JP4304176B2 - 集積回路装置 - Google Patents

集積回路装置 Download PDF

Info

Publication number
JP4304176B2
JP4304176B2 JP2005253556A JP2005253556A JP4304176B2 JP 4304176 B2 JP4304176 B2 JP 4304176B2 JP 2005253556 A JP2005253556 A JP 2005253556A JP 2005253556 A JP2005253556 A JP 2005253556A JP 4304176 B2 JP4304176 B2 JP 4304176B2
Authority
JP
Japan
Prior art keywords
cache
memory
array
integrated circuit
subarrays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005253556A
Other languages
English (en)
Other versions
JP2006236550A (ja
Inventor
ダグラス・ブレーン・バトラー
オスカー・フレドリック・ジョーンズ,ジュニア
マイケル・シィ・パリス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JP2006236550A publication Critical patent/JP2006236550A/ja
Application granted granted Critical
Publication of JP4304176B2 publication Critical patent/JP4304176B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0893Caches characterised by their organisation or structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40603Arbitration, priority and concurrent access to memory cells for read/write or refresh operations
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40607Refresh operations in memory devices with an internal cache or data buffer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40615Internal triggering or timing of refresh, e.g. hidden refresh, self refresh, pseudo-SRAMs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40618Refresh operations over multiple banks or interleaving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/30Providing cache or TLB in specific location of a processing system
    • G06F2212/304In main memory subsystem
    • G06F2212/3042In main memory subsystem being part of a memory device, e.g. cache DRAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Dram (AREA)

Description

発明の背景
この発明は、一般的に、集積回路記憶装置、および埋込メモリを組込んだ上記装置の分野に関する。より具体的には、この発明は、単一のDRAMキャッシュおよびタグとの関連における同期ダイナミック・ランダム・アクセス・メモリ(DRAM)を採用した、スタティック・ランダム・アクセス・メモリ(SRAM)コンパチブル・高可用性メモリアレイおよび方法(以下SCRAM(SRAMコンパチブル・ランダム・アクセス・メモリ)とも称される)に関する。
SRAMとは、電力が回路に供給される限りリフレッシュの必要なしにデータを維持できる(すなわち「静的(static)」である)種類のメモリ技術である。これは、データを維持するために1秒当たり多数回リフレッシュされなければならない(すなわち「動的(dynamic)」である)DRAMとは対照的なものである。DRAMに対するSRAMの主な利点としては、SRAMではDRAMのようにデータ維持のためにリフレッシュ回路を必要としないということが挙げられる。上記およびその他の理由から、一般的にSRAMのデータアクセス速度はDRAMよりも速い。しかしながら、SRAMは、記憶がバイト単位で行なわれるため、DRAMよりも製造コストが高くなる。その主な理由は、SRAMは一般的に1メモリセル当たり4個、6個またはそれ以上のトランジスタから構成されることから、チップ上でSRAMが占める面積はDRAMよりもはるかに大きくなるからである。これとは対照的に、1個のDRAMセルは一般的に1個のトランジスタおよび1個のキャパシタから構成される。
上述のように、DRAMは、リフレッシュ論理回路によって比較的連続的にアクセスされた場合にのみデータを維持するような構成となっている。この回路は、1秒につき多数回、実効的に各々のメモリセルの内容を読出して各々のメモリセルを再記憶しなければならないが、これは当該メモリセルが現在データ読出動作またはデータ書込動作においてアクセスされているか否かを問わない。各々のセルの内容を読出して再記憶する動作は、その場所にあるメモリ内容のリフレッシュを目的としたものである。
DRAMの利点としては、その構造が極めて単純であり、各々のセルが典型的に単一の小さなキャパシタおよび対応のパストランジスタのみから構成されることが挙げられる。上記キャパシタは電荷を維持するものであり、電荷が存在すれば論理レベル「1」が示される。逆に、電荷が存在しなければ、論理レベル「0」が記憶されていることになる。トランジスタは、イネーブルされたとき、キャパシタの電荷を読出すまたはこれへのデータビットの書込を可能にするよう働く。しかしながら、これらキャパシタは、記憶密度をできるだけ大きくするために極めて小型化され、最も好ましい条件下でも電荷を短期間しか保持できないことから、連続的にリフレッシュされなければならない。
その際、基本的には、リフレッシュ回路は、実効的にDRAMアレイ内の各々のセルの内容を読出し、電荷が漏れ出てデータ状態が失われる前に各々のセルを新鮮な「電荷」でリフレッシュするよう働く。一般的に、この「リフレッシュ」を行なうには、メモリアレイ内の各々の「行」を読出して再記憶する。こうして、各々のメモリセルキャパシタの内容の読出および再記憶のプロセスによって、電荷ひいてはデータ状態が再確立される。
上記に鑑み、DRAMにおけるメモリ密度の利点が得られるとともに、通常のメモリ読出/書込データアクセスの妨げとならないようにリフレッシュ動作(隠れリフレッシュ)
同士を調整することによって、SRAMに匹敵するメモリアクセス回数を得ることのできるメモリ設計を提供することが極めて有利であろう。この観点から、現在に至るまでに、同期DRAM(SDRAM。すなわち、クロックのエッジに対して相対的に、「有効」または「無効」の信号によってメモリ動作が制御されるメモリ)と、クロックの同期を用いない非同期DRAMとの両方において、DRAMリフレッシュ動作を隠すいくつかの方策が提案されている。
非同期メモリリフレッシュ隠し技術
ノガミ(Nogami)他による論文、「1Mbitの事実上静的なRAM(1-Mbit Virtually Static RAM)」、IEEE固体回路誌(IEEE Journal of Solid-State Circuits)、SC−21巻、第5号、1986年10月、662−667頁、においては、非同期DRAMにおいてリフレッシュ動作を隠すための特定の方法が記載されているが、666m頁の表IVに示すように、これは(非同期)SRAMと完全に両立可能ではない。加えて、その実現においてはアクセス時間およびサイクル時間についてかなりのペナルティが生じる。
これとは別に、ヨシオキ(Yoshioki)他による論文、「4Mbの擬似/事実上のSRAM(4Mb Pseudo/Virtually SRAM)」、1987年IEEE国際固体回路会議、技術論文摘要(IEEE International Solid-State Circuits Conference, Digest of Technical Papers)、20−21頁、および1987年ISSCC、320−322頁、においては、アドレスアクセス時間を60nSから95nSに実効的に延長するリフレッシュ隠し方法が記載されているが、その結果として生じる性能上のペナルティは許容できないほど大きなものである。
2003年9月23日にチェン(Chen)に対して発行された米国特許第6,625,077号、「半導体メモリの非同期的な隠れリフレッシュ(Asynchronous Hidden Refresh of Semiconductor Memory)」においては、非同期DRAMにおいて、すべての読出または書込サイクルを「引伸ばす(stretch)」ことによってリフレッシュ動作を隠す方法が記載されている。この技術を実現することで生じる正確な性能ペナルティは開示されていないが、かなりのものと考えられる。
同様に、2003年9月3日にキース(Keeth)他に対して発行された米国特許第6,445,636号、「ダイナミック・ランダム・アクセス・メモリにおいてリフレッシュを隠す方法およびシステム(Method and System for Hiding Refreshes in a Dynamic Random Access Memory)」においては、メモリセルの数を2倍にすることでDRAMリフレッシュを隠す方法が記載されているが、その結果、必要なシリコン面積が事実上2倍になる。この特許で示される方法では、許容できないほど大きなコスト上のペナルティが生じる。
同期メモリリフレッシュ隠し技術
1999年12月7日にリョン(Leung)他に対して発行された米国特許第5,999,474号、「半導体メモリのリフレッシュを完全に隠す方法および装置(Method and Apparatus for Complete Hiding of the Refresh of a Semiconductor Memory)」(以下「’474号特許」とも称される)においては、DRAMサブアレイと同じサイズのスタティックRAM(SRAM)キャッシュなどを利用してSDRAM(これは図4のCLK信号から推測される)のようなものにおいてリフレッシュを隠す方法が記載されている。上述のように、SRAMセルはDRAMセルよりもはるかに大きいため、SRAMキャッシュの物理的なサイズは、この特許に示す方法の実現においてかなりのペナルティとなるであろう。2002年9月10日にリョンに対して発行された米国特許第6,449,685号、「半導体メモリのリフレッシュを完全に隠すための読出/書込バッファおよびそ
の動作方法(Read/Write Buffers for Complete Hiding of the Refresh of a Semiconductor Memory and Method of Operating Same)」(以下「’685号特許」とも称される)においては、SRAMキャッシュに代えて同じサイズのDRAMキャッシュ2個を用いることによってSRAMキャッシュのサイズの問題に対処している。これら2個のDRAMキャッシュは、図5においては書込バッファおよび読出バッファと呼ばれているが、これは誤解を与えるものであろう。各々のバッファは図1に示すSRAMキャッシュと同じ容量を有しており、現実にはキャッシュである。
’474号特許および’685号特許のいずれにおいても、キャッシュは一時に多数のサブアレイからのデータを含み得る。このため、タグSRAMメモリに対してサイズ上の要件が課されるが、これは、1サブアレイ内のワード数(1ワードは1アドレス当たりのビット数に等しい)を(2+各々のサブアレイを一意にアドレス指定するために必要なビット数)に乗じたものに等しい。これらの特許に記載の方法に対するもう1つの根本的な制約として、SRAMキャッシュがライトバックポリシーを実現していることから、すべての書込データがメモリバンクへの書込前にまずSRAMキャッシュに書込まれ、外部データバスに与えられるすべての読出データがSRAMキャッシュに記憶されるということがある。キャッシュに書込まれるデータは最終的にサブアレイに書込まれることになるため、キャッシュへの書込によって、リフレッシュを隠さないDRAMであれば必要でない電力が消費されてしまう。キャッシュはDRAMサブアレイよりも1アクセス当たりに多くの電力を消費することが予想されるため、上述のようにキャッシュに書込を行なってからサブアレイに書込をした場合、書込のためのアレイ電力は2倍以上になることが予想される。ランダム読出については、64の読出のうち63はミスとなる。また、サブアレイの読出およびキャッシュへの書込によっても、64回のうち63回で電力が2倍以上になることが予想される。アキヤマ(Akiyama)他に対する米国特許出願連続番号第2003/0033492号「マルチバンクDRAMおよびキャッシュメモリを伴う半導体装置(Semiconductor Device with Multi-Bank DRAM and Cache Memory)」は、’685号特許に記載のものと極めて類似する。
一般的に、非同期DRAMおよび同期DRAMにおいてリフレッシュ動作を隠すための公知の技術の主な問題点として、所望より大きいタグ容量に加えて、SRAMキャッシュか、2つのDRAMキャッシュか、のいずれかが必要となることが挙げられる。
発明の概要
本願明細書においては、同期ダイナミック・ランダム・アクセス・メモリ(DRAM)を採用した、スタティック・ランダム・アクセス・メモリ(SRAM)コンパチブル・高可用性メモリアレイおよび方法(以下SCRAM(SRAMコンパチブル・ランダム・アクセス・メモリ)とも称される)であって、ただ1つのDRAMキャッシュおよび従来技術で利用されるよりも小さなタグを伴うDRAMメモリセルを含むメモリアレイにおいて100%のメモリシステム可用性が可能となるものが開示される。
具体的には、この発明のメモリアレイおよび方法においては、所与の時間においてただ1つのサブアレイからのデータを「ミラーリング(mirror)」するキャッシュが用いられる。これと対照的に’474号特許および’685号特許に記載される技術では、任意のまたはすべてのサブアレイからのデータが並行してキャッシュ内に存在することがあり、キャッシュがサブアレイを「ミラーリング」する概念は開示されていない。’474号特許および’685号特許に記載のように、キャッシュ内のどのデータが有効かを追跡するタグは、当該データが有効であるか否かを示す1ビットと、当該アレイ内の無効データを
示す2番目のビットと、サブアレイアドレスが入るのに十分な数のビットとを有していなければならない。たとえば、サブアレイが16個存在する場合、サブアレイアドレスのために4ビットさらに必要となり、タグの容量が6Xだけ増大する。この発明に従うと、どのサブアレイが「ミラーリング」されているかについての情報が4ビットレジスタに入っており、無効アレイデータを示すためのタグビットは必要ではない。
また、この発明に従うと、キャッシュは、サブアレイ内のDRAMメモリセルの数に等しい数のDRAMメモリセルから構成されることが有利である。’474号特許においては、キャッシュは、サブアレイ内のDRAMメモリセルの数に等しい数のSRAMメモリセルを含み、’685号特許においては、2つのキャッシュが用いられて、その各々が、サブアレイ内のDRAMメモリセルの数に等しい数のDRAMメモリセルを有する。さらに、各々のサブアレイにリフレッシュカウンタを設ける’474号特許および’685号特許に記載の実現例とは異なり、この発明は単一のリフレッシュカウンタを用いて実現され得る。
本願明細書中でこの発明の或る特定の実現例において開示されるように、DRAMアレイ(複数のサブアレイすべてを含む)は2本のアドレスバスを有し、一方のアドレスバスは外部アドレス専用とされ、他方のアドレスバスは、リフレッシュアドレスまたはライトバックアドレスのいずれか一方のために用いられ得る。さらに、この発明のDRAMアレイには、バスごとに特定のイネーブル(活性化)コマンドが発行される。換言すると、アレイ内の1本のワード線が「ハイ」に駆動されるのは、そのアレイアドレスが当該バス上にあり、このバスに対してイネーブルが発行された場合に限られる。’474号特許および’685号特許の技術は、各々のサブアレイにつき1つのイネーブルコマンドを用いるものと思われる。
この発明に従うと、DRAMメモリセルから構成されたメモリの、システムアクセスに対する可用性は、100%にまで上昇する。100%の可用性を達成しデータ損失を防ぐために、システムアクセスについてのあらゆる組合せにつきDRAMメモリセルのリフレッシュが可能でなければならない。多数の独立に動作可能なサブアレイを用いることでほとんどのアクセスシーケンスにおいてリフレッシュが可能にされる一方で、キャッシュを用いて、多数の独立に動作可能なサブアレイのうちリフレッシュが要求されるサブアレイを一時的にミラーリングすることによって、リフレッシュがあらゆるアクセスシーケンスにつき確保される。本願明細書においては、キャッシュは、サブアレイからのデータの一部またはすべてを記憶するために用いられているときに、このサブアレイを「ミラーリング」していることとする。本願明細書で開示されるこの発明の実施例においては、キャッシュは、サブアレイの内容全体を記憶することが可能である。
キャッシュ内に入っているデータに対する読出要求によって、リフレッシュが要求されるサブアレイをリフレッシュすることが可能であるが、それはデータをキャッシュから読出すことができ、リフレッシュを必要としているサブアレイアドレスをリフレッシュすることができるからである。リフレッシュが要求されているサブアレイへの書込をキャッシュに記憶させることができ、こうしてサブアレイへのリフレッシュが可能となる。タグを用いてキャッシュ有効データを追跡し、制御論理回路を用いて、キャッシュに対する読出と、キャッシュへの書込と、キャッシュからミラーリングされたサブアレイへのライトバックとを管理する。キャッシュ内のデータがサブアレイにライトバックされた後、キャッシュは異なるサブアレイをミラーリングすることができる。
本願明細書で用いられる場合には以下の定義を適用することとする。
[リフレッシュポインタ]−リフレッシュは、リフレッシュポインタ内に入っているア
ドレスに基づいてサブアレイのうちの1つまたはキャッシュに対して行なわれる。サブアレイが16個ある場合、サブアレイアドレスはa<3:0>の組合せであり得る。キャッシュアドレスは、a<4>がセットされた場合には次のリフレッシュアドレスであり得る。この例では、リフレッシュポインタは通常00000から10000までカウントすることができるが、10000から00000へ増分することもできる。
[ミラーリングされたサブアレイポインタ]−キャッシュによってミラーリングされているサブアレイのアドレスが入っている。サブアレイが16個ある場合、サブアレイアドレスはsa<3:0>とすることができ、ミラーリングされたサブアレイポインタにはsa<3:0>の1組合せが入っていることになる。
[行リフレッシュアドレス]−リフレッシュされるべきキャッシュまたはサブアレイ内の行のアドレスであって、リフレッシュカウンタにより生成される。キャッシュ内および各々のサブアレイ内に64行(ワード線)ある場合、行アドレスはra<0:5>であり得る。
[リフレッシュアドレス]−リフレッシュアドレスには、リフレッシュポインタおよび行リフレッシュアドレスが入っている。
[リフレッシュ要求]−制御論理ブロックによりセットされる信号であって、リフレッシュが要求されたことを示す。リフレッシュされるべき正確な行はリフレッシュアドレスによって特定される。本願明細書に開示される代表的な実施例においては、サブアレイのうちの1つまたはキャッシュの中のすべての行がリフレッシュされた後、リフレッシュ要求信号はリセットされる。
[ミラーリング]−アクセスされたサブアレイをキャッシュが「ミラーリング」しておりかつリフレッシュがこのサブアレイに対して要求されている場合、データがキャッシュに転送されることになる。キャッシュは、サブアレイから読出されるデータまたはそこに書込まれるデータの一部またはすべてをキャッシュするために利用可能であるとき、サブアレイをミラーリングしていることになる。キャッシュがミラーリングしているサブアレイが変化するのは、キャッシュクリア動作が完了した場合のみである。タグにはサブアレイアドレス情報が入っていないため、キャッシュは一度にただ1つのサブアレイからの有効データを有することが許されている。
[ライトバックサイクル]−リフレッシュ要求信号が活性であり、リフレッシュポインタにより指し示されるサブアレイに対してアクセス(読出または書込)がなされており、かつミラーリングされたサブアレイポインタアドレスがリフレッシュポインタアドレスでない場合、ライトバックサイクルが開始される。タグにはキャッシュにおける各々のデータワードにつき1ビットが入っている(データワードは、たとえば、単一のキャッシュアドレスによりアドレス指定されるビットの数として定義される)。セットされたタグビットは、このタグビットに対応するデータワード場所にあるキャッシュ内の有効データを示す。
データ転送を実行するには、タグビットを検査して、もしセットされていればこのタグビットをリセットし、このタグビットに対応するデータを適当なサブアレイに転送する。これを、各々のタグビットにつき、1ライトバックサイクル当たり1タグビットで繰返す。ライトバックアドレスカウンタは、検査されるべきタグアドレスを供給する。ライトバックアドレスカウンタがゼロから最大値まで増分したとき、各々のタグビットは検査されており、かつすべての有効データはキャッシュから適当なサブアレイに転送されており、したがってキャッシュクリア動作は完了している。それから、ミラーリングされたサブア
レイポインタが新たなサブアレイにセットされ得る。
ミラーリングされたサブアレイポインタにより示されるサブアレイアドレスは、リフレッシュポインタにより示されるとおりにリフレッシュされるべきサブアレイにリセットされることになる。リフレッシュポインタが、キャッシュクリア動作中に、ミラーリングされたサブアレイポインタアドレスにまで増分すれば、ライトバックアドレスカウンタがリセットされ、キャッシュクリア動作は停止される。ライトバックアドレスカウンタのリセットが済んでいるため、キャッシュクリア動作が停止された時点でライトバックアドレスカウンタのアドレス電流よりも低いライトバックアドレスカウンタアドレスでキャッシュにロードされたデータは、次のキャッシュクリア動作の開始時に適当に処理されることになる。
本願明細書で開示するこの発明についての特定の実施例においては、同期DRAM装置またはその他埋込SDRAMを採用した集積回路装置であって、制御論理ブロック、DRAMキャッシュ、タグ、ライトバックアドレスカウンタ、および特定のデータ/アドレスバスを組込んだものが提供される。したがって、動作および設計において、低コストのDRAMメモリセルを利用して構成されたメモリアレイであって、100%の時間においてシステムアクセスに対して利用可能でありかつ、データロスを防ぐのに十分な頻度でDRAMメモリセルに対するリフレッシュを実行することのできるメモリアレイが提供される。この発明のSCRAMは、読出要求または書込要求に対する応答のために常に利用可能であり、起こる可能性は低いが連続してアクセスが起こった場合でも、データ損失を引起こすほど長期間にわたりリフレッシュが妨げられることはない。
本願明細書に開示される代表的なSCRAMは多数のメモリサブアレイを含む。いずれのサブアレイも、その他任意のサブアレイの外部からの読出または書込と同時にキャッシュから書込またはリフレッシュ可能である。SCRAMがn個のサブアレイを含む場合、サブアレイxが外部から読出または書込されると、上記n個のサブアレイのうちx以外のいずれもキャッシュから書込またはリフレッシュ可能である。1個のサブアレイに対して外部アクセスが連続的になされた場合、このサブアレイに対するリフレッシュが妨害を受ける可能性がある。この生じ得る妨害をSCRAMが軽減するよう機能する態様について、以下のケース1〜6において概説する。
[ケース1a]
(サブアレイ<x>への連続的な読出、キャッシュはサブアレイ<x>をミラーリング)
サブアレイ<x>への連続的な読出は、サブアレイ<x>のリフレッシュを妨害することになる。サブアレイ<x>のリフレッシュは、サブアレイ<x>から要求されたデータがキャッシュにおいても利用可能な場合に可能にされ得る。サブアレイ<x>からのデータは、これが外部に読出されるサイクルにおいてキャッシュへ転送され得る。どのデータが当該キャッシュ内で利用可能かを記録するためのタグが設けられる。データがキャッシュに転送されたとき、このデータに対応するタグビットがセットされる。サブアレイ<x>から要求されたデータが最終的にキャッシュ内でも利用可能となることを確実にするために、キャッシュはそのサイズにおいてサブアレイ<x>に等しいものでなければならない。キャッシュヒットが起こったときに限り、データがキャッシュから読出され、サブアレイ<x>がリフレッシュされる。
[ケース1b]
(サブアレイ<x>への連続的な読出、キャッシュはサブアレイ<x>をミラーリングせず)
サブアレイ<x>への連続的な読出は、サブアレイ<x>のリフレッシュを妨害するこ
とになる。サブアレイ<x>からのデータは、ライトバックサイクルが実行されるまではキャッシュに転送され得ない。アクセスされているのはサブアレイ<x>のみであり、かつキャッシュがサブアレイ<x>をミラーリングしていないため、上述のようなライトバックサイクルが、上記連続的な読出中において各々のクロックサイクルで実行され得る。上述のようにキャッシュクリア動作が完了し、かつミラーリングされたサブアレイポインタがサブアレイ<x>にセットされると、ケース1bはケース1aになる。
[ケース2a]
(サブアレイ<x>への連続的な書込、キャッシュはサブアレイ<x>をミラーリング)
サブアレイ<x>への書込は、その代わりに単にキャッシュに書込まれ、タグビットはセットされる。したがって、リフレッシュがサブアレイ<x>において可能となる。
[ケース2b]
(サブアレイ<x>への連続的な書込、キャッシュはサブアレイ<x>をミラーリングせず)
サブアレイ<x>への書込は、キャッシュクリア動作が完了するまでは代わりにキャッシュに書込まれ得ない。アクセスされているのはサブアレイ<x>のみであり、かつキャッシュがサブアレイ<x>をミラーリングしていないため、上述のようなライトバックサイクルが各々のクロックサイクルにおいて実行され得る。上述のようにキャッシュクリア動作が完了し、かつミラーリングされたサブアレイポインタがサブアレイ<x>にセットされると、ケース2bはケース2aになる。
[ケース3]
(サブアレイ<x>への連続的な読出または書込)
サブアレイ<x>に対する読出および書込の混合したものは、上述のケース1およびケース2を単に組合わせたものとして取扱われることになる。
[ケース4]
(キャッシュ読出中におけるキャッシュへのリフレッシュ要求信号)
キャッシュヒットを伴なう連続的な読出の場合、キャッシュへのリフレッシュは妨害される。この場合、データはキャッシュから読出されて、さらに適当なサブアレイに転送され、タグビットはクリアされる。各々のタグビットにつき1サイクルだけリフレッシュを遅延させることができる。この後、タグの「ミス」は確実なものとなっており、リフレッシュが生じることになる。
[ケース5]
(キャッシュ書込中のキャッシュへのリフレッシュ要求信号)
書込の場合、データは適当なサブアレイに書込まれ、タグビットはクリアされる。リフレッシュはこのサイクルにおいて可能となっている。
[ケース6]
(SCRAMはアクセスされず)
リフレッシュは、リフレッシュ要求信号が活性である場合に可能となっている。
上述のケース1およびケース2より、キャッシュ内のデータについての最悪の事態においては、リフレッシュはタグビットの数の2xに等しいサイクル数だけ遅延され得ることがわかる。サブアレイ<x>のアクセスパターンについて、或るリフレッシュ要求信号において遅延がなくかつ次のリフレッシュ要求信号において2048サイクルの遅延があるようなアクセスパターンの場合、リフレッシュ要求信号タイミングはこれを考慮に入れな
ければならない。たとえば、クロック周期が5.0nS(200MHz)でありかつタグが2048ビットを含む場合、これは10.24μSの遅延となる可能性がある。メモリが64mSのリフレッシュ時間の可能なもの(商用DRAMで典型的)である場合、リフレッシュ要求信号タイミングは、およそ63.9897mSにおいてすべてのアレイをリフレッシュするように設定されなければならない。
添付の図面と関連させながら以下の好ましい実施例の説明を参照することによって、この発明についての上記およびその他の特徴および目的、ならびにこれを達成する態様がより明らかとなり、この発明自体が最もよく理解されるであろう。
代表的な実施例の説明
まず図1を参照して、従来のメモリ100の機能ブロック図であって、そのデータおよびアドレスバスを例示するものであり、リフレッシュ動作が隠されていない場合の図を示す。従来のDRAMメモリ100は、その主要部分において、図示のように16個の別個の64Kサブアレイ1040〜10415(サブアレイ<0>〜サブアレイ<15>)を含む1メガメモリアレイ102を含む。
これらさまざまなサブアレイ1040〜10415には、グローバルデータ読出/書込バス108を介してデータ入力/出力(I/O)ブロック106が結合される。サブアレイ1040〜10415内の記憶場所は、アドレスバス110またはリフレッシュアドレスを用いてアドレス指定され、これは、アドレスバス110に結合されたバス114においてリフレッシュアドレスを出力するリフレッシュカウンタ112によって決定される。メモリアレイ102内で読出または書込されるべきアドレスは、アドレスバス116(A<14:0>)においてアドレス制御ブロック118への入力として入力され、これはアドレスバス110に結合される。メモリアレイ102から読出されたデータまたはここに書込まれるべきデータは、データI/Oブロック106に結合されたデータバス120に供給される。
ここに図示する従来のDRAMメモリ100においては、DRAM装置または埋込DRAMメモリで典型的なデータおよびアドレスバスが示してある。典型的なDRAMは、1つのサブアレイ104をリフレッシュしながらこれと並行して異なるサブアレイ104でリフレッシュ動作を実行することが不可能であるが、それは、外部アクセスについてのアドレス制御ブロック118からの外部アドレスと、リフレッシュカウンタ112からのバス114におけるリフレッシュアドレスとの両方を伝達するために単一のアドレスバス110が用いられるからである。
次に図2を参照して、この発明の第1の実現例に従うメモリ200の機能ブロック図であって、そのデータおよびアドレスバスを例示するものであり、サブアレイおよびキャッシュのリフレッシュが外部からのアクセスの任意の組合せと並列的に実行可能である場合の図を示す。
メモリ200は、図示する特定の実現例においては、16個の64Kサブアレイ2040〜20415(サブアレイ<0>〜サブアレイ<15>)を含む1メガメモリアレイ202を含む。64K DRAMキャッシュ208およびサブアレイ2040〜20415には、グローバルデータ読出/書込バス210を介してデータI/Oブロック206が結合される。さらに、キャッシュ読出・アレイ書込バス244が、キャッシュ208を64Kサブアレイ2040〜20415に結合する。キャッシュ書込バス212が、データI/Oブロック206とDRAMキャッシュ208とを結合する。なお、DRAMキャッシュ208は、サブアレイ2040〜20415の各々と同じサイズである。
サブアレイ2040〜20415の各々にはアレイ内部アドレスバス214が結合され、メモリ200に供給されるアドレスは、アドレス制御ブロック220に結合されたアドレスバス216(A<14:0>)に入力される一方で、メモリ200から読出されるデータまたはそこに入力されるデータは、データI/Oブロック206に結合されたデータI/Oバス218において供給される。さらに、アドレス制御ブロック220に結合された外部アドレスバス222が、サブアレイ2040〜20415の各々に結合されるとともに、64K DRAMキャッシュ208およびタグアドレスバス226にも結合され、このタグアドレスバスは、ここに示す実現例では2KのSRAMを含み得るタグブロック224に結合される。
リフレッシュカウンタ228がリフレッシュアドレスバス230に結合され、このリフレッシュアドレスバスは、アレイ内部アドレスバス214に結合されるとともに、キャッシュ内部アドレスバス232にも結合される。DRAMキャッシュ208は、キャッシュ内部アドレスバス232および外部アドレスバス222の両方に結合される。ライトバックカウンタ234がライトバックアドレスバス236に結合され、このライトバックアドレスバスは、アレイ内部アドレスバス214、キャッシュ内部アドレスバス232およびタグアドレスバス226に結合される。
本図においては、この発明のSCRAMにおいて利用される追加のデータおよびアドレスバスも示される。2本のアドレスバスが、アレイ内部アドレスバス214および外部アドレスバス222の形態を取って、1メガメモリアレイ202のために働く。アレイ内部アドレスバス214は、ライトバックアドレスおよびリフレッシュアドレス間で多重化される。外部アドレスバス222は多重化される必要はないが、アドレス制御ブロック220からの外部供給されたアドレスを常にアサートする。DRAMキャッシュ208のためには、外部アドレスバス222およびキャッシュ内部アドレスバス232が働く。キャッシュ内部アドレスバス232は、ライトバックアドレスおよびリフレッシュアドレス間で多重化される。タグ224のためには、外部アドレスおよびライトバックアドレス間で多重化されるタグアドレスバス226のみが働く。キャッシュ書込バス212によって、データI/Oブロック206内にあって1メガメモリアレイ202から読出されたデータをDRAMキャッシュ208に書込むことが可能となっている。DRAMキャッシュ208が読出動作のためにアクセスされた場合でも、キャッシュ読出・アレイ書込バス244はグローバルデータ読出/書込バス210と同じサイクルで動作することができる。
さらに、図3を参照して、この発明の第1の実現例に従うメモリ300の機能ブロック図であって、メモリアレイ内でリフレッシュ動作を隠すために用いられる制御論理回路および制御信号を含めたものを示す。
メモリ300は、図示する代表的な実現例において、16個の64Kサブアレイ3040〜30415(サブアレイ<0>〜サブアレイ<15>)を含む1メガメモリアレイ302を含む。64K DRAMキャッシュ308およびサブアレイ3040〜30415には、グローバルデータ読出/書込バス310を介してデータI/Oブロック306が結合される。キャッシュ読出・アレイ書込バス344がDRAMキャッシュ308をサブアレイ3040〜30415に結合する。キャッシュ書込バス312がデータI/Oブロック306とDRAMキャッシュ308とを結合する。先と同様、DRAMキャッシュ308はサブアレイ3040〜30415の各々と同じサイズにされる。
サブアレイ3040〜30415の各々にはアレイ内部アドレスバス314が結合され、メモリ300に供給されるアドレスは、アドレス制御ブロック320に結合されたアドレスバス316(A<14:0>)に入力される一方で、メモリ300から読出されたデー
タまたはそこに入力されるデータは、データI/Oブロック306に結合されたデータI/Oバス318において供給される。さらに、アドレス制御ブロック320に結合された外部アドレスバス322が、サブアレイ3040〜30415の各々および64K DRAMキャッシュ308に結合されるとともにタグアドレスバス326に結合され、このタグアドレスバスは、ここに示す実現例では2KのSRAMを含み得るタグブロック324に結合される。
リフレッシュカウンタ328がリフレッシュアドレスバス330に結合され、リフレッシュアドレスバス330は、アレイ内部アドレスバス314に結合されるとともにキャッシュ内部アドレスバス332に結合される。DRAMキャッシュ308は、キャッシュ内部アドレスバス332および外部アドレスバス322の両方に結合される。ライトバックカウンタ334がライトバックアドレスバス336に結合され、ライトバックアドレスバス336は、アレイ内部アドレスバス314、キャッシュ内部アドレスバス332およびタグアドレスバス326に結合される。
ここに例示するこの発明の特定の具体的な実現例においては、メモリ300はさらに制御論理ブロック338を含む。制御論理ブロック338は、その入力として、チップイネーブルバー(CEB)、書込イネーブルバー(WEB)およびクロック(CLK)の信号入力を受ける一方、ライトバックカウンタ334およびリフレッシュカウンタ328に「増分」および「リセット」の入力を与える。図示のように、制御論理ブロック338はさらに、外部アドレスバス322に結合される。
また、制御論理ブロック338は、アレイイネーブル外部アドレス信号線340と、サブアレイ3040〜30415の各々に結合されたアレイイネーブル内部アドレス信号線342とを駆動する。ライトバックカウンタ334の出力は制御論理ブロック338にも与えられる。制御論理ブロック338からは、キャッシュイネーブル・外部アドレス信号およびキャッシュイネーブル・キャッシュアドレス信号がDRAMキャッシュ308に与えられ、制御論理ブロック338はさらに、タグ書込データ信号およびタグイネーブル信号をタグ324に与える。図示のように、タグ324はタグ読出データ信号を制御論理ブロック338に与える一方、リフレッシュカウンタ328はリフレッシュアドレス信号を出力する。
ここでは、メモリ300の形態を取る1Mb SCRAMの特定の実現例のブロック図が示してある。1メガメモリアレイ302は16個のサブアレイ304を含む。各々のサブアレイ304は、64Kのメモリ容量のための64本のワード線および1024個のセンスアンプを含む。DRAMキャッシュ308もまた、64Kのメモリ容量のための64本のワード線および1024個のセンスアンプを含む。したがって、各々のサブアレイ304は、64K/32または2K 32ビットワードのデータを含む。データI/Oブロック306は、32ビット幅のグローバルデータ読出/書込バス310を介して、16個のサブアレイ304のいずれかまたはDRAMキャッシュ308から読出またはそこへ書込することができる。データはデータI/Oバス318を介してSCRAMに入出力される。
アドレス線316上のアドレスA<14:0>は、アドレス制御ブロック320を介してSCRAMに入力される。4ビット(たとえばA<14:11>)を用いて16個のサブアレイ304のうち1つを選択し、6ビット(たとえばA<10:5>)を用いてサブアレイ304内の64本のワード線のうち1本を選択し、5ビット(たとえばA<4:0>)を用いて、1本のワード線に沿ってある1024個のセンスアンプのうち32個を選択する。アドレス制御ブロック320は、必要に応じてアドレスA<14:0>をラッチおよび/またはプリデコードすることを可能にする。
ここに図示する特定の実現例においては、タグアドレスバス326は、このアドレスフィールドのうちのA<10:0>のみを利用するが、それは、キャッシュ308がミラーリングしているサブアレイアドレスが、ミラーリングされたサブアレイポインタ(図示せず)の中に入っているからである。タグアドレスバス326はまた、ライトバックカウンタ334からライトバックアドレスを受入れるように多重化されてもよい。ライトバックカウンタ334は、11ビットのライトバックアドレスを生成し、したがって再帰的に0から2047までカウントする。また、制御論理ブロック338からライトバックカウンタ334をリセットすることも可能となっている。バス336におけるライトバックアドレス、またはバス330におけるリフレッシュアドレスは、キャッシュ内部アドレスバス332へ多重化され得る。キャッシュ308へのアクセスは、制御論理ブロック338からのキャッシュイネーブル・外部アドレス信号またはキャッシュイネーブル・キャッシュアドレス信号のいずれか一方を用いて行なうことができる。
図示しない読出/書込データバス制御を行なうための信号は、制御論理ブロック338内で生成されて、データI/Oブロック306、キャッシュ308そして1メガメモリアレイ302に送られる。アレイイネーブル・外部アドレス信号線340またはアレイイネーブル・内部アドレス信号線342のいずれか一方によって、16個のサブアレイ304のうちの各々をイネーブルすることができる。これら信号は両方とも16個のサブアレイ304すべてに供給され、このアドレスバスについてのイネーブルによりアドレス指定されるサブアレイ304のみが活性化される。
動作においては、信号CEBが「ロー」になると、それは読出または書込サイクルを示し、信号WEBが「ロー」になると、それは、CEB信号もまた「ロー」の場合に制御論理ブロック338への書込サイクルを示す。制御論理ブロック338はさらに、リフレッシュ要求信号を出力するためのタイマまたはカウンタを含む。
次に図4を参照して、この発明に従うメモリの隠れリフレッシュ動作400の代表的な状態図であって、リフレッシュ要求信号が「非活性」(たとえば論理レベル「ロー」)のものを示す。402でのCLK信号に伴ない、該当するSCRAMへのアクセスが読出動作であるか否かについての決定404が開始する。上記アクセスが読出である場合、決定406において、キャッシュ内のデータを読出すべきか否かについての判断がなされる。YESの場合、408にてキャッシュが読出され、そうでなければ410でアレイが読出される。
404で上記アクセスが読出でないと判断された場合、412にて、上記アクセスが書込であるか否かについての決定がなされる。書込でない場合、動作なし(NOOP)が示される。上記アクセスが書込である場合、414にてアレイが書込まれ、そして416にて、上記書込がキャッシュされたサブアレイへの書込であるか否かについての決定がなされ、該当する場合には418でタグビットがリセットされる。
さらに図5を参照して、この発明に従うメモリの隠れリフレッシュ動作500の代表的な状態図であって、リフレッシュ要求信号が「活性」(たとえば論理レベル「ハイ」)のものを示す。ここでもまた、502におけるCLK信号に伴ない、SCRAMへのアクセスが読出動作であるか否かについての決定504が開始される。上記アクセスが読出である場合、決定506にて、上記読出により要求されたデータがキャッシュ内にあるか否かについての判断がなされる。YESであれば、508にてキャッシュが読出され、510にて、要求されたリフレッシュ動作が上記キャッシュに対してのものであるか否かについての決定がなされる。YESであれば、512にて、キャッシュからアレイが書込まれ、タグビットがリセットされる。NOの場合、514にて、リフレッシュ動作が実行される
決定506で、読出データがキャッシュ内にないという判断がなされた場合、516にてアレイが読出され、そして518にて、当該動作が同じサブアレイに対する読出およびリフレッシュであるか否かについての決定がなされる。YESであれば、さらに決定520にて、上記読出が上記キャッシュされたサブアレイに対する読出であるか否かについての判断がなされ、YESであれば、522にてキャッシュがアレイから書込まれ、タグビットがセットされる。キャッシュされたサブアレイに対する読出でない場合、524にてライトバックサイクルが実行される。決定518にて、当該動作が同じサブアレイに対する読出およびリフレッシュではない場合、514にてリフレッシュが実行される。
決定504にて、当該アクセスが読出アクセスでない場合、決定526にて、当該アクセスが書込動作であるか否かについての判断がなされる。YESの場合、さらに決定528にて、当該動作が、キャッシュされたサブアレイに対する書込であるか否かについての判断がなされる。YESの場合、決定530にて、当該動作が同じサブアレイへの書込およびリフレッシュであるか否かについての判断がなされる。YESの場合、532にて、当該キャッシュに対して書込が実行され、タグビットがセットされ、そして514にてリフレッシュが実行される。サブアレイへの書込およびリフレッシュでない場合、534にてタグビットがリセットされ、536にてアレイへの書込が実行され、514にてリフレッシュが実行される。決定528で、当該書込が、キャッシュされたサブアレイに対しての書込でないと判断された場合、さらに決定538に入るとともに536でアレイへの書込が実行される。決定538にて、当該動作が同じサブアレイへの書込およびリフレッシュである場合、524にてライトバックサイクルが実行され、そうでなければ、決定526で、当該アクセスが書込動作でないと判断された場合と同様、514にてリフレッシュが実行される。
上述の2つの状態図に関し、すべての決定は、CLK信号の立上がりエッジによって開始され、何らかの動作がSCRAMの状態を変化させ得る前に完了される。CLKの立上がりエッジでのSCRAMの状態の結果として到達されるすべての動作は、次のクロックサイクルについて何らかの決定がなされるまでに完了される。
以下、上述の各図に示された決定および動作の定義をより詳細に記載する。
決定ステップ
[読出]−CLKの立上がりエッジにおいてCEBが「ロー」でありかつWEBが「ハイ」の場合にYESである。
[書込]−CLKの立上がりエッジにおいてCEBが「ロー」でありかつWEBが「ロー」の場合にYESである。
[キャッシュ内のデータ読出]−ミラーリングされたサブアレイポインタアドレスが、アクセスされたサブアレイ304アドレスと同じであり、かつアクセスされたワードに対応するタグビットがセットされた場合にYESである。
[サブアレイを読出しリフレッシュ]−リフレッシュポインタアドレスが、アクセスされたサブアレイ304アドレスと同じ場合にYESである。
[キャッシュされたサブアレイに対する読出]−ミラーリングされたサブアレイポインタアドレスが、アクセスされたサブアレイ304アドレスと同じ場合にYESである。
[キャッシュリフレッシュ]−リフレッシュポインタアドレスがキャッシュアドレスである場合にYESである。キャッシュ308は外部からアドレス指定され得ない。
[キャッシュされたサブアレイへの書込]−ミラーリングされたサブアレイポインタアドレスが、アクセスされたサブアレイ304アドレスと同じ場合にYESである。
[サブアレイを書込みリフレッシュ]−リフレッシュポインタアドレスが、アクセスされたサブアレイ304アドレスと同じ場合にYESである。
動作ステップ
[アレイ読出]−データを1メガメモリアレイ302から読出す。制御論理ブロック338はアレイイネーブル・外部アドレス信号を供給し、これに伴ない、外部アドレスバス322でアドレス指定されるデータが、グローバルデータ読出/書込バス310上でアサートされる。制御論理ブロック338はさらに、データI/Oブロック306に信号(図示せず)を供給して読出サイクルを示し、これに伴ない、グローバルデータ読出/書込バス310にあるデータがデータI/Oバス318に転送される。
[キャッシュ読出]−データをキャッシュ308から読出す。制御論理ブロック338はキャッシュイネーブル・外部アドレス信号を供給し、これに伴ない、外部アドレスバス322によってアドレス指定される場所にあるデータが、グローバルデータ読出/書込バス310に接続される。制御論理ブロック338はまた、データI/Oブロック306に信号(図示せず)を供給して読出サイクルを示し、これに伴ない、グローバルデータ読出/書込バス310にあるデータがデータI/Oバス318に転送される。サブアレイ304の選択にはビットA<14:11>が用いられるため、キャッシュ308のアドレス指定の際に用いられるのは外部アドレスビットA<10:0>のみである。
[アレイからのキャッシュ書込]−読出されているサブアレイ304からキャッシュ308にデータを書込む。制御論理ブロック338は、データI/Oブロック306に信号(図示せず)を送って、グローバルデータ読出/書込バス310から読出されているデータがキャッシュ書込バス312にアサートされるべきであることを示す。制御論理ブロック338は、キャッシュイネーブル・外部アドレス信号をキャッシュ308に送るとともにキャッシュロード信号(図示せず)を送り、これに伴ない、キャッシュ書込バス312を介して、外部アドレスバス322によりアドレス指定される場所でキャッシュ308にデータが書込まれる。サブアレイ304の選択にはビットA<14:11>が用いられるため、キャッシュ308のアドレス指定の際に用いられるのは外部アドレスビットA<10:0>のみである。
[タグビットのセット]−既知の状態、たとえば論理レベル「ハイ」を、タグ324において外部アドレスバス322により供給されるアドレスに対応するビット場所に書込む。制御論理ブロック338は、タグ書込データ信号、タグ書込信号およびタグイネーブル信号をタグ324に与える。サブアレイ304の選択にはビットA<14:11>が用いられるため、タグ324のアドレス指定の際に用いられるのは外部アドレスビットA<10:0>のみである。
[リフレッシュ実行]−リフレッシュポインタに依存して、サブアレイ304のうちの1つまたはキャッシュ308のいずれかにおいてリフレッシュを実行する。リフレッシュされるべきワード線は、バス330上のリフレッシュアドレスおよびリフレッシュポインタアドレスによって特定される。制御論理ブロック338は、リフレッシュポインタアドレスに依存してイネーブル信号(アレイイネーブル・内部アドレスまたはキャッシュイネーブル・キャッシュアドレスのいずれか)を出力する。制御論理ブロック338はまた、
リフレッシュされているキャッシュ308またはサブアレイ304におけるデータバスにセンスアンプ(図示せず)が接続されることを防ぐための信号(図示せず)を出力する。さらに、リフレッシュカウンタ328が増分され、リフレッシュカウンタが00000に増分した場合、リフレッシュポインタもまた増分され、リフレッシュ要求はリセットされる。ミラーリングされたサブアレイポインタに新たなリフレッシュポインタアドレスが一致した場合、ライトバックカウンタはリセットされる。
[キャッシュからのアレイ書込]−キャッシュ308からデータI/Oバス318に読出されるデータが1メガメモリアレイ302にも書込まれる。上述のようなキャッシュ読出動作が実行されている。これに加え、制御論理ブロック338は、外部アドレスバス322によりアドレス指定されるキャッシュ308のセンスアンプが1組の主増幅器(図示せず)にも接続されることを引起す信号(図示せず)を供給し、そしてこの主増幅器はデータをキャッシュ読出・アレイ書込バス344に駆動する。制御論理ブロック338はまた、アレイイネーブル・外部アドレス信号を線340に供給するとともに、外部アドレスによりアドレス指定されるセンスアンプ(図示せず)がキャッシュ読出・アレイ書込バス344に接続されかつグローバルデータ読出/書込バス310には接続されないことを引起す信号(図示せず)を供給する。
[タグビットのリセット]−既知の状態、たとえば論理レベル「ロー」を、タグ324において外部アドレスバス322により供給されるアドレスに対応するビット場所に書込む。制御論理ブロック338は、タグ書込データ信号、タグ書込信号およびタグイネーブル信号をタグ324に与える。サブアレイ304の選択にはビットA<14:11>が用いられるため、タグ324のアドレス指定の際に用いられるのは外部アドレスビットA<10:0>のみである。
[アレイへの書込]−データを1メガメモリアレイ302に書込む。制御論理ブロック338は、線340にアレイイネーブル・外部アドレス信号を供給し、これに伴ない、外部アドレスバス322によりアドレス指定されるセンスアンプ(図示せず)がグローバルデータ読出/書込バス310に接続される。制御論理ブロック338はまた、データI/Oブロック306に信号(図示せず)を供給して書込サイクルを示し、これに伴ない、データI/Oバス318上のデータがグローバルデータ読出/書込バス310に転送される。データI/Oドライバが、グローバルデータ読出/書込バス310に接続されたセンスアンプ(図示せず)内でデータを上書きする。
[キャッシュへの書込]−データをキャッシュ308に書込む。制御論理ブロック338はキャッシュイネーブル・外部アドレス信号を供給し、これに伴ない、外部アドレスバス322によりアドレス指定されるキャッシュ308のセンスアンプ(図示せず)がグローバルデータ読出/書込バス310に接続される。制御論理ブロック338はまた、データI/Oブロック306に信号(図示せず)を供給して書込サイクルを示し、これに伴ない、データI/Oバス318上のデータがグローバルデータ読出/書込バス310に転送される。データI/Oドライバが、グローバルデータ読出/書込バス310に接続されたセンスアンプ(図示せず)内でデータを上書きする。サブアレイ304の選択にはビットA<14:11>が用いられるため、キャッシュ308のアドレス指定の際に用いられるのは外部アドレスビットA<10:0>のみである。
[ライトバックサイクルの実行]−ライトバックサイクルの実行においては、バス336にあるライトバックアドレスが用いられる。外部アドレスバス322のアドレスを用いて通常のタグ324の読出およびセット/リセットを完了させるのと同じサイクル内においてより後の時点で、上記ライトバックアドレスはタグアドレスバス326に多重化される。ライトバックアドレスにあるビットがセットされていれば、このビットはリセットさ
れて、キャッシュ308内においてライトバックアドレスにあるデータが、ミラーリングされたサブアレイポインタに対応するサブアレイ304内のライトバックアドレスに転送される。なお、この場合におけるキャッシュ308のアクセスは、クロックサイクル内において他のクロックサイクルにおけるよりも後の時点で開始することになり、このためライトバックサイクルの実行動作にサイクル時間のペナルティが課される。SRAMのサイクルすべては同じ長さであると予想されることから、上述のことにより、アクセス時間のペナルティが課され、SCRAMにサイクル時間のペナルティが課されることがある。
図4および図5の各状態図においては、各決定の結果として示される動作同士の競合が確実になくなる。たとえば、同一サイクル内において、キャッシュ内部アドレスバス332および外部アドレスバス322の両方でキャッシュ308にアクセスすることは不可能である。SCRAMの各状態は、この種の競合の発生が確実になくなるように設計される。これに加え、上記各状態においては、リフレッシュ要求信号が「活性」である場合、リフレッシュ実行動作、アレイからのキャッシュ書込動作およびタグビットのセット動作;キャッシュからのアレイ書込動作およびタグビットのリセット動作またはライトバックサイクルの実行動作のいずれかが確実に起こるようにされる。このことは、リフレッシュが起こること、または、リフレッシュの遅延を引起す条件を除去する方向で前進することのいずれかが確実となるため、重要なことである。
以上、この発明の原理について、この発明に従うSCRAMの特定の実現例との関連で説明したが、以上の説明は単に例としてなされたものであり、この発明の範囲に対する限定としてなされたものではないと明確に理解すべきである。特に、以上の開示の教示により当業者にはその他の変形例が示唆されるであろうことが認められる。このような変形例は、それ自体既に公知でありかつここに既に記載した特徴の代わりにまたはこれに加えて用いられ得る他の特徴をも含み得る。本願においては、特許請求の範囲を特定の特徴の組合せについて作成してあるが、ここにおける開示の範囲が、当業者に明らかとなるであろう明示的または黙示的に開示されたあらゆる新規の特徴もしくはあらゆる新規の特徴の組合せ、またはこれらを任意に普遍化もしくは変形したものをも含んでおり、またそれはこのようなものがいずれかの請求項で現在請求されるのと同じ発明に関するものであるか否かにはかかわらず、かつこの発明が直面するのと同じ技術的課題のいずれかまたはすべてを軽減するか否かにはかかわらないことを理解すべきである。出願人は、本願またはその他ここから導き出されるあらゆる出願についての手続中にも、このような特徴および/またはこのような特徴の組合せについて新たな請求項を作成する権利をここに留保する。
従来のメモリの機能ブロック図であって、そのデータおよびアドレスバスを例示するものであり、リフレッシュ動作が隠されていない場合の図である。 この発明の特定の実現例に従うメモリの機能ブロック図であって、そのデータおよびアドレスバスを例示するものであり、サブアレイおよびキャッシュのリフレッシュが、外部からのアクセスについての任意の組合せと並列的に実行可能である場合の図である。 この発明の別の特定の実現例に従うメモリの機能ブロック図であって、制御論理回路および制御信号を用いてメモリアレイ内のリフレッシュ動作を隠すことが可能となっている図である。 この発明に従うメモリの隠れリフレッシュ動作の代表的な状態図であって、リフレッシュ要求信号が「非活性」である図である。 この発明に従うメモリの隠れリフレッシュ動作のもう1つの代表的な状態図であって、リフレッシュ要求信号が「活性」である図である。
符号の説明
300 メモリ、302 メモリアレイ、304 サブアレイ、306 データI/Oブロック、308 キャッシュ、324 タグ、328 リフレッシュカウンタ、320
アドレス制御ブロック、334 ライトバックカウンタ、338 制御論理ブロック。

Claims (24)

  1. 複数のメモリサブアレイを含むダイナミック・ランダム・アクセス・メモリアレイと、
    前記複数のメモリサブアレイに動作結合され、前記複数のメモリサブアレイのいずれか1つをミラーリングするためのキャッシュと、
    前記複数のメモリサブアレイのうちのどれが現在前記キャッシュによってミラーリングされているかを示すためのミラーされたサブアレイのポインタとを備え
    前記キャッシュは、そのサイズにおいて、前記メモリサブアレイの各々と等しい、集積回路装置。
  2. 複数のメモリサブアレイを含むダイナミック・ランダム・アクセス・メモリアレイと、
    前記メモリアレイに動作結合され、前記複数のメモリサブアレイのいずれか1つをミラーリングするためのキャッシュと、
    前記複数のメモリサブアレイのうちのどれが現在前記キャッシュによってミラーリングされているかを示すためのミラーされたサブアレイのポインタとを備え
    前記キャッシュは、そのサイズにおいて、前記メモリサブアレイの各々と等しい、集積回路装置。
  3. 複数のメモリサブアレイを含むダイナミック・ランダム・アクセス・メモリアレイと、
    前記複数のメモリサブアレイに動作結合され、前記複数のメモリサブアレイのいずれか1つをミラーリングし、かつ前記複数のメモリサブアレイの各々におけるメモリセル数に等しい数のメモリセルを含むダイナミック・ランダム・アクセス・メモリキャッシュと、
    前記複数のメモリサブアレイのうちのどれが現在前記キャッシュによってミラーリングされているかを示すためのミラーされたサブアレイのポインタとを備える、集積回路装置。
  4. 複数のメモリサブアレイを含むダイナミック・ランダム・アクセス・メモリアレイと、
    前記メモリアレイに動作結合され、前記複数のメモリサブアレイのうちのいずれか1つをミラーリングするためのキャッシュと、
    前記複数のメモリサブアレイのうちのどれが現在前記キャッシュによってミラーリングされているかを示すためのミラーされたサブアレイのポインタと、
    前記複数のメモリサブアレイの各々に結合されたアレイ内部アドレスバスと、
    前記キャッシュに結合されたキャッシュ内部アドレスバスとを備え
    前記キャッシュは、そのサイズにおいて、前記メモリサブアレイの各々と等しい、集積回路装置。
  5. 集積回路装置であって、
    複数のメモリサブアレイを含むダイナミック・ランダム・アクセス・メモリアレイと、
    前記メモリアレイに動作結合され、前記複数のメモリサブアレイのうちのいずれか1つをミラーリングするためのキャッシュと、
    前記複数のメモリサブアレイのうちのどれが現在前記キャッシュによってミラーリングされているかを示すためのミラーされたサブアレイのポインタと、
    外部から供給されるアドレスを伝送するための外部アドレスバスと、
    前記集積回路装置に外部から供給されるアドレスを受けるためのアドレス制御ブロックとを備え、該アドレス制御ブロックは、前記外部アドレスバスによって前記複数のメモリサブアレイおよび前記キャッシュに結合され
    前記キャッシュは、そのサイズにおいて、前記メモリサブアレイの各々と等しい、集積回路装置。
  6. 前記メモリアレイおよび前記キャッシュに結合されたリフレッシュカウンタをさらに備える、請求項1、2、3、4および5のいずれかに記載の集積回路装置。
  7. 前記外部アドレスバスとは別個の内部キャッシュアドレスバスおよび内部アレイアドレスバスをさらに備える、請求項6に記載の集積回路装置。
  8. 前記内部アレイアドレスバスおよび前記内部キャッシュアドレスバスに結合されたライトバックカウンタをさらに備える、請求項4または7に記載の集積回路装置。
  9. 前記キャッシュ内の有効データを追跡するためのタグブロックをさらに備える、請求項8に記載の集積回路装置。
  10. 前記タグブロックおよび前記外部アドレスバスに結合されたタグアドレスバスをさらに備える、請求項9に記載の集積回路装置。
  11. 前記ライトバックカウンタに結合され前記キャッシュ内の有効データを追跡するためのタグブロックをさらに備える、請求項8に記載の集積回路装置。
  12. 前記外部アドレスバスに結合され、前記複数のメモリサブアレイを選択的にイネーブルして、前記内部アレイアドレスバスまたは前記外部アドレスバスのいずれかにあるアドレスに応答させる、制御論理ブロックをさらに備える、請求項7に記載の集積回路装置。
  13. 前記制御論理ブロックはさらに、前記キャッシュを選択的にイネーブルして、前記内部キャッシュアドレスバスまたは前記外部アドレスバスのいずれかにあるアドレスに応答させるよう動作する、請求項12に記載の集積回路装置。
  14. タグイネーブル信号を前記タグブロックに供給するための制御論理ブロックをさらに備える、請求項9に記載の集積回路装置。
  15. 前記タグブロックは、タグ読出データ信号を前記制御ブロックに供給するよう動作する、請求項14に記載の集積回路装置。
  16. 前記制御論理ブロックは、タグ書込データ信号を前記タグブロックに供給するよう動作する、請求項15に記載の集積回路装置。
  17. 前記メモリアレイに対するリフレッシュ動作は、前記メモリアレイ内に維持されたデータを失うことなく読出または書込のアクセス動作に対する装置の応答を可能にするのに十分な周波数で実行可能である、請求項1、2、3、4または5に記載の集積回路装置。
  18. 前記複数のメモリサブアレイのうちの任意のメモリサブアレイが、前記複数のメモリサブアレイのうちの任意の他のメモリサブアレイが読出または書込されるのと実質的に並行して、前記キャッシュから書込またはリフレッシュ可能である、請求項1、2、3、4または5に記載の集積回路装置。
  19. 複数のメモリサブアレイを含むダイナミック・ランダム・アクセス・メモリアレイと、
    前記複数のメモリサブアレイに動作結合され、前記複数のメモリサブアレイのうちのいずれか1つをミラーリングするためのキャッシュと
    前記複数のメモリサブアレイのうちのどれが現在前記キャッシュによってミラーリングされているかを示すためのミラーされたサブアレイのポインタと、
    前記メモリサブアレイのうちの2つ以上に、実質的に並行してアクセスするための手段とを備え
    前記キャッシュは、そのサイズにおいて、前記メモリサブアレイの各々と等しい、集積回路回路装置。
  20. 前記実質的に並行してアクセスするための手段は、アレイ内部アドレスバスと、前記複数のメモリサブアレイに結合された外部から供給されるアドレスを伝送するための外部アドレスバスとを含む、請求項19に記載の集積回路装置。
  21. 前記外部アドレスバスに基づいて或るアドレスにアクセスされるべきことを示すためのアレイ外部アドレス信号と、
    前記アレイ内部アドレスバスに基づいて或るアドレスにアクセスされるべきことを示すためのアレイ内部アドレス信号とをさらに備える、請求項20に記載の集積回路装置。
  22. 複数のサブアレイを含むDRAMアレイと、
    前記複数のサブアレイに動作結合され、前記複数のサブアレイのいずれか1つをミラーリングし、かつ前記サブアレイの各々におけるメモリ数と同じ数のメモリセルを有するキャッシュと、
    前記複数のメモリサブアレイのうちのどれが現在前記キャッシュによってミラーリングされているかを示すためのミラーされたサブアレイのポインタと、
    前記サブアレイのうちの任意の1つを、前記サブアレイのうちの別の1つへのアクセスと実質的に並行してリフレッシュするための手段と、
    前記DRAMアレイから読出されているデータを前記キャッシュに書込むための手段と、
    前記DRAMアレイに書込む代わりに前記キャッシュにデータを書込むための手段と、
    前記DRAMアレイから読出す代わりに前記キャッシュからデータを読出すための手段と、
    前記サブアレイのうちの任意の1つに、前記サブアレイのうちの別の1つへのアクセスと実質的に並行して前記キャッシュからデータを転送するための手段と、
    前記キャッシュ内の、有効データが入っている場所を示すための手段と、
    前記複数のサブアレイのうちのどれから前記キャッシュが有効データをミラーリングしていることがあり得るかを示すための手段と、
    前記DRAMアレイへのリフレッシュ動作を隠すことを可能にする制御回路とを備える、集積回路装置。
  23. 前記キャッシュはDRAMキャッシュを含む、請求項22に記載の集積回路装置。
  24. 前記制御回路はさらに、前記DRAMキャッシュへのリフレッシュ動作を隠すことを可能にするよう動作する、請求項23に記載の集積回路装置。
JP2005253556A 2005-02-22 2005-09-01 集積回路装置 Expired - Fee Related JP4304176B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/062,974 US20060190678A1 (en) 2005-02-22 2005-02-22 Static random access memory (SRAM) compatible, high availability memory array and method employing synchronous dynamic random access memory (DRAM) in conjunction with a single DRAM cache and tag

Publications (2)

Publication Number Publication Date
JP2006236550A JP2006236550A (ja) 2006-09-07
JP4304176B2 true JP4304176B2 (ja) 2009-07-29

Family

ID=36914195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005253556A Expired - Fee Related JP4304176B2 (ja) 2005-02-22 2005-09-01 集積回路装置

Country Status (2)

Country Link
US (1) US20060190678A1 (ja)
JP (1) JP4304176B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189887B2 (ja) * 2008-04-28 2013-04-24 ローム株式会社 強誘電体メモリ装置およびその動作方法
JP5267166B2 (ja) * 2009-01-30 2013-08-21 ソニー株式会社 インターフェース装置、演算処理装置、インターフェース生成装置、および回路生成装置
US8433880B2 (en) 2009-03-17 2013-04-30 Memoir Systems, Inc. System and method for storing data in a virtualized high speed memory system
US9442846B2 (en) * 2009-03-17 2016-09-13 Cisco Technology, Inc. High speed memory systems and methods for designing hierarchical memory systems
WO2011075167A1 (en) * 2009-12-15 2011-06-23 Memoir Systems,Inc. System and method for reduced latency caching
US20190074222A1 (en) * 2011-06-28 2019-03-07 Monolithic 3D Inc. 3d semiconductor device and system
US8675442B2 (en) 2011-10-04 2014-03-18 Qualcomm Incorporated Energy efficient memory with reconfigurable decoding
US9281045B1 (en) 2014-12-16 2016-03-08 Globalfoundries Inc. Refresh hidden eDRAM memory

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372790A (ja) * 1991-06-21 1992-12-25 Sharp Corp 半導体記憶装置
DE69324508T2 (de) * 1992-01-22 1999-12-23 Enhanced Memory Systems Inc DRAM mit integrierten Registern
US5471601A (en) * 1992-06-17 1995-11-28 Intel Corporation Memory device and method for avoiding live lock of a DRAM with cache
US5566318A (en) * 1994-08-02 1996-10-15 Ramtron International Corporation Circuit with a single address register that augments a memory controller by enabling cache reads and page-mode writes
JPH08129882A (ja) * 1994-10-31 1996-05-21 Mitsubishi Electric Corp 半導体記憶装置
TW358907B (en) * 1994-11-22 1999-05-21 Monolithic System Tech Inc A computer system and a method of using a DRAM array as a next level cache memory
US5835442A (en) * 1996-03-22 1998-11-10 Enhanced Memory Systems, Inc. EDRAM with integrated generation and control of write enable and column latch signals and method for making same
JP2916421B2 (ja) * 1996-09-09 1999-07-05 株式会社東芝 キャッシュフラッシュ装置およびデータ処理方法
JP3159118B2 (ja) * 1997-04-18 2001-04-23 日本電気株式会社 ライトバックデータ選択方法及びプログラムを記録した機械読み取り可能な記録媒体
US6378047B1 (en) * 1997-07-07 2002-04-23 Micron Technology, Inc. System and method for invalidating set-associative cache memory with simultaneous set validity determination
US5999474A (en) * 1998-10-01 1999-12-07 Monolithic System Tech Inc Method and apparatus for complete hiding of the refresh of a semiconductor memory
JP4587500B2 (ja) * 1998-11-11 2010-11-24 ルネサスエレクトロニクス株式会社 半導体集積回路、メモリモジュール、記憶媒体、及び半導体集積回路の救済方法
TW548653B (en) * 1999-01-26 2003-08-21 Nec Electronics Corp Semiconductor memory device having redundancy memory circuit
JP4138173B2 (ja) * 1999-08-26 2008-08-20 株式会社ルネサステクノロジ 不揮発性半導体記憶装置およびその消去方法
US6643766B1 (en) * 2000-05-04 2003-11-04 Hewlett-Packard Development Company, L.P. Speculative pre-fetching additional line on cache miss if no request pending in out-of-order processor
US6445636B1 (en) * 2000-08-17 2002-09-03 Micron Technology, Inc. Method and system for hiding refreshes in a dynamic random access memory
WO2002019341A2 (en) * 2000-08-30 2002-03-07 Micron Technology, Inc. Semiconductor memory having dual port cell supporting hidden refresh
US6604174B1 (en) * 2000-11-10 2003-08-05 International Business Machines Corporation Performance based system and method for dynamic allocation of a unified multiport cache
DE10056546C1 (de) * 2000-11-15 2002-06-20 Infineon Technologies Ag Anordnung und Verfahren zur Erhöhung der Speicherdauer und der Speichersicherheit in einem ferroelektrischen oder ferromagnetischen Halbleiterspeicher
JP3985889B2 (ja) * 2001-08-08 2007-10-03 株式会社ルネサステクノロジ 半導体装置
US6757784B2 (en) * 2001-09-28 2004-06-29 Intel Corporation Hiding refresh of memory and refresh-hidden memory
WO2003032170A1 (en) * 2001-10-11 2003-04-17 Cascade Semiconductor Corporation Asynchronous hidden refresh of semiconductor memory
US7080197B2 (en) * 2002-04-18 2006-07-18 Lsi Logic Corporation System and method of cache management for storage controllers
US6903982B2 (en) * 2002-10-10 2005-06-07 Infineon Technologies Ag Bit line segmenting in random access memories

Also Published As

Publication number Publication date
US20060190678A1 (en) 2006-08-24
JP2006236550A (ja) 2006-09-07

Similar Documents

Publication Publication Date Title
US5999474A (en) Method and apparatus for complete hiding of the refresh of a semiconductor memory
US6370073B2 (en) Single-port multi-bank memory system having read and write buffers and method of operating same
US6415353B1 (en) Read/write buffers for complete hiding of the refresh of a semiconductor memory and method of operating same
US6404691B1 (en) Semiconductor memory device for simple cache system
JP4304176B2 (ja) 集積回路装置
US5179687A (en) Semiconductor memory device containing a cache and an operation method thereof
US5111386A (en) Cache contained type semiconductor memory device and operating method therefor
JP4304172B2 (ja) 集積回路装置
KR101107798B1 (ko) 유효 데이터 표시자들의 사용을 통해 동적 ram 전력 소비를 감소시키기 위한 시스템 및 방법
JP3304413B2 (ja) 半導体記憶装置
US8369168B2 (en) Devices and system providing reduced quantity of interconnections
US20090122619A1 (en) Enhanced DRAM with Embedded Registers
JPH03212891A (ja) 半導体記憶装置およびキャッシュシステム
US7917692B2 (en) Method and system for using dynamic random access memory as cache memory
US20050105357A1 (en) Method and circuit configuration for refreshing data in a semiconductor memory
JP3362775B2 (ja) Dram及びdramのデータ・アクセス方法
US7146454B1 (en) Hiding refresh in 1T-SRAM architecture
KR100541366B1 (ko) 고속 데이터 억세스를 위한 디램
KR100861854B1 (ko) 반도체 기억 장치 및 그 버스트 동작 방법

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080501

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080508

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080603

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080606

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080704

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees