JP4300090B2 - Electrolytic membrane for electrolyzed water generation - Google Patents

Electrolytic membrane for electrolyzed water generation Download PDF

Info

Publication number
JP4300090B2
JP4300090B2 JP2003340104A JP2003340104A JP4300090B2 JP 4300090 B2 JP4300090 B2 JP 4300090B2 JP 2003340104 A JP2003340104 A JP 2003340104A JP 2003340104 A JP2003340104 A JP 2003340104A JP 4300090 B2 JP4300090 B2 JP 4300090B2
Authority
JP
Japan
Prior art keywords
microporous
electrolyzed water
electrolytic
linear
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003340104A
Other languages
Japanese (ja)
Other versions
JP2005103442A (en
Inventor
秀夫 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2003340104A priority Critical patent/JP4300090B2/en
Publication of JP2005103442A publication Critical patent/JP2005103442A/en
Application granted granted Critical
Publication of JP4300090B2 publication Critical patent/JP4300090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、水を電気分解して、酸性水とアルカリ性水の電解水を得る電解水生成装置等に用いられる電解水生成用電解隔膜に関する。   The present invention relates to an electrolytic diaphragm for generating electrolyzed water used in an electrolyzed water generating apparatus or the like for electrolyzing water to obtain electrolyzed water of acidic water and alkaline water.

水に微量の塩化物を添加して電気分解を行うと、陽極側で酸性水が、陰極側ではアルカリ性水がそれぞれ生成される。この酸性水は、除菌効果を持つことが知られており、また、消毒剤や殺菌剤等の化学薬品とは異なり、残留性が少なく、人体に対する影響が極めて少ないことから、食品・衛生分野や医療分野、農業分野等で除菌水として利用されている。一方、アルカリ性水は、脂質・蛋白質系の汚れ等に対して洗浄効果を持つことが知られており、食品・衛生分野や工業分野等で除菌洗浄水として利用されている。このように、電気分解によって生成される2種の電解水は、食品、衛生の分野から、医療、農業、工業の分野まで幅広く利用されており、これら電解水を生成する装置として、家庭用及び業務用の電解水生成装置が開発され普及している。   When electrolysis is performed by adding a small amount of chloride to water, acidic water is generated on the anode side and alkaline water is generated on the cathode side. This acidic water is known to have a sterilizing effect, and unlike chemicals such as disinfectants and disinfectants, it has little persistence and has very little effect on the human body. It is used as sterilized water in the medical field, agricultural field, and the like. On the other hand, alkaline water is known to have a cleaning effect on lipid / protein-based soils and the like, and is used as sterilized cleaning water in the food / hygiene field and the industrial field. As described above, the two types of electrolyzed water generated by electrolysis are widely used from the fields of food and hygiene to the fields of medicine, agriculture, and industry. Commercial electrolyzed water generators have been developed and are in widespread use.

電解水生成装置の電極構造としては、平板状電極を用いる積層構造のものと、環状電極を用いる円筒状構造のものとが知られているが、電解水の生成容量を電解槽の配列数により比較的容易に設計変更できる点から、積層構造の電極を有する電解水生成装置が主流となっている。積層構造の電極を有する電解水生成装置は、垂直に交互に配置された陰極電極板と陽極電極板との間に電解水生成用電解隔膜を配置することで、該隔膜によって隔離された陰極電解槽と陽極電解槽を交互に形成し、これを複数配列して形成されている。この陰極電解槽と陽極電解槽の各槽の下部より水を供給し、該水を前記陰極電解槽や陽極電解槽を通して電気分解を起こすことによって、アルカリ性水と酸性水とが生成されるようになっている。また、生成された2種類の電解水は別々に排出採取できるようになっている(例えば、特許文献1)。
前記電解水生成用電解隔膜は、例えば、図7に示すように、樹脂製で平板状の微多孔質膜14やイオン交換膜の両面に、補強のために樹脂製の格子状支持体15が設けられており、前記微多孔質膜14やイオン交換膜と前記格子状支持体15とが一体となった構造体17を形成している。また、前記格子状支持体15には、電極板と電解水生成用電解隔膜とが密着しないように電極板と電解水生成用電解隔膜との間隔を一定間隔に保持するための突起16が形成されている。
実開平6−48888号公報
The electrode structure of the electrolyzed water generator is known to have a laminated structure using flat electrodes and a cylindrical structure using annular electrodes, but the capacity of electrolyzed water generation depends on the number of electrolytic cells arranged. From the viewpoint that the design can be changed relatively easily, an electrolyzed water generating apparatus having an electrode having a laminated structure has become mainstream. An electrolyzed water generating apparatus having a laminated structure electrode is provided with an electrolyzed water generating electrolysis membrane disposed between a cathode electrode plate and an anode electrode plate, which are alternately arranged vertically, so that the cathode electrolysis is separated by the membrane. The tanks and the anode electrolytic tanks are alternately formed, and a plurality of these are arranged. By supplying water from the lower part of each of the cathode electrolytic cell and the anode electrolytic cell, and causing electrolysis through the water through the cathode electrolytic cell and the anode electrolytic cell, alkaline water and acidic water are generated. It has become. The two types of electrolyzed water produced can be separately discharged and collected (for example, Patent Document 1).
For example, as shown in FIG. 7, the electrolytic membrane for generating electrolyzed water has a resin-made grid-like support 15 on both surfaces of a flat microporous membrane 14 and an ion exchange membrane made of resin for reinforcement. A structure 17 in which the microporous membrane 14 or the ion exchange membrane and the lattice support 15 are integrated is formed. In addition, the lattice-like support 15 is formed with protrusions 16 for keeping the distance between the electrode plate and the electrolytic membrane for generating electrolyzed water at a constant interval so that the electrode plate and the electrolytic membrane for generating electrolyzed water are not in close contact with each other. Has been.
Japanese Utility Model Publication No. 6-48888

しかしながら、前記格子状支持体15と前記突起16は、基材となる微多孔質膜14やイオン交換膜と異なり、多孔質体ではないため、電解水生成用電解隔膜の有効面積が減少し、電極間の電気抵抗が高まるため、電解水生成時には電気的エネルギ損失が大きくなるという問題がある。
また、前記樹脂製の微多孔質膜14やイオン交換膜は、電解水生成用電解隔膜としての剛性が不足しているために、前記格子状支持体15のような支持体を必須とし、電解水生成用電解隔膜として、前記微多孔質膜14や前記イオン交換膜と前記格子状支持体15とを一体とした構造体17を形成しなければならず、電解隔膜製造時の工数が増すとともに、電極間隔を狭くできず電解水生成装置をコンパクト化できないという問題もある。
そこで、本発明は、このような従来の問題点に鑑み、電解水生成装置等に用いられる電解水生成用電解隔膜において、電解水生成用電解隔膜の有効面積を減少させず、しかも格子状支持体を必要としない電解水生成用電解隔膜を提供することを目的とする。
However, the lattice-like support 15 and the protrusions 16 are not porous bodies unlike the microporous membrane 14 and the ion exchange membrane, which are base materials, and therefore the effective area of the electrolytic diaphragm for generating electrolyzed water is reduced. Since the electrical resistance between the electrodes is increased, there is a problem in that electrical energy loss is increased when electrolyzed water is generated.
Further, since the resin microporous membrane 14 and the ion exchange membrane are insufficient in rigidity as an electrolytic diaphragm for generating electrolyzed water, a support such as the lattice-like support 15 is essential, and electrolysis is performed. As the electrolytic membrane for water generation, a structure 17 in which the microporous membrane 14 or the ion exchange membrane and the lattice-like support 15 are integrated must be formed. There is also a problem that the electrode interval cannot be reduced and the electrolyzed water generating device cannot be made compact.
Therefore, in view of such conventional problems, the present invention provides an electrolytic diaphragm for electrolyzed water generation used in an electrolyzed water generating apparatus or the like, and does not reduce the effective area of the electrolyzed water generating electrolysis diaphragm, and also supports a lattice. An object of the present invention is to provide an electrolytic diaphragm for generating electrolyzed water that does not require a body.

本発明の電解水生成用電解隔膜は、前記目的を達成すべく、請求項1記載の通り、微多孔質隔膜基材の少なくとも片面に、微多孔質線状突起を具備してなることを特徴とする。
また、請求項2記載の電解水生成用電解隔膜は、請求項1記載の電解水生成用電解隔膜において、前記微多孔質隔膜基材の両面に、前記微多孔質線状突起を具備してなることを特徴とする。
また、請求項3記載の電解水生成用電解隔膜は、請求項2記載の電解水生成用電解隔膜において、前記微多孔質隔膜基材の両面にそれぞれ具備した前記微多孔質線状突起同士が互いに重なった状態(対向状態)もしくは交差状態をなすように前記微多孔質線状突起が形成されていることを特徴とする。
また、請求項4記載の電解水生成用電解隔膜は、請求項1記載の電解水生成用電解隔膜において、前記微多孔質線状突起を片面に具備した微多孔質隔膜基材を、前記微多孔質線状突起が外側となるように折り曲げて積層状態とし、該積層状態をなす微多孔質隔膜基材が、見掛け上その両面に前記微多孔質線状突起を具備するようにしたことを特徴とする。
また、請求項5記載の電解水生成用電解隔膜は、請求項4記載の電解水生成用電解隔膜において、前記積層状態をなす微多孔質隔膜基材の一方の面に具備した前記微多孔質線状突起と他方の面に具備した前記微多孔質線状突起とが互いに重なった状態(対向状態)もしくは交差状態をなすように前記微多孔質線状突起が形成されていることを特徴とする。
また、請求項6記載の電解水生成用電解隔膜は、請求項5記載の電解水生成用電解隔膜において、前記積層状態をなす微多孔質隔膜基材の一方の面に具備した前記微多孔質線状突起と他方の面に具備した前記微多孔質線状突起とが互いに交差状態をなすように前記微多孔質線状突起が形成されていることを特徴とする。
また、請求項7記載の電解水生成用電解隔膜は、請求項1乃至6の何れかに記載の電解水生成用電解隔膜において、前記微多孔質線状突起が、前記微多孔質隔膜基材と同材質であることを特徴とする。
また、請求項8記載の電解水生成用電解隔膜は、請求項7記載の電解水生成用電解隔膜において、前記微多孔質線状突起は、前記微多孔質隔膜基材とともに一体成形されてなるものであることを特徴とする。
また、請求項9記載の電解水生成用電解隔膜は、請求項1乃至8の何れかに記載の電解水生成用電解隔膜において、前記微多孔質線状突起は、略縦方向に配向された複数条の線状突起であることを特徴とする。
In order to achieve the above object, the electrolytic membrane for producing electrolyzed water according to the present invention comprises a microporous linear protrusion on at least one surface of a microporous membrane substrate as claimed in claim 1. And
The electrolytic membrane for generating electrolyzed water according to claim 2 is the electrolytic membrane for generating electrolyzed water according to claim 1, wherein the microporous linear protrusions are provided on both surfaces of the microporous membrane substrate. It is characterized by becoming.
The electrolytic membrane for producing electrolyzed water according to claim 3 is the electrolyzed membrane for producing electrolyzed water according to claim 2, wherein the microporous linear protrusions provided on both surfaces of the microporous membrane substrate are respectively provided. The microporous linear projections are formed so as to overlap each other (opposite state) or cross each other.
An electrolytic membrane for generating electrolyzed water according to claim 4 is the electrolytic membrane for generating electrolyzed water according to claim 1, wherein the microporous membrane substrate having the microporous linear protrusions on one side is used as the microporous membrane substrate. Folding so that the porous linear protrusions are on the outside to form a laminated state, and the microporous diaphragm base material forming the laminated state apparently has the microporous linear protrusions on both sides thereof Features.
The electrolytic membrane for producing electrolyzed water according to claim 5 is the electroporous membrane for producing electrolyzed water according to claim 4, wherein the microporous material provided on one surface of the microporous membrane substrate in the laminated state. The microporous linear protrusion is formed so that the linear protrusion and the microporous linear protrusion provided on the other surface overlap each other (opposed state) or intersect with each other. To do.
The electrolytic membrane for generating electrolyzed water according to claim 6 is the electroporous membrane for generating electrolyzed water according to claim 5, wherein the microporous material provided on one surface of the microporous membrane substrate in the laminated state. The microporous linear protrusion is formed so that the linear protrusion and the microporous linear protrusion provided on the other surface intersect each other.
The electrolytic membrane for generating electrolyzed water according to claim 7 is the electrolytic membrane for generating electrolyzed water according to any one of claims 1 to 6, wherein the microporous linear protrusion is the microporous membrane substrate. It is characterized by being made of the same material.
The electrolytic membrane for generating electrolyzed water according to claim 8 is the electrolytic membrane for generating electrolyzed water according to claim 7, wherein the microporous linear protrusion is integrally formed with the microporous membrane substrate. It is characterized by being.
The electrolytic membrane for producing electrolyzed water according to claim 9 is the electrolyzed membrane for producing electrolyzed water according to any one of claims 1 to 8, wherein the microporous linear protrusions are oriented in a substantially vertical direction. It is characterized by a plurality of linear protrusions.

本発明の電解水生成用電解隔膜は、平板状の微多孔質隔膜基材の少なくとも片面に微多孔質線状突起を具備してなるため、微多孔質隔膜基材自体に十分な剛性を付与することができ、従来のような格子状支持体を別途組み合わせ積層する必要がないため、製造を簡略化できるとともに、電極間隔を狭くでき電解水生成装置のコンパクト化に寄与できる。しかも、本発明の電解水生成用電解隔膜は、隔膜基材だけでなく線状突起も微多孔質体からなるため、従来のように、電解水生成用電解隔膜の有効面積が減少し、電極間の電気抵抗を高め、電気的エネルギ損失を高めるようなことがない。
また、前記微多孔質線状突起と前記微多孔質隔膜基材とを同材質とすると、微多孔質隔膜基材の形成と同時に微多孔質線状突起を形成できるようになり、製造工数の削減により電解水生成用電解隔膜の製造が容易となる。
The electrolytic membrane for generating electrolyzed water of the present invention is provided with microporous linear protrusions on at least one surface of a flat microporous diaphragm base material, so that sufficient rigidity is imparted to the microporous diaphragm base material itself. In addition, since there is no need to separately combine and laminate the conventional lattice-like supports, the manufacturing can be simplified, and the electrode interval can be narrowed, contributing to the downsizing of the electrolyzed water generating apparatus. In addition, since the electrolytic membrane for generating electrolyzed water of the present invention includes not only the membrane substrate but also the linear protrusions made of a microporous body, the effective area of the electrolytic membrane for generating electrolyzed water is reduced as in the prior art. There is no such thing as increasing electrical resistance and increasing electrical energy loss.
Further, if the microporous linear protrusion and the microporous diaphragm base material are made of the same material, it becomes possible to form the microporous linear protrusion simultaneously with the formation of the microporous diaphragm base material. The reduction facilitates the production of the electrolytic diaphragm for generating electrolyzed water.

本発明の電解水生成用電解隔膜は、平板状の微多孔質隔膜基材の少なくとも片面に微多孔質線状突起を具備したシート状物である。
この微多孔質線状突起は、主に、(1)隔膜基材に剛性を与える剛性付与の機能と、(2)電解水生成用の水を通す流水路の機能と、(3)電解時に発生する分解ガスを排出し易くするガス排出路の機能を持っている。
このように、本発明の電解水生成用電解隔膜は、平板状の微多孔質隔膜基材の少なくとも片面に微多孔質線状突起を具備してなるため、微多孔質隔膜基材自体に十分な剛性を付与することができ、従来のような格子状支持体を別途組み合わせ積層する必要がないため、製造を簡略化できるとともに、電極間隔を狭くでき電解水生成装置のコンパクト化に寄与できる。しかも、本発明の電解水生成用電解隔膜は、隔膜基材だけでなく線状突起も微多孔質体からなるため、従来のように、電解水生成用電解隔膜の有効面積が減少し、電極間の電気抵抗を高めるようなことがない。
The electrolytic membrane for generating electrolyzed water of the present invention is a sheet-like material having microporous linear protrusions on at least one surface of a flat microporous membrane substrate.
The microporous linear projections mainly include (1) a function of imparting rigidity to the diaphragm base, (2) a function of a flow channel for passing water for generating electrolyzed water, and (3) during electrolysis. It has the function of a gas discharge path that makes it easy to discharge the generated cracked gas.
As described above, the electrolytic membrane for generating electrolyzed water of the present invention comprises the microporous linear protrusions on at least one surface of the flat microporous diaphragm base material, and thus is sufficient for the microporous diaphragm base material itself. In addition, since it is not necessary to separately combine and laminate the conventional lattice-like supports, it is possible to simplify the manufacturing process and to narrow the electrode interval, thereby contributing to the downsizing of the electrolyzed water generating apparatus. In addition, since the electrolytic membrane for generating electrolyzed water of the present invention includes not only the membrane substrate but also the linear protrusions made of a microporous body, the effective area of the electrolytic membrane for generating electrolyzed water is reduced as in the prior art. There is no such thing as increasing the electrical resistance.

前記微多孔質線状突起の形状は、前記したような、電解水生成用電解隔膜に要求される剛性とガス排出性を考慮した形状であれば特に限定されないが、剛性を特に考慮する場合は、図2や図4に示すように、平行な複数条の直線状あるいは波線状の微多孔質線状突起7,8を配置したものが好ましい。尚、前記微多孔質線状突起は、必ずしも連続線状である必要はなく、断続線状でもよい。
また、前記微多孔質線状突起は、前記したような直線状、波線状何れの場合であっても、略縦方向に配向するように形成されることが好ましい。このようにすることで、前記したガス排出性が良好となる。また、通常の電解水生成装置では、各電解槽の位置から見て電解水生成用水の供給口が下方向にあり生成した電解水の排出口が上方向にあるため、微多孔質線状突起を略縦方向に配向するように形成すれば、電解水生成用水の流水路が略上下方向に形成されるようになり流水効率が良い。尚、ここで言う縦方向とは、電解水生成用電解隔膜の製品の縦方向であり、電解水生成装置に使用される際の縦方向である。
The shape of the microporous linear protrusion is not particularly limited as long as it is a shape considering the rigidity and gas discharge required for the electrolytic membrane for generating electrolyzed water as described above. As shown in FIGS. 2 and 4, it is preferable to arrange a plurality of parallel linear or wavy microporous linear projections 7 and 8. The microporous linear protrusion does not necessarily need to be a continuous line, and may be an intermittent line.
In addition, the microporous linear protrusions are preferably formed so as to be oriented substantially in the vertical direction regardless of whether they are linear or wavy. By doing in this way, the above-mentioned gas discharge property becomes favorable. In addition, in a normal electrolyzed water generating apparatus, the electrolyzed water generating water supply port is downward and the generated electrolyzed water outlet is upward as viewed from the position of each electrolyzer. Is formed so as to be oriented in a substantially vertical direction, the flow path of the water for generating electrolyzed water is formed in a substantially vertical direction, and the flow efficiency is good. In addition, the vertical direction said here is a vertical direction of the product of the electrolytic diaphragm for electrolyzed water production | generation, and is a vertical direction at the time of using for an electrolyzed water production | generation apparatus.

前記微多孔質線状突起は、微多孔質隔膜基材の片面にのみ設けてもよいし、両面に設けるようにしてもよい。
交互に配置された陰極電極板と陽極電極板の各間に電解水生成用電解隔膜を1枚のみ配置するという、通常の設計をなされた電解水生成装置において使用される場合は、前記したような、微多孔質線状突起の流水路及びガス排出路の両機能に共通する、電極板と電解水生成用電解隔膜との間隔保持が重要となることから、微多孔質線状突起は微多孔質隔膜基材の両面に設けるようにすることが好ましい。
ただし、微多孔質線状突起を微多孔質隔膜基材の片面にのみ設ける場合であっても、次のように構成すれば、この限りではない。つまり、微多孔質線状突起を微多孔質隔膜基材の片面にのみ設ける場合には、図5に示すように、微多孔質線状突起8が外側となるように微多孔質隔膜基材6をその中央で折り曲げて積層状態とし、この積層状態をなす微多孔質隔膜基材6,6が、見掛け上、その両面に微多孔質線状突起8,8を具備するようにするのが好ましい。このようにすることで、本発明の電解水生成用電解隔膜が、電解水生成装置にて実際に使用される際には、図3のような微多孔質隔膜基材6の両面に予め微多孔質線状突起7,7を設けるように形成した電解水生成用電解隔膜5と実質的には同じ使用状態となるため、該予め両面に微多孔質線状突起7,7を設けた電解水生成用電解隔膜5と同様に、微多孔質線状突起の流水路及びガス排出路の両機能を十分に果たすことができるようになる。
The microporous linear protrusions may be provided only on one side of the microporous diaphragm base material, or may be provided on both sides.
When used in an electrolyzed water generating apparatus having a normal design in which only one electrolyzed water generating electrolysis membrane is disposed between each of the alternately arranged cathode electrode plates and anode electrode plates, as described above. In addition, since it is important to maintain the distance between the electrode plate and the electrolytic diaphragm for generating electrolyzed water, which is common to both functions of the flow channel and gas discharge channel of the microporous linear projection, the microporous linear projection is fine. It is preferable to provide it on both surfaces of a porous diaphragm base material.
However, even if the microporous linear protrusion is provided only on one side of the microporous diaphragm base material, this is not limited as long as it is configured as follows. That is, when the microporous linear protrusions are provided only on one side of the microporous diaphragm base, the microporous diaphragm base is arranged so that the microporous linear protrusions 8 are on the outside as shown in FIG. 6 is bent at its center to form a laminated state, and the microporous diaphragm base material 6, 6 forming this laminated state apparently has microporous linear protrusions 8, 8 on both sides thereof. preferable. In this way, when the electrolytic membrane for generating electrolyzed water of the present invention is actually used in an electrolyzed water generating device, the microporous membrane substrate 6 as shown in FIG. Since the electrolytic water generating electrolytic membrane 5 formed so as to provide the porous linear protrusions 7 and 7 is in substantially the same use state, the electrolysis in which the microporous linear protrusions 7 and 7 are previously provided on both surfaces. Similar to the water generating electrolytic diaphragm 5, both functions of the flow channel and the gas discharge channel of the microporous linear protrusion can be sufficiently achieved.

前記微多孔質線状突起を、予め微多孔質隔膜基材の両面に設けるようにする場合には、微多孔質隔膜基材の表裏面の微多孔質線状突起同士が互いに重なった状態(対向状態)または交差状態をなすように、微多孔質線状突起を形成するようにするのが好ましい。例えば、図2及び図3に示す電解水生成用電解隔膜5では、微多孔質隔膜基材6の表裏面の微多孔質線状突起7,7同士が互いに完全な重なった状態(対向状態)をなすように、微多孔質線状突起7,7が形成されている。また、微多孔質隔膜基材の表裏面の少なくとも一方の面に、平行な複数条の波線状の微多孔質線状突起、あるいは平行な複数条の斜行した直線状の微多孔質線状突起を形成するようにすれば、微多孔質隔膜基材の表裏面の微多孔質線状突起同士が互いに交差状態をなすようになる。仮に、微多孔質隔膜基材の表裏面それぞれに、斜行状態にない平行な複数条の直線状の微多孔質線状突起を配置した場合に、表裏面の微多孔質線状突起同士が互いに重ならないようなずれた位置に配置されていると、電解水生成用電解隔膜を電極板と重ね合わせて電解水生成装置を組み上げる際に電解水生成用電解隔膜は厚さ方向から圧力を受けることや、電解水生成装置にて使用される際電解水生成用電解隔膜は電極板と接触状態に置かれることから、電解水生成用電解膜膜が波打ち状に変形を起こすことになるので好ましくない。
また、前記微多孔質線状突起を片面にのみ設けた微多孔質隔膜基材を、微多孔質線状突起が外側となるように折り曲げて積層状態とし、見掛け上、この積層状態をなす微多孔質隔膜基材の両面に微多孔質線状突起を具備するように形成する場合にも、この積層状態をなす微多孔質隔膜基材の一方の面の微多孔質線状突起と、他方の面の微多孔質線状突起とが互いに重なった状態(対向状態)または交差状態をなすように、微多孔質線状突起を形成するようにするのが好ましい。ただし、双方の微多孔質線状突起同士が、実質的に交差状態をなさず重なった状態のみをなすように微多孔質線状突起を形成するようにした場合、折り曲げて積層状態とした微多孔質隔膜基材は通常その積層部分を接合状態にはしないため、重なった状態を恒常的に維持させることは困難であり制御が難しいことから、制御を容易にする意味からは、双方の微多孔質線状突起同士が交差状態をなすように微多孔質線状突起を形成するようにするのがより好ましい。例えば、図4及び図5に示すように、平行な複数条の波線状の微多孔質線状突起8を配置するように形成すれば、折り曲げられ積層状態をなす微多孔質隔膜基材6,6の一方の面の微多孔質線状突起8と、他方の面の微多孔質線状突起8とが互いに交差状態をなすようになる。他の例としては、図6に示すように、平行な複数条の斜行した直線状の微多孔質線状突起9を配置するようにしても良い。
When the microporous linear protrusions are previously provided on both surfaces of the microporous diaphragm base material, the microporous linear protrusions on the front and back surfaces of the microporous diaphragm base material overlap each other ( It is preferable to form the microporous linear protrusions so as to form a facing state or a crossing state. For example, in the electrolytic membrane 5 for generating electrolyzed water shown in FIGS. 2 and 3, the microporous linear protrusions 7 on the front and back surfaces of the microporous membrane substrate 6 are completely overlapped with each other (opposed state). The microporous linear protrusions 7 are formed so as to form Also, on at least one of the front and back surfaces of the microporous diaphragm base material, a plurality of parallel wavy microporous linear protrusions, or a plurality of parallel strips of slanted linear microporous linear If the protrusions are formed, the microporous linear protrusions on the front and back surfaces of the microporous diaphragm base material cross each other. If a plurality of parallel straight microporous linear protrusions that are not skewed are arranged on the front and back surfaces of the microporous diaphragm base material, the microporous linear protrusions on the front and back surfaces When the electrolyzed water generating device is assembled by superimposing the electrolyzed water generating electrolysis membrane on the electrode plate, the electrolyzed water generating electrolysis membrane receives pressure from the thickness direction. In addition, since the electrolytic membrane for generating electrolyzed water is placed in contact with the electrode plate when used in the electrolyzed water generating device, the electrolytic membrane for generating electrolyzed water is preferably deformed in a wave shape. Absent.
In addition, the microporous diaphragm base material provided with the microporous linear protrusions only on one side is folded so that the microporous linear protrusions are on the outer side to form a laminated state. Even in the case where the both sides of the porous diaphragm base material are formed so as to have microporous linear protrusions, the microporous linear protrusions on one side of the microporous diaphragm base material forming the laminated state and the other It is preferable to form the microporous linear protrusions so that the microporous linear protrusions on the surface overlap each other (opposite state) or intersect. However, when the microporous linear protrusions are formed so that both the microporous linear protrusions do not substantially intersect with each other and only overlap with each other, the microporous linear protrusions are folded into a laminated state. Since the porous membrane base material does not usually make the laminated portion bonded, it is difficult to maintain the overlapping state constantly and it is difficult to control. It is more preferable to form the microporous linear protrusions so that the porous linear protrusions intersect each other. For example, as shown in FIG. 4 and FIG. 5, if formed so as to arrange a plurality of parallel wavy microporous linear protrusions 8, the microporous diaphragm substrate 6, 6, the microporous linear protrusion 8 on one surface and the microporous linear protrusion 8 on the other surface cross each other. As another example, as shown in FIG. 6, a plurality of parallel and slanted linear microporous linear protrusions 9 may be arranged.

前記電解水生成用電解隔膜の製造方法について説明すれば、ポリオレフィン系樹脂、無機粉体及び可塑剤を混合した原料混合物を押出法よりシート化した後、半溶融状態のシートを一対の成形ロール間で加圧成形することにより、基材と同材質の線状突起をシートの片面または両面に具備させることができる。その後、抽出剤を用いて前記シート中の可塑剤を抽出除去することにより線状突起を含めたシート全体を微多孔質化し、微多孔質隔膜基材に微多孔質線状突起を具備した電解水生成用電解隔膜を得ることができる。
このように、前記微多孔質線状突起と前記微多孔質隔膜基材とが同材質であると、微多孔質隔膜基材の形成と同時に微多孔質線状突起を形成することができるため、製造工数を削減でき、電解水生成用電解隔膜の製造が容易となる。
尚、前記成形ロールの外周面には、線状突起を形成するために所定パターンに刻まれた溝部が形成されており、半溶融状態の前記シートが前記成形ロール間で加圧成形される際に、前記溝部に半溶融状態の前記シートが圧入されることにより、線状突起が前記シートの全面に形成される。
Explaining the method for producing the electrolytic membrane for generating electrolyzed water, a raw material mixture in which a polyolefin resin, an inorganic powder and a plasticizer are mixed is formed into a sheet by an extrusion method, and then a semi-molten sheet is formed between a pair of molding rolls. By performing pressure molding, linear projections of the same material as the substrate can be provided on one or both sides of the sheet. Thereafter, the entire sheet including the linear protrusions is made microporous by extracting and removing the plasticizer in the sheet using an extractant, and the microporous diaphragm base material is provided with the microporous linear protrusions. An electrolytic membrane for water generation can be obtained.
Thus, when the microporous linear protrusion and the microporous diaphragm base material are made of the same material, the microporous linear protrusion can be formed simultaneously with the formation of the microporous diaphragm base material. The number of manufacturing steps can be reduced, and the production of the electrolytic diaphragm for generating electrolyzed water is facilitated.
In addition, the outer peripheral surface of the forming roll is formed with grooves engraved in a predetermined pattern to form linear protrusions, and when the semi-molten sheet is pressure-formed between the forming rolls. In addition, when the sheet in a semi-molten state is press-fitted into the groove, linear protrusions are formed on the entire surface of the sheet.

次に、本発明の電解水生成用電解隔膜を用いた電解水生成装置について説明する。
本発明の電解水生成用電解隔膜を用いた電解水生成装置10は、従来例と同様の構成となっており、図1に示すように、垂直に配置した陰極電極板1と陽極電極板2の間に電解水生成用電解隔膜5を配置して、陰極電極板1と陽極電極板3とを電解水生成用電解隔膜5で隔離した、陰極電解槽3と陽極電解槽4とを交互に複数配列した構成となっている。この陰極電解槽3と陽極電解槽4には、各槽の下部より各槽に水を供給する配管11が配置され、供給された水が陰極電解槽3と陽極電解槽4を通過する過程で電気分解されて、アルカリ性水と酸性水が生成される。さらに、各陰極電解槽3と連通する配管13と、各陽極電解槽4と連通する配管12とが設けられ、この配管13,12から、各電解槽3,4にて生成されたアルカリ性水と酸性水とを別々に排出採取する構造となっている。
Next, the electrolyzed water generating apparatus using the electrolyzed water generating electrolytic membrane of the present invention will be described.
The electrolyzed water generating apparatus 10 using the electrolyzed water generating electrolytic membrane of the present invention has the same configuration as the conventional example, and as shown in FIG. 1, the cathode electrode plate 1 and the anode electrode plate 2 arranged vertically. An electrolytic diaphragm 5 for electrolyzed water generation is disposed between the cathode electrolytic cell 3 and the anode electrolytic cell 4, in which the cathode electrode plate 1 and the anode electrode plate 3 are separated by the electrolytic water generating electrolytic membrane 5. It has a configuration in which a plurality are arranged. In the cathode electrolytic cell 3 and the anode electrolytic cell 4, pipes 11 for supplying water to the respective cells from the lower part of the respective cells are arranged, and in the process in which the supplied water passes through the cathode electrolytic cell 3 and the anode electrolytic cell 4. It is electrolyzed to produce alkaline water and acidic water. Furthermore, a pipe 13 communicating with each cathode electrolytic cell 3 and a pipe 12 communicating with each anode electrolytic cell 4 are provided, and alkaline water generated in each electrolytic cell 3, 4 from these pipes 13, 12 It is structured to discharge and collect acidic water separately.

以下に本発明の実施例について比較例と共に詳細に説明するが、本発明はこの例に限定されるものではない。
(実施例1)
ポリオレフィン系樹脂として重量平均分子量200万の高密度ポリエチレン樹脂粉体22質量%と、無機粉体として比表面積が200m2/gで水分率が2.0質量%の二酸化ケイ素微粉25質量%に、可塑剤として鉱物オイル53質量%を混合し、二軸押出機で加熱溶融・混練しながら半溶融シートを押し出した後、直ちに、該シートを、外周面に線状突起を形成するための所定パターンの溝を刻設した溝付き成形ロール同士を対にした成形ロール間に通して圧延し、両面に平行な複数条の直線状の線状突起を有する、隔膜基材部分の厚さが200μmのシートを得た。次いで、炭化水素系溶剤の一種であるデカンを用いて鉱物オイルを抽出除去し、更に、100℃で乾燥して、図2及び図3に示すように、ポリエチレン樹脂47質量%と、二酸化ケイ素粉体53質量%とで構成される、高さが1.4mmの平行な複数条の直線状の微多孔質線状突起7を両面に有し、隔膜基材部分の厚さが200μmの電解水生成用電解隔膜5を得た。尚、前記溝付き成形ロールは、図2及び図3に示す線状突起7が形成できるように外周面の溝パターンを設計したものを用いた。
Examples of the present invention will be described below in detail together with comparative examples, but the present invention is not limited to these examples.
Example 1
22 mass% of high density polyethylene resin powder having a weight average molecular weight of 2 million as a polyolefin resin and 25 mass% of silicon dioxide fine powder having a specific surface area of 200 m 2 / g and a moisture content of 2.0 mass% as an inorganic powder, After mixing 53% by mass of mineral oil as a plasticizer and extruding a semi-molten sheet while heating and melting and kneading with a twin-screw extruder, the sheet is immediately subjected to a predetermined pattern for forming linear protrusions on the outer peripheral surface. Rolled through a pair of grooved forming rolls each having a groove formed therein, and having a plurality of linear linear protrusions parallel to both sides, the thickness of the membrane substrate portion is 200 μm A sheet was obtained. Next, the mineral oil was extracted and removed using decane, which is a kind of hydrocarbon solvent, and further dried at 100 ° C. As shown in FIGS. 2 and 3, 47 mass% of polyethylene resin, silicon dioxide powder, Electrolyzed water having a plurality of parallel, linear, linear microporous linear projections 7 having a height of 1.4 mm on both surfaces and a thickness of the membrane substrate portion of 200 μm. A production electrolytic diaphragm 5 was obtained. The grooved forming roll used was a groove pattern designed on the outer peripheral surface so that the linear protrusions 7 shown in FIGS. 2 and 3 could be formed.

(実施例2)
実施例1と同一の原材料を用いて片面に線状突起を有する電解水生成用電解隔膜を作製した。すなわち、ポリオレフィン系樹脂として重量平均分子量200万の高密度ポリエチレン樹脂粉体22質量%と、無機粉体として比表面積が200m2/gで水分率が2.0質量%の二酸化ケイ素微粉25質量%に、可塑剤として鉱物オイル53質量%を混合し、二軸押出機で加熱溶融・混練しながら半溶融シートを押し出した後、直ちに、該シートを、外周面に線状突起を形成するための所定パターンの溝を刻設した溝付き成形ロールと溝を持たぬ溝なし成形ロールとを対にした成形ロール間を通して圧延し、片面に平行な複数条の波線状の線状突起を有する、隔膜基材部分の厚さが100μmのシートを得た。次いで、炭化水素系溶剤の一種であるデカンを用いて鉱物オイルを抽出除去し、更に、100℃で乾燥して、図4に示すように、ポリエチレン樹脂47質量%と、二酸化ケイ素粉体53質量%とで構成される、高さが1.4mmの平行な複数条の波線状の微多孔質線状突起8を片面に有し、隔膜基材部分の厚さが100μmの微多孔質隔膜基材6を得た。このようにして得られた微多孔質隔膜基材6をその中央部分で折り曲げて積層状態とし、図5に示すように、積層状態をなす微多孔質隔膜基材6,6が、見掛け上、その両面に高さが1.4mmの平行な複数条の波線状の微多孔質線状突起8,8を具備したように構成される、積層状態の隔膜基材部分の厚さが200μmの電解水生成用電解隔膜5を得た。尚、前記溝付き成形ロールは、図4に示す線状突起8が形成できるように外周面の溝パターンを設計したものを用いた。
(Example 2)
An electrolytic diaphragm for generating electrolyzed water having linear protrusions on one side was prepared using the same raw materials as in Example 1. That is, 22% by mass of a high density polyethylene resin powder having a weight average molecular weight of 2 million as a polyolefin resin and 25% by mass of a silicon dioxide fine powder having a specific surface area of 200 m 2 / g and a moisture content of 2.0% by mass as an inorganic powder. In addition, 53% by mass of mineral oil is mixed as a plasticizer, and after the semi-molten sheet is extruded while being heated and melted and kneaded by a twin screw extruder, the sheet is immediately formed to form linear protrusions on the outer peripheral surface. A diaphragm having a plurality of wavy line-shaped protrusions parallel to one side, rolled through a pair of forming rolls having a grooved forming roll engraved with a predetermined pattern and a non-grooving forming roll. A sheet having a substrate part thickness of 100 μm was obtained. Next, the mineral oil was extracted and removed using decane, which is a kind of hydrocarbon solvent, and further dried at 100 ° C. As shown in FIG. 4, 47% by mass of polyethylene resin and 53% by mass of silicon dioxide powder were obtained. %, A plurality of parallel wavy microporous linear projections 8 having a height of 1.4 mm on one surface, and a microporous membrane base having a membrane substrate portion thickness of 100 μm Material 6 was obtained. The microporous diaphragm base material 6 obtained in this way is folded at its center to form a laminated state, and as shown in FIG. 5, the microporous diaphragm base materials 6 and 6 forming the laminated state are apparently Electrolysis with a thickness of 200 μm in the thickness of the laminated membrane base material portion configured to include a plurality of parallel wavy microporous linear protrusions 8, 8 having a height of 1.4 mm on both surfaces. An electrolysis membrane 5 for water generation was obtained. The grooved forming roll used was a groove pattern designed on the outer peripheral surface so that the linear protrusions 8 shown in FIG. 4 could be formed.

(比較例)
ポリ塩化ビニルを用いて、図7に示す格子状支持体15を作製した。すなわち、格子状支持体15は、図7に示すように、縦方向の格子子を幅2mmで6mm間隔に設け、横方向の格子子を幅1.5mmで10mm間隔に設けて、格子を作り、格子の各交点に高さ0.5mmの突起16を備えたものである。尚、突起16を含めた格子状支持体の厚さは2.0mmである。一方、微多孔質膜14として、実施例1と同一の原材料を用いて線状突起のない厚さ200μmの平板状微多孔質膜を作製した。すなわち、ポリオレフィン系樹脂として重量平均分子量200万の高密度ポリエチレン樹脂粉体22質量%と、無機粉体として比表面積が200m2/gで水分率が2.0質量%の二酸化ケイ素微粉25質量%に、可塑剤として鉱物オイル53質量%を混合し、二軸押出機で加熱溶融・混練しながら半溶融シートを押し出した後、直ちに、該シートを、外周面に溝を持たぬ溝なし成形ロール同士を対にした成形ロール間を通して圧延し、厚さ200μmのシートを得た。次いで、炭化水素系溶剤の一種であるデカンを用いて鉱物オイルを抽出除去し、更に、100℃で乾燥して、ポリエチレン樹脂47質量%と、二酸化ケイ素粉体53質量%とで構成される、厚さが200μmの平板状微多孔質膜を得た。この平板状微多孔質膜14の両面に前記ポリ塩化ビニル製格子状支持体15を接着剤を用いて接着して一体とした構造体17である電解水生成用電解隔膜を得た。
(Comparative example)
A grid-like support 15 shown in FIG. 7 was produced using polyvinyl chloride. That is, as shown in FIG. 7, the lattice-like support 15 is formed by providing longitudinal lattices with a width of 2 mm at intervals of 6 mm and transverse lattices with a width of 1.5 mm at intervals of 10 mm. The projection 16 having a height of 0.5 mm is provided at each intersection of the lattice. Note that the thickness of the grid-like support including the protrusions 16 is 2.0 mm. On the other hand, as the microporous film 14, a flat microporous film having a thickness of 200 μm and having no linear protrusions was produced using the same raw materials as in Example 1. That is, 22% by mass of a high density polyethylene resin powder having a weight average molecular weight of 2 million as a polyolefin resin and 25% by mass of a silicon dioxide fine powder having a specific surface area of 200 m 2 / g and a moisture content of 2.0% by mass as an inorganic powder. In addition, 53% by mass of mineral oil as a plasticizer is mixed, and after extruding a semi-molten sheet while heating and melting and kneading with a twin-screw extruder, the sheet is immediately formed into a grooveless forming roll having no grooves on the outer peripheral surface. The sheet was rolled through a pair of forming rolls to obtain a sheet having a thickness of 200 μm. Next, the mineral oil is extracted and removed using decane which is a kind of hydrocarbon solvent, and further dried at 100 ° C., and is composed of 47% by mass of polyethylene resin and 53% by mass of silicon dioxide powder. A flat microporous membrane having a thickness of 200 μm was obtained. An electrolytic diaphragm for generating electrolyzed water, which is an integrated structure 17, was obtained by adhering the polyvinyl chloride lattice-like support 15 to both surfaces of the flat microporous membrane 14 using an adhesive.

実施例1〜2及び比較例の電解水生成用電解隔膜のそれぞれについて、剛性度と電解時の電気抵抗を測定した結果を表1に示す。   Table 1 shows the results of measuring the rigidity and the electric resistance during electrolysis for each of the electrolytic diaphragms for producing electrolyzed water of Examples 1 and 2 and the comparative example.

Figure 0004300090
Figure 0004300090

表1より、本発明の実施例1及び実施例2の電解水生成用電解隔膜は、微多孔質線状突起を具備させたことにより、線状突起を具備しない平板状隔膜に対して剛性度の向上が認められた。すなわち、比較例の電解水生成用電解隔膜を構成する平板状微多孔質膜は、格子状支持体がない状態であると、剛性度が23°と大きな値となり、剛性が不足していた。また、剛性度を向上させたことにより、比較例の電解水生成用電解隔膜のように格子状支持体を別途に組み合わせて積層する必要がなくなったため、比較例の電解水生成用電解隔膜に比較して厚さを約29%薄型化でき、電極間隔を狭くすることが可能となった。
また、電解時の電気抵抗については、比較例の格子状支持体を具備した電解水生成用電解隔膜に対して、実施例1及び実施例2の電解水生成用電解隔膜は、約30%電気抵抗が低減されており、電解水生成時の電気的エネルギ損失を小さくすることができることが確認できた。
尚、実施例1と実施例2の比較から、1枚もののシートを折り曲げて2層に積層して形成した電解水生成用電解隔膜であっても、1枚もののシートでそのまま形成した電解水生成用電解隔膜に比べて、剛性度、電気抵抗共にまったく劣ることがなく、同様に使用できることが確認できた。
From Table 1, the electrolytic membranes for generating electrolyzed water of Example 1 and Example 2 of the present invention are provided with microporous linear protrusions, so that the rigidity of the diaphragm with no linear protrusions is increased. Improvement was observed. That is, the flat microporous membrane constituting the electrolytic membrane for generating electrolyzed water of the comparative example had a rigidity value as large as 23 ° and lacked rigidity when there was no grid-like support. In addition, by improving the rigidity, it is no longer necessary to separately combine and laminate a lattice-like support like the electrolytic membrane for generating electrolyzed water of the comparative example, so compared with the electrolytic membrane for generating electrolyzed water of the comparative example. As a result, the thickness can be reduced by about 29%, and the distance between the electrodes can be reduced.
In addition, with respect to the electric resistance during electrolysis, the electrolytic diaphragm for generating electrolyzed water of Examples 1 and 2 is about 30% more electrically than the electrolytic diaphragm for generating electrolyzed water provided with the grid-like support of the comparative example. It has been confirmed that the resistance has been reduced and the electrical energy loss during electrolyzed water generation can be reduced.
In addition, from the comparison between Example 1 and Example 2, even when the electrolytic membrane for electrolyzed water generation is formed by bending one sheet and laminating it into two layers, the electrolyzed water generation formed as it is by one sheet Compared to the electrolytic diaphragm for use, it was confirmed that the rigidity and electric resistance were not inferior at all and could be used in the same manner.

本発明の積層構造の電極板を有する電解水生成装置の概略構成図The schematic block diagram of the electrolyzed water generating apparatus which has the electrode plate of the laminated structure of this invention 本発明の電解水生成用電解隔膜の平面図The top view of the electrolytic diaphragm for electrolyzed water production | generation of this invention 図2の拡大部分断面図Enlarged partial sectional view of FIG. 本発明の電解水生成用電解隔膜の平面図The top view of the electrolytic diaphragm for electrolyzed water production | generation of this invention 図4の拡大部分断面図Enlarged partial cross-sectional view of FIG. 本発明の電解水生成用電解隔膜の平面図The top view of the electrolytic diaphragm for electrolyzed water production | generation of this invention 従来の格子状支持体の平面図Plan view of a conventional lattice support

符号の説明Explanation of symbols

1 陰極電極板
2 陽極電極板
3 陰極電解槽
4 陽極電解槽
5 電解水生成用電解隔膜
6 微多孔質隔膜基材
7 微多孔質線状突起
8 微多孔質線状突起
9 微多孔質線状突起
10 電解水生成装置
11 配管
12 配管
13 配管
14 微多孔質膜
15 格子状支持体
16 突起
17 構造体
DESCRIPTION OF SYMBOLS 1 Cathode electrode plate 2 Anode electrode plate 3 Cathode electrolytic cell 4 Anode electrolytic cell 5 Electrolytic water production | generation electrolytic membrane 6 Microporous membrane base material 7 Microporous linear protrusion 8 Microporous linear protrusion 9 Microporous linear shape Protrusion 10 Electrolyzed water generator 11 Piping 12 Piping 13 Piping 14 Microporous membrane 15 Grid-like support 16 Protrusion 17 Structure

Claims (9)

微多孔質隔膜基材の少なくとも片面に、微多孔質線状突起を具備してなることを特徴とする電解水生成用電解隔膜。   An electrolytic diaphragm for generating electrolyzed water, comprising a microporous linear protrusion on at least one surface of a microporous diaphragm base material. 前記微多孔質隔膜基材の両面に、前記微多孔質線状突起を具備してなることを特徴とする請求項1記載の電解水生成用電解隔膜。   2. The electrolytic diaphragm for generating electrolyzed water according to claim 1, wherein the microporous linear protrusions are provided on both surfaces of the microporous diaphragm base material. 前記微多孔質隔膜基材の両面にそれぞれ具備した前記微多孔質線状突起同士が互いに重なった状態(対向状態)もしくは交差状態をなすように前記微多孔質線状突起が形成されていることを特徴とする請求項2記載の電解水生成用電解隔膜。   The microporous linear protrusions are formed so that the microporous linear protrusions respectively provided on both surfaces of the microporous diaphragm base material overlap each other (opposed state) or intersect. The electrolytic diaphragm for electrolyzed water generation according to claim 2. 前記微多孔質線状突起を片面に具備した微多孔質隔膜基材を、前記微多孔質線状突起が外側となるように折り曲げて積層状態とし、該積層状態をなす微多孔質隔膜基材が、見掛け上その両面に前記微多孔質線状突起を具備するようにしたことを特徴とする請求項1記載の電解水生成用電解隔膜。   The microporous diaphragm substrate having the microporous linear protrusions on one side is folded so that the microporous linear protrusions are on the outer side to form a laminated state. The electrolytic diaphragm for generating electrolyzed water according to claim 1, wherein the microporous linear protrusions are apparently provided on both sides thereof. 前記積層状態をなす微多孔質隔膜基材の一方の面に具備した前記微多孔質線状突起と他方の面に具備した前記微多孔質線状突起とが互いに重なった状態(対向状態)もしくは交差状態をなすように前記微多孔質線状突起が形成されていることを特徴とする請求項4記載の電解水生成用電解隔膜。   The microporous linear protrusion provided on one surface of the microporous diaphragm base material in the laminated state and the microporous linear protrusion provided on the other surface overlap each other (opposite state) or 5. The electrolytic membrane for generating electrolyzed water according to claim 4, wherein the microporous linear protrusions are formed so as to form an intersecting state. 前記積層状態をなす微多孔質隔膜基材の一方の面に具備した前記微多孔質線状突起と他方の面に具備した前記微多孔質線状突起とが互いに交差状態をなすように前記微多孔質線状突起が形成されていることを特徴とする請求項5記載の電解水生成用電解隔膜。   The microporous linear protrusions provided on one surface of the microporous diaphragm base material in the laminated state and the microporous linear protrusions provided on the other surface intersect each other. 6. The electrolytic diaphragm for generating electrolyzed water according to claim 5, wherein porous linear protrusions are formed. 前記微多孔質線状突起が、前記微多孔質隔膜基材と同材質であることを特徴とする請求項1乃至6の何れかに記載の電解水生成用電解隔膜。   The electrolytic diaphragm for generating electrolyzed water according to any one of claims 1 to 6, wherein the microporous linear protrusions are made of the same material as the microporous diaphragm base material. 前記微多孔質線状突起は、前記微多孔質隔膜基材とともに一体成形されてなるものであることを特徴とする請求項7記載の電解水生成用電解隔膜。   8. The electrolytic diaphragm for generating electrolyzed water according to claim 7, wherein the microporous linear protrusion is formed integrally with the microporous diaphragm base material. 前記微多孔質線状突起は、略縦方向に配向された複数条の線状突起であることを特徴とする請求項1乃至8の何れかに記載の電解水生成用電解隔膜。
The electrolytic diaphragm for generating electrolyzed water according to any one of claims 1 to 8, wherein the microporous linear protrusions are a plurality of linear protrusions oriented in a substantially vertical direction.
JP2003340104A 2003-09-30 2003-09-30 Electrolytic membrane for electrolyzed water generation Expired - Fee Related JP4300090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003340104A JP4300090B2 (en) 2003-09-30 2003-09-30 Electrolytic membrane for electrolyzed water generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003340104A JP4300090B2 (en) 2003-09-30 2003-09-30 Electrolytic membrane for electrolyzed water generation

Publications (2)

Publication Number Publication Date
JP2005103442A JP2005103442A (en) 2005-04-21
JP4300090B2 true JP4300090B2 (en) 2009-07-22

Family

ID=34535106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003340104A Expired - Fee Related JP4300090B2 (en) 2003-09-30 2003-09-30 Electrolytic membrane for electrolyzed water generation

Country Status (1)

Country Link
JP (1) JP4300090B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5650506B2 (en) * 2010-11-22 2015-01-07 優章 荒井 Electrolyzed water production equipment
JP5899455B2 (en) 2013-10-25 2016-04-06 パナソニックIpマネジメント株式会社 Liquid processing apparatus and liquid processing method
JP6446809B2 (en) * 2014-03-28 2019-01-09 ダイキン工業株式会社 Discharge device
KR101701106B1 (en) * 2014-04-03 2017-02-01 (주)이온케어스 Electrolytic cell of ion water purifier employing thesame

Also Published As

Publication number Publication date
JP2005103442A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP5639724B1 (en) ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF
KR101877067B1 (en) Membrane stack for a membrane based process and method for producing a mem brane therefor
JP5123662B2 (en) Electrochemical ion exchange with textured membranes and cartridges
JP3139159U (en) Electrolyzer for water electrolysis
JP2016094666A (en) Electrolytic cell for ozone production
JP5702885B1 (en) Electrolyzed water generator
JP2003041388A (en) Electrolysis cell with ion exchange membrane and electrolysis method
KR20150118771A (en) Capacitive Deionization Composited Electrode, Capacitive Deionization Composited Electrode Cell and Capacitive Deionization Composited Electrode Manufacturing Method
WO2021045614A1 (en) Compact electrochemical stack using corrugated electrodes
JP4300090B2 (en) Electrolytic membrane for electrolyzed water generation
CN105992635B (en) Disposable membrane stack overlapping piece
CN107108281A (en) Electrolytic water generating device
WO2016143540A1 (en) Electrolytic water generating apparatus
CN107531517B (en) Electrolytic cell and electrolyzed water generation device
CN104556315A (en) Membrane stack and electro-desalting assembly
EP3642165B1 (en) Desalination device and method of manufacturing such a device
JP4768988B2 (en) Distribution member for electrolyte filtration electrochemical cell
JP2006346672A (en) Batch-type apparatus for producing acidic electrolytic water and method using the same
CN105800743B (en) Electrodialysis device
JPH081165A (en) Electrolytic cell
JP2017018915A (en) Electric cell and electrolysis water generation device
JPH08260178A (en) Water electrolytic cell using solid high molecular electrolyte membrane
KR20160116116A (en) Electrolytic ionized water device comprising electrodes which are made of resin treatment agent
JP2006257452A (en) Electrolysis diaphragm and manufacturing method therefor
WO2017006913A1 (en) Electrolytic cell and electrolyzed-water generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees