JP4304000B2 - Mg-Co based hydrogen storage alloy and method for producing the same - Google Patents

Mg-Co based hydrogen storage alloy and method for producing the same Download PDF

Info

Publication number
JP4304000B2
JP4304000B2 JP2003140900A JP2003140900A JP4304000B2 JP 4304000 B2 JP4304000 B2 JP 4304000B2 JP 2003140900 A JP2003140900 A JP 2003140900A JP 2003140900 A JP2003140900 A JP 2003140900A JP 4304000 B2 JP4304000 B2 JP 4304000B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
sample
intermetallic compound
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003140900A
Other languages
Japanese (ja)
Other versions
JP2004339599A (en
Inventor
良則 對尾
悦男 秋葉
浩利 榎
耀 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Mazda Motor Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Mazda Motor Corp
Priority to JP2003140900A priority Critical patent/JP4304000B2/en
Publication of JP2004339599A publication Critical patent/JP2004339599A/en
Application granted granted Critical
Publication of JP4304000B2 publication Critical patent/JP4304000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に水素吸蔵合金として使用可能なMg−Co系合金及びその製造方法に関する技術分野に属する。
【0002】
【従来の技術】
一般に、水素吸蔵合金は、水素ガス中で、ガス圧を上げるか又は温度を下げると水素を吸蔵して発熱し、ガス圧を下げるか又は温度を上げると水素を放出して吸熱する性質を有しており、水素の吸蔵及び放出を可逆的に行うことができることから、水素貯蔵及び輸送用途に加えて、高機能材料として多種多様なエネルギー貯蔵・変換システムに利用されている。
【0003】
このような水素吸蔵合金としては、従来より種々の合金が知られており、特に近年では、その研究開発が盛んに行われて、多種多様なものが提案されている。例えば特許文献1には、Mg−Ni−Ti系合金が開示され、特許文献2には、体心立方構造を有するMg−X−V系合金(Xは、Cr、Mn、Fe、Co、Cu及びNiの群から選択される1又は2以上の金属)が開示されている。
【0004】
【特許文献1】
特開2000−219927号公報
【0005】
【特許文献2】
特開2002−241884号公報
【0006】
【発明が解決しようとする課題】
しかし、本発明者は、上記のような従来の合金では、水素吸蔵量(合金に対する質量比)には限界があると考え、今までにない新規な軽量合金を創出することとした。
【0007】
そこで、鋭意努力した結果、MgとTiとをメカニカルアロイング法により合金化することにより、従来のMg−Ti系状態図には存在しない体心立方構造を有する新規な相(Mg−Ti系金属間化合物)を生成することでき、この金属間化合物の金属結晶の格子間位置に水素原子が浸入固溶することで、水素吸蔵の可能性(理論的な水素吸蔵量:5.5質量%以上)があることを見いだし、このような金属間化合物を含有するMg−Ti系合金について特許出願を行った(特願2002−60075号参照)。
【0008】
そして、本発明者は、更なる研究を進め、上記Mg−Ti系金属間化合物の格子定数(0.34nm)が、体心立方構造を有するバナジウムを含有する合金の格子定数に比べて大きいことに着目して、Tiを他の元素に置き換えて格子定数を0.34nmよりも小さくすることで、上記Mg−Ti系合金と同等又はそれ以上の水素吸蔵が可能な軽量合金を開発できると考えた。
【0009】
本発明は斯かる点に鑑みてなされたものであり、本発明の目的とするところは、出来る限り高い水素吸蔵能力が得られる新規な軽量合金を提供しようとすることにある。
【0010】
【課題を解決するための手段】
本発明者は、Tiよりも小さい原子半径を持つCoに着目して、Mg−Ti系金属間化合物のTiをCoに置き換えれば、格子定数を小さくできると考え、Mg−Ti系合金と同様に、MgとCoとをメカニカルアロイング法により合金化したところ、従来のMg−Co系状態図には存在しない体心立方構造を有する新規な相(Mg−Co系金属間化合物)を生成できることを見いだし、その金属間化合物の組成を解明した。
【0011】
具体的には、請求項1の発明は、式Mg1−XCoで表されるMg−Co系金属間化合物のみを含有するMg−Co系水素吸蔵合金を対象として、上記金属間化合物は、体心立方構造を有し、上記金属間化合物の式中のXの値が、0.37以上0.67以下であることを特徴とするものである。
【0012】
ここで、Mg−Co系金属間化合物とは、Mg原子とCo原子とが結合した化合物であって、固有の結晶構造を有するものをいう。そして、このMg−Co系金属間化合物の体心立方構造は、結晶格子の四隅にMgかCoのいずれか一方が配位し、それら4つの原子の中心に他の元素の原子が配位したCsCl(塩化セシウム)型構造か、結晶格子の四隅と中心にそれらの元素がランダムに配位したW(タングステン)型構造のいずれか一方である。金属間化合物がいずれの結晶構造を採る場合であっても、金属結晶の格子間位置にH(水素)原子が侵入固溶することにより、水素吸蔵能力を発現する。
【0013】
上記金属間化合物の式中のXの値が0.37よりも小さいと、体心立方構造になり難く、このため、水素が体心立方構造部にのみ吸蔵されると仮定した場合、理論的な水素吸蔵量が低くなると考えられるので、0.37以上としている。
【0014】
一方、金属間化合物の式中のXの値が0.67を越えると、理論的には高い水素吸蔵能力を有するものの、実際には高い水素吸蔵能力を発現させることが容易ではないので、0.67以下としている。したがって、この発明により、高い水素吸蔵能力を有する水素吸蔵合金が確実にかつ容易に得られる。
【0015】
したがって、本発明のMg−Co系水素吸蔵合金は、体心立方構造を有していることで、機械的特性に優れているとともに、理論的に5.5質量%以上の水素吸蔵能力を有しており、合金組成や構造の最適化を行うことで、高い水素吸蔵能力を有する水素吸蔵合金として実用化が可能となるものである。
【0016】
請求項の発明は、Mg−Co系水素吸蔵合金の製造方法の発明であり、この発明では、MgとCoとをメカニカルアロイング法により合金化することで、請求項記載のMg−Co系水素吸蔵合金を得るようにする。
【0017】
ここで、メカニカルアロイング法とは、例えば、ステンレス製円筒型ポットに、合金化する原料金属粉末と所定の大きさのステンレス製ボールとを適量投入して、それらを強制的に攪拌することにより、原料同士を固相状態のまま合金化する方法である。この攪拌により原料が、ボールとボールとの間あるいはボールとポット壁面との間に挟まれて、粉砕され、圧縮され、練り合わされることにより合金化が進む。この合金化のプロセス中にMg原子とCo原子とが結合し、体心立方構造を有するMg−Co系金属間化合物が生成するものと考えられる。
【0018】
したがって、MgとCoとをメカニカルアロイング法により合金化することにより、体心立方構造のMg−Co系金属間化合物を含有するMg−Co系水素吸蔵合金が容易に得られ、この結果、高い水素吸蔵能力を有する水素吸蔵合金を低コストで製造することができる。尚、溶解法では、このような金属間化合物の生成は非常に困難である。
【0019】
【発明の実施の形態】
以下、本発明の実施形態を説明する。
【0020】
本発明の実施形態に係るMg−Co系水素吸蔵合金は、式Mg1−XCoで表されるMg−Co系金属間化合物のみを含有するものであって、高い水素吸蔵能力を有する水素吸蔵合金として実用化が可能となるものである。上記金属間化合物は、体心立方構造を有し、この金属間化合物の式中のXの値が、0.37以上0.67以下である。Xの値がこの範囲内であれば、体心立方構造にすることが容易であり、これにより、機械的特性に優れるとともに、理論的に高い水素吸蔵能力を発揮する。また、Xの値が上記範囲内であれば、高い水素吸蔵能力を有する水素吸蔵合金が確実にかつ容易に得られる。
【0021】
上記のようなMg−Co系水素吸蔵合金は、MgとCoとをメカニカルアロイング法により合金化することで得られる。すなわち、円筒型ポットにMg粉末、Co粉末及び所定の大きさのボールを適量投入して、それらを強制的に攪拌することにより、MgとCoとを固相状態のまま合金化させる。
【0022】
ここで、実際に上記Mg−Co系合金を製造したので、その製造方法について説明する。
【0023】
すなわち、遊星型ボールミル(FRITSCH社製 P5)を用いて、メカニカルアロイング処理を行い、これにより、式Mg1−XCo(X=0.3、0.33、0.37、0.4、0.5、0.6、0.67、0.75、0.8)で表されるMg−Co系金属間化合物をそれぞれ含有する9種類のMg−Co系合金(それぞれ試料1〜試料9とする)を得た。上記遊星型ボールミルのポットは、ステンレス製であって、直径が74mmで、高さが30mmのものである。また、ボールは、ステンレス製で直径が10mmのものであり、ポット内に10個(40g)のボールをMg粉末及びCo粉末と共に投入した。そして、ポット内を密閉状態にして真空引きした後、アルゴンガスを充填し、このアルゴン雰囲気下で、回転数200rpm、遠心加速度5Gとして、ボールミルを所定時間(メカニカルアロイング時間という)駆動した。このメカニカルアロイング時間は、試料1〜試料4(X=0.3、0.33、0.37、0.4)の各合金を製造する際には、7.2×10秒間(200時間)とし、試料5〜試料9(X=0.5、0.6、0.67、0.75、0.8)の各合金を製造する際には、3.6×10秒間(100時間)とした。
【0024】
表1に、上記メカニカルアロイング処理により得た各合金(試料3を除く)の一次粒子径(SEM(走査電子顕微鏡)観察により得られた値)と、各合金(試料3を除く)の回収率とを示す。
【0025】
【表1】

Figure 0004304000
【0026】
一次粒子径は、試料2(X=0.33)の合金では、10〜50μmと、他の合金(1〜2μm)に比べてかなり大きい。これは、Mg量が多くなるほど、粉末同士が固着して、粉化し難いためと考えられる。尚、合金の回収率は、組成に関係なく略一定であった。
【0027】
図1は、上記メカニカルアロイング処理により得た各合金(試料1〜試料9)のX線回折測定結果を示す。この結果、試料3〜試料9(X=0.37、0.4、0.5、0.6、0.67、0.75、0.8)の各合金では、体心立方構造のMg−Co系金属間化合物(以下、「BCC相」という)に起因するピークが見られ、BCC相が生成されていると考えられる。また、Mg単一相やCo単一相に起因するピークが見られないことから、殆どBCC相のみと考えられる。一方、試料1及び試料2(X=0.3、0.33)の各合金では、BCC相に起因するピークがかなり小さくて、Mg単一相やCo単一相に起因するピークも見られることから、Mg単一相、Co単一相及びBCC相の多相構造となっており、BCC相が生成され難いと考えられる。したがって、Xの値が0.37以上であれば、容易に体心立方構造にできることが判る。尚、ここでは、Xの値が0.8よりも大きい合金については測定していないが、仮にX=1であっても体心立方構造が容易に得られることから、Xの値が0.8を越え1未満のものであっても、体心立方構造にすることが容易であると推測できる。
【0028】
図2〜図8は、上記試料1〜試料9の各合金の373K(100℃)における水素吸蔵時のPCT線図(圧力・組成・等温線図)をそれぞれ示す。尚、このPCT測定は、活性化無しで行った。
【0029】
試料3〜試料7(X=0.37、0.4、0.5、0.6、0.67)の各合金の水素吸蔵量は、それぞれ、1.9質量%、2.7質量%、2.1質量%、0.8質量%、0.5質量%であった。また、試料4(X=0.4)の合金では、0.01MPaと1.2MPaとにおいて、2段のプラトー圧(PCT線図において水素吸蔵圧力が略一定となる領域の圧力)が見られた。
【0030】
試料1(X=0.3)の合金は、水素を吸蔵しなかったが、試料2(X=0.33)の合金は、0.8質量%の水素を吸蔵した。どちらの合金も、上記したように、BCC相は生成され難いが、Mg単一相及びCo単一相に加えてBCC相も僅かに存在する多相構造となっているので、製造条件次第では、試料2の合金のように、そのBCC相に水素を吸蔵するようになると推定される。
【0031】
試料8及び試料9(X=0.75、0.8)の各合金は、水素を吸蔵しなかったが、試料3〜試料7の各合金と同様に、体心立方構造のMg−Co系金属間化合物を含有しており、試料2の合金でも水素を吸蔵することから、製造条件次第で、水素を吸蔵するようになると考えられる。また、試料3〜試料7の各合金についても、製造条件次第では、水素をより多く吸蔵することが可能であると考えられる(理論的に5.5質量%以上の水素を吸蔵可能)。
【0032】
したがって、Xの値が0.37以上1未満であれば、体心立方構造にすることが容易であることから、理論的に高い水素吸蔵能力を発揮すると考えられる。但し、Xの値が0.67を越えると、実際には高い水素吸蔵能力を発現させることが容易ではないので、Xの値を0.37以上0.67以下とすることが好ましい。
【0033】
図11は、試料4〜試料9(X=0.4、0.5、0.6、0.67、0.75、0.8)の各合金の格子定数を示す。この格子定数については、TEM(透過電子顕微鏡)観察による電子線回折パターンより計算したもの(図11における黒丸印のもの)と、上記線回折測定結果を基にリートベルト解析(RIETAN2000)より計算したもの(図11における白丸印のもの)とがある。
【0034】
試料4(X=0.4)の合金の格子定数については、電子線回折結果では、約0.322nmと約0.306nmとの異なる格子定数を持つ2つのBCC相が存在することが示されているが、リートベルト解析結果では、1相として計算を行ったので、上記2つの値の中間の値(約0.3166nm)として計算された。尚、電子線回折結果で2つのBCC相が存在することが示されたことは、試料4の合金のPCT線図において2段のプラトー圧が示されたことと対応している。
【0035】
試料4〜試料9の各合金の格子定数は、Co量(つまりXの値)が多いほど小さくなるとともに、体心立方構造のMg−Ti系金属間化合物の格子定数(約0.34nm)に比べて小さくなっている。これは、Tiの原子半径(0.1462nm)に比べて、Coの原子半径(0.1252n)が小さいためである。
【0036】
このように格子定数をMg−Ti系金属間化合物よりも小さくできるCoに着目して、従来のMg−Co系状態図には存在しないBCC相を見いだすことができた。
【0037】
したがって、上記実施形態に係るMg−Co系水素吸蔵合金は、体心立方構造を有するMg−Co系金属間化合物を含有するので、機械的特性に優れているとともに、理論的に5.5質量%以上の水素吸蔵能力を有しており、合金組成や構造の最適化を行うことで、高い水素吸蔵能力を有する水素吸蔵合金として実用化が可能となるものである。そして、このような合金は、MgとCoとをメカニカルアロイング法により合金化することで容易に得られ、この結果、高い水素吸蔵能力を有する水素吸蔵合金を低コストで製造することができる。
【0038】
【発明の効果】
以上説明したように、本発明のMg−Co系水素吸蔵合金によると、式Mg1−XCo(0.7≦X≦0.67)で表される体心立方構造のMg−Co系金属間化合物を含有するようにしたことにより、機械的特性に優れかつ高い水素吸蔵能力を有する実用的な水素吸蔵合金が確実にかつ容易に得られる
【0039】
また、本発明のMg−Co系水素吸蔵合金の製造方法によると、MgとCoとをメカニカルアロイング法により合金化することで、上記Mg−Co系水素吸蔵合金を得るようにしたことにより、高い水素吸蔵能力を有する水素吸蔵合金を低コストで製造することができる。
【図面の簡単な説明】
【図1】 メカニカルアロイング処理により得られた各Mg−Co系合金(試料1〜試料9)のX線回折図である。
【図2】 試料1(X=0.3)のMg−Co系合金の373Kにおける水素吸蔵時のPCT線図である。
【図3】 試料2(X=0.33)のMg−Co系合金の373Kにおける水素吸蔵時のPCT線図である。
【図4】 試料3(X=0.37)のMg−Co系合金の373Kにおける水素吸蔵時のPCT線図である。
【図5】 試料4(X=0.4)のMg−Co系合金の373Kにおける水素吸蔵時のPCT線図である。
【図6】 試料5(X=0.5)のMg−Co系合金の373Kにおける水素吸蔵時のPCT線図である。
【図7】 試料6(X=0.6)のMg−Co系合金の373Kにおける水素吸蔵時のPCT線図である。
【図8】 試料7(X=0.67)のMg−Co系合金の373Kにおける水素吸蔵時のPCT線図である。
【図9】 試料8(X=0.75)のMg−Co系合金の373Kにおける水素吸蔵時のPCT線図である。
【図10】 試料9(X=0.8)のMg−Co系合金の373Kにおける水素吸蔵時のPCT線図である。
【図11】 試料4〜試料9の各Mg−Co系合金の格子定数を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to a technical field relating to an Mg—Co alloy that can be used as a hydrogen storage alloy and a method for producing the same.
[0002]
[Prior art]
In general, hydrogen storage alloys have the property of absorbing heat in hydrogen gas when the gas pressure is increased or the temperature is decreased and absorbing hydrogen and releasing heat when the gas pressure is decreased or the temperature is increased. In addition to being able to reversibly store and release hydrogen, in addition to hydrogen storage and transport applications, it is used as a highly functional material in a wide variety of energy storage and conversion systems.
[0003]
As such a hydrogen storage alloy, various alloys have been conventionally known, and in recent years, research and development has been actively conducted and a wide variety of alloys have been proposed. For example, Patent Document 1 discloses an Mg—Ni—Ti-based alloy, and Patent Document 2 discloses an Mg—X—V-based alloy having a body-centered cubic structure (where X is Cr, Mn, Fe, Co, or Cu). And one or more metals selected from the group of Ni).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-219927
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-241884 [0006]
[Problems to be solved by the invention]
However, the present inventor considered that there is a limit to the hydrogen storage amount (mass ratio with respect to the alloy) in the conventional alloy as described above, and decided to create a novel lightweight alloy that has never existed before.
[0007]
Therefore, as a result of diligent efforts, a new phase (Mg-Ti metal) having a body-centered cubic structure that does not exist in conventional Mg-Ti phase diagrams is obtained by alloying Mg and Ti by mechanical alloying. Interstitial compounds), and hydrogen atoms enter and dissolve at interstitial positions of the metal crystals of this intermetallic compound, so that hydrogen can be occluded (theoretical hydrogen storage amount: 5.5% by mass or more). And a patent application was filed for the Mg—Ti alloy containing such an intermetallic compound (see Japanese Patent Application No. 2002-60075).
[0008]
The present inventor further researched that the lattice constant (0.34 nm) of the Mg-Ti intermetallic compound is larger than that of the alloy containing vanadium having a body-centered cubic structure. Focusing on the above, it is thought that by replacing Ti with other elements and making the lattice constant smaller than 0.34 nm, it is possible to develop a lightweight alloy capable of hydrogen storage equivalent to or higher than the Mg-Ti alloy. It was.
[0009]
The present invention has been made in view of the above points, and an object of the present invention is to provide a novel lightweight alloy capable of obtaining as high a hydrogen storage capacity as possible.
[0010]
[Means for Solving the Problems]
The inventor pays attention to Co having an atomic radius smaller than that of Ti, and considers that the lattice constant can be reduced by replacing Ti in the Mg—Ti intermetallic compound with Co, and similarly to the Mg—Ti alloy. When Mg and Co are alloyed by mechanical alloying, a new phase (Mg—Co intermetallic compound) having a body-centered cubic structure that does not exist in the conventional Mg—Co phase diagram can be generated. I found and clarified the composition of the intermetallic compound.
[0011]
Specifically, the invention of claim 1 is directed to an Mg—Co based hydrogen storage alloy containing only an Mg—Co based intermetallic compound represented by the formula Mg 1-X Co X. And having a body-centered cubic structure, the value of X in the formula of the intermetallic compound is 0.37 or more and 0.67 or less .
[0012]
Here, the Mg—Co intermetallic compound refers to a compound in which Mg atoms and Co atoms are bonded and has a unique crystal structure. In the body-centered cubic structure of this Mg—Co intermetallic compound, either Mg or Co is coordinated at the four corners of the crystal lattice, and atoms of other elements are coordinated at the center of these four atoms. Either a CsCl (cesium chloride) type structure or a W (tungsten) type structure in which these elements are randomly coordinated at the four corners and the center of the crystal lattice. Regardless of the crystal structure of the intermetallic compound, H (hydrogen) atoms enter and dissolve at interstitial positions of the metal crystal, thereby exhibiting hydrogen storage capability.
[0013]
When the value of X in the formula of the intermetallic compound is smaller than 0.37, it is difficult to form a body-centered cubic structure. For this reason, it is theoretically assumed that hydrogen is occluded only in the body-centered cubic structure. Since it is considered that the hydrogen storage amount is low, it is set to 0.37 or more.
[0014]
On the other hand, if the value of X in the formula of the intermetallic compound exceeds 0.67, although theoretically it has a high hydrogen storage capacity, it is not easy to express a high hydrogen storage capacity in practice. .67 or less. Therefore, according to the present invention, a hydrogen storage alloy having a high hydrogen storage capacity can be obtained reliably and easily.
[0015]
Therefore, the Mg—Co-based hydrogen storage alloy of the present invention has a body-centered cubic structure, so that it has excellent mechanical characteristics and theoretically has a hydrogen storage capacity of 5.5% by mass or more. Thus, by optimizing the alloy composition and structure, it can be put to practical use as a hydrogen storage alloy having a high hydrogen storage capacity.
[0016]
The invention of claim 2 is an invention of a method for producing an Mg—Co-based hydrogen storage alloy. In this invention, Mg and Co are alloyed by mechanical alloying to form the Mg—Co of claim 1. A hydrogen storage alloy is obtained.
[0017]
Here, the mechanical alloying method is, for example, by putting appropriate amounts of raw metal powder to be alloyed and stainless steel balls of a predetermined size into a stainless steel cylindrical pot and forcibly stirring them. This is a method of alloying raw materials with each other in a solid state. By this stirring, the raw material is sandwiched between the balls or between the balls and the wall surface of the pot, and pulverized, compressed, and kneaded, whereby alloying proceeds. It is considered that Mg atoms and Co atoms are bonded during the alloying process to produce an Mg—Co intermetallic compound having a body-centered cubic structure.
[0018]
Therefore, by alloying Mg and Co by the mechanical alloying method, an Mg—Co based hydrogen storage alloy containing an Mg—Co based intermetallic compound having a body-centered cubic structure can be easily obtained. A hydrogen storage alloy having a hydrogen storage capacity can be manufactured at low cost. Note that it is very difficult to form such an intermetallic compound by the dissolution method.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0020]
An Mg—Co-based hydrogen storage alloy according to an embodiment of the present invention contains only an Mg—Co-based intermetallic compound represented by the formula Mg 1-X Co X , and has a high hydrogen storage capacity. It can be put to practical use as a storage alloy. The intermetallic compound has a body-centered cubic structure, and the value of X in the formula of the intermetallic compound is 0.37 or more and 0.67 or less . If the value of X is within this range, it is easy to obtain a body-centered cubic structure, which provides excellent mechanical properties and theoretically high hydrogen storage capacity. The value of X is within the above range, the hydrogen storage alloy can be surely obtained and easily with a high hydrogen storage capacity.
[0021]
The Mg—Co-based hydrogen storage alloy as described above can be obtained by alloying Mg and Co by a mechanical alloying method. That is, Mg powder, Co powder, and balls of a predetermined size are put in appropriate amounts in a cylindrical pot, and they are forcibly stirred to alloy Mg and Co in a solid state.
[0022]
Here, since the said Mg-Co type-alloy was actually manufactured, the manufacturing method is demonstrated.
[0023]
That is, a mechanical alloying process is performed using a planetary ball mill (P5 manufactured by FRITSCH), whereby the formula Mg 1-X Co X (X = 0.3, 0.33, 0.37, 0.4). , 0.5, 0.6, 0.67, 0.75, 0.8), each of which contains 9 types of Mg—Co based alloys (sample 1 to sample respectively) 9). The planetary ball mill pot is made of stainless steel and has a diameter of 74 mm and a height of 30 mm. The balls were made of stainless steel and had a diameter of 10 mm, and 10 balls (40 g) were put into the pot together with Mg powder and Co powder. The pot was sealed and evacuated, and then filled with argon gas. Under this argon atmosphere, the ball mill was driven for a predetermined time (referred to as mechanical alloying time) at a rotation speed of 200 rpm and a centrifugal acceleration of 5G. This mechanical alloying time is 7.2 × 10 5 seconds (200 when producing each alloy of Sample 1 to Sample 4 (X = 0.3, 0.33, 0.37, 0.4). Time), and when producing each alloy of Sample 5 to Sample 9 (X = 0.5, 0.6, 0.67, 0.75, 0.8), 3.6 × 10 5 seconds ( 100 hours).
[0024]
Table 1 shows the primary particle diameter (value obtained by SEM (scanning electron microscope) observation) of each alloy (excluding sample 3) obtained by the mechanical alloying process and recovery of each alloy (excluding sample 3). Rate.
[0025]
[Table 1]
Figure 0004304000
[0026]
The primary particle diameter of the sample 2 (X = 0.33) alloy is 10 to 50 μm, which is considerably larger than other alloys (1 to 2 μm). This is presumably because the larger the amount of Mg, the more the powders adhere to each other and are less likely to be powdered. The recovery rate of the alloy was substantially constant regardless of the composition.
[0027]
FIG. 1 shows the X-ray diffraction measurement results of the alloys (sample 1 to sample 9) obtained by the mechanical alloying process. As a result, in the alloys of Sample 3 to Sample 9 (X = 0.37, 0.4, 0.5, 0.6, 0.67, 0.75, 0.8), Mg having a body-centered cubic structure It is considered that a peak due to the —Co-based intermetallic compound (hereinafter referred to as “BCC phase”) is observed and a BCC phase is generated. Moreover, since the peak resulting from a Mg single phase or a Co single phase is not seen, it is thought that it is almost only a BCC phase. On the other hand, in the alloys of Sample 1 and Sample 2 (X = 0.3, 0.33), the peak attributed to the BCC phase is quite small, and the peak attributed to the Mg single phase or Co single phase is also observed. Therefore, it has a multi-phase structure of Mg single phase, Co single phase and BCC phase, and it is considered that the BCC phase is hardly generated. Therefore, it can be seen that if the value of X is 0.37 or more, a body-centered cubic structure can be easily obtained. Here, although an alloy having a value of X larger than 0.8 is not measured, since a body-centered cubic structure can be easily obtained even if X = 1, the value of X is 0.00. Even if it is more than 8 and less than 1, it can be assumed that it is easy to make a body-centered cubic structure.
[0028]
2 to 8 show PCT diagrams (pressure / composition / isothermal diagram) of the alloys of Sample 1 to Sample 9 during hydrogen storage at 373 K (100 ° C.), respectively. This PCT measurement was performed without activation.
[0029]
The hydrogen storage amounts of the alloys of Samples 3 to 7 (X = 0.37, 0.4, 0.5, 0.6, 0.67) are 1.9% by mass and 2.7% by mass, respectively. 2.1% by mass, 0.8% by mass, and 0.5% by mass. In the alloy of sample 4 (X = 0.4), two-stage plateau pressures (pressures in a region where the hydrogen storage pressure is substantially constant in the PCT diagram) are observed at 0.01 MPa and 1.2 MPa. It was.
[0030]
The alloy of sample 1 (X = 0.3) did not occlude hydrogen, whereas the alloy of sample 2 (X = 0.33) occluded 0.8 mass% hydrogen. In both alloys, as described above, the BCC phase is difficult to be formed, but in addition to the Mg single phase and the Co single phase, the BCC phase is slightly present. Like the sample 2 alloy, it is presumed that the BCC phase occludes hydrogen.
[0031]
Although the alloys of Sample 8 and Sample 9 (X = 0.75, 0.8) did not occlude hydrogen, the Mg—Co system having a body-centered cubic structure was the same as the alloys of Sample 3 to Sample 7. Since it contains an intermetallic compound and the alloy of Sample 2 also occludes hydrogen, it is believed that it occludes hydrogen depending on the production conditions. Further, it is considered that each of the alloys of Sample 3 to Sample 7 can occlude more hydrogen depending on the manufacturing conditions (theoretically 5.5 mass% or more of hydrogen can be occluded).
[0032]
Therefore, if the value of X is 0.37 or more and less than 1, it is easy to obtain a body-centered cubic structure, and it is considered that a high hydrogen storage capacity is theoretically exhibited. However, if the value of X exceeds 0.67, it is not easy to actually exhibit a high hydrogen storage capacity. Therefore, the value of X is preferably set to 0.37 or more and 0.67 or less.
[0033]
FIG. 11 shows the lattice constants of the alloys of Sample 4 to Sample 9 (X = 0.4, 0.5, 0.6, 0.67, 0.75, 0.8). This lattice constant was calculated from Rietveld analysis (Rietan 2000) based on the electron diffraction pattern (observed by a black circle in FIG. 11) obtained by TEM (transmission electron microscope) observation and the above line diffraction measurement result. (A white circle in FIG. 11).
[0034]
Regarding the lattice constant of the alloy of sample 4 (X = 0.4), the electron diffraction results show that there are two BCC phases with different lattice constants of about 0.322 nm and about 0.306 nm. However, in the Rietveld analysis result, since the calculation was performed as one phase, it was calculated as an intermediate value (approximately 0.3166 nm) between the above two values. Note that the fact that two BCC phases are present in the electron diffraction results corresponds to the fact that a two-stage plateau pressure is shown in the PCT diagram of the alloy of Sample 4.
[0035]
The lattice constants of the alloys of Samples 4 to 9 are smaller as the Co content (that is, the value of X) is larger, and the lattice constant of the Mg—Ti intermetallic compound having a body-centered cubic structure is about 0.34 nm. It is smaller than that. This is because the atomic radius of Co (0.1252n) is smaller than the atomic radius of Ti (0.1462 nm).
[0036]
In this way, focusing on Co, whose lattice constant can be made smaller than that of the Mg—Ti intermetallic compound, a BCC phase that does not exist in the conventional Mg—Co phase diagram has been found.
[0037]
Therefore, since the Mg—Co-based hydrogen storage alloy according to the above-described embodiment contains the Mg—Co-based intermetallic compound having a body-centered cubic structure, it is excellent in mechanical properties and theoretically 5.5 mass. % Of hydrogen storage capacity, and by optimizing the alloy composition and structure, it can be put to practical use as a hydrogen storage alloy having high hydrogen storage capacity. Such an alloy can be easily obtained by alloying Mg and Co by a mechanical alloying method. As a result, a hydrogen storage alloy having a high hydrogen storage capacity can be produced at a low cost.
[0038]
【The invention's effect】
As described above, according to the Mg—Co-based hydrogen storage alloy of the present invention, the Mg—Co-based body-centered cubic structure represented by the formula Mg 1-X Co X (0.7 ≦ X ≦ 0.67 ) By including an intermetallic compound, a practical hydrogen storage alloy having excellent mechanical properties and high hydrogen storage capacity can be obtained reliably and easily .
[0039]
In addition, according to the method for producing an Mg—Co-based hydrogen storage alloy of the present invention, Mg and Co are alloyed by a mechanical alloying method to obtain the Mg—Co-based hydrogen storage alloy. A hydrogen storage alloy having a high hydrogen storage capacity can be produced at a low cost.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of each Mg—Co alloy (sample 1 to sample 9) obtained by mechanical alloying treatment.
FIG. 2 is a PCT diagram of the Mg—Co alloy of Sample 1 (X = 0.3) during hydrogen storage at 373K.
FIG. 3 is a PCT diagram of the Mg—Co alloy of Sample 2 (X = 0.33) during hydrogen storage at 373K.
FIG. 4 is a PCT diagram at the time of hydrogen storage at 373 K of the Mg—Co alloy of Sample 3 (X = 0.37).
FIG. 5 is a PCT diagram at the time of hydrogen storage at 373 K of the Mg—Co alloy of Sample 4 (X = 0.4).
FIG. 6 is a PCT diagram at the time of hydrogen storage at 373 K of the Mg—Co alloy of Sample 5 (X = 0.5).
FIG. 7 is a PCT diagram at the time of hydrogen storage at 373 K of the Mg—Co alloy of Sample 6 (X = 0.6).
FIG. 8 is a PCT diagram at the time of hydrogen storage at 373 K of the Mg—Co alloy of Sample 7 (X = 0.67).
FIG. 9 is a PCT diagram of the Mg—Co alloy of Sample 8 (X = 0.75) during hydrogen storage at 373K.
FIG. 10 is a PCT diagram at the time of hydrogen storage at 373 K of the Mg—Co alloy of Sample 9 (X = 0.8).
FIG. 11 is a diagram showing lattice constants of Mg—Co alloys of Sample 4 to Sample 9.

Claims (2)

式Mg1−XCoで表されるMg−Co系金属間化合物のみを含有するMg−Co系水素吸蔵合金であって、
上記金属間化合物は、体心立方構造を有し、
上記金属間化合物の式中のXの値が、0.37以上0.67以下であることを特徴とするMg−Co系水素吸蔵合金。
An Mg—Co-based hydrogen storage alloy containing only an Mg—Co-based intermetallic compound represented by the formula Mg 1-X Co X ,
The intermetallic compound has a body-centered cubic structure,
The value of X in the said formula of the intermetallic compound is 0.37 or more and 0.67 or less , The Mg-Co type hydrogen storage alloy characterized by the above-mentioned.
MgとCoとをメカニカルアロイング法により合金化することで、請求項記載のMg−Co系水素吸蔵合金を得ることを特徴とするMg−Co系水素吸蔵合金の製造方法。A method for producing an Mg-Co-based hydrogen storage alloy, wherein the Mg-Co-based hydrogen storage alloy according to claim 1 is obtained by alloying Mg and Co by a mechanical alloying method.
JP2003140900A 2003-05-19 2003-05-19 Mg-Co based hydrogen storage alloy and method for producing the same Expired - Fee Related JP4304000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140900A JP4304000B2 (en) 2003-05-19 2003-05-19 Mg-Co based hydrogen storage alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140900A JP4304000B2 (en) 2003-05-19 2003-05-19 Mg-Co based hydrogen storage alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004339599A JP2004339599A (en) 2004-12-02
JP4304000B2 true JP4304000B2 (en) 2009-07-29

Family

ID=33529476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140900A Expired - Fee Related JP4304000B2 (en) 2003-05-19 2003-05-19 Mg-Co based hydrogen storage alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP4304000B2 (en)

Also Published As

Publication number Publication date
JP2004339599A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP3528599B2 (en) Hydrogen storage alloy
CN101671788B (en) Method for nanocrystallization of magnesium-based hydrogen storage material
JP4080055B2 (en) Method for producing amorphous magnesium nickel-based hydrogen storage alloy
JP2008266781A (en) METHOD FOR MANUFACTURING Mg-Al BASED HYDROGEN STORAGE ALLOY POWDER AND Mg-Al BASED HYDROGEN STORAGE ALLOY POWDER OBTAINED BY THE MANUFACTURING METHOD
JP4602926B2 (en) Method for producing alloy powder
JP2955662B1 (en) Ternary hydrogen storage alloy and method for producing the same
JPH101731A (en) Hydrogen storage alloy and its production
Jurczyk et al. The synthesis and properties of nanocrystalline electrode materials by mechanical alloying
JP4403499B2 (en) Hydrogen storage material
JP4304000B2 (en) Mg-Co based hydrogen storage alloy and method for producing the same
JP4189447B2 (en) Mg-Ti hydrogen storage alloy and method for producing the same
JP2005095869A (en) Hydrogen storing material and its production method
JP3953138B2 (en) Hydrogen storage alloy
JPH1180865A (en) Hydrogen storage alloy excellent in durability and its production
JP2005279438A (en) Magnesium type hydrogen storage material and production method therefor
JP2004292838A (en) Hydrogen storage alloy and manufacturing method
JP2560567B2 (en) Method for producing hydrogen storage alloy
JP2560566B2 (en) Method for producing hydrogen storage alloy
JP4524384B2 (en) Quasicrystal-containing titanium alloy and method for producing the same
JP2006070334A (en) Mg-Co BASED ALLOY AND ITS MANUFACTURING METHOD
JPH09184040A (en) Yttrium-magnesium hydrogen storage alloy
JPS5947022B2 (en) Alloy for hydrogen storage
JP2006144082A (en) Nitrogen storage alloy production method
JP6958611B2 (en) Hydrogen storage alloy
JP2783850B2 (en) Hydrogen storage alloy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041008

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350