JP4304737B2 - Ultraviolet shielding active energy ray curable composition, curable coating material, and molded article coated with them - Google Patents

Ultraviolet shielding active energy ray curable composition, curable coating material, and molded article coated with them Download PDF

Info

Publication number
JP4304737B2
JP4304737B2 JP28038398A JP28038398A JP4304737B2 JP 4304737 B2 JP4304737 B2 JP 4304737B2 JP 28038398 A JP28038398 A JP 28038398A JP 28038398 A JP28038398 A JP 28038398A JP 4304737 B2 JP4304737 B2 JP 4304737B2
Authority
JP
Japan
Prior art keywords
resin composition
curable resin
polymer
meth
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28038398A
Other languages
Japanese (ja)
Other versions
JP2000109652A (en
Inventor
敏之 今井
慎一 片山
浩司 森
充生 赤田
光司 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP28038398A priority Critical patent/JP4304737B2/en
Publication of JP2000109652A publication Critical patent/JP2000109652A/en
Application granted granted Critical
Publication of JP4304737B2 publication Critical patent/JP4304737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

【0001】
【発明の属する技術の分野】
本発明は、耐候性、耐磨耗性及び耐薬品性に優れた成形品を低コストで得ることができ、かつ成形品曲面部においてクラックを発生させない硬化性樹脂組成物、被覆材料及び上記の樹脂組成物によって被覆された成形体に関する。
【0002】
【従来の技術】
従来より、基体シートの片面に転写層、接着層が積層された転写材を成形品表面に貼着したのち、基体シートを剥離させて絵柄層等を成形体表面に転写する方法が知られている。また、転写された絵柄や転写を行った成形体自身を保護する方法として、転写後にディッピング法やスプレーコート法により保護層を形成し、下層の転写画像や成形体に耐薬品性、耐磨耗性、及び耐候性を付与する方法、あらかじめ転写材中に積層された保護層が、転写後に成形体の最外層になるように転写材を形成して、転写された絵柄や成形体に耐薬品性、耐磨耗性、及び耐候性を付与する方法、また場合によっては、転写したのちに基体シートを剥がさずに表面保護シートとして下層を保護する方法等が知られている。
【0003】
成形体や絵柄、画像等の保護層を構成する樹脂としては、一般に、熱硬化性樹脂や活性エネルギー線硬化性樹脂、さらにはその両方の機能を持つ樹脂が使用されている。また、保護層に紫外線吸収剤を添加して下層の成形体や絵柄等に耐候性を付与する方法が知られている。
【0004】
例えば、特開平8−216598号公報には付加重合反応型の紫外線吸収剤を含有紫外線硬化樹脂を保護層として使用して、転写した絵柄や成形体に耐磨耗性、耐薬品性及び耐候性を付与する方法が記載されている。
【0005】
【発明が解決しようとする課題】
しかしながら、優れた耐磨耗性及び耐薬品性に加えて、満足する紫外線吸収性能を有する保護層を形成する被覆材料を得る方法は未だ確立されていない。
【0006】
例えば、表面保護層に紫外線遮蔽能を導入する方法としてベンゾトリアゾール系もしくはベンゾフェノン系の紫外線吸収剤を添加する方法が知られている。しかしながら従来の紫外線吸収剤のほとんどは低分子量の結晶であるため様々な問題を抱えている。例えば従来の紫外線吸収剤は、分子量が低く、また蒸気圧が高いため、熱硬化時の蒸散したり、保護シート表面から経時的にブリードアウトするため、下層に十分な長期耐候性を付与することが困難である。また薄膜で紫外線を遮蔽する場合、多量の紫外線吸収剤の添加を必要とするが、一般的に従来の紫外線吸収剤は結晶性が高く、樹脂との相溶性も低いため、保護層の耐磨耗性、耐薬品性、さらには透明性を損なうことが知られている。さらに前記の付加重合反応型紫外線吸収剤を用いて、紫外線照射して保護層のベース樹脂に紫外線吸収基を反応させる方法も、反応型紫外線吸収剤が十分に反応しないため、逆に保護層の耐磨耗性、耐薬品性を損なう場合が多い。
【0007】
【課題を解決するための手段】
上記目的を達成するために、(メタ)アクリル当量100〜300g/eq、水酸基価20〜500、重量平均分子量5000〜50000のポリマー、多官能イソシアネート、及び特定の紫外線吸収剤とを有効成分として含有する活性エネルギー線硬化性樹脂組成物の熱架橋反応生成物からなる被覆材料が、転写された成形体の少なくとも最外層に優れた紫外線遮蔽性、耐磨耗性、及び耐薬品性を有する保護層を形成し、下層を物理的及び/又は化学的劣化から保護することを見出し、本発明を完成するに至った。
【0008】
すなわち本発明の硬化性樹脂は、グリシジル(メタ)アクリレートの単独重合体、又はグリシジル(メタ)アクリレートとカルボキシル基を含有しないα,β−不飽和単量体からなる共重合体であるグリシジル(メタ)アクリレート系重合体にα,β−不飽和モノカルボン酸を付加反応させてなる重合体と多官能イソシアネート、及び一般式
【0009】
【化2】

Figure 0004304737
【0010】
〔R1 及びR2 はそれぞれ水素原子又は炭素数1〜10のアルキル基を示す。n、n’は4〜8の整数、m、m’は1〜20の整数を示す。]
で表されるビスベンゾトリアゾール系紫外線吸収剤を有効成分とする活性エネルギー線硬化樹脂組成物、上記樹脂組成物を有効成分とする被覆材料、及びそれを被覆してなる成形体に係る。
【0011】
本発明で使用される紫外線吸収剤は上記一般式(1)で示されるビスベンゾトリアゾールタイプの紫外線吸収剤であり、一方のベンゾトリアゾールフェノールがもう一方のベンゾトリアゾールフェノールの水酸基の嵩高い置換基となるため、架橋剤等との反応により紫外線吸収性に重要な役割を果たしているフェノール系水酸基を消失することがなく、また分子量が大きいため保護層表面からブリードアウトして濃度が低下したり、接着層との界面に局在化して接着性を阻害したりすることがない。また長鎖ポリエステル基が置換しているため、水に不溶であり、且つ各種有機溶媒への溶解性、汎用樹脂との相溶性に非常に優れており、ベース樹脂の機械特性、透明性を損なうことがほとんどない。さらに本発明の紫外線吸収剤は、長鎖ポリエステル基の末端に反応性の高い水酸基を有しており、有効成分の一つである多官能イソシアネートを介してポリマーと結合するため、水や有機溶媒によって抽出されたり、ブリードアウトすることが全くない。
【0012】
従って本発明によれば長期的な、紫外線遮蔽性、耐磨耗性、耐薬品性及び透明性に優れた保護層を形成することができ、下層、例えば絵柄等の画像層、接着層、成形体、また場合によっては表面保護シートの基本シート層等を物理的及び/又は化学的劣化から長期間保護することが可能である。
【0013】
本発明の紫外線遮蔽硬化樹脂の使用方法としては、ディッピング法やスプレーコート法により成形体の最外層に直接保護層を形成して成形体や成形体上の画像等を保護する方法、あらかじめ転写材中に積層された保護層が、転写後に成形体の最外層になるように転写材を形成して、転写された絵柄や成形体に耐薬品性、耐磨耗性、及び耐候性を付与する方法、また基本シートの少なくとも片面に保護層を設け、反対面に絵柄層や接着層を設けて基本シートを剥離させずに成形体及び絵柄を保護する方法等が挙げられる。
【0014】
【発明の実施の形態】
本発明の硬化樹脂は、紫外線、薬品及び摩擦から成形品や絵柄層を保護するための被覆材料である。その材質としては、(メタ)アクリル当量100〜300g/eq、水酸基価20〜500、重量平均分子量5000〜50000のポリマー、多官能イソシアネート及び特定の紫外線吸収剤とを有効成分として含有する活性エネルギー線硬化性樹脂組成物の熱架橋反応生成物を用いる。
【0015】
本発明の硬化樹脂に含有して使用されるポリマーは、活性エネルギー線照射前後の被覆膜の物理化学的要求性能を考慮して、特定の配合量とされる。すなわち、活性エネルギー線照射時の硬化性の点から、(メタ)アクリル当量100〜300g/eqとされる。(メタ)アクリル当量が300g/eqよりも大きい場合は、活性エネルギー線照射後の耐磨耗性が不十分であり、また100g/eq未満のものは得ることが難しい。また、併用する多官能イソシアネートとの反応性の点から、ポリマーの水酸基価は20〜500、好ましくは100〜300とされる。水酸基価が20未満の場合には、多官能イソシアネートとの反応が不十分であり、活性エネルギー線照射前の保護層の架橋度が低い。そのため膜の硬度が低下したり、耐溶剤性が不足したりすることにより、下層の成形体や絵柄等に十分な耐性を付与することができない。また、水酸基価が500を越えるのものは得ることが難しい。ポリマーの重量平均分子量は、5000未満では活性エネルギー線照射前の保護層の粘着性が残存したり、耐溶剤性が不足するため、やはり下層の成形体や絵柄等に十分な耐性を付与することができない。また、50000を越える場合には樹脂粘度が高くなり過ぎ、転写材中に含有して使用する際、インキの塗布作業性が低下する。
【0016】
ポリマーの製造方法としては、特に限定はなく、従来公知の方法を採用できる。例えば、(1)水酸基を含有する重合体の側鎖の一部に(メタ)アクリロイル基を導入する方法、(2)カルボキシル基を含有する共重合体に水酸基を含有するα,β−不飽和単量体を縮合反応させる方法、(3)カルボキシル基を含有する共重合体にエポキシ基を含有するα,β−不飽和単量体を付加反応させる方法、(4)エポキシ基含有重合体にα,β−不飽和カルボン酸を反応させる方法などがある。
【0017】
方法(4)を例にとり、ポリマーの製造方法をより具体的に説明する。グリシジル(メタ)アクリレートの単独重合体又は共重合体にアクリル酸などのα,β−不飽和カルボン酸を反応させる方法によりポリマーを容易に得ることができる。なお、グリシジル(メタ)アクリレートの共重合体としては、例えばグリシジル(メタ)アクリレートとカルボキシル基を含有しないα,β−不飽和単量体との共重合体が挙げられ、このカルボキシル基を含有しないα,β−不飽和単量体としては、各種の(メタ)アクリル酸エステル、スチレン、酢酸ビニル、アクリロニトリルなどが例示できる。カルボキシル基を含有するα,β−不飽和単量体の場合は、グリシジル(メタ)アクリレートとの共重合反応時に架橋が生じ、高粘度化やゲル化するため、好ましくない。
【0018】
いずれにしろ、前記(1)〜(4)の各方法を採用する際、ポリマーに関わる前記数値限定範囲を満足するよう、使用単量体や重合体の種類、これらの使用量などの条件設定を適宜に行う必要がある。
【0019】
本発明においてポリマーに添加して使用する、上記一般式(1)のビスベンゾトリアゾール系紫外線吸収剤は、具体的には2,2’−メチレンビス[6−(2H−1,2,3−ベンゾトリアゾール−2−イル)−4−(グリコロイルオキシエチル)フェノール]、2,2’−メチレンビス[6−(2H−1,2,3−ベンゾトリアゾール−2−イル)−4−(3−ヒドロキシプロパノイルオキシエチル)フェノール]、2,2’−メチレンビス[6−(2H−1,2,3−ベンゾトリアゾール−2−イル)−4−(4−ヒドロキシブタノイルオキシエチル)フェノール]、2,2’−メチレンビス[6−(2H−1,2,3−ベンゾトリアゾール−2−イル)−4−(5−ヒドロキシヘプタノイルオキシエチル)フェノール]、2,2’−メチレンビス[6−(2H−1,2,3−ベンゾトリアゾール−2−イル)−4−(6−ヒドロキシヘキサノイルオキシエチル)フェノール]、2,2’−メチレンビス[6−(2H−1,2,3−ベンゾトリアゾール−2−イル)−4−(16−ヒドロキシ−4,11−ジオキソ−3,10−ジオキサヘキサデシル)フェノール]、2,2’−メチレンビス[6−(2H−1,2,3−ベンゾトリアゾール−2−イル)−4−(23−ヒドロキシ−4,11,18−トリオキソ−3,10,17−トリオキサトリコシル)フェノール]、2,2’−メチレンビス[6−(2H−1,2,3−ベンゾトリアゾール−2−イル)−4−(30−ヒドロキシ−4,11,18,25−テトラオキソ−3,10,17,24−テトラオキサヘキサデシル)フェノール]、2,2’−メチレンビス[6−(2H−1,2,3−ベンゾトリアゾール−2−イル)−4−(37−ヒドロキシ−4,11,18,25,32−ヘプタオキソ−3,10,24,31−ヘプタオキサヘプタトリアコンチル)フェノール]等が挙げられ、これらは単独で使用しても二つ以上併用して使用してもよい。又は市販の汎用紫外線吸収剤と併用してもよいし、また他の高分子添加剤、例えば光安定剤、酸化防止剤、帯電防止剤、可塑剤、難燃剤、フィラー、顔料、染料、その他着色剤等と併用することもできる。
【0020】
本発明で使用する紫外線吸収剤の添加量は、前記のポリマー100重量部に対して、2〜40重量部、好ましくは5〜20重量部である。
紫外線吸収剤の添加量が40重量部以上の場合は、保護層の耐磨耗性を損ない、また2重量部より低減した場合、保護層に十分な紫外線遮蔽能を付与することができない。
【0021】
本発明においてポリマーと併用する多官能イソシアネートとしては、格別の限定はなく、公知の各種を使用できる。たとえば、イソホロンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、トリレンジイソシアネート、ジフェニールメタンジイソシアネート、1,6−ヘキサンジイソシアネート、上記の3量体、多価アルコールと上記ジイソシアネートを反応させたプレポリマーなどを用いることができる。本発明で、多官能イソシアネートをポリマーと併用する理由は、活性エネルギー線照射前の保護層2の粘着性を低く保つことにある。すなわち、ポリマーに含有される水酸基及び紫外線吸収剤のポリエステル鎖末端の水酸基と、多官能イソシアネートのイソシアネート基とを反応させ、軽度の熱架橋物を形成させて、上記性能を付与せんとするものである。
【0022】
ポリマーと多官能イソシアネートの使用割合は、ポリマーの水酸基価及び多官能イソシアネートの官能基数などを考慮して決定されるが、通常はポリマー100重量部に対して多官能イソシアネート1〜30重量部程度である。
【0023】
また、本発明の硬化樹脂は、ポリマー及び多官能イソシアネート以外に、必要に応じて以下のような成分を含有することができる。すなわち、反応性希釈モノマー、溶剤、着色剤などである。また、活性エネルギー線照射に際して電子線を用いる場合には、光重合開始剤を用いることなく充分硬化を発揮することができるが、紫外線を用いる場合には、公知各種の光重合開始剤を添加する必要がある。また、本発明の硬化樹脂は、場合によっては顔料、染料等により着色して使用してもよい。
【0024】
本発明の硬化樹脂を成形体の保護層として使用する場合、保護層の形成方法としては、刷毛塗り、ディッピング法、スプレー塗装法、グラビアコート法、ロールコート法、コンマコート法などのコート法、グラビア印刷法、スクリーン印刷法などの印刷法がある。
【0025】
本発明の硬化樹脂を有効成分とする被覆材料が利用できる成型品としては、プラスチック、材木、金属、石材、紙等材質を限定されることはないが、好ましくは樹脂成型品、木工製品、もしくはこれらの複合製品等を挙げることができる。樹脂としては、具体的にはポリスチレン系樹脂、ポリオレフィン系樹脂、ABS樹脂、AS樹脂、AN樹脂などの汎用樹脂を挙げることができる。また、ポリフェニレンオキシド・ポリスチレン系樹脂、ポリカーボネート系樹脂、ポリアセタール系樹脂、アクリル系樹脂、ポリカーボネート変性ポリフェニレンエーテル樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、超高分子量ポリエチレン樹脂などの汎用エンジニアリング樹脂やポリスルホン樹脂、ポリフェニレンサルファイド系樹脂、ポリフェニレンオキシド系樹脂、ポリアクリレート樹脂、ポリエーテルイミド樹脂、ポリイミド樹脂、液晶ポリエステル樹脂、ポリアリル系耐熱樹脂などのスーパーエンジニアリング樹脂を使用することもできる。さらに、ガラス繊維や無機フィラーなどの補強材を添加した複合樹脂も使用できる。さらにこれらは、透明、不透明、半透明、着色、無着色のいずれでもよい。
【0026】
【実施例】
以下合成例、実施例、比較例等を挙げて、本発明をさらに詳細に説明するが、本発明はこれら実施例等に限定されるものではない。。
【0027】
合成例1
冷却管、窒素導入管、温度計及び撹拌装置を備えた四頭フラスコに2,2’−メチレンビス[6−(2H−1,2,3−ベンゾトリアゾール−2−イル)−4−(2−ヒドロキシエチル)フェノール](商品名:RUVA−100、大塚化学(株)製)129.3g、ε−カプロラクトン170.3g(ダイセル化学工業(株)製)、モノ−n−ブチルスズ脂肪酸塩(商品名:SCAT−24、三共有機合成(株)製)50ppmを加えた。反応温度を150℃に保ちながら6時間反応すると酸価(mgKOH/g)1.8、粘度2645cp(60℃)、数平均分子量1391、重量平均分子量1688、Mw/Mn=1.213の目的物である2,2’−メチレンビス[6−(2H−1,2,3−ベンゾトリアゾール−2−イル)−4−(23−ヒドロキシ−4,11,18−トリオキソ−3,10,17−トリオキサトリコシル)フェノール]が粘稠オイルとして得られた(収率98%)。
【0028】
合成例2
冷却管、窒素導入管、温度計及び撹拌装置を備えた四頭フラスコに2,2’−メチレンビス[6−(2H−1,2,3−ベンゾトリアゾール−2−イル)−4−(2−ヒドロキシエチル)フェノール](RUVA−100)93.7g、ε−カプロラクトン206.3g(ダイセル化学工業(株)製)、モノ−n−ブチルスズ脂肪酸塩(SCAT−24)50ppmを加えた。反応温度を150℃に保ちながら6時間反応すると酸価(mgKOH/g)2.5、粘度987cp(60℃)、数平均分子量2017、重量平均分子量2465、Mw/Mn=1.222の目的物である2,2’−メチレンビス[6−(2H−1,2,3−ベンゾトリアゾール−2−イル)−4−(37−ヒドロキシ−4,11,18,25,32−ヘプタオキソ−3,10,24,31−ヘプタオキサヘプタトリアコンチル)フェノール]がワックス状固体として得られた(収率98%)。
【0029】
合成例3
撹拌装置、冷却管、滴下ロート及び窒素導入管を備えた反応装置に、グリシジルメタアクリレート(以下、GMAという)175部、メチルメタクリレート(以下、MMAという)75部、ラウリルメルカプタン1.3部、酢酸ブチル1000部及び2,2’−アゾビスイソブチロニトリル(以下、AIBNという)7.5部を仕込んだ後、窒素気流下に約1時間かけて系内温度が約90℃になるまで昇温し、1時間保温した。次いで、あらかじめGMA525部、MMA225部、ラウリルメルカプタン3.7部及びAIBN22.5部からなる混合液を仕込んだ滴下ロートより、窒素気流下に混合液を約2時間を要して系内に滴下し、3時間同温度に保温後、AIBN10部を仕込み、1時間保温した。その後、120℃に昇温し、2時間保温した。60℃まで冷却後、窒素導入管を空気導入管につけ替え、アクリル酸(以下、AAという)355部、メトキノン2.0部及びトリフェニルフォスフィン5.4部を仕込み混合した後、空気バブリング下にて、110℃まで昇温した。同温度にて8時間保温後、メトキノン1.4部を仕込み、冷却して、不揮発分が50%となるよう酢酸エチルを加え、ポリマー溶液を得た。溶液に含まれるポリマーは、アクリル当量270g/eq、水酸基価204、重量平均分子量18000(GPCVによるスチレン換算による)であった。
【0030】
実施例1
成形品としてを用いた縦95mm、横65mm、厚さ3mmのアクリル樹脂シート(商品名:アクリペットVH白、三菱レーヨン(株)製)に、グラビア印刷法にて、合成例3のポリマー溶液200重量部(固形分100重量部)、合成例1の紫外線吸収剤10重量部、1,6−ヘキサンジイソシアネート3量体(商品名:コロネートHX、日本ポリウレタン工業(株)製)5重量部及び光重合開始剤(商品名:イルガキュアー184、チバスペシャリティー・ケミカルズ社製)5部を配合した活性エネルギー線硬化樹脂組成物を、保護層として厚さは5μmとなるように印刷形成した。つぎに150℃で30秒間加熱して保護層を半ば架橋硬化させたのち、さらに紫外線照射による完全硬化を行い、硬化樹脂組成物が保護層として被覆された成形体を調製した。紫外線照射条件は、120w/cm、6灯、ランプ高さ10cm、ベルトスピード15m/minとした。
【0031】
実施例2
成形品としてを用いた縦95mm、横65mm、厚さ3mmのアクリル樹脂シート(アクリペットVH白)に、グラビア印刷法にて、合成例3のポリマー溶液200重量部(固形分100重量部)、合成例2の紫外線吸収剤10重量部、1,6−ヘキサンジイソシアネート3量体(コロネートHX)5重量部及び光重合開始剤(イルガキュアー184)5部を配合した活性エネルギー線硬化樹脂組成物を、保護層として厚さは5μmとなるように印刷形成したのち、実施例1と同様の方法で硬化樹脂組成物が保護層として被覆された成形体を調製した。
【0032】
実施例3
基体シートとして厚さ38μmのPETフィルム(商品名:T−60、東レ(株)製)を用い、基体シート上に、メラミン樹脂系離型剤をグラビア印刷法にて1μmの厚さに塗布し離型層を形成した後、その上に合成例3のポリマー溶液200重量部(固形分100重量部)、合成例1の紫外線吸収剤10重量部、1,6−ヘキサンジイソシアネート3量体(コロネートHX)5重量部及び光重合開始剤(イルガキュアー184)5部を配合した活性エネルギー線硬化樹脂組成物の保護層をグラビア印刷法にて形成した。保護層の厚さは5μmとした。150℃で20秒間加熱することにより保護層を半ば架橋硬化させたのち、接着層として塩化ビニルー酢酸ビニル共重合体(商品名:エスレックA、積水化学工業(株)製)をグラビア印刷法にて順次印刷形成して転写材を得た。
この転写材を縦95mm、横65mm、厚さ3mmのアクリル樹脂シート(アクリペットVH白)に熱転写した後(150℃、30秒)、PETフィルムを剥がして紫外線を照射した。紫外線の照射条件は、120w/cm、6灯、ランプ高さ10cm、ベルトスピード15m/minとした。
【0033】
比較例1
成形品としてを用いた縦95mm、横65mm、厚さ3mmのアクリル樹脂シート(アクリペットVH白)に、グラビア印刷法にて、合成例3のポリマー溶液200重量部(固形分100重量部)、ベンゾトリアゾール系紫外線吸収剤(商品名:チヌビン326、チバスペシャリティー・ケミカルズ社製)10重量部、1,6−ヘキサンジイソシアネート3量体(コロネートHX)5重量部及び光重合開始剤(イルガキュアー184)5部を配合した活性エネルギー線硬化樹脂組成物を、保護層として厚さは5μmとなるように印刷形成したのち、実施例1と同様の方法で硬化樹脂組成物が保護層として被覆された成形体を調製した。
【0034】
比較例2
成形品としてを用いた縦95mm、横65mm、厚さ3mmのアクリル樹脂シート(アクリペットVH白)に、グラビア印刷法にて、合成例3のポリマー溶液200重量部(固形分100重量部)、ベンゾフェノン系紫外線吸収剤(商品名:スミソーブ130、住友化学工業(株)製)10重量部、1,6−ヘキサンジイソシアネート3量体(コロネートHX)5重量部及び光重合開始剤(イルガキュアー184)5部を配合した活性エネルギー線硬化樹脂組成物を、保護層として厚さは5μmとなるように印刷形成したのち、実施例1と同様の方法で硬化樹脂組成物が保護層として被覆された成形体を調製した。
【0035】
実施例1、2、3及び比較例1、2で作製した硬化樹脂組成物が保護層として被覆された成形体について、表面硬度及び耐候性を測定した結果を表1に示す。表面硬度は500g荷重による鉛筆硬度と300g/cm2スチールウールによる耐擦傷性を測定した。また、耐候性はメタルハライドランプ(商品名:アイスーパーUVテスター、岩崎電気(株)製、75℃、紫外線強度100mW/cm2)で50時間暴露後、表面のクラックルや層間密着度等を観察と同時に50時間暴露後のアクリル樹脂板のE値と初期のE値との差(ΔE)測定して(ΔE値は小さい方が優れている)評価した。
【0036】
【表1】
Figure 0004304737
【0037】
表1の実施例の結果から分かるように活性エネルギー線硬化樹脂を用いることにより、表面硬度が高く、耐擦傷性に優れた成形体を得ることができた。しかし耐候性の場合は、本発明の紫外線吸収剤を含有したもの(実施例1、2、3)は、全て優れた耐候性を有していたのに対し、市販の紫外線吸収剤を用いた比較例1、2の方は、メタルハライドランプを50時間暴露後、黄変したりクラックが発生したりしており、転写層の外観を著しく損なっていることが確認できた。従って、機械的強度だけでなく耐候性に優れた成形製品を得るには、本発明の硬化樹脂組成物が非常に有効であることが明白となった。
【0038】
【発明の効果】
本発明は、成形体の保護層が、(メタ)アクリル当量100〜300g/eq、水酸基価20〜500、重量平均分子量5000〜50000のポリマー、特定の紫外線吸収剤、多官能イソシアネートを有効成分として含有する活性エネルギー線硬化性樹脂組成物の架橋反応生成物からなり、成形品の表面に貼着されたこの保護層が後工程において活性エネルギー線照射により硬化されるので、耐磨耗性、耐薬品性さらには長期耐侯性能に優れた成形品を容易に得ることができ、かつ成形品曲面部においてクラックを発生させない。[0001]
[Field of the Invention]
The present invention can obtain a molded product excellent in weather resistance, abrasion resistance and chemical resistance at low cost, and does not generate cracks in the curved surface of the molded product, the coating material, and the above-mentioned The present invention relates to a molded body coated with a resin composition.
[0002]
[Prior art]
Conventionally, there is known a method in which a transfer material in which a transfer layer and an adhesive layer are laminated on one side of a base sheet is attached to the surface of a molded product, and then the base sheet is peeled off to transfer a pattern layer or the like to the surface of the molded body. Yes. In addition, as a method of protecting the transferred pattern and the molded product itself that has been transferred, a protective layer is formed by dipping or spray coating after transfer, and the underlying transfer image or molded product is chemically and abrasion resistant. A method for imparting heat resistance and weather resistance, forming a transfer material so that the protective layer previously laminated in the transfer material becomes the outermost layer of the molded product after transfer, and applying chemical resistance to the transferred pattern or molded product There are known methods for imparting heat resistance, abrasion resistance, and weather resistance, and, in some cases, methods for protecting the lower layer as a surface protective sheet without peeling off the substrate sheet after transfer.
[0003]
As the resin constituting the protective layer for molded articles, patterns, images and the like, generally, a thermosetting resin, an active energy ray curable resin, or a resin having both functions is used. In addition, a method is known in which an ultraviolet absorber is added to the protective layer to impart weather resistance to the underlying molded body or pattern.
[0004]
For example, in JP-A-8-216598, an ultraviolet curing resin containing an addition polymerization reaction type ultraviolet absorber is used as a protective layer, and a transferred pattern or molded product is subjected to wear resistance, chemical resistance and weather resistance. A method for imparting is described.
[0005]
[Problems to be solved by the invention]
However, a method for obtaining a coating material for forming a protective layer having satisfactory ultraviolet absorption performance in addition to excellent wear resistance and chemical resistance has not yet been established.
[0006]
For example, a method of adding a benzotriazole-based or benzophenone-based ultraviolet absorber is known as a method for introducing an ultraviolet shielding ability into the surface protective layer. However, most conventional ultraviolet absorbers have various problems because they are low molecular weight crystals. For example, conventional UV absorbers have a low molecular weight and high vapor pressure, so they evaporate during heat curing or bleed out from the surface of the protective sheet over time, giving the lower layer sufficient long-term weather resistance. Is difficult. In addition, when shielding UV rays with a thin film, it is necessary to add a large amount of UV absorbers. However, conventional UV absorbers generally have high crystallinity and low compatibility with resins, so that the protective layer is resistant to abrasion. It is known to impair wear, chemical resistance, and transparency. Further, the method of reacting the UV absorbing group with the base resin of the protective layer by irradiating with UV using the above addition polymerization reaction type UV absorber is not sufficient for the reactive UV absorber. In many cases, wear resistance and chemical resistance are impaired.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a (meth) acrylic equivalent of 100 to 300 g / eq, a hydroxyl value of 20 to 500, a polymer having a weight average molecular weight of 5000 to 50000, a polyfunctional isocyanate, and a specific ultraviolet absorber are contained as active ingredients. A protective layer having an ultraviolet shielding property, an abrasion resistance, and a chemical resistance excellent in at least the outermost layer of the molded article in which the coating material comprising the thermal crosslinking reaction product of the active energy ray-curable resin composition And found that the lower layer is protected from physical and / or chemical deterioration, and the present invention has been completed.
[0008]
That is, the curable resin of the present invention is a glycidyl (meth) acrylate homopolymer or a glycidyl (meth) acrylate which is a copolymer of glycidyl (meth) acrylate and an α, β-unsaturated monomer not containing a carboxyl group. ) Polymer obtained by addition reaction of α, β-unsaturated monocarboxylic acid to acrylate polymer, polyfunctional isocyanate, and general formula
[Chemical formula 2]
Figure 0004304737
[0010]
[R 1 and R 2 each represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. n and n ′ represent an integer of 4 to 8, and m and m ′ represent an integer of 1 to 20. ]
The active energy ray hardening resin composition which uses the bisbenzotriazole type ultraviolet absorber represented by these as an active ingredient, the coating material which uses the said resin composition as an active ingredient, and the molded object which coat | covers it.
[0011]
The ultraviolet absorber used in the present invention is a bisbenzotriazole type ultraviolet absorber represented by the above general formula (1), and one benzotriazole phenol has a bulky substituent of the hydroxyl group of the other benzotriazole phenol. Therefore, the phenolic hydroxyl group that plays an important role in UV absorption is not lost by reaction with a crosslinking agent, etc., and the molecular weight is large, so the concentration is reduced by bleeding out from the protective layer surface. It does not interfere with adhesion by being localized at the interface with the layer. In addition, since the long-chain polyester group is substituted, it is insoluble in water, and has excellent solubility in various organic solvents and compatibility with general-purpose resins, which impairs the mechanical properties and transparency of the base resin. There is almost nothing. Furthermore, the ultraviolet absorber of the present invention has a highly reactive hydroxyl group at the end of the long-chain polyester group, and binds to the polymer via a polyfunctional isocyanate, which is one of the active ingredients. Are not extracted or bleed out.
[0012]
Therefore, according to the present invention, it is possible to form a protective layer excellent in long-term ultraviolet shielding properties, abrasion resistance, chemical resistance, and transparency. The lower layer, for example, an image layer such as a pattern, an adhesive layer, a molding It is possible to protect the body and, in some cases, the basic sheet layer of the surface protection sheet from physical and / or chemical deterioration for a long period of time.
[0013]
Examples of the method of using the ultraviolet light shielding curable resin of the present invention include a method of directly forming a protective layer on the outermost layer of the molded body by dipping method or spray coating method to protect the molded body or the image on the molded body, or a transfer material in advance. A transfer material is formed so that the protective layer laminated inside becomes the outermost layer of the molded product after transfer, and imparts chemical resistance, abrasion resistance, and weather resistance to the transferred pattern and molded product. And a method of providing a protective layer on at least one side of the basic sheet and providing a pattern layer or an adhesive layer on the opposite side to protect the molded body and the pattern without peeling off the basic sheet.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The cured resin of the present invention is a coating material for protecting a molded product and a picture layer from ultraviolet rays, chemicals, and friction. As the material, active energy rays containing (meth) acrylic equivalents of 100 to 300 g / eq, a hydroxyl value of 20 to 500, a polymer having a weight average molecular weight of 5,000 to 50,000, a polyfunctional isocyanate and a specific ultraviolet absorber as active ingredients. The thermal crosslinking reaction product of the curable resin composition is used.
[0015]
The polymer used by being contained in the cured resin of the present invention has a specific blending amount in consideration of the physicochemical performance requirements of the coating film before and after irradiation with active energy rays. That is, from the viewpoint of curability during irradiation with active energy rays, the (meth) acryl equivalent is 100 to 300 g / eq. When the (meth) acrylic equivalent is greater than 300 g / eq, the abrasion resistance after irradiation with active energy rays is insufficient, and it is difficult to obtain a product with a weight less than 100 g / eq. Moreover, the hydroxyl value of a polymer is 20-500, Preferably it is set to 100-300 from the reactive point with the polyfunctional isocyanate used together. When the hydroxyl value is less than 20, the reaction with the polyfunctional isocyanate is insufficient, and the degree of crosslinking of the protective layer before irradiation with active energy rays is low. For this reason, sufficient hardness cannot be imparted to the molded body or the pattern of the lower layer due to the decrease in the hardness of the film or the lack of solvent resistance. Moreover, it is difficult to obtain a product having a hydroxyl value exceeding 500. If the weight average molecular weight of the polymer is less than 5000, the adhesiveness of the protective layer before irradiation with active energy rays remains or the solvent resistance is insufficient. I can't. In addition, when it exceeds 50000, the resin viscosity becomes too high, and when it is used in a transfer material, the ink application workability is lowered.
[0016]
There is no limitation in particular as a manufacturing method of a polymer, A conventionally well-known method is employable. For example, (1) a method of introducing a (meth) acryloyl group into a part of a side chain of a polymer containing a hydroxyl group, (2) α, β-unsaturation containing a hydroxyl group in a copolymer containing a carboxyl group A method in which a monomer is subjected to a condensation reaction, (3) a method in which an α, β-unsaturated monomer containing an epoxy group is added to a copolymer containing a carboxyl group, and (4) an epoxy group-containing polymer. There is a method of reacting an α, β-unsaturated carboxylic acid.
[0017]
Taking the method (4) as an example, the method for producing the polymer will be described more specifically. A polymer can be easily obtained by a method of reacting a homopolymer or copolymer of glycidyl (meth) acrylate with an α, β-unsaturated carboxylic acid such as acrylic acid. Examples of the glycidyl (meth) acrylate copolymer include a copolymer of glycidyl (meth) acrylate and an α, β-unsaturated monomer that does not contain a carboxyl group, and does not contain this carboxyl group. Examples of the α, β-unsaturated monomer include various (meth) acrylic acid esters, styrene, vinyl acetate, acrylonitrile and the like. In the case of an α, β-unsaturated monomer containing a carboxyl group, crosslinking occurs during the copolymerization reaction with glycidyl (meth) acrylate, resulting in high viscosity or gelation.
[0018]
In any case, when adopting each of the methods (1) to (4), the conditions such as the type of monomer used and the type of polymer, the amount of these used, etc. are set so as to satisfy the numerical limit range related to the polymer. Must be performed as appropriate.
[0019]
Specifically, the bisbenzotriazole ultraviolet absorber of the above general formula (1) used by adding to the polymer in the present invention is 2,2′-methylenebis [6- (2H-1,2,3-benzoate). Triazol-2-yl) -4- (glycoloyloxyethyl) phenol], 2,2′-methylenebis [6- (2H-1,2,3-benzotriazol-2-yl) -4- (3-hydroxy Propanoyloxyethyl) phenol], 2,2′-methylenebis [6- (2H-1,2,3-benzotriazol-2-yl) -4- (4-hydroxybutanoyloxyethyl) phenol], 2, 2'-methylenebis [6- (2H-1,2,3-benzotriazol-2-yl) -4- (5-hydroxyheptanoyloxyethyl) phenol], 2,2'-methylene [6- (2H-1,2,3-benzotriazol-2-yl) -4- (6-hydroxyhexanoyloxyethyl) phenol], 2,2′-methylenebis [6- (2H-1,2, , 3-Benzotriazol-2-yl) -4- (16-hydroxy-4,11-dioxo-3,10-dioxahexadecyl) phenol], 2,2′-methylenebis [6- (2H-1, 2,3-benzotriazol-2-yl) -4- (23-hydroxy-4,11,18-trioxo-3,10,17-trioxatricosyl) phenol], 2,2′-methylenebis [6- (2H-1,2,3-benzotriazol-2-yl) -4- (30-hydroxy-4,11,18,25-tetraoxo-3,10,17,24-tetraoxahexadecyl) pheno 2,2′-methylenebis [6- (2H-1,2,3-benzotriazol-2-yl) -4- (37-hydroxy-4,11,18,25,32-heptaoxo-3, 10,24,31-heptaoxaheptatriacetyl) phenol] and the like, and these may be used alone or in combination of two or more. Alternatively, it may be used in combination with a commercially available general-purpose ultraviolet absorber, and other polymer additives such as light stabilizers, antioxidants, antistatic agents, plasticizers, flame retardants, fillers, pigments, dyes, and other colors. It can also be used in combination with an agent.
[0020]
The addition amount of the ultraviolet absorber used in the present invention is 2 to 40 parts by weight, preferably 5 to 20 parts by weight with respect to 100 parts by weight of the polymer.
When the added amount of the ultraviolet absorber is 40 parts by weight or more, the wear resistance of the protective layer is impaired, and when the amount is less than 2 parts by weight, sufficient ultraviolet shielding ability cannot be imparted to the protective layer.
[0021]
In the present invention, the polyfunctional isocyanate used in combination with the polymer is not particularly limited, and various known ones can be used. For example, isophorone diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, 1,6-hexane diisocyanate, the above trimer, a prepolymer obtained by reacting a polyhydric alcohol with the above diisocyanate, etc. Can be used. In the present invention, the reason why the polyfunctional isocyanate is used in combination with the polymer is to keep the adhesiveness of the protective layer 2 before irradiation with active energy rays low. In other words, the hydroxyl group contained in the polymer and the hydroxyl group at the end of the polyester chain of the UV absorber are reacted with the isocyanate group of the polyfunctional isocyanate to form a light thermal cross-linked product, thereby imparting the above performance. is there.
[0022]
The use ratio of the polymer and the polyfunctional isocyanate is determined in consideration of the hydroxyl value of the polymer, the number of functional groups of the polyfunctional isocyanate, and the like. Usually, the polyfunctional isocyanate is about 1 to 30 parts by weight with respect to 100 parts by weight of the polymer. is there.
[0023]
Moreover, the cured resin of this invention can contain the following components other than a polymer and polyfunctional isocyanate as needed. That is, reactive diluent monomers, solvents, colorants, and the like. In addition, when an electron beam is used for irradiation with active energy rays, curing can be sufficiently performed without using a photopolymerization initiator, but when using ultraviolet rays, various known photopolymerization initiators are added. There is a need. In addition, the curable resin of the present invention may be used after being colored with a pigment, a dye or the like.
[0024]
When the cured resin of the present invention is used as a protective layer of a molded article, the protective layer is formed by coating methods such as brush coating, dipping method, spray coating method, gravure coating method, roll coating method, comma coating method, There are printing methods such as gravure printing and screen printing.
[0025]
The molded product that can use the coating material containing the cured resin of the present invention as an active ingredient is not limited to plastic, timber, metal, stone, paper, or the like, but is preferably a resin molded product, a woodwork product, or These composite products can be mentioned. Specific examples of the resin include general-purpose resins such as polystyrene resin, polyolefin resin, ABS resin, AS resin, and AN resin. Also, general engineering resins such as polyphenylene oxide / polystyrene resins, polycarbonate resins, polyacetal resins, acrylic resins, polycarbonate-modified polyphenylene ether resins, polyethylene terephthalate resins, polybutylene terephthalate resins, ultrahigh molecular weight polyethylene resins, and polysulfone resins, Super engineering resins such as polyphenylene sulfide resins, polyphenylene oxide resins, polyacrylate resins, polyetherimide resins, polyimide resins, liquid crystal polyester resins, and polyallyl heat-resistant resins can also be used. Furthermore, composite resins to which reinforcing materials such as glass fibers and inorganic fillers are added can also be used. Furthermore, these may be any of transparent, opaque, translucent, colored and non-colored.
[0026]
【Example】
EXAMPLES Hereinafter, although a synthesis example, an Example, a comparative example, etc. are given and this invention is demonstrated further in detail, this invention is not limited to these Examples. .
[0027]
Synthesis example 1
2,2′-methylenebis [6- (2H-1,2,3-benzotriazol-2-yl) -4- (2-) was added to a four-headed flask equipped with a condenser, a nitrogen inlet, a thermometer, and a stirrer. Hydroxyethyl) phenol] (trade name: RUVA-100, manufactured by Otsuka Chemical Co., Ltd.) 129.3 g, ε-caprolactone 170.3 g (manufactured by Daicel Chemical Industries, Ltd.), mono-n-butyltin fatty acid salt (trade name) : SCAT-24, Sansha Co., Ltd. product) 50 ppm was added. When the reaction is carried out for 6 hours while maintaining the reaction temperature at 150 ° C., the desired product has an acid value (mgKOH / g) of 1.8, a viscosity of 2645 cp (60 ° C.), a number average molecular weight of 1391, a weight average molecular weight of 1688 and Mw / Mn = 1.213. 2,2′-methylenebis [6- (2H-1,2,3-benzotriazol-2-yl) -4- (23-hydroxy-4,11,18-trioxo-3,10,17-trio] (Xatricosyl) phenol] was obtained as a viscous oil (98% yield).
[0028]
Synthesis example 2
2,2′-methylenebis [6- (2H-1,2,3-benzotriazol-2-yl) -4- (2-) was added to a four-headed flask equipped with a condenser, a nitrogen inlet, a thermometer, and a stirrer. Hydroxyethyl) phenol] (RUVA-100) 93.7 g, ε-caprolactone 206.3 g (manufactured by Daicel Chemical Industries, Ltd.), and mono-n-butyltin fatty acid salt (SCAT-24) 50 ppm were added. When the reaction is carried out for 6 hours while maintaining the reaction temperature at 150 ° C., the desired product has an acid value (mgKOH / g) of 2.5, a viscosity of 987 cp (60 ° C.), a number average molecular weight of 2017, a weight average molecular weight of 2465, and Mw / Mn = 1.222. 2,2′-methylenebis [6- (2H-1,2,3-benzotriazol-2-yl) -4- (37-hydroxy-4,11,18,25,32-heptaoxo-3,10 , 24,31-heptaoxaheptatriacetyl) phenol] was obtained as a waxy solid (yield 98%).
[0029]
Synthesis example 3
In a reactor equipped with a stirrer, a cooling tube, a dropping funnel and a nitrogen introducing tube, 175 parts of glycidyl methacrylate (hereinafter referred to as GMA), 75 parts of methyl methacrylate (hereinafter referred to as MMA), 1.3 parts of lauryl mercaptan, acetic acid After charging 1000 parts of butyl and 7.5 parts of 2,2′-azobisisobutyronitrile (hereinafter referred to as AIBN), the temperature of the system was increased to about 90 ° C. over about 1 hour under a nitrogen stream. Warmed and kept warm for 1 hour. Next, the mixture is dropped into the system in about 2 hours under a nitrogen stream from a dropping funnel previously charged with a mixture consisting of 525 parts of GMA, 225 parts of MMA, 3.7 parts of lauryl mercaptan and 22.5 parts of AIBN. After keeping the same temperature for 3 hours, 10 parts of AIBN was charged and kept warm for 1 hour. Then, it heated up at 120 degreeC and heat-retained for 2 hours. After cooling to 60 ° C., the nitrogen inlet tube was replaced with an air inlet tube, 355 parts of acrylic acid (hereinafter referred to as AA), 2.0 parts of methoquinone and 5.4 parts of triphenylphosphine were charged and mixed, and then under air bubbling The temperature was raised to 110 ° C. After incubating at the same temperature for 8 hours, 1.4 parts of methoquinone was charged and cooled, and ethyl acetate was added so that the nonvolatile content was 50% to obtain a polymer solution. The polymer contained in the solution had an acrylic equivalent of 270 g / eq, a hydroxyl value of 204, and a weight average molecular weight of 18000 (based on styrene conversion by GPCV).
[0030]
Example 1
The polymer solution 200 of Synthesis Example 3 was prepared by gravure printing on an acrylic resin sheet (trade name: Acrypet VH White, manufactured by Mitsubishi Rayon Co., Ltd.) having a length of 95 mm, a width of 65 mm, and a thickness of 3 mm. Parts by weight (100 parts by weight solids), 10 parts by weight of the UV absorber of Synthesis Example 1, 5 parts by weight of 1,6-hexane diisocyanate trimer (trade name: Coronate HX, manufactured by Nippon Polyurethane Industry Co., Ltd.) and light An active energy ray-curable resin composition containing 5 parts of a polymerization initiator (trade name: Irgacure 184, manufactured by Ciba Specialty Chemicals) was printed and formed as a protective layer so as to have a thickness of 5 μm. Next, after heating at 150 ° C. for 30 seconds to half-crosslink and cure the protective layer, complete curing by ultraviolet irradiation was performed to prepare a molded body coated with the cured resin composition as a protective layer. The ultraviolet irradiation conditions were 120 w / cm, 6 lamps, a lamp height of 10 cm, and a belt speed of 15 m / min.
[0031]
Example 2
The polymer solution of Synthesis Example 3 (200 parts by weight) (solid content: 100 parts by weight) is printed on a 95 mm long, 65 mm wide, 3 mm thick acrylic resin sheet (ACRYPET VH white) using a molded product. An active energy ray-curable resin composition containing 10 parts by weight of the UV absorber of Synthesis Example 2, 5 parts by weight of 1,6-hexane diisocyanate trimer (Coronate HX) and 5 parts of a photopolymerization initiator (Irgacure 184) After forming the protective layer so as to have a thickness of 5 μm, a molded body in which the cured resin composition was coated as the protective layer was prepared in the same manner as in Example 1.
[0032]
Example 3
Using a PET film (trade name: T-60, manufactured by Toray Industries, Inc.) with a thickness of 38 μm as a base sheet, a melamine resin release agent was applied to the thickness of 1 μm on the base sheet by gravure printing. After forming the release layer, 200 parts by weight of polymer solution of Synthesis Example 3 (solid content of 100 parts by weight), 10 parts by weight of UV absorber of Synthesis Example 1, and 1,6-hexane diisocyanate trimer (coronate) A protective layer of an active energy ray-curable resin composition containing 5 parts by weight of HX) and 5 parts of a photopolymerization initiator (Irgacure 184) was formed by a gravure printing method. The thickness of the protective layer was 5 μm. After the protective layer is half-crosslinked and cured by heating at 150 ° C. for 20 seconds, a vinyl chloride-vinyl acetate copolymer (trade name: ESREC A, manufactured by Sekisui Chemical Co., Ltd.) is used as the adhesive layer by the gravure printing method. A transfer material was obtained by sequential printing.
This transfer material was thermally transferred to an acrylic resin sheet (Acrypet VH white) having a length of 95 mm, a width of 65 mm, and a thickness of 3 mm (150 ° C., 30 seconds), and then the PET film was peeled off and irradiated with ultraviolet rays. The ultraviolet irradiation conditions were 120 w / cm, 6 lamps, a lamp height of 10 cm, and a belt speed of 15 m / min.
[0033]
Comparative Example 1
The polymer solution of Synthesis Example 3 (200 parts by weight) (solid content: 100 parts by weight) is printed on a 95 mm long, 65 mm wide, 3 mm thick acrylic resin sheet (ACRYPET VH white) using a molded product. 10 parts by weight of a benzotriazole ultraviolet absorber (trade name: Tinuvin 326, manufactured by Ciba Specialty Chemicals), 5 parts by weight of 1,6-hexane diisocyanate trimer (Coronate HX) and a photopolymerization initiator (Irgacure 184) ) After the active energy ray-curable resin composition containing 5 parts was printed and formed as a protective layer to a thickness of 5 μm, the cured resin composition was coated as a protective layer in the same manner as in Example 1. A molded body was prepared.
[0034]
Comparative Example 2
The polymer solution of Synthesis Example 3 (200 parts by weight) (solid content: 100 parts by weight) is printed on a 95 mm long, 65 mm wide, 3 mm thick acrylic resin sheet (ACRYPET VH white) using a molded product. 10 parts by weight of a benzophenone-based ultraviolet absorber (trade name: Sumisorb 130, manufactured by Sumitomo Chemical Co., Ltd.), 5 parts by weight of 1,6-hexane diisocyanate trimer (Coronate HX) and a photopolymerization initiator (Irgacure 184) After forming the active energy ray-curable resin composition containing 5 parts as a protective layer so as to have a thickness of 5 μm, molding in which the cured resin composition was coated as a protective layer in the same manner as in Example 1 The body was prepared.
[0035]
Table 1 shows the results of measuring the surface hardness and weather resistance of the molded bodies in which the cured resin compositions prepared in Examples 1, 2, and 3 and Comparative Examples 1 and 2 were coated as a protective layer. The surface hardness was measured by pencil hardness under a load of 500 g and scratch resistance with 300 g / cm 2 steel wool. In addition, the weather resistance was observed for 50 hours after exposure with a metal halide lamp (trade name: iSuper UV Tester, Iwasaki Electric Co., Ltd., 75 ° C., UV intensity 100 mW / cm 2 ), and observed for surface crackles and interlayer adhesion. At the same time, the difference (ΔE) between the E value of the acrylic resin plate after exposure for 50 hours and the initial E value (ΔE) was measured (the smaller the ΔE value, the better).
[0036]
[Table 1]
Figure 0004304737
[0037]
As can be seen from the results of the examples in Table 1, by using the active energy ray-curable resin, a molded article having high surface hardness and excellent scratch resistance could be obtained. However, in the case of weather resistance, those containing the ultraviolet absorber of the present invention (Examples 1, 2, and 3) all had excellent weather resistance, whereas a commercially available ultraviolet absorber was used. In Comparative Examples 1 and 2, the metal halide lamp was yellowed or cracked after 50 hours exposure, and it was confirmed that the appearance of the transfer layer was significantly impaired. Therefore, it has been clarified that the cured resin composition of the present invention is very effective for obtaining a molded product excellent not only in mechanical strength but also in weather resistance.
[0038]
【The invention's effect】
In the present invention, the protective layer of the molded body has a (meth) acryl equivalent of 100 to 300 g / eq, a hydroxyl value of 20 to 500, a polymer having a weight average molecular weight of 5,000 to 50,000, a specific ultraviolet absorber, and a polyfunctional isocyanate as active ingredients. Since this protective layer, which is composed of a crosslinking reaction product of the active energy ray-curable resin composition contained therein and is adhered to the surface of the molded article, is cured by irradiation with active energy rays in the subsequent process, it is resistant to abrasion and resistance. A molded product excellent in chemical properties and long-term weather resistance can be easily obtained, and cracks are not generated in the curved surface of the molded product.

Claims (5)

(メタ)アクリル当量100〜300g/eq、水酸基価20〜500、重量平均分子量5000〜50000のポリマー、多官能イソシアネート及び紫外線吸収剤を有効成分として含有する活性エネルギー線硬化性樹脂組成物の熱架橋反応生成物からなる硬化性樹脂組成物であり、紫外線吸収剤が、一般式
Figure 0004304737
〔式中R1 及びR2 はそれぞれ水素原子又は炭素数1〜10のアルキル基を示す。n、n’は4〜8の整数、m、m’は1〜20の整数を示す。〕
で表されるビスベンゾトリアゾール系紫外線吸収剤であることを特徴とする硬化性樹脂組成物。
Thermal crosslinking of an active energy ray-curable resin composition containing, as active ingredients, a (meth) acrylic equivalent of 100 to 300 g / eq, a hydroxyl value of 20 to 500, a polymer having a weight average molecular weight of 5000 to 50000, a polyfunctional isocyanate, and an ultraviolet absorber. It is a curable resin composition comprising a reaction product, and the ultraviolet absorber has a general formula
Figure 0004304737
[Each R 1 and R 2 of the formula represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. n and n ′ represent an integer of 4 to 8, and m and m ′ represent an integer of 1 to 20. ]
A curable resin composition characterized by being a bisbenzotriazole-based ultraviolet absorber represented by the formula:
ポリマーが、グリシジル(メタ)アクリレート系重合体にα,β−不飽和モノカルボン酸を付加反応させてなる反応生成物である請求項第1項記載の硬化性樹脂組成物。The curable resin composition according to claim 1, wherein the polymer is a reaction product obtained by subjecting a glycidyl (meth) acrylate polymer to an addition reaction of an α, β-unsaturated monocarboxylic acid. グリシジル(メタ)アクリレート系重合体が、グリシジル(メタ)アクリレートの単独重合体、又はグリシジル(メタ)アクリレートとカルボキシル基を含有しないα,β−不飽和単量体からなる共重合体である請求項第1項記載の硬化性樹脂組成物。The glycidyl (meth) acrylate polymer is a homopolymer of glycidyl (meth) acrylate or a copolymer composed of glycidyl (meth) acrylate and an α, β-unsaturated monomer not containing a carboxyl group. The curable resin composition according to item 1. 請求項第1〜3項のいずれか1項に記載の硬化性樹脂組成物を有効成分とすることを特徴とした硬化型被覆材料。A curable coating material comprising the curable resin composition according to any one of claims 1 to 3 as an active ingredient. 請求項第1〜3項のいずれか1項に記載の硬化性樹脂組成物を有効成分とする保護層によって被覆された成形体。The molded object coat | covered with the protective layer which uses the curable resin composition of any one of Claims 1-3 as an active ingredient.
JP28038398A 1998-10-01 1998-10-01 Ultraviolet shielding active energy ray curable composition, curable coating material, and molded article coated with them Expired - Lifetime JP4304737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28038398A JP4304737B2 (en) 1998-10-01 1998-10-01 Ultraviolet shielding active energy ray curable composition, curable coating material, and molded article coated with them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28038398A JP4304737B2 (en) 1998-10-01 1998-10-01 Ultraviolet shielding active energy ray curable composition, curable coating material, and molded article coated with them

Publications (2)

Publication Number Publication Date
JP2000109652A JP2000109652A (en) 2000-04-18
JP4304737B2 true JP4304737B2 (en) 2009-07-29

Family

ID=17624265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28038398A Expired - Lifetime JP4304737B2 (en) 1998-10-01 1998-10-01 Ultraviolet shielding active energy ray curable composition, curable coating material, and molded article coated with them

Country Status (1)

Country Link
JP (1) JP4304737B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4310823B2 (en) * 1998-10-01 2009-08-12 荒川化学工業株式会社 Surface protection sheet
JP2008031471A (en) * 2006-07-04 2008-02-14 Arakawa Chem Ind Co Ltd Active energy ray-curable resin composition, active energy ray-curable coating agent composition, cured coated film, and coated film
KR102275295B1 (en) 2017-03-17 2021-07-12 미쯔비시 케미컬 주식회사 Urethane (meth)acrylate polymer
JP7123689B2 (en) * 2018-08-07 2022-08-23 旭化成株式会社 Design parts made of polyacetal resin
CN114381081A (en) * 2020-10-06 2022-04-22 三菱化学株式会社 Resin composition, resin laminate, and molded article

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3714575B2 (en) * 1997-03-26 2005-11-09 ダイセル化学工業株式会社 Ultraviolet absorber, method for producing the same and synthetic resin composition
KR100561603B1 (en) * 1998-07-10 2006-03-16 오츠카 가가쿠 홀딩스 가부시키가이샤 Weather-resistant composition, coating materials and molded articles
JP3585748B2 (en) * 1998-10-01 2004-11-04 日本写真印刷株式会社 Method for producing transfer material and molded article excellent in weather resistance, abrasion resistance and chemical resistance using transfer material
JP3514640B2 (en) * 1998-10-01 2004-03-31 日本写真印刷株式会社 Method for producing molded articles with excellent weather resistance, abrasion resistance and chemical resistance

Also Published As

Publication number Publication date
JP2000109652A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
EP2221175B1 (en) Process for production of transfer sheets excellent in the resistance to burr generation and transfer sheets
JP5857600B2 (en) Decorative sheet and decorative steel plate using the same
US6527898B1 (en) Transfer material, surface-protective sheet, and process for producing molded article with these
WO2013047559A1 (en) Transfer sheet and method for producing transfer sheet
JP2004123780A (en) Active energy ray-curable resin composition
JP2023024478A (en) Ink composition containing t-butyl cyclohexyl (meth)acrylate
JP4304737B2 (en) Ultraviolet shielding active energy ray curable composition, curable coating material, and molded article coated with them
JP2020040869A (en) Resin composition for laminated glass interlayer, laminated glass interlayer, film material for laminated glass interlayer, laminated glass, and laminated glass manufacturing method, image display device, resin composition for impact-resistant member, impact-resistant film and film material for impact-resistant film
WO2012141051A1 (en) Hard coating resin composition having good adhesiveness to pattern layer
JP3640806B2 (en) Transfer foil
JP7058144B2 (en) A curable composition, a film using the curable composition, and a molded product using the film.
JP3585748B2 (en) Method for producing transfer material and molded article excellent in weather resistance, abrasion resistance and chemical resistance using transfer material
JP4771110B2 (en) Protective layer forming sheet and protective layer forming method
JP5708156B2 (en) Three-dimensional decorative sheet, method for producing the decorative sheet, decorative resin molded product, and method for producing the decorative resin molded product
JP3514640B2 (en) Method for producing molded articles with excellent weather resistance, abrasion resistance and chemical resistance
JP3936772B2 (en) Transfer material, surface protection sheet, and method for producing molded article excellent in light resistance, wear resistance, and chemical resistance using the same
JP4310823B2 (en) Surface protection sheet
JP4256119B2 (en) Light-shielding application film, UV curable adhesive film, and application method using the film
JPH07278523A (en) Adhesive composition
JP4389314B2 (en) Coated molded article and manufacturing method thereof
KR20180101031A (en) High gloss coating compoition and films made therefrom
JPH1134248A (en) Coloring and surface protecting sheet and manufacture of colored molding having surface strength
KR101290415B1 (en) Resin composition with excellent energy curing property, method of manufacturing the resin composition and surface protection sheet using the resin composition
JP2004002317A (en) Bisbenzotriazolylphenol compound, ultraviolet light absorber, and composition containing the same
JP4013787B2 (en) Water pressure transfer film and water pressure transfer body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060425

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term