができる点にある。
The first advantage of the invention relating to the method (B) is that a relatively inexpensive raw material can be reacted in an inexpensive solvent, and after completion of the reaction, the solvent is distilled off and then the extraction solvent is added and washed with water. The objective glycidyl phthalimide (1), particularly its optically active substance, can be obtained with high purity and high optical purity by a very simple post-treatment operation. In this case, the extraction solvent is not particularly limited as long as it is a water-insoluble organic solvent in which the target product (1) is dissolved, and acetate esters such as methyl acetate and ethyl acetate, methylene chloride, chloroform, and 1,2-dichloroethane. Halogen solvents such as can be used, and purification such as crystallization and column chromatography can be performed as necessary.
Further, as a second advantage, isolation of N- (3-halo-2-hydroxypropyl) phthalimide (5) or its optically active substance obtained by reacting phthalimide with epihalohydrin (3) or its optically active substance. The target glycidyl phthalimide (1) or an optically active substance thereof can be obtained by adding an alkali metal alkoxide as it is without purification.

以下の実施例によって本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   The present invention will be specifically described by the following examples, but the present invention is not limited to these examples.

実施例1
反応槽にフタルイミドカリウム50.0g(0.27mol)、塩化ベンジルトリメチルアンモニウム5.00g(0.027mol)、イソプロパノール(500mL)を入れて10℃に冷却した後に(R)−エピクロロヒドリン74.9g(0.81mol)を加えた。冷却したまま46時間撹拌を行った後、溶媒を留去し、濃縮残渣に酢酸エチル250mLを加え、水250mLで洗浄した。酢酸エチルを留去後、(R)−グリシジルフタルイミドの粗体(光学純度97%ee)を得、更に酢酸エチル−ヘキサンより晶析することによって目的の(R)−グリシジルフタルイミド45.6g(収率83%、光学純度98%ee)を白色結晶として得た。
融点 100−102℃
比旋光度 [α]D 25 −9.7°(c2.0,CHCl3
1HNMR(CDCl3,270MHz)δ2.70(dd,1H),2.81(dd,1H),3.21−3.28(m,1H),3.81(dd,1H),3.97(dd,1H),7.27−7.91(m,4H)
Example 1
A reactor was charged with 50.0 g (0.27 mol) of potassium phthalimide, 5.00 g (0.027 mol) of benzyltrimethylammonium chloride, and isopropanol (500 mL), cooled to 10 ° C., and (R) -epichlorohydrin 74. 9 g (0.81 mol) was added. After stirring for 46 hours with cooling, the solvent was distilled off, and 250 mL of ethyl acetate was added to the concentrated residue, followed by washing with 250 mL of water. After distilling off ethyl acetate, a crude product of (R) -glycidylphthalimide (optical purity 97% ee) was obtained, and further crystallized from ethyl acetate-hexane to obtain 45.6 g (yield) of (R) -glycidylphthalimide. The ratio was 83% and the optical purity was 98% ee) as white crystals.
Melting point 100-102 ° C
Specific rotation [α] D 25 −9.7 ° (c2.0, CHCl 3 )
1 HNMR (CDCl 3 , 270 MHz) δ 2.70 (dd, 1H), 2.81 (dd, 1H), 3.21-3.28 (m, 1H), 3.81 (dd, 1H), 3. 97 (dd, 1H), 7.27-7.91 (m, 4H)

なお、光学純度(%ee)は高速液体クロマトグラフィー法を用い、そのエリア比より算出した。その条件を以下に示す。
カラム:ダイセル化学工業(株)製 CHIRALPAC AD(0.46cmφ×25cmL)
移動相:n−ヘキサン/イソプロパノール(90/10(v/v))
流速:1.0mL/min.
検出器:UV220nm
保持時間:(S)体=17.9分、(R)体=25.5分
The optical purity (% ee) was calculated from the area ratio using a high performance liquid chromatography method. The conditions are shown below.
Column: CHIRALPAC AD (0.46 cmφ × 25 cmL) manufactured by Daicel Chemical Industries, Ltd.
Mobile phase: n-hexane / isopropanol (90/10 (v / v))
Flow rate: 1.0 mL / min.
Detector: UV220nm
Retention time: (S) isomer = 17.9 minutes, (R) isomer = 25.5 minutes

実施例2
反応槽にフタルイミドカリウム5.00g(27.0mmol)、塩化ベンジルトリメチルアンモニウム0.50g(2.70mmol)、tert−ブチルアルコール(50mL)を入れた後に(S)−エピクロロヒドリン6.53g(54.0mmol)を加えた。20℃で24時間撹拌を行った後、溶媒を留去し、濃縮残渣に酢酸エチル30mLを加え、水20mLで洗浄した。酢酸エチルを留去することによって目的の(S)−グリシジルフタルイミドの粗体(定量値3.95g、収率72%、光学純度97%ee)を白色固体として得た。
Example 2
After putting 5.00 g (27.0 mmol) of potassium phthalimide, 0.50 g (2.70 mmol) of benzyltrimethylammonium chloride, and tert-butyl alcohol (50 mL) into the reaction vessel, 6.53 g of (S) -epichlorohydrin ( 54.0 mmol) was added. After stirring at 20 ° C. for 24 hours, the solvent was distilled off, 30 mL of ethyl acetate was added to the concentrated residue, and the mixture was washed with 20 mL of water. Ethyl acetate was distilled off to obtain the desired crude (S) -glycidylphthalimide (quantitative value 3.95 g, yield 72%, optical purity 97% ee) as a white solid.

実施例3
反応槽にフタルイミドカリウム5.00g(27.0mmol)、塩化ベンジルトリメチルアンモニウム0.50g(2.70mmol)、メタノール(50mL)を入れた後に(R)−エピクロロヒドリン9.99g(81.0mmol)を加えた。20℃で15時間撹拌を行った後、溶媒を留去し、濃縮残渣に酢酸エチル30mLを加え、水20mLで洗浄した。酢酸エチルを留去することによって目的の(R)−グリシジルフタルイミドの粗体(定量値3.74g、収率68%、光学純度99%ee)を白色固体として得た。
Example 3
After putting 5.00 g (27.0 mmol) of potassium phthalimide, 0.50 g (2.70 mmol) of benzyltrimethylammonium chloride, and methanol (50 mL) into the reaction vessel, 9.99 g (81.0 mmol) of (R) -epichlorohydrin was added. ) Was added. After stirring at 20 ° C. for 15 hours, the solvent was distilled off, 30 mL of ethyl acetate was added to the concentrated residue, and the mixture was washed with 20 mL of water. Ethyl acetate was distilled off to obtain the target crude (R) -glycidylphthalimide (quantitative value 3.74 g, yield 68%, optical purity 99% ee) as a white solid.

比較例1
反応槽にフタルイミドカリウム5.00g(27.0mmol)、塩化ベンジルトリメチルアンモニウム0.50g(2.70mmol)、DMF(50mL)を入れた後に(R)−エピクロロヒドリン5.00g(54.0mmol)を加えた。室温で16時間撹拌を行った後、溶媒を留去し、濃縮残渣に酢酸エチル30mLを加え、水20mLで洗浄した。酢酸エチルを留去することによって目的の(R)−グリシジルフタルイミドの粗体(定量値4.48g、収率82%、光学純度63%ee)を白色固体として得た。
以下に比較例1と同様な反応において、種々の溶媒を用いたときの比較例を示す。
Comparative Example 1
After putting 5.00 g (27.0 mmol) of potassium phthalimide, 0.50 g (2.70 mmol) of benzyltrimethylammonium chloride, and DMF (50 mL) into the reaction vessel, 5.00 g (54.0 mmol) of (R) -epichlorohydrin. ) Was added. After stirring at room temperature for 16 hours, the solvent was distilled off, 30 mL of ethyl acetate was added to the concentrated residue, and the mixture was washed with 20 mL of water. Ethyl acetate was distilled off to obtain the target crude (R) -glycidylphthalimide (quantitative value 4.48 g, yield 82%, optical purity 63% ee) as a white solid.
Comparative examples when various solvents are used in the same reaction as Comparative Example 1 are shown below.

Figure 0004314948
実施例4
反応槽にフタルイミド200.0g(1.36mol)、(S)−エピクロロヒドリン226.4g(2.45mol)、無水炭酸ナトリウム14.40g(0.136mol)、塩化ベンジルトリメチルアンモニウム25.24g(0.136mol)、およびイソプロパノール1.2Lを入れて25℃で、22時間反応させることによってN-(3-クロロ-2-ヒドロキシプロピル)フタルイミドの粗体溶液を得た。温度を15℃まで冷却した後、カリウムtert-ブトキシド183.0g(1.63mol)とイソプロパノール0.8Lの混合溶液を2時間かけて滴下し、そのままの温度で更に2時間攪拌した。溶媒の留去後、濃縮残渣に酢酸エチル1.3Lを加え、水0.65Lで洗浄した。酢酸エチルの留去後、(S)−グリシジルフタルイミドの粗体を得、更に酢酸エチル−ヘキサンより晶析することによって目的の(S)−グリシジルフタルイミド206.3g(収率75%、化学純度99%、光学純度98%ee)を白色結晶として得た。
(S)−グリシジルフタルイミド
融点 99−101℃
比旋光度 [α] 25 +11.0°(c2.0,CHCl
Figure 0004314948
Example 4
In a reaction vessel, 200.0 g (1.36 mol) of phthalimide, 226.4 g (2.45 mol) of (S) -epichlorohydrin, 14.40 g (0.136 mol) of anhydrous sodium carbonate, 25.24 g of benzyltrimethylammonium chloride ( 0.136 mol) and 1.2 L of isopropanol were added and reacted at 25 ° C. for 22 hours to obtain a crude solution of N- (3-chloro-2-hydroxypropyl) phthalimide. After cooling the temperature to 15 ° C., a mixed solution of 183.0 g (1.63 mol) of potassium tert-butoxide and 0.8 L of isopropanol was added dropwise over 2 hours, and the mixture was further stirred at the same temperature for 2 hours. After evaporation of the solvent, 1.3 L of ethyl acetate was added to the concentrated residue and washed with 0.65 L of water. After distilling off ethyl acetate, a crude product of (S) -glycidylphthalimide was obtained and further crystallized from ethyl acetate-hexane to give 206.3 g (yield 75%, chemical purity 99) of the desired (S) -glycidylphthalimide. %, Optical purity 98% ee) as white crystals.
(S) -Glycidylphthalimide melting point 99-101 ° C.
Specific rotation [α] D 25 + 11.0 ° (c2.0, CHCl 3 )

N-(3-クロロ-2-ヒドロキシプロピル)フタルイミド
HNMR(CDCl,270MHz)δ2.83(d,1H),3.58−3.73(m,2H),3.85−4.01(m,2H),4.13−4.21(m,1H),7.73−7.89(m,4H)
N- (3-Chloro-2-hydroxypropyl) phthalimide
1 HNMR (CDCl 3 , 270 MHz) δ 2.83 (d, 1H), 3.58-3.73 (m, 2H), 3.85-4.01 (m, 2H), 4.13-4.21 (M, 1H), 7.73-7.89 (m, 4H)

実施例5
反応槽にフタルイミド2.00g(13.6mmol)、(R)−エピクロロヒドリン2.52g(27.2mmol)、無水炭酸ナトリウム144mg(1.36mmol)、塩化ベンジルトリメチルアンモニウム252mg(1.36mol)、およびイソプロパノール13mLを入れて室温下、15時間反応を行った。未反応エピクロロヒドリンの留去後、イソプロパノール13mLを加えて20℃に冷却した。カリウムtert-ブトキシド1.83g(16.3mmol)とイソプロパノール7mLの混合溶液をゆっくり滴下し、20℃で1時間攪拌した。溶媒を留去し、濃縮残渣に酢酸エチル13mLを加え、水7mLで洗浄した。酢酸エチルを留去することによって目的の(R)−グリシジルフタルイミドの粗体(定量値2.16g、収率78%、光学純度98%ee)を白色結晶として得た。
以下に実施例5と同様な反応操作において、種々の有機溶媒、塩化ベンジルトリメチルアンモニウムと共にアルカリ金属炭酸塩またはアルカリ金属炭酸水素塩を用いた際の実施例を示す。
Example 5
In a reaction vessel, 2.00 g (13.6 mmol) of phthalimide, 2.52 g (27.2 mmol) of (R) -epichlorohydrin, 144 mg (1.36 mmol) of anhydrous sodium carbonate, 252 mg (1.36 mol) of benzyltrimethylammonium chloride And 13 mL of isopropanol were added, and the reaction was performed at room temperature for 15 hours. After distilling off the unreacted epichlorohydrin, 13 mL of isopropanol was added and cooled to 20 ° C. A mixed solution of 1.83 g (16.3 mmol) of potassium tert-butoxide and 7 mL of isopropanol was slowly added dropwise and stirred at 20 ° C. for 1 hour. The solvent was distilled off, and 13 mL of ethyl acetate was added to the concentrated residue, followed by washing with 7 mL of water. The target (R) -glycidylphthalimide crude product (quantitative value 2.16 g, yield 78%, optical purity 98% ee) was obtained as white crystals by distilling off ethyl acetate.
Examples in which alkali metal carbonate or alkali metal bicarbonate is used together with various organic solvents and benzyltrimethylammonium chloride in the same reaction operation as in Example 5 are shown below.

Figure 0004314948

なお、実施例13では、塩化ベンジルトリメチルアンモニウムのみを用いた。アルカリ金属アルコキシドの添加方法としては、実施例7では、ナトリウムメトキシド(28%メタノール溶液)を滴下し、実施例8ではカリウムtert-ブトキシドをそのまま数回に分けて添加した。
Figure 0004314948

In Example 13, only benzyltrimethylammonium chloride was used. As a method for adding an alkali metal alkoxide, in Example 7, sodium methoxide (28% methanol solution) was dropped, and in Example 8, potassium tert-butoxide was added in several portions as it was.

実施例14
反応槽にフタルイミド2.00g(13.6mmol)、(R)−エピクロロヒドリン2.26g(24.5mmol)、無水炭酸ナトリウム0.72g(6.80mmol)、硫酸水素テトラ−n−ブチルアンモニウム0.46g(1.36mol)、およびイソプロパノール13mLを入れて50℃、23時間反応を行った後、カリウムtert-ブトキシド1.83g(16.3mmol)のイソプロパノール溶液をゆっくり滴下し、20℃で1時間攪拌した。反応終了後、後処理をすることによって目的の(R)−グリシジルフタルイミドの粗体(定量値2.21g、収率80%、光学純度98%ee)を白色結晶として得た。
Example 14
In a reaction vessel, 2.00 g (13.6 mmol) of phthalimide, 2.26 g (24.5 mmol) of (R) -epichlorohydrin, 0.72 g (6.80 mmol) of anhydrous sodium carbonate, tetra-n-butylammonium hydrogen sulfate 0.46 g (1.36 mol) and 13 mL of isopropanol were added and reacted at 50 ° C. for 23 hours. Then, an isopropanol solution of 1.83 g (16.3 mmol) of potassium tert-butoxide was slowly added dropwise at 20 ° C. Stir for hours. After completion of the reaction, post-treatment was performed to obtain the target (R) -glycidylphthalimide crude product (quantitative value 2.21 g, yield 80%, optical purity 98% ee) as white crystals.

比較例5
反応槽にフタルイミド2.00g(13.6mmol)、塩化ベンジルトリメチルアンモニウム252mg(1.36mol)、およびイソプロパノール25mLを入れて氷冷した後、カリウムtert-ブトキシド3.05g(27.2mmol)を数回に分けて加え、更に(R)−エピクロロヒドリン2.52g(27.2mmol)を加えて室温下、26時間反応を行った。反応終了後、後処理をすることにより目的の(R)−グリシジルフタルイミドの粗体(定量値0.45g、収率17%、光学純度96%ee)を黄色高粘性体として得た。
Comparative Example 5
Into a reaction vessel, 2.00 g (13.6 mmol) of phthalimide, 252 mg (1.36 mol) of benzyltrimethylammonium chloride, and 25 mL of isopropanol were cooled with ice, and then 3.05 g (27.2 mmol) of potassium tert-butoxide was added several times. In addition, 2.52 g (27.2 mmol) of (R) -epichlorohydrin was further added and reacted at room temperature for 26 hours. After completion of the reaction, post-treatment was performed to obtain the target (R) -glycidylphthalimide crude product (quantitative value 0.45 g, yield 17%, optical purity 96% ee) as a yellow high-viscosity product.

Claims (5)

下記式(1)
Figure 0004314948
で表わされるグリシジルフタルイミドの製造法において、
下記式(2)
Figure 0004314948
(式中、Mはアルカリ金属原子を表す。)
で表されるフタルイミドのアルカリ金属塩と、下記式(3)
Figure 0004314948
(式中、Xはハロゲン原子を表す。)
で表されるエピハロヒドリンをアルコール溶媒中で、下記式(4)
1234+- (4)
(式中、R1、R2、R3およびR4は互いに異なっていてもよい炭素数1〜16のアルキル基、アルケニル基、アラルキル基またはアリール基を表し、そしてX-は塩素イオン、臭素イオン、よう素イオン、硫酸水素イオンまたは水酸イオンを表す。)
で表される第4級アンモニウム塩の存在下、反応させることを特徴とする該グリシジルフタルイミド(1)の製造法。
Following formula (1)
Figure 0004314948
In the process for producing glycidylphthalimide represented by:
Following formula (2)
Figure 0004314948
(In the formula, M represents an alkali metal atom.)
An alkali metal salt of phthalimide represented by the following formula (3)
Figure 0004314948
(In the formula, X represents a halogen atom.)
In an alcohol solvent, an epihalohydrin represented by the following formula (4)
R 1 R 2 R 3 R 4 N + X - (4)
(Wherein R 1 , R 2 , R 3 and R 4 each represent an alkyl group, alkenyl group, aralkyl group or aryl group which may be different from each other, and X represents a chlorine ion, bromine Represents ion, iodine ion, hydrogen sulfate ion or hydroxide ion.)
The manufacturing method of this glycidyl phthalimide (1) characterized by making it react in presence of the quaternary ammonium salt represented by these.
エピハロヒドリンが光学活性体である請求項1に記載のグリシジルフタルイミドの光学活性体の製造法。 The method for producing an optically active substance of glycidylphthalimide according to claim 1 , wherein the epihalohydrin is an optically active substance. エピハロヒドリンまたはエピハロヒドリンの光学活性体のハロゲンが塩素である請求項1または2に記載のグリシジルフタルイミドまたはその光学活性体の製造法。 The method for producing glycidyl phthalimide or an optically active form thereof according to claim 1 or 2 , wherein the halogen of epihalohydrin or the optically active form of epihalohydrin is chlorine. フタルイミドのアルカリ金属塩がフタルイミドカリウムである請求項1〜3のいずれかに記載のグリシジルフタルイミドまたはその光学活性体の製造法。 The method for producing glycidyl phthalimide or an optically active substance thereof according to any one of claims 1 to 3, wherein the alkali metal salt of phthalimide is potassium phthalimide. アルコール溶媒が2級または3級アルコールである請求項1〜4のいずれかに記載のグリシジルフタルイミドまたはその光学活性体の製造法。 The method for producing glycidylphthalimide or an optically active substance thereof according to any one of claims 1 to 4, wherein the alcohol solvent is a secondary or tertiary alcohol.
JP2003331875A 2002-09-25 2003-09-24 Production method of glycidyl phthalimide Expired - Lifetime JP4314948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003331875A JP4314948B2 (en) 2002-09-25 2003-09-24 Production method of glycidyl phthalimide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002279277 2002-09-25
JP2003066011 2003-03-12
JP2003331875A JP4314948B2 (en) 2002-09-25 2003-09-24 Production method of glycidyl phthalimide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009092130A Division JP5223759B2 (en) 2002-09-25 2009-04-06 Production method of glycidyl phthalimide

Publications (2)

Publication Number Publication Date
JP2004292425A JP2004292425A (en) 2004-10-21
JP4314948B2 true JP4314948B2 (en) 2009-08-19

Family

ID=33424713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003331875A Expired - Lifetime JP4314948B2 (en) 2002-09-25 2003-09-24 Production method of glycidyl phthalimide

Country Status (1)

Country Link
JP (1) JP4314948B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074686A1 (en) * 2005-12-26 2007-07-05 Kaneka Corporation Method for producing optically active n-(3-halo-2-hydroxypropyl)phthalimide
JP2007297305A (en) * 2006-04-28 2007-11-15 Daiso Co Ltd Method for producing n-(2,3-epoxy-2-methylpropyl)phthalimide

Also Published As

Publication number Publication date
JP2004292425A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP5223759B2 (en) Production method of glycidyl phthalimide
JP4336648B2 (en) Process for producing epoxytriazole derivative and its intermediate
JPH05202022A (en) Preparation of cyclocarbonate compound
HU222750B1 (en) Process for making an epoxide
JP4314948B2 (en) Production method of glycidyl phthalimide
US20060009515A1 (en) Process and intermediates for preparing escitalopram
JP3831954B2 (en) Process for producing 4-hydroxy-2-pyrrolidone
WO2021205023A1 (en) Process for the preparation of silodosin
JP2007511477A (en) Citalopram manufacturing method
JP2007291010A (en) Method for producing optically active 2-methylepihalohydrin or the like
JP4990427B2 (en) Optically active β-type tris- (2,3-epoxypropyl) -isocyanurate and high melting point type tris- (2,3-epoxypropyl) -isocyanurate
WO1998012171A1 (en) Process for the preparation of 3-amino-2-hydroxy-1-propyl ethers
JPH04198175A (en) Production of optically active atenolol and its intermediate
JP4330783B2 (en) Method for producing formylcyclopropanecarboxylic acid ester
WO2007074686A1 (en) Method for producing optically active n-(3-halo-2-hydroxypropyl)phthalimide
KR102134179B1 (en) A New method for the production of citalopram and escitalopram using carbonates
WO2007132990A1 (en) Process for the preparation of chiral glycidylphthalimide in highly optical purity
CN110885325B (en) Preparation method of (S) -glycidol phthalimide
JP3272340B2 (en) Method for producing 1-[(cyclopent-3-en-1-yl) methyl] -5-ethyl-6- (3,5-dimethylbenzoyl) -2,4-pyrimidinedione
JP5347591B2 (en) Method for producing fluorine-containing epoxy ester
CN107827811B (en) Method for preparing N-substituted-1, 2,3, 6-tetrahydropyridine
EP1553095A1 (en) Process for industrially producing optically active 1,4-benzodioxane derivative
JP3981996B2 (en) Ketooxazolidinone and process for producing amidoindanol from the compound
JP2007297305A (en) Method for producing n-(2,3-epoxy-2-methylpropyl)phthalimide
JP2001151784A (en) Production of 1-amino-3-halo-2-(trialkylsiloxy)propane and production of 3-(trialkylsiloxy)azetidine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Ref document number: 4314948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term